1
|
Wang Y, Liang Y, Wang X, Zhu X, Liu X. Chlorine removal technologies for resource utilization of municipal solid waste incineration fly ash. ENVIRONMENTAL RESEARCH 2025; 268:120784. [PMID: 39778614 DOI: 10.1016/j.envres.2025.120784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/11/2025]
Abstract
The resource utilization of municipal solid waste incineration fly ash (MSWI FA) has been widely concerned at present. The chlorine removal from MSWI FA is of great significance for controlling environmental risk and improving materials properties in the process of its resource utilization. This work specifically proposes to divide the chlorine in MSWI FA into inorganic chloride and organic chloride. The removal rate, influencing factors, and removal mechanism of chlorine in MSWI FA using various technologies were systematically analyzed. In addition, the applicability, advantages and disadvantages of chlorine removal technology in different scenarios were highlighted. This work identifies the technical barriers that need to be solved urgently in the current research and proposes a key direction for future research on the regulation of chlorine removal technologies of MSWI FA.
Collapse
Affiliation(s)
- Yaguang Wang
- School of Civil Engineering and Architecture, Henan University, Kaifeng, 475004, China
| | - Yuan Liang
- School of Civil Engineering and Architecture, Henan University, Kaifeng, 475004, China
| | - Xinhan Wang
- School of Civil Engineering and Architecture, Henan University, Kaifeng, 475004, China
| | - Xiang Zhu
- School of Civil Engineering and Architecture, Henan University, Kaifeng, 475004, China.
| | - Xiaoming Liu
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
2
|
Jamalimoghadam M, Vakili AH, Keskin I, Totonchi A, Bahmyari H. Solidification and utilization of municipal solid waste incineration ashes: Advancements in alkali-activated materials and stabilization techniques, a review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:122014. [PMID: 39098066 DOI: 10.1016/j.jenvman.2024.122014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/07/2024] [Accepted: 07/26/2024] [Indexed: 08/06/2024]
Abstract
Researchers are actively investigating methodologies for the detoxification and utilization of Municipal Solid Waste Incineration Bottom Ash (MSWIBA) and Fly Ash (MSWIFA), given their potential as alkali-activated materials (AAMs) with low energy consumption. Recent studies highlight that AAMs from MSWIFA and MSWIBA demonstrate significant durability in both acidic and alkaline environments. This article provides a comprehensive overview of the processes for producing MSWIFA and MSWIBA, evaluating innovative engineering stabilization techniques such as graphene nano-platelets and lightweight artificial cold-bonded aggregates, along with their respective advantages and limitations. Additionally, this review meticulously incorporates relevant reactions. Recommendations are also presented to guide future research endeavors aimed at refining these methodologies.
Collapse
Affiliation(s)
- Mohammad Jamalimoghadam
- Department of Civil Engineering, Marvdasht Branch, Azad Islamic University, Marvdasht, Iran.
| | - Amir Hossein Vakili
- Department of Environmental Engineering, Faculty of Engineering, Karabuk University, Karabuk, Turkey; Department of Civil Engineering, Faculty of Engineering, Zand Institute of Higher Education, Shiraz, Iran.
| | - Inan Keskin
- Department of Environmental Engineering, Faculty of Engineering, Karabuk University, Karabuk, Turkey
| | - Arash Totonchi
- Department of Civil Engineering, Marvdasht Branch, Azad Islamic University, Marvdasht, Iran
| | | |
Collapse
|
3
|
Chen X, Zhou X, Fan Z, Peng Z, Lu Q. Competitive encapsulation of multiple heavy metals by magnesium potassium phosphate cement: Hydration characteristics and leaching toxicity properties. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 177:115-124. [PMID: 38320451 DOI: 10.1016/j.wasman.2024.01.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/09/2024] [Accepted: 01/27/2024] [Indexed: 02/08/2024]
Abstract
Magnesium potassium phosphate cement (MKPC) is increasingly used in the solidification/stabilization (SS) of heavy metal (HM) pollutants. However, research on composite HM pollutants remains limited. In this study, four heavy metals (Pb/Zn/Cu/Cd) were individually and simultaneously introduced into MKPC systems with different magnesium/phosphorus (M/P) molar ratios. The introduction of HMs altered the extent of hydration and morphology of MgKPO4·6H2O. Among the MKPC pastes, those with M/P = 2 and 3 had the highest HM solidification efficiency and strength, respectively. The HM solidification efficiency of all specimens exceeded 99 %. In samples with M/P = 3, the codoping of four HMs slightly increased the M/P ratio, thereby increasing MgKPO4·6H2O content and enhancing strength. Pb could generate additional low-solubility precipitates, such as PbHPO4, Pb3 (PO4)2, Pb5 (OH) (PO4)3, and Pb (OH)2, which easily accumulated in pores and were encapsulated by MgKPO4·6H2O, leading to the highest solidification efficiency of Pb by MKPC. Pb and Cu could also form the composite phosphate products Pb2Cu (PO4)3 (OH)·4H2O, thus promoting the S/S effect of Cu. Therefore, the use of MKPC with M/P ratio of 2-3 for the S/S of complex pollutants containing Pb and Cu is a promising approach.
Collapse
Affiliation(s)
- Xia Chen
- Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Changjiang River Scientific Research Institute, Wuhan 430010, Hubei, China.
| | - Xian Zhou
- Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Changjiang River Scientific Research Institute, Wuhan 430010, Hubei, China.
| | - Zeyu Fan
- Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Changjiang River Scientific Research Institute, Wuhan 430010, Hubei, China
| | - Ziling Peng
- Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Changjiang River Scientific Research Institute, Wuhan 430010, Hubei, China
| | - Qi Lu
- Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Changjiang River Scientific Research Institute, Wuhan 430010, Hubei, China
| |
Collapse
|
4
|
Liu R, Liu S, Sun S, Cao X, Lin J, Peng J, Ji F, Ma R. Medical waste incineration fly ash-based magnesium potassium phosphate cement: Calcium-reinforced chlorine solidification/stabilization mechanism and optimized carbon reduction process strategy. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 357:120749. [PMID: 38552517 DOI: 10.1016/j.jenvman.2024.120749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/28/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024]
Abstract
The traditional solidification/stabilization (S/S) technology, Ordinary Portland Cement (OPC), has been widely criticized due to its poor resistance to chloride and significant carbon emissions. Herein, a S/S strategy based on magnesium potassium phosphate cement (MKPC) was developed for the medical waste incineration fly ash (MFA) disposal, which harmonized the chlorine stabilization rate and potential carbon emissions. The in-situ XRD results indicated that the Cl- was efficiently immobilized in the MKPC system with coexisting Ca2+ by the formation of stable Ca5(PO4)3Cl through direct precipitation or intermediate transformation (the Cl- immobilization rate was up to 77.29%). Additionally, the MFA-based MKPC also demonstrated a compressive strength of up to 39.6 MPa, along with an immobilization rate exceeding 90% for heavy metals. Notably, despite the deterioration of the aforementioned S/S performances with increasing MFA incorporation, the potential carbon emissions associated with the entire S/S process were significantly reduced. According to the Life Cycle Assessment, the potential carbon emissions decreased to 8.35 × 102 kg CO2-eq when the MFA reached the blending equilibrium point (17.68 wt.%), while the Cl- immobilization rate still remained above 65%, achieving an acceptable equilibrium. This work proposes a low-carbon preparation strategy for MKPC that realizes chlorine stabilization, which is instructive for the design of S/S materials.
Collapse
Affiliation(s)
- Runjie Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Shiwei Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Shichang Sun
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xing Cao
- Shenzhen Engineering Lab of Flexible Transparent Conductive Films, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Junhao Lin
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Juan Peng
- Shenzhen Environmental Technology Group Co. LTD, Shenzhen, 518010, China
| | - Fei Ji
- Shenzhen Environmental Technology Group Co. LTD, Shenzhen, 518010, China
| | - Rui Ma
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
5
|
Lan J, Dong Y, Kai MF, Hou H, Dai JG. Investigation of waste alkali-activated cementing material using municipal solid waste incineration fly ash and dravite as precursors: Mechanisms, performance, and on-site application. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133416. [PMID: 38183939 DOI: 10.1016/j.jhazmat.2023.133416] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
The proper treatment of municipal solid waste incineration fly ash (MSWIFA) is a crucial concern due to its hazardous nature and potential environmental harm. To address this issue, this study innovatively utilized dravite and black liquor to solidify MSWIFA. The semi-dry pressing method was employed, resulting in the production of waste alkali-activated cementing material (WACM). This material demonstrated impressive compressive and flexural strength, reaching 45.89 MPa and 6.55 MPa respectively, and effectively solidified heavy metal ions (Pb, Cr, Cu, Cd, and Zn). The leaching concentrations of these ions decreased from 27.15, 10.36, 8.94, 7.00, and 104.4 mg/L to 0.13, 1.05, 0.29, 0.06, and 12.28 mg/L, respectively. The strength of WACM increased by 3 times compared to conventionally produced materials. Furthermore, WACM exhibited excellent long-term performance, with acceptable heavy metal leaching and minimal mechanical degradation. Experimental and theoretical analyses revealed the heavy metal solidification mechanisms, including chemical binding, ion substitution and physical encapsulation. Finally, the on-site application of WACM confirmed its feasibility in meeting both environmental and strength requirements.
Collapse
Affiliation(s)
- Jirong Lan
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region
| | - Yiqie Dong
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, China
| | - Ming-Feng Kai
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region.
| | - Haobo Hou
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, China
| | - Jian-Guo Dai
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region; Department of Architecture and Civil Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region.
| |
Collapse
|
6
|
Pavlík Z, Záleská M, Pavlíková M, Pivák A, Nábělková J, Jankovský O, Jiříčková A, Chmel O, Průša F. Simultaneous Immobilization of Heavy Metals in MKPC-Based Mortar-Experimental Assessment. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7525. [PMID: 38138666 PMCID: PMC10744662 DOI: 10.3390/ma16247525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
Heavy metal contamination, associated with the increase in industrial production and the development of the population in general, poses a significant risk in terms of the contamination of soil, water, and, consequently, industrial plants and human health. The presence of ecotoxic heavy metals (HMs) thus significantly limits the sustainable development of society and contributes to the deterioration of the quality of the environment as a whole. For this reason, the stabilization and immobilization of heavy metals is a very topical issue. This paper deals with the possibility of the simultaneous immobilization of heavy metals (Ba2+, Pb2+, and Zn2+) in mortar based on magnesium potassium phosphate cement (MKPC). The structural, mechanical, and hygric parameters of mortars artificially contaminated with heavy metals in the form of salt solutions were investigated together with the formed hydration products. In the leachates of the prepared samples, the content of HMs was measured and the immobilization ratio of each HM was determined. The immobilization rate of all the investigated HMs was >98.7%, which gave information about the effectiveness of the MKPC-based matrix for HM stabilization. Furthermore, the content of HMs in the leachates was below the prescribed limits for non-hazardous waste that can be safely treated without any environmental risks. Although the presence of heavy metals led to a reduction in the strength of the prepared mortar (46.5% and 57.3% in compressive and flexural strength, respectively), its mechanical resistance remained high enough for many construction applications. Moreover, the low values of the parameters characterizing the water transport (water absorption coefficient Aw = 4.26 × 10-3 kg·m-2·s-1/2 and sorptivity S = 4.0 × 10-6 m·s-1/2) clearly demonstrate the limited possibility of the leaching of heavy metals from the MKPC matrix structure.
Collapse
Affiliation(s)
- Zbyšek Pavlík
- Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 166 29 Prague, Czech Republic; (M.Z.); (M.P.); (A.P.)
| | - Martina Záleská
- Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 166 29 Prague, Czech Republic; (M.Z.); (M.P.); (A.P.)
| | - Milena Pavlíková
- Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 166 29 Prague, Czech Republic; (M.Z.); (M.P.); (A.P.)
| | - Adam Pivák
- Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 166 29 Prague, Czech Republic; (M.Z.); (M.P.); (A.P.)
| | - Jana Nábělková
- Department of Sanitary and Ecological Engineering, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 166 29 Prague, Czech Republic;
| | - Ondřej Jankovský
- Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic; (O.J.); (A.J.); (O.C.); (F.P.)
| | - Adéla Jiříčková
- Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic; (O.J.); (A.J.); (O.C.); (F.P.)
| | - Oskar Chmel
- Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic; (O.J.); (A.J.); (O.C.); (F.P.)
| | - Filip Průša
- Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic; (O.J.); (A.J.); (O.C.); (F.P.)
- Department of Metals and Corrosion Engineering, Faculty of Chemical Technology, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic
| |
Collapse
|
7
|
Wang Y, Li R, Qiao J. Solidification of heavy metals in municipal solid waste incineration washed fly ash by asphalt mixture. CHEMOSPHERE 2023; 343:140281. [PMID: 37758083 DOI: 10.1016/j.chemosphere.2023.140281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/14/2023] [Accepted: 09/24/2023] [Indexed: 10/01/2023]
Abstract
Using asphalt mixture to solidify heavy metals in municipal solid waste incineration fly ash can reduce pollution and realize resource utilization. In this study, the physical and chemical properties of washed fly ash were analyzed, and washed fly ash was added to asphalt mixture as filler instead of mineral powder. The study involved analyzing the mechanical attributes of asphalt mixtures containing washed fly ash, along with examining the characteristics of asphalt binder that incorporates the washed fly ash. Subsequently, assess the potential leaching hazards associated with asphalt mixture incorporating washed fly ash. The test results showed that washed fly ash was a Si-Al-Ca system material, which had small particle size, large specific surface area and many pores. It increased the contact area with asphalt, which improved encapsulation of asphalt and aggregates. The optimal dosage of washed fly ash is 2.5%. At this dosage, the mixture attains optimal high-temperature performance, while both low-temperature performance and the characteristics of washed fly ash asphalt binder align with requirements. Asphalt mixture has solidification on heavy metals, with strongest solidification for Zn, followed by Cu, Cr. A prediction model of leaching amount versus time was constructed for Pb, Ba and Ni, which have weak solidified ability. The cumulative leaching amount of the road within 15 years of service life was calculated through the model, and it was obtained that the addition of washed fly ash will not cause pollution to environment. Overall, this study showed that asphalt mixtures can be used for stabilization/solidification of washed fly ash while saving natural mineral, providing a theoretical basis for the resource application of washed fly ash in asphalt road construction.
Collapse
Affiliation(s)
- Yue Wang
- School of Civil and Transportation Engineering, Hebei University of Technology, 5340 Xiping Road, Beichen District, Tianjin, 300401, China
| | - Ruiping Li
- Shanxi Provincial Highway Bureau, Yangquan Branch, No.20, Shifan Street, Wucheng Road, Xiaodian District, Yangquan, 045099, China
| | - Jiangang Qiao
- School of Civil and Transportation Engineering, Hebei University of Technology, 5340 Xiping Road, Beichen District, Tianjin, 300401, China.
| |
Collapse
|
8
|
Fan J, Yan J, Zhou M, Xu Y, Lu Y, Duan P, Zhu Y, Zhang Z, Li W, Wang A, Sun D. Heavy metals immobilization of ternary geopolymer based on nickel slag, lithium slag and metakaolin. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131380. [PMID: 37043859 DOI: 10.1016/j.jhazmat.2023.131380] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/25/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
To solve heavy metals leaching problem in the utilization of various industrial solid wastes, this work investigated the heavy metals immobilization of ternary geopolymer prepared by nickel slag (NS), lithium slag (LS), and metakaolin (MK). Compressive strength was measured to determine the optimum and appropriate mix proportions. The leaching characteristics of typical heavy metals (Cu (Ⅱ), Pb (Ⅱ), and Cr (Ⅲ)) in acid, alkali, and salt environments were revealed by Inductively Coupled Plasma (ICP). The heavy metals immobilization mechanism was explored by Mercury Intrusion Porosimetry (MIP), X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and Scanning Electron Microscopy (SEM) tests. The experimental results show that the group with a mass ratio of NS, LS and MK of 1:1:8 exhibits the highest compressive strength, which reaches 69.1 MPa at 28 d. The ternary geopolymer possesses a desirable capacity for immobilizing inherent heavy metals, where the immobilization rates of Cu and Pb reach 96.69 %, and that of Cr reaches 99.97 %. The leaching concentrations of Cr and Pb increase when the samples are exposed to acidic and alkaline environments. Cu and Pb are mainly physically encapsulated in geopolymer. Additionally, immobilization of Cr mainly involves physical encapsulation and chemical bonding.
Collapse
Affiliation(s)
- Jinyuan Fan
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Jiahao Yan
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Mengya Zhou
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yuan Xu
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yuwei Lu
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Ping Duan
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China; Key Laboratory of Advanced Building Materials of Anhui Province, Anhui Jianzhu University, Hefei 230022, China; Guangxi Key Laboratory of New Energy and Building Energy Saving, Guilin University of Technology, Guilin 541004, China.
| | - Yingcan Zhu
- Shanghai Geopoly New Materials Co., Ltd, Wisdom square, Jingan district, Shanghai 200042, China.
| | - Zuhua Zhang
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Wengui Li
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Aiguo Wang
- Key Laboratory of Advanced Building Materials of Anhui Province, Anhui Jianzhu University, Hefei 230022, China
| | - Daosheng Sun
- Key Laboratory of Advanced Building Materials of Anhui Province, Anhui Jianzhu University, Hefei 230022, China
| |
Collapse
|
9
|
Li T, Wang B. Effect and mechanism of nano-alumina on early hydration properties and heavy metals solidification/stabilization of alkali-activated MSWI fly ash solidified body. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131327. [PMID: 37027917 DOI: 10.1016/j.jhazmat.2023.131327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/04/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Municipal solid waste incineration (MSWI) fly ash has serious pollution. It needs to be solidification/stabilization (S/S) to sanitary landfill as quickly as possible. In order to achieve the objective, the early hydration properties of alkali-activated MSWI fly ash solidified body were investigated in this paper. Meanwhile, nano-alumina was utilized as an agent to optimize the early performance. Therefore, the mechanical properties, environmental safety, hydration process and mechanisms of heavy metals S/S were explored. The results showed that after adding nano-alumina, the leaching concentration of Pb and Zn in solidified bodies after 3 d curing was significantly reduced by 49.7-63% and 65.8-76.1%, respectively, and the compressive strength was enhanced by 10.2-55.9%. Nano-alumina improved the hydration process, and the predominant hydration products in solidified bodies were C-S-H gels and C-A-S-H gels. Meanwhile, nano-alumina could obviously increase the most stable chemical speciation (residual state) ratio of heavy metals in solidified bodies. Pore structure data showed that, due to the filling effect and pozzolanic effect of nano-alumina, the porosity has been reduced and the ratio of harmless pore structure has been increased. Therefore, it can be concluded that solidified bodies mainly solidify MSWI fly ash by physical adsorption, physical encapsulation and chemical bonding.
Collapse
Affiliation(s)
- Tianru Li
- School of Civil Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Baomin Wang
- School of Civil Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| |
Collapse
|
10
|
Chen J, Zhu W, Shen Y, Fu C, Li M, Lin X, Li X, Yan J. A novel method of calcium dissolution-crystallization-polymerization for stabilization/solidification of MSWI fly ash. CHEMOSPHERE 2023; 326:138465. [PMID: 36948258 DOI: 10.1016/j.chemosphere.2023.138465] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/07/2023] [Accepted: 03/18/2023] [Indexed: 06/18/2023]
Abstract
Municipal solid waste incineration fly ash (MSWI FA) stabilization/solidification using calcium carbonate (CaCO3) oligomer is an efficient, low-carbon disposal method. The insoluble Ca in FA was converted to free-Ca, utilizing for CaCO3 oligomer preparation, which was crystallized and polymerized by thermal induction to develop continuous cross-link or bulk structures for stabilization/solidification of potentially toxic elements (PTEs, e.g., lead (Pb) and zinc (Zn)). Experimental results showed that the weakly alkaline acid-leaching suspension provided an excellent condition for the generation of CaCO3 oligomers, with Pb and Zn immobilization reaching over 99.4%. With the acid strengthening of the suspension, H+ took the lead in protonating with TEA and limiting the capping action of TEA, which was harmful to the synthesis of CaCO3 oligomers. Ethanol with a low dielectric constant was considered an ideal solvent for oligomer production, and triethylamine (TEA) as a capping agent established hydrogen bonds (N⋯H) with protonated CaCO3. H2O molecules competed with the protonated CaCO3 molecules for TEA with ethanol concentration decreasing, resulting in erratic precipitation of CaCO3 molecules and significantly elevated leaching risk of Pb and Zn. The sequential extraction procedure, pH-dependent leaching, and geochemical analysis results revealed that the dissolution/precipitation of Ca, Pb, and Zn in treated FA was mostly controlled by the carbonate mineral phases. Moreover, the low boiling points of ethanol and TEA can be recovered for recycling. The gel-like, flexible combination of CaCO3 oligomers and FA particles formed by FA offers great resource utilization potential via a controlled crystallization polymerization process.
Collapse
Affiliation(s)
- Jie Chen
- State Key Laboratory of Clean Energy Utilization, Institute of Thermal Power Engineering of Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Wanchen Zhu
- State Key Laboratory of Clean Energy Utilization, Institute of Thermal Power Engineering of Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Yizhe Shen
- State Key Laboratory of Clean Energy Utilization, Institute of Thermal Power Engineering of Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Congkai Fu
- State Key Laboratory of Clean Energy Utilization, Institute of Thermal Power Engineering of Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Minjie Li
- State Key Laboratory of Clean Energy Utilization, Institute of Thermal Power Engineering of Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Xiaoqing Lin
- State Key Laboratory of Clean Energy Utilization, Institute of Thermal Power Engineering of Zhejiang University, Hangzhou, 310027, Zhejiang, China; Key Laboratory of Clean Energy and Carbon Neutrality of Zhejiang Province, Jiaxing Research Institute, Zhejiang University, 1300 Dongshengxilu Road, Jiaxing, 314031, China.
| | - Xiaodong Li
- State Key Laboratory of Clean Energy Utilization, Institute of Thermal Power Engineering of Zhejiang University, Hangzhou, 310027, Zhejiang, China; Key Laboratory of Clean Energy and Carbon Neutrality of Zhejiang Province, Jiaxing Research Institute, Zhejiang University, 1300 Dongshengxilu Road, Jiaxing, 314031, China
| | - Jianhua Yan
- State Key Laboratory of Clean Energy Utilization, Institute of Thermal Power Engineering of Zhejiang University, Hangzhou, 310027, Zhejiang, China
| |
Collapse
|
11
|
Liu S, Cao X, Yang W, Liu R, Fang L, Ma R, Peng J, Zheng S, Ji F. Preparation of magnesium potassium phosphate cement from municipal solid waste incineration fly ash and lead slag co-blended: Ca-induced crystal reconstruction process and Pb-Cl synergistic solidification mechanism. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131690. [PMID: 37257382 DOI: 10.1016/j.jhazmat.2023.131690] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/07/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
Higher chlorine (Cl) content than lead (Pb) content in municipal solid waste incineration fly ash (MSWIFA) impeded the practical application of Pb5(PO4)3Cl-derived magnesium potassium phosphate cement (MKPC) preparation strategy. Herein, Pb/Ca-rich lead slag (LS) was co-blended with MSWIFA to prepare MKPC for the synergistic treatment of both two solid wastes and the Pb-Cl solidification. The results showed that the resulting 15-15 (15 wt% MSWIFA and 15 wt% LS incorporation) sample achieved 25.44 MPa compressive strength, and Pb and Cl leaching toxicity was reduced by 99.18 % and 92.80 %, respectively. The X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses showed that Pb2+, Ca2+, phosphate and Cl- formed PbxCa5-x(PO4)3Cl in samples. The formation of PbxCa5-x(PO4)3Cl was also demonstrated by the high-angle annular dark field scanning transmission electron microscope (HAADF-STEM), while differences in the lattice characteristics of PbxCa5-x(PO4)3Cl and Pb5(PO4)3Cl were found. In-situ XRD indicated that Ca2+ accelerated the transformation of Pb2+ to Pb5(PO4)3Cl. After co-precipitating with Ca2+ to form PbxCa5-x(PO4)3Cl, Pb2+ continuously substituted Ca2+ to eventually transform to Pb5(PO4)3Cl. This work informs the synergistic treatment of MSWIFA and LS and offers new insights into the reaction mechanism between Pb2+, phosphate and Cl- under Ca2+ induction.
Collapse
Affiliation(s)
- Shiwei Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xing Cao
- Shenzhen Engineering Lab of Flexible Transparent Conductive Films, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Weichen Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Runjie Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Lin Fang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Rui Ma
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Juan Peng
- Shenzhen Environmental Technology Group Co. LTD, Shenzhen 518010, PR China
| | - Shuaifei Zheng
- Shenzhen Environmental Technology Group Co. LTD, Shenzhen 518010, PR China
| | - Fei Ji
- Shenzhen Environmental Technology Group Co. LTD, Shenzhen 518010, PR China
| |
Collapse
|
12
|
Yang Z, Zhang K, Li X, Ren S, Li P. The effects of long-term freezing-thawing on the strength properties and the chemical stability of compound solidified/stabilized lead-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:38185-38201. [PMID: 36576635 DOI: 10.1007/s11356-022-24881-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Solidification/stabilization (S/S) is the prevalent remediation technology for the treatment of heavy metal contaminated soils (HMCS). However, under the stress of complex surrounding environments, S/S effectiveness tends to deteriorate and freezing-thawing is one of the most influential natural forcings. The different proportions of cement, lime, and fly ash were used as the compound curing agents to treat solidified/stabilized HMCS with varying levels of lead contamination. The resulting samples were subjected to up to 180 freeze-thaw cycles (F-T) (1 day per cycle). Unconfined compressive strength (UCS) tests and semi-dynamic leaching tests were performed after F-T to explore the strength evolution of compound solidified/stabilized lead-contaminated soils (Pb-CSCS) and the chemical stability of the lead within. The results show that the F-T duration changes the strength deterioration mechanism of Pb-CSCS under F-T. There has been a shift in the main influencing factor from the promoted curing agent hydration by short-term F-T to the structural damage of the specimen induced by prolonged F-T. The variations in leachate pH, lead leachability, and diffusion ability with progressing F-T revealed a degradation effect of the changes in the physical states of water and crack propagation brought by F-T. These unfavorable changes in soil structure and chemistry reduce the acid resistance of Pb-CSCS. Notably, fly ash and cement facilitate the strength maintenance of Pb-CSCS under long-term F-T conditions. Curing formulations that included both cement and fly ash significantly increased the UCS of treated soils by up to 80.5% (3 F-T) under short-term F-T. In contrast, the curing formulation without fly ash lost 51.8% of its strength after 180 F-T conditions. For lead stabilization, cement and especially lime are favored. The results showed a 25% increase in the total proportion of lime and cement in the curing agent formulation, leading to a 41.4% reduction of lead leaching risk.
Collapse
Affiliation(s)
- Zhongping Yang
- School of Civil Engineering, Chongqing University, Chongqing, 400045, China
- Key Laboratory of New Technology for Construction of Cities in Mountain Area (Chongqing University), Ministry of Education, Chongqing, 400045, China
- National Joint Engineering Research Centre for Prevention and Control of Environmental Geological Hazards in the TGR Area Chongqing University, Chongqing, 400045, China
| | - Keshan Zhang
- School of Civil Engineering, Chongqing University, Chongqing, 400045, China
- Key Laboratory of New Technology for Construction of Cities in Mountain Area (Chongqing University), Ministry of Education, Chongqing, 400045, China
- National Joint Engineering Research Centre for Prevention and Control of Environmental Geological Hazards in the TGR Area Chongqing University, Chongqing, 400045, China
| | - Xuyong Li
- School of Civil Engineering, Chongqing University, Chongqing, 400045, China.
- Key Laboratory of New Technology for Construction of Cities in Mountain Area (Chongqing University), Ministry of Education, Chongqing, 400045, China.
- National Joint Engineering Research Centre for Prevention and Control of Environmental Geological Hazards in the TGR Area Chongqing University, Chongqing, 400045, China.
| | - Shupei Ren
- School of Civil Engineering, Chongqing University, Chongqing, 400045, China
- Key Laboratory of New Technology for Construction of Cities in Mountain Area (Chongqing University), Ministry of Education, Chongqing, 400045, China
- National Joint Engineering Research Centre for Prevention and Control of Environmental Geological Hazards in the TGR Area Chongqing University, Chongqing, 400045, China
| | - Peng Li
- School of Civil Engineering, Chongqing University, Chongqing, 400045, China
- Key Laboratory of New Technology for Construction of Cities in Mountain Area (Chongqing University), Ministry of Education, Chongqing, 400045, China
- National Joint Engineering Research Centre for Prevention and Control of Environmental Geological Hazards in the TGR Area Chongqing University, Chongqing, 400045, China
| |
Collapse
|