1
|
Liu Y, Zhan Y, Wang G, Jia X, Zhou J, Li H, Chang H, Jin Z, Li K, Li Z. Size-matching effects in quantitative detection of PS nanoplastics using controllable and reusable Ag nanoarrays SERS substrates. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138550. [PMID: 40373410 DOI: 10.1016/j.jhazmat.2025.138550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 05/07/2025] [Accepted: 05/07/2025] [Indexed: 05/17/2025]
Abstract
This study proposes a strategy for the highly sensitive detection of polystyrene nanoplastics (PS NPs) with varying particle sizes. Ag nanoarrays (AgNAs) with different inter-column spacings and heights are fabricated via thermal deposition of Ag in anodized aluminum oxide (AAO) templates. The size-matching effects between PS NPs and the parameters of the AgNAs (inter-column spacing and height) are investigated. Utilizing this size-matching effect, the AgNAs substrate enables sensitive detection of PS NPs with particle sizes of 130 nm, 180 nm, and 230 nm, with limits of detection (LODs) of 10 μg/mL. In real water samples (river water, rainwater, and tap water), the AgNAs substrate also demonstrates good performance, achieving a LOD of 10 μg/mL for detecting 130 nm PS NPs. Additionally, toluene is used to remove PS NPs from the AgNAs surface, allowing the substrate to be reused across multiple cycles. After at least 30 detection cycles, the surface-enhanced Raman scattering (SERS) performance of the AgNAs shows no significant decline, with a relative standard deviation (RSD) of 6.8 %. The AgNAs exhibit excellent stability and reusability in detecting PS NPs, indicating strong potential for practical applications.
Collapse
Affiliation(s)
- Yansheng Liu
- School of Electronic Engineering, Guangxi University of Science and Technology, No.2, Wenchang Road, Liuzhou City, Guangxi 545006, China.
| | - Yunjie Zhan
- School of Electronic Engineering, Guangxi University of Science and Technology, No.2, Wenchang Road, Liuzhou City, Guangxi 545006, China
| | - Guofu Wang
- School of Electronic Engineering, Guangxi University of Science and Technology, No.2, Wenchang Road, Liuzhou City, Guangxi 545006, China.
| | - Xiaobo Jia
- School of Electronic Engineering, Guangxi University of Science and Technology, No.2, Wenchang Road, Liuzhou City, Guangxi 545006, China
| | - Jin Zhou
- School of Electronic Engineering, Guangxi University of Science and Technology, No.2, Wenchang Road, Liuzhou City, Guangxi 545006, China
| | - Hongqi Li
- School of Electronic Engineering, Guangxi University of Science and Technology, No.2, Wenchang Road, Liuzhou City, Guangxi 545006, China
| | - Haixin Chang
- School of Electronic Engineering, Guangxi University of Science and Technology, No.2, Wenchang Road, Liuzhou City, Guangxi 545006, China; Quantum-Nano Matter and Device Lab, State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Zhicheng Jin
- Natural Science Center, 50 Decatur Street SE, Atlanta, GA 30303, USA
| | - Kang Li
- Faculty of Computing, Engineering & Science, University of South Wales, Wales CF37 1DL, UK
| | - Zhaoxu Li
- Hospital of Guangxi Zhuang Autonomous Region, No.2, Diecai Road, Diecai Direction, Guangxi, China
| |
Collapse
|
2
|
Dąbrowska A, Strode E, Kurach Ł, Stachowicz M. Ecotoxicological Effects of Nanoplastic and Microplastic Polystyrene Particles on Hyalella azteca: A Comprehensive Study on the Impact of Physical and Chemical Surface Properties. JOURNAL OF CONTAMINANT HYDROLOGY 2025; 272:104574. [PMID: 40267735 DOI: 10.1016/j.jconhyd.2025.104574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 03/21/2025] [Accepted: 04/13/2025] [Indexed: 04/25/2025]
Abstract
The ecotoxicological effects of nanoplastic (NPs) and microplastic (MPs) polystyrene particles' (PS) on Hyalella azteca were studied in three tests designed to investigate various hypotheses and explore potential mechanisms of interaction between MPs, NPs and this species. The following materials were used: fluorescent nanoplastic nanoPS of 15-18 nm diameter, non-modified nanoPS 25 nm, and functionalized (aminometyl)polystyrene (PS-NH2). Short-term exposure of 7 and 14 days, and long-term exposure of 42 days, were conducted using three different types of PS at varying concentrations (0.01, 0.18, 1, 18, 180 mg L-1). The experiments were carried out through two methods: PS introduced via food and PS dispersed in the environment (referred to as the "medium"). The effects were comprehensively assessed by measuring the activity of selected oxidative stress biomarkers (acetylcholinesterase AChE, catalase CAT, and glutathione s-transferase GST), and monitoring parameters such as size, growth, reproduction rate, and the presence of possible malformations. The statistically significant effect was observed with PS-NH2 (37-74 μm) and fluorescent nanoPS (15-18 nm), whereas nanoPS of 25 nm were nearly inert. The discussion is focused on four observed aspects: (i) the impact of the surface characteristics and functional group modifications of PS particles on their overall effect on biota, (ii) the limitations of using a typical concentration parameter for tests comparison, with a proposal to adopt total surface area of MPs and NPs instead - reflecting the overall surface exposed to the environment, rather than solely relying on the mass or volume, (iii) the influence of feeding regimen (exposure at varying concentrations in food or medium compared to no exposure) on the ecotoxicological effect, and (iv) the potential of Hyalella azteca as a sentinel species for monitoring microplastic transport in both freshwater and brackish waters environments. Finally, the physical and chemical properties of all three PS types were characterized to better understand their mutual interaction with biota from the material perspective.
Collapse
Affiliation(s)
- Agnieszka Dąbrowska
- University of Warsaw, Faculty of Chemistry, Pasteura 1, 02-093 Warsaw, Poland; University of Warsaw, Biological and Chemical Research Centre, Żwirki i Wigury 101 st, 02-089 Warsaw, Poland.
| | - Evita Strode
- Latvian Institute of Aquatic Ecology, Agency of Daugavpils University, Voleru Str. 4, LV-1007 Riga, Latvia
| | - Łukasz Kurach
- Medical University of Lublin, Independent Laboratory of Behavioral Studies, 4A Chodzki Str, 20-093 Lublin, Poland
| | - Marcin Stachowicz
- Department of Geochemistry, Mineralogy and Petrology, Faculty of Geology, University of Warsaw, Żwirki i Wigury 93, Warszawa 02-089, Poland
| |
Collapse
|
3
|
Liu Y, Qin Z, Wang G, Jia X, Zhou J, Li H, Li Z, Fang X. Size-dependent selectivity and quantification on detecting PS nanoplastics particles in a mixed solution with different diameters by using periodic Ag nanocavities SERS substrates with high sensitivity. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136943. [PMID: 39709817 DOI: 10.1016/j.jhazmat.2024.136943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/15/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
Nanoplastic particles (NPPs) have attracted lots of attention due to their toxicity. In this study, a Surface-enhanced Raman scattering (SERS)-based category on selectivity and quantification detecting the polystyrene (PS) NPPs has been presented. Firstly, the size-dependent SERS relationship between the diameter of Ag nanocavities (AgNCAs) and the diameter of the PS NPPs is studied. By continuously dripping the PS NPPs on proposed AgNCAs substrates, AgNCAs exhibit excellent enrichment capability with a promoted limit of detection (LOD) of 0.001 mg/mL. Secondly, thermally evaporated Ag nanoparticles (AgNPs) as an enhancement layer are used to form the AgNPs/PS NPPs/AgNCAs sandwich structure with a SERS enhancement of 300 %. Thirdly, a SERS microfluidic chip constructed by integrating two kinds of pore size (87 nm and 356 nm) AgNCAs is fabricated to selectivity quantifying absolute concentration of the mixed PS NPPs with different diameters in a mixed solution. It shows excellent performance. This novel category proves a good method for identifying plastic nanoparticles and analyzing their size distribution existing in the surroundings indicating good practical applications.
Collapse
Affiliation(s)
- Yansheng Liu
- School of Electronic Engineering, Guangxi University of Science and Technology, No.2, Wenchang Road, Liuzhou, Guangxi 545006, China.
| | - Zhenle Qin
- School of Electronic Engineering, Guangxi University of Science and Technology, No.2, Wenchang Road, Liuzhou, Guangxi 545006, China; Institute of Information Photonics Technology, School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 10083, China
| | - Guofu Wang
- School of Electronic Engineering, Guangxi University of Science and Technology, No.2, Wenchang Road, Liuzhou, Guangxi 545006, China.
| | - Xiaobo Jia
- School of Electronic Engineering, Guangxi University of Science and Technology, No.2, Wenchang Road, Liuzhou, Guangxi 545006, China
| | - Jin Zhou
- School of Electronic Engineering, Guangxi University of Science and Technology, No.2, Wenchang Road, Liuzhou, Guangxi 545006, China
| | - Hongqi Li
- School of Electronic Engineering, Guangxi University of Science and Technology, No.2, Wenchang Road, Liuzhou, Guangxi 545006, China
| | - Zhaoxu Li
- Hospital of Guangxi Zhuang Autonomous Region, No.2, Diecai Road, Diecai District, Guilin, Guangxi 541001, China
| | - Xiaohui Fang
- Institute of Information Photonics Technology, School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 10083, China
| |
Collapse
|
4
|
Zhao M, Chen F, Zhang B, Liu H, Li Z, Li G, Zhao M, Ma Y. Liquid metasurface for size-independent detection of microplastics. Talanta 2025; 284:127221. [PMID: 39550809 DOI: 10.1016/j.talanta.2024.127221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 10/21/2024] [Accepted: 11/13/2024] [Indexed: 11/19/2024]
Abstract
Microplastics (MPs) are widely distributed in water, soil, and air, drawing a global concern as a cause of chronic diseases and immune system disruption. Though as one of the most promising techniques in MP detection, the surface-enhanced Raman scattering (SERS) is heavily dependent on the distribution of the "hot spots" and the size of MPs, known as "coffee ring effect" and "size effect" respectively, imposing major challenges in the quantitative detection of various sized MPs on conventional SERS substrates. Here we present a self-healing metasurface based on plasmonic nanoparticle (NP) array at the liquid-liquid interface (LLI) and air-liquid interface (ALI). The fluidic nature of the metasurface and the repulsive forces between NPs offer atomic-level flatness and uniform distribution for "hot spots". Additionally, MPs are dissolved in the oil phase, uniformly enriched in the form of polymer molecular chains on the liquid metasurface, irrespective of the size of the MPs. This molecular dispersity of the dissolved MPs enhances the overlap between the "hot spots" and scattering volume of MPs, significantly improving the intensity and reproducibility of SERS. The sensing platform is successfully applied in trace detections of various MPs (PS, PET, PMMA, and PC), and validated in real samples.
Collapse
Affiliation(s)
- Mingfu Zhao
- School of Material Science and Engineering, Ocean University of China, 238 Songling Rd, Qingdao, Shandong, 266100, China
| | - Feng Chen
- School of Material Science and Engineering, Ocean University of China, 238 Songling Rd, Qingdao, Shandong, 266100, China
| | - Bin Zhang
- School of Material Science and Engineering, Ocean University of China, 238 Songling Rd, Qingdao, Shandong, 266100, China
| | - Hong Liu
- School of Material Science and Engineering, Ocean University of China, 238 Songling Rd, Qingdao, Shandong, 266100, China
| | - Zeying Li
- School of Material Science and Engineering, Ocean University of China, 238 Songling Rd, Qingdao, Shandong, 266100, China
| | - Gengchen Li
- School of Material Science and Engineering, Ocean University of China, 238 Songling Rd, Qingdao, Shandong, 266100, China
| | - Minggang Zhao
- School of Material Science and Engineering, Ocean University of China, 238 Songling Rd, Qingdao, Shandong, 266100, China.
| | - Ye Ma
- School of Material Science and Engineering, Ocean University of China, 238 Songling Rd, Qingdao, Shandong, 266100, China.
| |
Collapse
|
5
|
Shao K, Zou R, Zhang Z, Mandemaker LDB, Timbie S, Smith RD, Durkin AM, Dusza HM, Meirer F, Weckhuysen BM, Alderete TL, Vermeulen R, Walker DI. Advancements in Assays for Micro- and Nanoplastic Detection: Paving the Way for Biomonitoring and Exposomics Studies. Annu Rev Pharmacol Toxicol 2025; 65:567-585. [PMID: 39270670 DOI: 10.1146/annurev-pharmtox-030424-112828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Although plastic pollution and exposure to plastic-related compounds have received worldwide attention, health risks associated with micro- and nanoplastics (MNPs) are largely unknown. Emerging evidence suggests MNPs are present in human biofluids and tissue, including blood, breast milk, stool, lung tissue, and placenta; however, exposure assessment is limited and the extent of human exposure to MNPs is not well known. While there is a critical need to establish robust and scalable biomonitoring strategies to assess human exposure to MNPs and plastic-related chemicals, over 10,000 chemicals have been linked to plastic manufacturing with no existing standardized approaches to account for even a fraction of these exposures. This review provides an overview of the status of methods for measuring MNPs and associated plastic-related chemicals in humans, with a focus on approaches that could be adapted for population-wide biomonitoring and integration with biological response measures to develop hypotheses on potential health effects of plastic exposures. We also examine the exposure risks associated with the widespread use of chemical additives in plastics. Despite advancements in analytical techniques, there remains a pressing need for standardized measurement protocols and untargeted, high-throughput analysis methods to enable comprehensive MNP biomonitoring to identify key MNP exposures in human populations. This review aims to merge insights into the toxicological effects of MNPs and plastic additives with an evaluation of analytical challenges, advocating for enhanced research methods to fully assess, understand, and mitigate the public health implications of MNPs.
Collapse
Affiliation(s)
- Kuanliang Shao
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA;
| | - Runyu Zou
- Division of Toxicology, Institute for Risk Assessment Sciences, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Global Public Health and Bioethics, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Zhuoyue Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA;
| | - Laurens D B Mandemaker
- Inorganic Chemistry and Catalysis Group, Institute for Sustainable and Circular Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands
| | - Sarah Timbie
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA;
| | - Ronald D Smith
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA;
| | - Amanda M Durkin
- Department of Global Public Health and Bioethics, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hanna M Dusza
- Division of Toxicology, Institute for Risk Assessment Sciences, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Florian Meirer
- Inorganic Chemistry and Catalysis Group, Institute for Sustainable and Circular Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands
| | - Bert M Weckhuysen
- Inorganic Chemistry and Catalysis Group, Institute for Sustainable and Circular Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands
| | - Tanya L Alderete
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Roel Vermeulen
- Division of Toxicology, Institute for Risk Assessment Sciences, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Global Public Health and Bioethics, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Douglas I Walker
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA;
| |
Collapse
|
6
|
Xayachak T, Haque N, Lau D, Pramanik BK. The missing link: A systematic review of microplastics and its neglected role in life-cycle assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176513. [PMID: 39326758 DOI: 10.1016/j.scitotenv.2024.176513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
The issue of plastic pollution has been exacerbated by the discovery of small plastic particles known as "microplastic". While the harmful effects of microplastics are becoming increasingly apparent, life-cycle assessment (LCA), as a holistic environmental assessment tool, has yet to offer a solution that can quantitatively capture the impacts associated with microplastics. In this paper, we conducted a systematic literature review to investigate how existing LCA studies quantify the environmental and human health effects of microplastics. A detailed analysis of 187 studies revealed that microplastics are rarely quantified, or even qualitatively discussed, in most LCAs. Thus, the true impacts of plastic products may be underrepresented and underestimated, leading to biased decision-making. We believe that this status quo is attributable to four fundamental issues, including (i) lack of microplastic leakage data; (ii) lack of quantitative cause-effect relationships between microplastic concentration and their impacts; (iii) exclusion of the "use" phase from the scope of analysis; and (iv) exclusion of long-term effects from landfilled plastic waste. These findings highlight the need for greater efforts and investment in microplastic research and data collection. To address the current knowledge gap, this article presents practical recommendations on how microplastics can be incorporated into the LCA framework, based on latest research.
Collapse
Affiliation(s)
- Tu Xayachak
- School of Engineering, RMIT University, VIC 3001, Australia
| | - Nawshad Haque
- CSIRO, Clayton South, Melbourne, VIC 3169, Australia
| | - Deborah Lau
- CSIRO, Private Bag 10, Clayton South, VIC 3169, Australia
| | | |
Collapse
|
7
|
Han Y, Fan G, Han Y, Huang X, Wang W, Luo X, Zhang Y, Han L. Suppression of coffee rings by controllable nanoparticle enrichment through superhydrophobicity-enabled dynamic evaporation. J Colloid Interface Sci 2024; 673:735-745. [PMID: 38901363 DOI: 10.1016/j.jcis.2024.06.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/13/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024]
Abstract
Coffee rings formed by evaporation of analyte-containing droplets are widely observed in micropatterning, bio-arrays, and trace detection. The coffee-ring effect caused by contact line pinning significantly affects the detection uniformity and sensitivity. Here, we propose a simple and operable method to effectively suppress coffee rings through controllable nanoparticles aggregation by superhydrophobicity-enabled dynamic evaporation. The gold nanoparticles (AuNPs) deposition footprint formed after dynamic evaporation on an integrated superhydrophobic surface was reduced by ∼3 orders of magnitude compared to that of non-interventional evaporation. Detailed experiments, numerical simulations, and theoretical studies have revealed that substrate wettability, temperature and droplet motion behaviors play significant roles in suppressing coffee-ring effect. More critically, based on the force mechanism of AuNPs at the interface/contact line, universal mathematical models and regime maps were established to classify the different deposition modes for AuNPs under different evaporation conditions by introducing dimensionless parameter G, revealing the enrichment mechanism of AuNPs in droplets under superhydrophobicity-enabled dynamic evaporation. The accuracy of the theoretical model and enrichment mechanism was demonstrated through the single-molecule detection of rhodamine 6G with excellent sensitivity (10-17 M, enhancement factor ∼1013) and perfect uniformity (relative standard deviation ∼5.57 %), which provides a valuable guide for research and applications of nanoparticle aggregation.
Collapse
Affiliation(s)
- Yunrui Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Guangpeng Fan
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Yingkuan Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Xin Huang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China
| | - Weifeng Wang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China
| | - Xiaoming Luo
- College of Pipeline and Civil Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao Shandong 266580, China
| | - Yu Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
8
|
Chaisrikhwun B, Balani MJD, Ekgasit S, Xie Y, Ozaki Y, Pienpinijtham P. A green approach to nanoplastic detection: SERS with untreated filter paper for polystyrene nanoplastics. Analyst 2024; 149:4158-4167. [PMID: 39010793 DOI: 10.1039/d4an00702f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Plastic pollution at the nanoscale continues to pose adverse effects on environmental sustainability and human health. However, the detection of nanoplastics (NPLs) remains challenging due to limitations in methodology and instrumentation. Herein, a "green approach" for surface-enhanced Raman spectroscopy (SERS) was exploited to detect polystyrene nanospheres (PSNSs) in water, employing untreated filter paper and a simple syringe-filtration set-up. This SERS protocol not only enabled the filtration of nano-sized PSNSs, which are smaller than the pore size of the ordinary filter paper, but also offered SERS enhancement by utilizing quasi-spherical-shaped silver nanoparticles (AgNPs) as the SERS-active substrate. The filtering of NPLs was accomplished by adding an aggregating agent to the nanoparticle mixture, which caused the aggregation of NPLs and AgNPs, resulting in a larger cluster and more hot spots for SERS detection. The optimal aggregating agent and its concentration, as well as the volume ratio between the AgNPs and NPLs, were also optimized. This SERS method successfully detected and quantified PSNSs of various sizes (i.e., 100, 300, 460, 600, and 800 nm) down to a limit of detection (LOD) of about 0.31 μg mL-1. The method was also validated against the presence of several interferents (i.e., salts, sugars, amino acids, and surfactants) and was proven practical, as evidenced by the detection of 800nm PSNSs in drinking and tap water (LODs of 1.47 and 1.55 μg mL-1, respectively).
Collapse
Affiliation(s)
- Boonphop Chaisrikhwun
- Sensor Research Unit (SRU), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- National Nanotechnology Center of Advanced Structural and Functional Nanomaterials, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Mary Jane Dacillo Balani
- Sensor Research Unit (SRU), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- National Nanotechnology Center of Advanced Structural and Functional Nanomaterials, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Green Chemistry and Sustainability Program, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sanong Ekgasit
- Sensor Research Unit (SRU), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- National Nanotechnology Center of Advanced Structural and Functional Nanomaterials, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Yunfei Xie
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Yukihiro Ozaki
- School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo 669-1330, Japan.
| | - Prompong Pienpinijtham
- Sensor Research Unit (SRU), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- National Nanotechnology Center of Advanced Structural and Functional Nanomaterials, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Green Chemistry and Sustainability Program, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
9
|
Xu W, Dai Z, Huang X, Jiang G, Chang M, Wang C, Lai T, Liu H, Sun R, Li C. High sensitivity in quantitative analysis of mixed-size polystyrene micro/nanoplastics in one step. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173314. [PMID: 38761937 DOI: 10.1016/j.scitotenv.2024.173314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/27/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
As emerging environmental pollutants, microplastics (MPs) and nanoplastics (NPs) pose a serious threat to human health. Owing to the lack of feasible and reliable analytical methods, the separation and identification of MPs and NPs of different sizes remains a challenge. In this study, a hyphenated method involving filtration and surface-enhanced Raman spectroscopy (SERS) for the separation and identification of MPs and NPs is reported. This method not only avoids the loss of MPs and NPs during the transfer process but also provides an excellent SERS substrate. The SERS substrate was fabricated by electrochemically depositing silver particles onto the reduced graphene oxide layer coated on stainless steel mesh. Results show that polystyrene (PS) MPs and NPs are efficiently separated on the SERS substrate via vacuum filtration, resulting in high retention rates (74.26 % ± 1.58 % for 100 nm, 81.06 % ± 1.49 % for 500 nm, and 97.73 % ±0.11 % for 5 μm) and low limit of detection (LOD). The LOD values of 100 nm, 500 nm, and 5 μm PS are 8.89 × 10-5, 3.39 × 10-5, and 1.57 × 10-4 μg/mL, respectively. More importantly, a linear relationship for uniform quantification of 100 nm, 500 nm, 3 μm and 5 μm PS was established, and the relationship is Y = 225.61 lgX + 1076.36 with R2 = 0.980. The method was validated for the quantitative analysis of a mixture of 100 nm, 500 nm PS NPs, 3 μm and 5 μm PS MPs in a ratio of 1:1:1:1, which successfully approaches the evaluation of evaluated PS NPs in the range of 10-4-10 μg/mL with an LOD value of approximately 7.82 × 10-5 μg/mL. Moreover, this method successfully detected (3.87 ± 0.06) × 10-5 μg MPs and NPs per gram of oyster tissue.
Collapse
Affiliation(s)
- Wenhui Xu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China
| | - Zhenqing Dai
- School of Chemistry and Environment, Analyzing and Testing Center, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Zhanjiang 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China.
| | - Xiaoxin Huang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China
| | - Guangzheng Jiang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China
| | - Min Chang
- School of Chemistry and Environment, Analyzing and Testing Center, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Zhanjiang 524088, China
| | - Chenying Wang
- School of Chemistry and Environment, Analyzing and Testing Center, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Zhanjiang 524088, China
| | - Tingting Lai
- School of Chemistry and Environment, Analyzing and Testing Center, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Zhanjiang 524088, China
| | - Huanming Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China.
| | - Ruikun Sun
- School of Chemistry and Environment, Analyzing and Testing Center, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Zhanjiang 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
| | - Chengyong Li
- School of Chemistry and Environment, Analyzing and Testing Center, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Zhanjiang 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China.
| |
Collapse
|
10
|
Chang L, Bai S, Wei P, Gao X, Dong J, Zhou B, Peng C, Jia J, Luan T. Quantitative detecting low concentration polystyrene nanoplastics in aquatic environments via an Ag/Nb 2CT x (MXene) SERS substrate. Talanta 2024; 273:125859. [PMID: 38447341 DOI: 10.1016/j.talanta.2024.125859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
In this study, the plasmonic Ag nanoparticles (Ag NPs) were uniformly anchored on the high conductivity Nb2CTx (MXene) nanosheets to construct an Ag/Nb2CTx substrate for surface-enhanced Raman spectroscopy (SERS) detection of polystyrene (PS) nanoplastics. The KI addition (0.15 mol/L), the volume ratio between substrate colloid and nanoplastic suspension (2:1), and the mass ratio of Nb2CTx in substrate (14%) on SERS performance were optimized. The EM hot spots of Ag/Nb2CTx are significantly enlarged and enhanced, elucidated by FDFD simulation. Then, the linear relationship between the PS nanoplastics concentration with three different sizes (50, 300, and 500 nm) and the SERS intensity was obtained (R2 > 0.976), wherein, the detection limit was as low as 10-4 mg/mL for PS nanoplastic. Owing to the fingerprint feature, the Ag/Nb2CTx-14% substrate successfully discerns the mixtures from two-component nanoplastics. Meanwhile, it exhibits excellent stability of PS nanoplastics on different detection sites. The recovery rates of PS nanoplastics with different sizes in lake water ranged from 94.74% to 107.29%, with the relative standard deviation (RSD) ranging from 2.88% to 8.30%. Based on this method, the expanded polystyrene (EPS) decomposition behavior was evaluated, and the PS concentrations in four water environments were analyzed. This work will pave the way for the accurate quantitative detection of low concentration of nanoplastics in aquatic environments.
Collapse
Affiliation(s)
- Lekai Chang
- School of Environmental and Chemical Engineering, Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, Wuyi University, Jiangmen, 529020, Guangdong, China
| | - Shuli Bai
- School of Environmental and Chemical Engineering, Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, Wuyi University, Jiangmen, 529020, Guangdong, China
| | - Ping Wei
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, Guangdong, China
| | - Xingyue Gao
- School of Environmental and Chemical Engineering, Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, Wuyi University, Jiangmen, 529020, Guangdong, China
| | - Jinfeng Dong
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, Guangdong, China
| | - Bingpu Zhou
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, China
| | - Chao Peng
- School of Environmental and Chemical Engineering, Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, Wuyi University, Jiangmen, 529020, Guangdong, China; Institute of Carbon Peaking and Carbon Neutralization, Wuyi University, Jiangmen, 529020, Guangdong, China; Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Jieyang, 515200, Guangdong, China.
| | - Jianbo Jia
- School of Environmental and Chemical Engineering, Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, Wuyi University, Jiangmen, 529020, Guangdong, China; Institute of Carbon Peaking and Carbon Neutralization, Wuyi University, Jiangmen, 529020, Guangdong, China; Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Jieyang, 515200, Guangdong, China
| | - Tiangang Luan
- School of Environmental and Chemical Engineering, Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, Wuyi University, Jiangmen, 529020, Guangdong, China; Institute of Carbon Peaking and Carbon Neutralization, Wuyi University, Jiangmen, 529020, Guangdong, China; Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Jieyang, 515200, Guangdong, China
| |
Collapse
|
11
|
Guselnikova O, Trelin A, Kang Y, Postnikov P, Kobashi M, Suzuki A, Shrestha LK, Henzie J, Yamauchi Y. Pretreatment-free SERS sensing of microplastics using a self-attention-based neural network on hierarchically porous Ag foams. Nat Commun 2024; 15:4351. [PMID: 38806498 PMCID: PMC11133413 DOI: 10.1038/s41467-024-48148-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 04/21/2024] [Indexed: 05/30/2024] Open
Abstract
Low-cost detection systems are needed for the identification of microplastics (MPs) in environmental samples. However, their rapid identification is hindered by the need for complex isolation and pre-treatment methods. This study describes a comprehensive sensing platform to identify MPs in environmental samples without requiring independent separation or pre-treatment protocols. It leverages the physicochemical properties of macroporous-mesoporous silver (Ag) substrates templated with self-assembled polymeric micelles to concurrently separate and analyze multiple MP targets using surface-enhanced Raman spectroscopy (SERS). The hydrophobic layer on Ag aids in stabilizing the nanostructures in the environment and mitigates biofouling. To monitor complex samples with multiple MPs and to demultiplex numerous overlapping patterns, we develop a neural network (NN) algorithm called SpecATNet that employs a self-attention mechanism to resolve the complex dependencies and patterns in SERS data to identify six common types of MPs: polystyrene, polyethylene, polymethylmethacrylate, polytetrafluoroethylene, nylon, and polyethylene terephthalate. SpecATNet uses multi-label classification to analyze multi-component mixtures even in the presence of various interference agents. The combination of macroporous-mesoporous Ag substrates and self-attention-based NN technology holds potential to enable field monitoring of MPs by generating rich datasets that machines can interpret and analyze.
Collapse
Affiliation(s)
- Olga Guselnikova
- National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, Japan.
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, Russian Federation.
| | - Andrii Trelin
- Department of Solid-State Engineering, University of Chemistry and Technology, Prague, Czech Republic
| | - Yunqing Kang
- National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, Japan
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Pavel Postnikov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, Russian Federation
- Department of Solid-State Engineering, University of Chemistry and Technology, Prague, Czech Republic
| | - Makoto Kobashi
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Asuka Suzuki
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Lok Kumar Shrestha
- National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, Japan
- Department of Materials Science, Institute of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Joel Henzie
- National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, Japan.
| | - Yusuke Yamauchi
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan.
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
12
|
Mou L, Zhang Q, Li R, Zhu Y, Zhang Y. A powerful method for In Situ and rapid detection of trace nanoplastics in water-Mie scattering. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134186. [PMID: 38574664 DOI: 10.1016/j.jhazmat.2024.134186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/06/2024]
Abstract
The pervasive presence of nanoplastics (NPs) in environmental media has raised significant concerns regarding their implications for environmental safety and human health. However, owing to their tiny size and low level in the environment, there is still a lack of effective methods for measuring the amount of NPs. Leveraging the principles of Mie scattering, a novel approach for rapid in situ quantitative detection of small NPs in low concentrations in water has been developed. A limit of detection of 4.2 μg/L for in situ quantitative detection of polystyrene microspheres as small as 25 nm was achieved, and satisfactory recoveries and relative standard deviations were obtained. The results of three self-ground NPs showed that the method can quantitatively detect the concentration of NPs in a mixture of different particle sizes. The satisfactory recoveries (82.4% to 110.3%) of the self-ground NPs verified the good anti-interference ability of the method. The total concentrations of the NPs in the five brands of commercial bottled water were 0.07 to 0.39 μg/L, which were directly detected by the method. The proposed method presents a potential approach for conducting in situ and real-time environmental risk assessments of NPs on human and ecosystem health in actual water environments.
Collapse
Affiliation(s)
- Lei Mou
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qinzhou Zhang
- State Key Laboratory of Marine Environmental Science of China, Xiamen University, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Ruilong Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| | - Yaxian Zhu
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yong Zhang
- State Key Laboratory of Marine Environmental Science of China, Xiamen University, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
13
|
Ling X, Cheng J, Yao W, Qian H, Ding D, Yu Z, Xie Y, Yang F. Identification and Visualization of Polystyrene Microplastics/Nanoplastics in Flavored Yogurt by Raman Imaging. TOXICS 2024; 12:330. [PMID: 38787108 PMCID: PMC11125995 DOI: 10.3390/toxics12050330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
The contamination of food by microplastics has garnered widespread attention, particularly concerning the health risks associated with small-sized microplastics. However, detecting these smaller microplastics in food poses challenges attributed to the complexity of food matrices and instrumental and method limitations. Here, we employed Raman imaging for visualization and identification of polystyrene particles synthesized in polymerization reactions, ranging from 400 to 2600 nm. We successfully developed a quantitative model of particle size and concentration for polystyrene, exhibiting excellent fit (R2 of 0.9946). We established procedures for spiked flavored yogurt using synthesized polystyrene, providing fresh insights into microplastic extraction efficiency. Recovery rates calculated from models validated the method's feasibility. In practical applications, the assessment of the size, type, shape, and quantity of microplastics in unspiked flavored yogurt was conducted. The most common polymers found were polystyrene, polypropylene, and polyethylene, with the smallest polystyrene sizes ranging from 1 to 10 μm. Additionally, we conducted exposure assessments of microplastics in branded flavored yogurt. This study established a foundation for developing a universal method to quantify microplastics in food, covering synthesis of standards, method development, validation, and application.
Collapse
Affiliation(s)
- Xin Ling
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214026, China; (X.L.); (J.C.); (W.Y.); (H.Q.); (Z.Y.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jun Cheng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214026, China; (X.L.); (J.C.); (W.Y.); (H.Q.); (Z.Y.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214026, China; (X.L.); (J.C.); (W.Y.); (H.Q.); (Z.Y.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - He Qian
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214026, China; (X.L.); (J.C.); (W.Y.); (H.Q.); (Z.Y.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Dazhi Ding
- School of Microelectronics (School of Integrated Circuits), Nanjing University of Science and Technology, Nanjing 210094, China;
| | - Zhilong Yu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214026, China; (X.L.); (J.C.); (W.Y.); (H.Q.); (Z.Y.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214026, China; (X.L.); (J.C.); (W.Y.); (H.Q.); (Z.Y.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Fangwei Yang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214026, China; (X.L.); (J.C.); (W.Y.); (H.Q.); (Z.Y.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
14
|
Shi K, Zhang H, Gao J, Zhang J, Zhang X, Kan G, Jiang J. Detection of nanoplastics released from consumer plastic food containers by electromagnetic heating pyrolysis mass spectrometry. Anal Chim Acta 2024; 1296:342344. [PMID: 38401923 DOI: 10.1016/j.aca.2024.342344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/03/2024] [Accepted: 02/04/2024] [Indexed: 02/26/2024]
Abstract
Nanoplastics released from consumer plastic food containers are emerging environmental pollutants and directly ingested as part of the diet. However, quantification methods for nanoplastics are still lacking. Herein, a rapid identification and mass quantification approach was developed for nanoplastics analysis by combining electromagnetic heating with pyrolysis mass spectrometry (Eh-Py-MS). The pyrolysis products directly entered into the MS, which omits the gas phase separation process and shortens the detection time. A compact pyrolysis chamber was used and this increased the sample transfer efficiency and lowered power requirement. The operational parameters were systematically examined. The influence of nanoplastic size, additive, humic acid, and aging on detection was investigated, and it was concluded that environmental factors (humic acid, aging) and plastic properties (size, additives) did not influence the detection. The developed chamber showed that the limit of detection of polystyrene (PS) nanoplastics was 15.72 ng. Several typical food packages were demonstrated with satisfactory recovery rates (87.5-110%) and precision (RSD ≤11.36%). These results suggested that the consumer plastic food containers are a significant source of direct exposure to nanoplastics in humans from the environment.
Collapse
Affiliation(s)
- Ke Shi
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong, 264209, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China
| | - Hong Zhang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong, 264209, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China.
| | - Jikun Gao
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong, 264209, PR China
| | - Jiaqian Zhang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong, 264209, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China
| | - Xiangnan Zhang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Guangfeng Kan
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong, 264209, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China
| | - Jie Jiang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong, 264209, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China.
| |
Collapse
|
15
|
Ding R, Chen Y, Shi X, Li Y, Yu Y, Sun Z, Duan J. Size-dependent toxicity of polystyrene microplastics on the gastrointestinal tract: Oxidative stress related-DNA damage and potential carcinogenicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169514. [PMID: 38135073 DOI: 10.1016/j.scitotenv.2023.169514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/16/2023] [Accepted: 12/17/2023] [Indexed: 12/24/2023]
Abstract
Microplastics (MPs) and nanoplastics (NPs) have been generally regarded as emerging pollutants and received worldwide attention in recent years. Water and food consumption are the primary pathways for human exposure to MPs/NPs, thus gastrointestinal tracts may be susceptible to their toxicity. Although the recent report has indicated the presence of MPs/NPs in multiple human organs, little is known about their gastric effects. Therefore, this study focused on the adverse effects of polystyrene microplastics (PS-MPs) on gastric epithelium in vivo and in vitro. Surface-enhanced Raman spectroscopy (SERS) revealed the distribution of PS-MPs was associated with their particle sizes, and predominantly concentrated in gastric tissues. Gastric barrier injury and mitochondrial damage were observed in rats after exposure to PS-MPs. Compared with the larger ones, polystyrene nanoplastics (PS-NPs) more significantly reduced the activity of antioxidant enzymes while enhancing the level of MDA, 8-OhdG and γ-H2AX. Meanwhile, PS-MPs caused upregulation of β-catenin/YAP through redox-dependent regulation of nucleoredoxin (NXN) and dishevelled (Dvl). These findings supported the size-dependent effects of PS-MPs on oxidative stress and DNA damage. Moreover, the redox-dependent activation of the β-catenin/YAP cascade suggested a novel toxic mechanism for PS-MPs and implied the potential carcinogenic effects.
Collapse
Affiliation(s)
- Ruiyang Ding
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yueyue Chen
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Xuemin Shi
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yang Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yang Yu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
16
|
Chen Q, Wang J, Yao F, Zhang W, Qi X, Gao X, Liu Y, Wang J, Zou M, Liang P. A review of recent progress in the application of Raman spectroscopy and SERS detection of microplastics and derivatives. Mikrochim Acta 2023; 190:465. [PMID: 37953347 DOI: 10.1007/s00604-023-06044-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/23/2023] [Indexed: 11/14/2023]
Abstract
The global environmental concern surrounding microplastic (MP) pollution has raised alarms due to its potential health risks to animals, plants, and humans. Because of the complex structure and composition of microplastics (MPs), the detection methods are limited, resulting in restricted detection accuracy. Surface enhancement of Raman spectroscopy (SERS), a spectral technique, offers several advantages, such as high resolution and low detection limit. It has the potential to be extensively employed for sensitive detection and high-resolution imaging of microplastics. We have summarized the research conducted in recent years on the detection of microplastics using Raman and SERS. Here, we have reviewed qualitative and quantitative analyses of microplastics and their derivatives, as well as the latest progress, challenges, and potential applications.
Collapse
Affiliation(s)
- Qiang Chen
- College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou, 310018, China
| | - Jiamiao Wang
- College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou, 310018, China
| | - Fuqi Yao
- College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou, 310018, China
| | - Wei Zhang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China
| | - Xiaohua Qi
- Chinese Academy of Inspection and Quarantine (CAIQ), Beijing, 100123, China
| | - Xia Gao
- Institute of Analysis and Testing, Beijing Research Institute of Science and Technology, Beijing, 100089, China
| | - Yan Liu
- Institute of Analysis and Testing, Beijing Research Institute of Science and Technology, Beijing, 100089, China
| | - Jiamin Wang
- Institute of Analysis and Testing, Beijing Research Institute of Science and Technology, Beijing, 100089, China
| | - Mingqiang Zou
- Chinese Academy of Inspection and Quarantine (CAIQ), Beijing, 100123, China.
| | - Pei Liang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China.
| |
Collapse
|
17
|
Luo S, Zhang J, de Mello JC. Detection of environmental nanoplastics via surface-enhanced Raman spectroscopy using high-density, ring-shaped nanogap arrays. Front Bioeng Biotechnol 2023; 11:1242797. [PMID: 37941723 PMCID: PMC10628472 DOI: 10.3389/fbioe.2023.1242797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/02/2023] [Indexed: 11/10/2023] Open
Abstract
Micro- and nano-plastics (MNPs) are global contaminants of growing concern to the ecosystem and human health. In-the-field detection and identification of environmental micro- and nano-plastics (e-MNPs) is critical for monitoring the spread and effects of e-MNPs but is challenging due to the dearth of suitable analytical techniques, especially in the sub-micron size range. Here we show that thin gold films patterned with a dense, hexagonal array of ring-shaped nanogaps (RSNs) can be used as active substrates for the sensitive detection of micro- and nano-plastics by surface-enhanced Raman spectroscopy (SERS), requiring only small sample volumes and no significant sample preparation. By drop-casting 0.2-μL aqueous test samples onto the SERS substrates, 50-nm polystyrene (PS) nanoparticles could be determined via Raman spectroscopy at concentrations down to 1 μg/mL. The substrates were successfully applied to the detection and identification of ∼100-nm polypropylene e-MNPs in filtered drinking water and ∼100-nm polyethylene terephthalate (PET) e-MNPs in filtered wash-water from a freshly cleaned PET-based infant feeding bottle.
Collapse
Affiliation(s)
- Sihai Luo
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | | - John C. de Mello
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
18
|
Yu F, Qu C, Ding Z, Wang X, Zheng L, Su M, Liu H. Liquid Interfacial Coassembly of Plasmonic Arrays and Trace Hydrophobic Nanoplastics in Edible Oils for Robust Identification and Classification by Surface-Enhanced Raman Spectroscopy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14342-14350. [PMID: 37729664 DOI: 10.1021/acs.jafc.3c03860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
The ubiquity of micro-/nanoplastics poses a visible threat to the environment, aquatic organisms, and human beings and has become a global concern. Here, we proposed a liquid interface-based strategy using surface-enhanced Raman spectroscopy to coassemble nanoplastics and gold nanoparticles into a dense and homogeneous plasmonic array, thereby enabling the rapid and sensitive detection of trace nanoplastics. In addition, due to the uniqueness of the oil-water immiscible two-phase interface, we achieved ideal results for the detection of nanoplastics in a complex matrix (e.g., aqueous environment and edible oil) with a detection limit of μg/mL. With the aid of the principal component analysis algorithm, the differentiation and identification of multiple nanoplastic components (e.g., polystyrene, polyethylene, and polyethylene terephthalate) in aqueous environments and common hazards (e.g., Bap and Phe) in edible oil were achieved. Therefore, our self-assembled plasmonic arrays are expected to be used for monitoring environmental pollution and food safety.
Collapse
Affiliation(s)
- Fanfan Yu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, P. R. China
| | - Cheng Qu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, P. R. China
| | - Zhongxiang Ding
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, P. R. China
| | - Xian Wang
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, P. R. China
| | - Liqin Zheng
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, P. R. China
| | - Mengke Su
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, P. R. China
| | - Honglin Liu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, P. R. China
| |
Collapse
|
19
|
Li D, Tian X, Yang W, Wang X, Liu Y, Shan J. Hydrophobicity-driven self-assembly of nanoplastics and silver nanoparticles for the detection of polystyrene microspheres using surface enhanced Raman spectroscopy. CHEMOSPHERE 2023; 339:139775. [PMID: 37567275 DOI: 10.1016/j.chemosphere.2023.139775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/11/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Microplastics (MPs) and Nanoplastics (NPs) accumulated in the environment have been identified as a major global issue due to their potential harm to wildlife. Current research in the detection of MPs is well established. However, the detection of NPs remains challenging. The aim of this paper is to investigate the detection of polystyrene (PS) NPs on a super-hydrophobic substrate using surface-enhanced Raman spectroscopy (SERS) technology after high-speed centrifugation of PS NPs and AgNPs. The hydrophobic substrate reduces the contact area of droplet, concentrating PS NPs and AgNPs on a small spot, which eliminates the random distribution of nano particles. The condensed PS NPs and AgNPs improve the SERS intensity, reproductivity and detection sensitivity. The results show that SERS measurement on a hydrophobic substrate could significantly improve the detection sensitivity of PS NPs, with the detection limits of PS NPs as low as 0.5 mg/L (500 nm PS NPs) and 1 mg/L (100 nm PS NPs). The study provides an effective and rapid method for the detection of NPs at trace concentration, demonstrating more possibility for the future detection of trace NPs in the aquatic environment.
Collapse
Affiliation(s)
- Dandan Li
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China
| | - Xiaoyu Tian
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Weiqing Yang
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China
| | - Xue Wang
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China
| | - Yang Liu
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China
| | - Jiajia Shan
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China.
| |
Collapse
|
20
|
Qin Y, Qiu J, Tang N, Wu Y, Yao W, He Y. Controllable preparation of mesoporous spike gold nanocrystals for surface-enhanced Raman spectroscopy detection of micro/nanoplastics in water. ENVIRONMENTAL RESEARCH 2023; 228:115926. [PMID: 37076031 DOI: 10.1016/j.envres.2023.115926] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
Microplastics and nanoplastics are emerging classes of environmental contaminants that pose significant threats to human health. In particular, small nanoplastics (<1 μm) have drawn considerable attention owing to their adverse effects on human health; for example, nanoplastics have been found in the placenta and blood. However, reliable detection techniques are lacking. In this study, we developed a fast detection method that combines membrane filtration technology and surface-enhanced Raman spectroscopy (SERS), which can simultaneously enrich and detect nanoplastics with sizes as small as 20 nm. First, we synthesized spiked gold nanocrystals (Au NCs), achieving a controlled preparation of thorns ranging from 25 nm to 200 nm and regulating the number of thorns. Subsequently, mesoporous spiked Au NCs were homogeneously deposited on a glass fiber filter membrane to form an Au film as a SERS sensor. The Au-film SERS sensor achieved in-situ enrichment and sensitive SERS detection of micro/nanoplastics in water. Additionally, it eliminated sample transfer and prevented the loss of small nanoplastics. Using the Au-film SERS sensor, we detected 20 nm to 10 μm standard polystyrene (PS) microspheres with a detection limit of 0.1 mg/L. We also realized the detection of 100 nm PS nanoplastics at the 0.1 mg/L level in tap water and rainwater. This sensor provides a potential tool for rapid and susceptible on-site detection of micro/nanoplastics, especially small-sized nanoplastics.
Collapse
Affiliation(s)
- Yazhou Qin
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province Zhejiang Police College, 555 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, PR China
| | - Jiaxin Qiu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province Zhejiang Police College, 555 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, PR China
| | - Nan Tang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province Zhejiang Police College, 555 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, PR China
| | - Yuanzhao Wu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province Zhejiang Police College, 555 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, PR China
| | - Weixuan Yao
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province Zhejiang Police College, 555 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, PR China
| | - Yingsheng He
- Key Laboratory of Drug Control and Monitoring, National Anti-Drug Laboratory Zhejiang Regional Center, 555 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, PR China.
| |
Collapse
|