1
|
Kim HB, Ehsan MF, Alshawabkeh AN, Kim JG. Electrochemical activation of alum sludge for the adsorption of lead (Pb(II)) and arsenic (As): Mechanistic insights and machine learning (ML) analysis. BIORESOURCE TECHNOLOGY 2025; 430:132563. [PMID: 40262704 DOI: 10.1016/j.biortech.2025.132563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/19/2025] [Accepted: 04/19/2025] [Indexed: 04/24/2025]
Abstract
Alum sludge (AlS) has emerged as an effective adsorbent for anionic contaminants, with traditional activation methods like acid/base treatments and calcination employed to enhance its adsorption capacity. However, these approaches encounter significant drawbacks, including excessive waste generation, structural degradation, and limited efficacy for cationic contaminants. To overcome these challenges, this study proposes electrochemical activation as a sustainable method to enhance alum sludge adsorption performance by generating oxygen-containing functional groups (O-FGs) on its surface. In particular, cathodic activated AlS (E-AlS) leads to the formation of hydroxyl (-OH) and carboxyl (-COOH) groups, which served as key active sites for Pb(II) adsorption through complexation mechanisms. E-AlS effectively removed both Pb(II) and As within 4 h, showcasing its dual functionality for cationic and anionic contaminants. While HCl- and KOH-activated AlS also achieved 100 % Pb(II) removal, they caused substantial aluminum (Al) leaching, exceeding 1,000 mg/L, due to structural instability. In contrast, E-AlS minimized Al leaching, preserved structural integrity, and exhibited a 6.5-fold higher Pb(II) adsorption capacity than raw AlS. X-ray photoelectron spectroscopy (XPS) and machine learning (ML) validated the enhanced adsorption performance of E-AlS. These findings highlight electrochemical activation as a cost-effective and environmentally friendly remediation.
Collapse
Affiliation(s)
- Hye-Bin Kim
- Smart Livestock Environment Division, National Institute of Animal Science (NIAlS), Wanju 55365, Republic of Korea.
| | - Muhammad Fahad Ehsan
- Department of Civil and Environmental Engineering, Northeastern University, Boston 02115 MA, USA.
| | - Akram N Alshawabkeh
- Department of Civil and Environmental Engineering, Northeastern University, Boston 02115 MA, USA.
| | - Jong-Gook Kim
- Carbon Composite Materials Research Center, Korea Institute of Science and Technology (KIST), 92 Chudong-ro, Bongdong-eup, Wanju-gun, Jeollabuk-do 55324, Republic of Korea.
| |
Collapse
|
2
|
Guo Y, Chen X, Feng X, Zhao M, Pan Y, Zhang K, Li J. Preparation of porous sustainable adsorbent and its adsorption behavior for Pb 2. ENVIRONMENTAL RESEARCH 2025; 274:121289. [PMID: 40049349 DOI: 10.1016/j.envres.2025.121289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 05/04/2025]
Abstract
Using granulated blast furnace slag as raw material, chitosan and NaCl as modifier, chitosan modified granulated blast furnace slag based porous geopolymer (PCG) was prepared under the activation conditions of NaOH and sodium silicate. It was used to wrap different types of lightweight aggregates to obtain PCG-lightweight aggregate shell-core structure (PCG-L). PCG-L was used for the adsorption of Pb2+. Firstly, the influencing factors on the adsorption performance of the main component materials (PCG, lightweight aggregates) of PCG-L were studied. Then, the static adsorption properties and sustainable adsorption properties of Pb2+ by different shell-core structures were investigated. The relationship between the water absorption characteristics of the paste and the aggregate and the adsorption characteristics of PCG-L towards Pb2+ was established. The adsorption kinetics, adsorption isotherms and adsorption thermodynamics were analyzed. Finally, the adsorption mechanism of PCG-L was discussed by Zeta analyzer, FT-IR, EDS, XPS and MIP. The results indicate that as chitosan (0-2 wt%) and NaCl (0-60 wt%) increase, the saturated adsorption capacity of PCG for Pb2+ rises (98.57-159.93 mg/g). The Pb2+ adsorption capacity of lightweight aggregate (0.34-1.21 g/dm3) increases with its water absorption (0.2-15.0%). Under the premise that the water absorption rate of aggregate is greater than that of PCG, the higher the water absorption rate of the two, the stronger the adsorption capacity of the matching PCG-L, the maximum adsorption capacity of A2N30-H is 5.12 g/dm3 and it can still maintain a high removal rate after 40 cycles of adsorption. PCG-L adsorption via ion exchange, electrostatic attraction, surface complexation, and pore fixation.
Collapse
Affiliation(s)
- Yuhang Guo
- State Key Laboratory of Silicate Materials for Architecture, Wuhan University of Technology, Wuhan, 430070, China; School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Xiao Chen
- State Key Laboratory of Silicate Materials for Architecture, Wuhan University of Technology, Wuhan, 430070, China; School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China.
| | - Xiaoping Feng
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China.
| | - Mingyang Zhao
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yating Pan
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Kai Zhang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Jinhui Li
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, China
| |
Collapse
|
3
|
Bikharudin A, Okada M, Sung PC, Matsumoto T. Co-precipitating calcium phosphate as oral detoxification of cadmium. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137307. [PMID: 39847936 DOI: 10.1016/j.jhazmat.2025.137307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 12/19/2024] [Accepted: 01/19/2025] [Indexed: 01/25/2025]
Abstract
Bone-eating (also known as osteophagia), found in wild animals, is primarily recognized as a means to supplement phosphorus and calcium intake. Herein, we describe a novel function of bone-eating in detoxifying heavy metal ions through the dissolution and co-precipitation of bone minerals as they travel through the gastrointestinal (GI) tract. In this study, cadmium (Cd), a heavy metal ion, served as a toxic model. We demonstrated that hydroxyapatite (HAp), the major calcium phosphate (CaP) in bone, dissolves in the stomach and acts as a co-precipitant in the intestine for Cd detoxification. We compared HAp to a common antidote, activated charcoal (AC), which did not precipitate within the GI tract. In vitro experiments showed that HAp dissolves under acidic conditions and, upon return to a neutral environment, efficiently re-sequesters Cd. Similarly, oral administration of HAp effectively prevented Cd absorption and accumulation, resulting in enhanced Cd excretion in the feces when compared to AC. A co-precipitating CaP in the GI tract could serve as an excellent detoxification system, as it helps prevent the accumulation of toxic substances and aids in developing appropriate strategies to reduce tissue toxicity. Moreover, understanding this detoxification system would be a valuable indicator for designing efficient detoxification materials.
Collapse
Affiliation(s)
- Ahmad Bikharudin
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 7008558, Japan
| | - Masahiro Okada
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 7008558, Japan.
| | - Ping-Chin Sung
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 7008558, Japan
| | - Takuya Matsumoto
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 7008558, Japan.
| |
Collapse
|
4
|
Mohammadi A, Tamang S, Rethinasabapathy M, Ranjith KS, Safarkhani M, Kwak CH, Roh C, Huh YS, Han YK. Eco-friendly synthesis of rod-like hydroxyapatite on spherical carbon: A dual-function composite for selective cobalt removal and enhanced oxygen evolution reaction. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137164. [PMID: 39813934 DOI: 10.1016/j.jhazmat.2025.137164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 01/18/2025]
Abstract
The presence of cobalt ions (Co2 +) and radionuclides (60Co) in industrial and radioactive effluents pose serious threats to environmental ecosystems and human health. This paper presents the synthesis of dual-functional hydroxyapatite (HAp)-incorporated spherical carbon (SC) composite (HAp/SC) towards the selective adsorption of cobalt from wastewater and the utilization of the Co2+-adsorbed HAp/SC composite (Co2+- HAp/SC) as an electrocatalyst for the oxygen evolution reaction (OER). Herein, we prepared a series of HAp/SC composites by varying HAp weight percentages of 10 %, 20 %, 30 %, 40 %, and 50 %. Among the prepared composites, 20 wt% HAp/SC exhibited the highest Co2+ adsorption capacity of 111.03 mg g⁻1 which was higher than those of individual HAp and SC. The excellent Co2+ adsorption performance of 20 wt% HAp/SC composite might be due to the synergistic effects of phosphate groups in HAp, which selectively capture Co2+, along with large number of surface -OH and -COOH functional groups of SC through electrostatic, ion-exchange, and surface complexation mechanisms. Batch adsorption experimental data fit well with the Langmuir model (R2 = 0.97) suggesting monolayer adsorption of Co2+ onto the adsorption sites of HAp/SC. Also, the 20 wt% HAp/SC composite exhibited rapid Co2+ adsorption kinetics and effectively describing the pseudo-first-order model (R2 = 0.97) with a rate constant (k1) of 0.14893 min-1. Additionally, the Co2+-HAp/SC composite demonstrates potential as an electrocatalyst for the oxygen evolution reaction (OER), exhibiting an overpotential of 380 mV and a Tafel slope of 39.3 mV dec-1. This dual functionality suggests the HAp/SC composite for the cobalt removal, with the resulting product serving as an electrocatalyst for OER.
Collapse
Affiliation(s)
- Ali Mohammadi
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Sujina Tamang
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Incheon 22212, Republic of Korea
| | - Muruganantham Rethinasabapathy
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Incheon 22212, Republic of Korea
| | - Kugalur Shanmugam Ranjith
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Moein Safarkhani
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Incheon 22212, Republic of Korea
| | - Cheol Hwan Kwak
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Incheon 22212, Republic of Korea
| | - Changhyun Roh
- Decommissioning Technology Research Division, Korea Atomic Energy Research Institute, Daejeon 34057, Republic of Korea; Nuclear Science and Technology, University of Science and Technology, Daejeon 34113, Republic of Korea.
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Incheon 22212, Republic of Korea.
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea.
| |
Collapse
|
5
|
Zeng G, Dai J, Jian J, Yan C, Peng D, Liu H, Xu H. The effect of phosphate solubilizing bacteria on the fate of cadmium immobilized by microbial induced phosphate precipitation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:125125. [PMID: 40158393 DOI: 10.1016/j.jenvman.2025.125125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/24/2025] [Accepted: 03/22/2025] [Indexed: 04/02/2025]
Abstract
Microbial induced phosphate precipitation (MIPP) is an environmentally friendly method for Cd immobilization. MIPP precipitates were mainly insoluble phosphates which were inevitably affected by phosphate solubilizing bacteria (PSB). However, effect of PSB on the fate of Cd immobilized by MIPP still remained unclear. Here, we investigated the transformation of Cd and MIPP precipitates with PSB strain Enterobacter sp. QY1. The results showed that Enterobacter sp. QY1 could secrete D-gluconic acid and acetic acid to release Cd, Ca and phosphorus from MIPP precipitates. The concentration of released Cd reached a peak on 5-7 d, then decreased, indicating that some of released Cd was re-immobilized. Sorption of Enterobacter sp. QY1 and substitution of CaxCd10-x(PO4)6(OH)2 played a major role in re-immobilization of released Cd. Finally, about 7.0-8.7 % Cd immobilized by MIPP was released after 28 d. The fate of Cd immobilized by MIPP in soil was also explored, Sphingomonas might dissolve MIPP precipitates and release Cd, then the concentration of exchangeable Cd increased. Overall, PSB mobilized Cd immobilized by MIPP, posing a threat to the long-term effectiveness of MIPP technology. Our findings are beneficial to understand the effect of phosphorus biogeochemical cycle on durability of MIPP in Cd remediation.
Collapse
Affiliation(s)
- Guoquan Zeng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Jingtong Dai
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Jiannan Jian
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Chaoqun Yan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Dinghua Peng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Huakang Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China.
| | - Heng Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China.
| |
Collapse
|
6
|
Liu Y, Shi M, Fang S, Zhang Q, Wu Q, Li N, Lin D. Superoleophobic Hierarchical Honeycomb Hydrogels for Effective Heavy Metal Removal in Crude Oil Emulsion. ACS APPLIED MATERIALS & INTERFACES 2025; 17:16187-16201. [PMID: 40000028 DOI: 10.1021/acsami.4c21809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Here, we designed a bioinspired hydrogel surface with underwater superoleophobicity for heavy metal adsorption, effectively addressing the challenge of adsorption site clogging caused by crude oil emulsions. Mimicking the reentrant structures of lotus leaf undersides, silica dioxide (SiO2) nanoparticles were self-assembled on the hydrogel surface, forming a stable hydration layer that imparts unique superoleophobic properties in an aqueous environment. The poly(vinyl alcohol)-sodium alginate-SiO2 capsule (PSSC) exhibited a hierarchical honeycomb pore structure with a nano screen mesh, achieving excellent adsorption capacities for typical cationic heavy metals (Pb2+, Cu2+, Cd2+, and Cr3+) in both aqueous solutions and crude oil emulsions. The optimal pH for heavy metal adsorption was determined to be between 4 and 5, while increasing temperature significantly inhibited the adsorption process. Maximum adsorption capacities of Pb2+, Cd2+, Cu2+, and Cr3+ reached 291.5 mg/g, 278.7 mg/g, 259.4 mg/g, and 171.4 mg/g in crude oil emulsions. Competitive adsorption was observed in multicomponent systems, with Cr3+ being adsorbed preferentially. The adsorption mechanisms were primarily governed by chemical adsorption, physical adsorption, and electrostatic attraction, with functional groups such as -COOH and -OH on the hydrogel surface playing a key role in metal ion binding. This study demonstrates the potential of PSSC as an efficient, cost-effective adsorbent for removing heavy metals from complex matrices, such as wastewater and crude oil emulsions, and highlights its applicability in various environmental remediation scenarios.
Collapse
Affiliation(s)
- Yifan Liu
- Department of Energy and Material Engineering, Shandong Polytechnic College, Jining 272067, China
- Shandong Yida New Materials Co., Ltd, Jining 272067, China
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Mei Shi
- Department of Energy and Material Engineering, Shandong Polytechnic College, Jining 272067, China
- Shandong Yida New Materials Co., Ltd, Jining 272067, China
- The College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Shuai Fang
- Department of Energy and Material Engineering, Shandong Polytechnic College, Jining 272067, China
- Shandong Yida New Materials Co., Ltd, Jining 272067, China
- The College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Qiongfang Zhang
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qingtong Wu
- Shandong Huankeyuan Environmental Engineering Co., Ltd, Jinan 250013, China
| | - Nanxin Li
- Shaanxi Province Land Engineering Construction Group Corporation, Xi'an 710064, China
| | - Dichu Lin
- The College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
- The Department of Forestation, Forestry Administration, Fuzhou 350026, China
| |
Collapse
|
7
|
Saberi-Zare M, Bodaghifard MA. A Schiff base-functionalized chitosan magnetic bio-nanocomposite for efficient removal of Pb (II) and Cd (II) ions from aqueous solutions. Int J Biol Macromol 2025; 296:139794. [PMID: 39805446 DOI: 10.1016/j.ijbiomac.2025.139794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/19/2024] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
The rapid industrialization and human activities in catchments have posed notable global challenges in removing of heavy metal contaminants from wastewater. Here, Schiff-bases (SB) of cyanoguanidine (CG) and salicylaldehyde (SA) were covalently grafted on a magnetic nanocomposite of chitosan to form a hybrid magnetic nanostructure (Fe3O4@CS-CGSB). The synthesized structure was characterized using various techniques such as Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (XRD), thermogravimetric analysis (TGA), vibrating sample magnetometry (VSM), dynamic light scattering (DLS), zeta potential, and Brunauer-Emmett-Teller surface area analysis (BET). The prepared adsorbent demonstrated strong binding capabilities and high efficiency in adsorbing Pb(II) and Cd(II) metal ions from aqueous solutions with removal efficiencies of 98 % and 97 %, respectively. The study investigated various factors such as pH, adsorbate concentration, adsorbent dosage, isotherms, kinetics, and adsorption mechanism. The heavy metal ions were adsorbed through coordination with the nitrogen and hydroxyl groups of the nanostructure, as well as electrostatic interactions. The adsorption process followed the Freundlich isotherm with a high correlation coefficient (R2 = 0.97, 0.96) and a pseudo-second-order kinetic model. The Fe3O4@CS-CGSB is highly effective in removing heavy metal ions with maximum adsorption capacities of 394 mg/g for Pb(II) and 391 mg/g for Cd(II). The recycled hybrid nanostructure was dried and subjected to various adsorption-desorption tests, revealing a desorption efficiency of 98 %. In conclusion, the synthesized magnetic bio-sorbent shows great promise in effectively removing heavy metal ions from water and wastewater.
Collapse
Affiliation(s)
- Maryam Saberi-Zare
- Department of Chemistry, Faculty of Science, Arak University, Arak 38481-77584, Iran
| | - Mohammad Ali Bodaghifard
- Department of Chemistry, Faculty of Science, Arak University, Arak 38481-77584, Iran; Institute of Nanosciences &Nanotechnology, Arak University, Arak, Iran.
| |
Collapse
|
8
|
Zhang H, Li Q, Zhao M, Yang Y, Bai R, Jiang X, Li T. Leaching law of heavy metals in coal gangue: A combination of experimental optimization and simulation. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136790. [PMID: 39644856 DOI: 10.1016/j.jhazmat.2024.136790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/11/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Coal gangue, a solid waste generated during coal mining and washing processes, has caused significant environmental burdens in China. This study aims to optimize and investigate the leaching mechanisms of heavy metals, such as Pb, Zn, and Cu, in coal gangue. The effectiveness of different eluents in removing heavy metals from coal gangue was evaluated by combining experimental methods with software simulations. The leaching conditions (EDTA-2Na concentration of 5 g/L, pH 3, solidliquid ratio of 1:10, leaching time of 4 h, 300 r/min) were optimized to achieve efficient and economical removal of heavy metals. Box-Behnken Design was used to show the key factors of eluant concentration and solid-liquid ratio. The leaching amounts of Pb, Zn, and Cu from coal gangue using EDTA-2Na as a leaching agent were 86 mg/kg, 430 mg/kg, and 66 mg/kg, respectively. The release mechanism and kinetic behavior of heavy metals in the leaching process were studied. The study provided information about leaching mechanisms of heavy metals from coal gangue by experiments and simulations of Visual MINTEQ and DFT that EDTA-2Na enhanced the leaching of heavy metals from coal gangue by enhancing ion exchange and complexation.
Collapse
Affiliation(s)
- Hualin Zhang
- Key Laboratory of Rare Earths, Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China; School of Metallurgical engineering, Jiangxi University of Science and Technology, Ganzhou 341099, China
| | - Qiong Li
- Key Laboratory of Rare Earths, Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China; School of Rare Earths, University of Science and Technology of China, Hefei 230026, China
| | - Mengfei Zhao
- Key Laboratory of Rare Earths, Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China; School of Metallurgical engineering, Jiangxi University of Science and Technology, Ganzhou 341099, China
| | - Youming Yang
- School of Metallurgical engineering, Jiangxi University of Science and Technology, Ganzhou 341099, China
| | - Renbi Bai
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xiaoliang Jiang
- Key Laboratory of Rare Earths, Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China.
| | - Tinggang Li
- Key Laboratory of Rare Earths, Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China; CAS Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Innovation Academy for Green Manufacture, Beijing Engineering Research Centre of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Metallurgical engineering, Jiangxi University of Science and Technology, Ganzhou 341099, China; School of Rare Earths, University of Science and Technology of China, Hefei 230026, China; State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
9
|
Abbas R, Aamir M, Saeed F, Shankar A, Kaur J, Nadeem R, Chauhan AS, Imran A, Afzaal M, Kinki AB. Development and nutritional evaluation of pomegranate peel enriched bars. PLoS One 2025; 20:e0315830. [PMID: 39854430 PMCID: PMC11760572 DOI: 10.1371/journal.pone.0315830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/01/2024] [Indexed: 01/26/2025] Open
Abstract
Pomegranate peel powder is used as a functional ingredient in the development of nutritional bars. Pomegranate (Punica granatum) is well known fruit belongs to punicaceae family having multiple health benefits, not only limited to its edible parts but also in its non-edible parts mostly the peel. Fruit wastes are rich source of nutrients, and can be used for the development of functional food products. Pomegranate peel is considered to be beneficial due to its functional and therapeutic properties as it is a source of many biological active components like polyphenols, tannins and flavonoids. Nutrient rich and ready-made foods are the demand of everyone due to their easy availability and cost effectiveness. Among the confectionary products, bars are liked by individuals of different age groups. Hence, nutritional properties of bars can be enhanced by using pomegranate peel powder. The current study was designed to develop bars enriched with pomegranate peel powder as a basic ingredient. Pomegranate peel powder is prepared and analyzed for proximate, mineral, total phenolic content, total flavonoid content and anti-oxidant potential (DPPH). By using pomegranate peel powder, oats and jaggery, bars were prepared. In this research, five treatments T0 (0% pomegranate peel powder and 100% oats). T1 (5% pomegranate peel powder and 95% oats), T2 (10% pomegranate peel powder and 90% oats), T3 (15% pomegranate peel powder and 85% oats) and T4 (20% pomegranate peel powder and 80% oats) were used. The developed product is analyzed for proximate, mineral, total flavonoid contents, total phenolic content and anti-oxidant potential (DPPH). Proximate analysis of bars revealed that moisture, protein, fat, fiber, ash and nitrogen free extract ranges from T0 to T4 (13.38±1.21 to 11.32±1.15, 9.56±0.92 to 8.32±1.14, 9.05±1.21 to 7.93±1.08, 5.23±0.82 to 16.89±0.64, 2.05±0.87 to 2.92±1.25 and 62.51±0.85 to 52.62±0.93 respectively. Phytochemical analysis of bars enriched with pomegranate peel powder revealed that total phenolic content, total flavonoid content and antioxidant potential of bars ranges from T0 to T4 (142.74±0.65 to 211.79±0.63 mg GAE/100g, 129.16±0.64 to 192±0.53 mg QE/100g and 41.35±0.82 to 64.57±0.69%) respectively. Mineral analysis of bars enriched with pomegranate peel powder revealed that calcium, Phosphorus, Potassium, Iron, Magnesium content ranged from T0 to T4 (25.42±0.63 to 31.06±0.58, 51.00±1.01 to 45.05±1.09, 59.46±1.13 to 79.15±0.28, 1.32±1.20 to 1.95±0.83 and 54.17±0.88±0.58 to 57.36±0.68 mg/100g respectively). Sensory evaluation is done for color, aroma, taste, texture overall acceptability. T3 got maximum score. Then, the data obtained were evaluated by CRD design. On the basis of results revealed that treatment T3 with 15% pomegranate peel powder was overall highly acceptable.
Collapse
Affiliation(s)
- Rameeza Abbas
- Natiional Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Aamir
- Natiional Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Farhan Saeed
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | - Amar Shankar
- Department of Food Technology, School of Engineering and Technology, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Jaspreet Kaur
- Department of Nutrition and Dietetics, Chandigarh Group of Colleges, Jhanjeri, Mohali, Punjab, India
| | - Rutaba Nadeem
- Department of Clinical Nutrition, NUR International University, Lahore, Pakistan
| | - Ashish Singh Chauhan
- Division of Research and Innovation, Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ali Imran
- Natiional Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Afzaal
- Natiional Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Abdela Befa Kinki
- Department of Food Science and Nutrition, Ethiopian Institute of Agricultural Research, Shashemene, Ethiopia
| |
Collapse
|
10
|
Hao J, Bi C, Li S, Zhao S, Yang S, Li Y, E T. Structural regulation of alginate-based adsorbents based on different coordination configurations of metal ions and selective adsorption of copper ion. Int J Biol Macromol 2025; 284:138160. [PMID: 39613059 DOI: 10.1016/j.ijbiomac.2024.138160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
To tackle the problem of developing efficient adsorbents for the selective removal of copper ions from wastewater, this investigation focused on the synthesis of Fe-GO/MMT/SA and Al-GO/MMT/SA copper ion adsorbent materials (Fe-GMS and Al-GMS), respectively, by merging two distinct metal ions (Fe(III) and Al(III)) with sodium alginate (SA), graphene oxide (GO), and montmorillonite (MMT). By introducing metal ions with different coordination configurations, the slit structure and pore density of the adsorbents can be effectively controlled, thereby enhancing the selectivity for copper ion adsorption. The results show that Fe-GMS has excellent adsorption capacity for Cu(II) compared with Al(III), and the adsorption capacity and distribution coefficient are 116.44 mg/g and 14.45 L/g, respectively, which is mainly due to the octahedral coordination configuration of Fe(III) having more coordination points when cross-linked with SA, forming a more complex and closer slit structure and cross-linked network. This result was further verified by density functional theory (DFT). Therefore, Fe-GMS stands as a promising Cu(II)-selective adsorbent, offering a valuable framework for the rational design of alginate-based aerogel adsorbents suitable for wastewater treatment applications.
Collapse
Affiliation(s)
- Jie Hao
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013, Liaoning, China
| | - Changlong Bi
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013, Liaoning, China
| | - Suya Li
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013, Liaoning, China
| | - Shuang Zhao
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013, Liaoning, China.
| | - Shuyi Yang
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013, Liaoning, China
| | - Yun Li
- Chemistry & Chemical Engineering of College, Yantai University, Yantai 264005, Shandong, China.
| | - Tao E
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013, Liaoning, China.
| |
Collapse
|
11
|
Yang H, Huang S, Zhu X, Chen Y, Xu C, Li R, Bu P, Jiang Y, Li C, Yang J, Chen Z, Peng W, Liu L. Scalable fabrication of freely shapable 3D hierarchical Cu-doped hydroxyapatite scaffolds via rapid gelation for enhanced bone repair. Mater Today Bio 2024; 29:101370. [PMID: 39687795 PMCID: PMC11648777 DOI: 10.1016/j.mtbio.2024.101370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/17/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Critical-sized bone defects present a formidable challenge in tissue engineering, necessitating innovative approaches that integrate osteogenesis and angiogenesis for effective repair. Inspired by the hierarchical porous structure of natural bone, this study introduces a novel method for the scalable production of ultra-long, copper-doped hydroxyapatite (Cu-HAp) fibers, utilizing the rapid gelation properties of guar gum (GG) under controlled conditions. These fibers serve as foundational units to fabricate three-dimensional porous scaffolds with a biomimetic hierarchical architecture. The scaffolds exhibit a broad pore size distribution (1-500 μm) and abundant nanoporous features, mimicking the native bone extracellular matrix. Physicochemical characterization and in vitro assays demonstrated that the copper doping significantly enhanced osteogenic and angiogenic activities, with optimized concentrations (0.8 % and 1.2 % Cu) facilitating the upregulation of osteogenesis-related genes and proteins, as well as promoting endothelial cell proliferation. In vivo studies further confirmed the scaffolds' efficacy, with the 1.2Cu-HAp group showing a remarkable increase in bone regeneration (bone volume/total volume ratio: 35.7 ± 1.87 %) within the defect site. This research offers a promising strategy for the rapid fabrication of multifunctional scaffolds that not only support bone tissue repair but also actively accelerate the healing process through enhanced vascularization.
Collapse
Affiliation(s)
- Hui Yang
- School of Medical and Information Engineering, Gannan Medical University, Ganzhou 341000, China
- Jiangxi Provincial Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou 341000, China
| | - Sirui Huang
- Jiangxi Provincial Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou 341000, China
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Xinwei Zhu
- Jiangxi Provincial Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou 341000, China
| | - Yasi Chen
- School of Medical and Information Engineering, Gannan Medical University, Ganzhou 341000, China
- Jiangxi Provincial Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou 341000, China
| | - Chunming Xu
- Jiangxi Provincial Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou 341000, China
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Ruohan Li
- Third Clinical College, Gannan Medical University, Ganzhou, 341000, China
| | - Pan Bu
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Yufan Jiang
- Third Clinical College, Gannan Medical University, Ganzhou, 341000, China
| | - Changwei Li
- School of Medical and Information Engineering, Gannan Medical University, Ganzhou 341000, China
| | - Jie Yang
- School of Medical and Information Engineering, Gannan Medical University, Ganzhou 341000, China
| | - Zhenyi Chen
- School of Medical and Information Engineering, Gannan Medical University, Ganzhou 341000, China
| | - Weijie Peng
- Jiangxi Provincial Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou 341000, China
| | - Lin Liu
- Jiangxi Provincial Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou 341000, China
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
12
|
Wang X, Chen J, Zhou J, Bao L, Zhang L, Yang L, Wu J, Hao C. Novel carboxymethyl cellulose-based hydrogel embedded with metal organic framework for efficient cationic dye removal from water. Int J Biol Macromol 2024; 282:137387. [PMID: 39521222 DOI: 10.1016/j.ijbiomac.2024.137387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/19/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
The rGO/CMC/β-CD (RCβ) hydrogel was synthesized from reduced graphene oxide (rGO), β-cyclodextrin (β-CD) and sodium carboxymethyl cellulose (CMC) by radical polymerization. A novel hydrogel adsorbent was created by growing the metal-organic framework (Cu-BTC) in-situ on RCβ hydrogel, which has excellent adsorption capacities for cationic dyes in wastewater. The adsorption parameters such as the amount of adsorbent, pH of solution and adsorption time were optimized through batch adsorption experiments. Under the optimal conditions of pH 6.0, adsorbent dosage of 0.01 g and experimental temperature of 25 °C, Langmuir isothermal model was used to fit the maximum adsorption capacities of methylene blue (MB), crystal violet (CV) and malachite green (MG), which were 892.66, 842.75 and 633.77 mg g-1, respectively. The fitting results of adsorption kinetics revealed that the pseudo-second-order model can describe the adsorption process better. Based on proposed studies, the dye molecules were adsorbed onto RCβ@Cu-BTC hydrogel mainly through electrostatic interaction, hydrogen bonding and π-π interactions. After five cycles, the adsorption efficiency of the RCβ@Cu-BTC hydrogel for MB, CV and MG can still reach 80 %, 77 % and 72 %, which shows that the adsorbent has good adsorption performance. Various adsorption experiments show that RCβ@Cu-BTC hydrogel has great potential in treating dye wastewater.
Collapse
Affiliation(s)
- Xiaohong Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Junjie Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jiayi Zhou
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Lei Bao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Lele Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Lingze Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jingbo Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chen Hao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
13
|
Jiang X, Liu Z, Yan B, Zhao L, Chen T, Yang X. Effects of active silicon amendment on Pb(II)/Cd(II) adsorption: Performance evaluation and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135614. [PMID: 39186844 DOI: 10.1016/j.jhazmat.2024.135614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
In this study, a high-Si (Si) adsorbent (APR@Sam) was prepared by acid leaching slag (APR) from lead-zinc (Pb-Zn) tailings based on high-temperature alkali melting technology. The synthesized Si-based materials were applied to aqueous solutions contaminated with Pb and cadmium (Cd) to investigate the crucial role of active Si in sequestering heavy metals. The adsorption capacities of APR@Sam and the Si-depleted material (APR@Sam-NSi) were studied under different pH and temperature conditions. The results showed that as the pH increased from 3 to 7, the adsorption capacity increased, the active Si content in the solution increased by 63 %, and the maximum pH of the solution after adsorption was 7.12. After the removal of active Si, the Pb (II) and Cd (II) adsorption capacities of APR@Sam decreased by 45 % and 11.96 %, respectively. OH- promoted the release of Si into the solution, enhancing the material's adsorption efficiency. The reaction mechanism is mainly attributed to surface complexation guided by Si-O and Si-O-Si bonds, metal cation exchange, and bidentate coordination. The results indicated that the Si component is critical for the removal of Pb (II) and Cd (II) by APR@Sam and provide valuable insights into resource recovery strategies from leaching residues.
Collapse
Affiliation(s)
- Xueqin Jiang
- Guangdong Engineering Technology Research Center of Low Carbon and Advanced Energy Materials, Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, China; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, Guangdong Engineering Technology Research Center for Source Control of Combined Pollution in Mining Areas, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Zhenyuan Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, Guangdong Engineering Technology Research Center for Source Control of Combined Pollution in Mining Areas, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Bo Yan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, Guangdong Engineering Technology Research Center for Source Control of Combined Pollution in Mining Areas, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Lingzhi Zhao
- Guangdong Engineering Technology Research Center of Low Carbon and Advanced Energy Materials, Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, China
| | - Tao Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, Guangdong Engineering Technology Research Center for Source Control of Combined Pollution in Mining Areas, School of Environment, South China Normal University, Guangzhou 510006, China.
| | - Xiaofan Yang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
14
|
Zhang X, Liu W, Liang C, Fu D, Wang M, Liu X. Coupled physicochemical dual-crosslinking Ti 3C 2T x composite aerogels for the selective adsorption of gallium ions in acid fly ash leaching. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134987. [PMID: 38908174 DOI: 10.1016/j.jhazmat.2024.134987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/27/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Herein, in order to extract Ga3+ from acid fly ash leaching, we propose a functionalized Ti3C2Tx-based MXene composite aerogel adsorbent for Ga3+ adsorption. The prepared physicochemical dual-crosslinking network aerogel MPHG-40 possesses good Ga3+ adsorption performance (132.52 mg g-1) at the pH of 3 and Ga3+ initial concentration of 50 mg L-1 within 6 h. After five adsorption-desorption cycles, the material shows good mass retention and a 95.65 % retention of its initial adsorption capacity, compared to most reported adsorbents. The optimized adsorbent realized good selective adsorption of Ga3+ against Cu2+, Zn2+, Fe3+, and Al3+ in a simulated acid fly ash leaching with the selective coefficient of 8.63, 96.10, 4.49, and 28.30, respectively. The adsorption may comply with a combined mechanism of physical adsorption, electrostatic interactions, ion-exchange mechanism, and ligand chelation, dominated by chemical adsorption, as identified by theoretical calculations based on density functional theory and experimental data. The three-dimensional solid adsorbent constructed in this study provides a new strategy for selective adsorption of Ga3+, making it possible to be applied to solid waste utilization of fly ash.
Collapse
Affiliation(s)
- Xiaopei Zhang
- Institute of New Carbon Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Weifeng Liu
- Institute of New Carbon Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Chang Liang
- Institute of New Carbon Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Dongju Fu
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, Guangdong 518118, China
| | - Meiling Wang
- Institute of New Carbon Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xuguang Liu
- Institute of New Carbon Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| |
Collapse
|
15
|
Abedi G, Moghadam AJ, Montazeri A, Hajyani Z, Nezarat A, Aghababai Beni A. Synthesis of green ceramic adsorbent for the treatment of tire factory effluent containing lead, zinc, aluminum, cobalt, iron and manganese ions. RESULTS IN ENGINEERING 2024; 23:102591. [DOI: 10.1016/j.rineng.2024.102591] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
|
16
|
Ahmad F, Manefield M. Photosystem modulation and extracellular silicification in green microalgae: Key strategies for lead tolerance and removal. Heliyon 2024; 10:e36366. [PMID: 39253166 PMCID: PMC11382045 DOI: 10.1016/j.heliyon.2024.e36366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
The escalating contamination caused by lead ions (Pb2⁺) and its harmful effects on all life forms has raised global concerns. Certain microalgae thrive in metal mining sites characterized by low pH and high concentrations of Pb2⁺, which are usually prohibitive for many microorganisms. Little is known about the mechanisms underlying the adaptation of such microalgae to these hostile conditions. In this study, we elucidated the adaptive strategies of the green microalga Micractinium belenophorum strain AUMW, isolated from a lead mining site, and its application for the removal of Pb+2. Results revealed that strain AUMW can efficiently tolerate up to 200 ppm of Pb+2 in an F/2 medium. Further experimental variables were optimized through response surface methodology (RSM), and 99.6 % removal of Pb2⁺ was achieved. Novel adaptive responses of strain AUMW to high levels of Pb2⁺ include: (i) activation of metal-protective response by modulation of quantum yield (F v /F m ) and non-photochemical quenching (NPQ) of photosystem II; (ii) extracellular silicification encapsulated cells of strain AUMW and altered cell morphology from oval to hexagonal; (iii) silicification prevented intracellular translocation of Pb+2; (iv) silicification boosted adsorption of Pb+2, thus enhanced its removal. This study offers new insights into the protective role of silicification in green microalgae and its potential for the removal of metals from metal-polluted sites, waste from energy storage battery industries, and spent batteries. It also provides a solid base to explore the genetic and metabolic pathways involved in the adaptation of strain AUMW to elevated levels of Pb+2.
Collapse
Affiliation(s)
- Fiaz Ahmad
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Michael Manefield
- School of Civil and Environmental Engineering, University of New South Wales (UNSW), Sydney, 2052, New South Wales, Australia
| |
Collapse
|
17
|
Benataya K, Lakrat M, Hammani O, Aaddouz M, Ait Yassine Y, Abuelizz HA, Zarrouk A, Karrouchi K, Mejdoubi E. Synthesis of High-Purity Hydroxyapatite and Phosphoric Acid Derived from Moroccan Natural Phosphate Rocks by Minimizing Cation Content Using Dissolution-Precipitation Technique. Molecules 2024; 29:3854. [PMID: 39202932 PMCID: PMC11357432 DOI: 10.3390/molecules29163854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/08/2024] [Accepted: 08/10/2024] [Indexed: 09/03/2024] Open
Abstract
This study investigates, in the first part, the synthesis and purification of a poorly crystalline hydroxyapatite (HAp) using natural Moroccan phosphate (Boucraa region) as a raw material. Despite its successful preparation, the obtained HAp was contaminated by several metallic cations (mostly Cd, Pb, Sn, Ti, Mn, Mg, Fe, and Al) migrated from the natural rocks during the digestion process, inhibiting HAp application in several sectors. To minimize the existence of these elements, the dissolution-precipitation technique (DP) was investigated as a non-selective purification process. Following the initial DP cycle conducted on the precipitated HAp, the removal efficiency was approximately 60% for Al, Fe, Mg, Mn, and Ti and 90% for Cd and Pb. After three consecutive DP cycles, notable improvement in the removal efficiency was observed, reaching 66% for Fe, 69% for Mg, 73% for Mn, and 74% for Al, while Cd, Pb, and Ti were totally removed. In the second part of this study, the purified HAp was digested using sulfuric acid to produce high-quality phosphoric acid (PA) and gypsum (GP). The elemental analysis of the PA indicates a removal efficiency of approximately 89% for Fe and over 94% for all the examined cations. In addition, the generated GP was dominated by SO3 and CaO accompanied with minor impurities. Overall, this simple process proves to be practically useful, to reduce a broad spectrum of cationic impurities, and to be flexible to prepare valuable products such hydroxyapatite, phosphoric acid, and gypsum.
Collapse
Affiliation(s)
- Karim Benataya
- Laboratory of Applied Chemistry and Environment, Department of Chemistry, Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco; (K.B.); (M.L.); (M.A.); (E.M.)
| | - Mohammed Lakrat
- Laboratory of Applied Chemistry and Environment, Department of Chemistry, Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco; (K.B.); (M.L.); (M.A.); (E.M.)
| | - Othmane Hammani
- Chemistry Platform, Unités d’Appui Technique à la Recherche Scientifique (UATRS), Centre National pour la Recherche Scientifique & Technique (CNRST), Rabat 10102, Morocco;
| | - Mohamed Aaddouz
- Laboratory of Applied Chemistry and Environment, Department of Chemistry, Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco; (K.B.); (M.L.); (M.A.); (E.M.)
| | - Youssef Ait Yassine
- Higher School of Technology, Ibn Zohr University, Laayoune 3007, Morocco;
- Laboratory of Thermodynamics and Energy, Faculty of Sciences, Ibn Zohr University, Agadir 80150, Morocco
| | - Hatem A. Abuelizz
- Department of Pharmaceutical Chemistry College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Abdelkader Zarrouk
- Laboratory of Materials, Nanotechnology and Environment, Faculty of Sciences, Mohammed V University in Rabat, Rabat P.O. Box 1014, Morocco;
- Research Centre, Manchester Salt & Catalysis, 88-90 Chorlton Road, Manchester M15 4AN, UK
| | - Khalid Karrouchi
- Laboratory of Analytical Chemistry and Bromatology, Team of Formulation and Quality Control of Health Products, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10100, Morocco
| | - Elmiloud Mejdoubi
- Laboratory of Applied Chemistry and Environment, Department of Chemistry, Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco; (K.B.); (M.L.); (M.A.); (E.M.)
| |
Collapse
|
18
|
Lin Y, Zhang X, Fu Y, Xu C, Yang X, Tan Z, Lin H, Chen G. Enhancing irrigation water quality efficiently with potassium feldspar-derived adsorbent: Heavy metal detoxification and nutrient augmentation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116648. [PMID: 38964065 DOI: 10.1016/j.ecoenv.2024.116648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
The pollution of Pb2+ and Cd2+ in both irrigation water and soil, coupled with the scarcity of vital mineral nutrition, poses a significant hazard to the security and quality of agricultural products. An economical potassium feldspar-derived adsorbent (PFDA) was synthesized using potassium feldspar as the main raw material through ball milling-thermal activation technology to solve this problem. The synthesis process is cost-effective and the resulting adsorbent demonstrates high efficiency in removing Pb2+ and Cd2+ from water. The removal process is endothermic, spontaneous, and stochastic, and follows the quasi-second-order kinetics, intraparticle diffusion, and Langmuir model. The adsorption and elimination of Pb2+ and Cd2+ is largely dependent on monolayer chemical sorption. The maximum removal capacity of PFDA for Pb2+ and Cd2+ at room temperature is 417 and 56.3 mg·g-1, respectively, which is superior to most mineral-based adsorbents. The desorption of Pb2+/Cd2+ on PFDA is highly challenging at pH≥3, whereas PFDA and Pb2+/Cd2+ are recyclable at pH≤0.5. When Pb2+ and Cd2+ coexisted, Pb2+ was preferentially removed by PFDA. In the case of single adsorption, Pb2+ was mainly adsorbed onto PFDA as Pb2SiO4, PbSiO3·xH2O, Pb3SiO5, PbAl2O4, PbAl2SiO6, PbAl2Si2O8, Pb2SO5, and PbSO4, whereas Cd2+ was primarily adsorbed as CdSiO3, Cd2SiO4, and Cd3Al2Si3O12. After the complex adsorption, the main products were PbSiO3·xH2O, PbAl2Si2O8, Pb2SiO4, Pb4Al2Si2O11, Pb5SiO7, PbSO4, CdSiO3, and Cd3Al2Si3O12. The forms of mineral nutrients in single and complex adsorption were different. The main mechanisms by which PFDA removed Pb2+ and Cd2+ were chemical precipitation, complexation, electrostatic attraction, and ion exchange. In irrigation water, the elimination efficiencies of Pb2+ and Cd2+ by PFDA within 10 min were 96.0 % and 70.3 %, respectively, and the concentrations of K+, Si4+, Ca2+, and Mg2+ increased by 14.0 %, 12.4 %, 55.7 %, and 878 %, respectively, within 60 min. PFDA holds great potential to replace costly methods for treating heavy metal pollution and nutrient deficiency in irrigation water, offering a sustainable, cost-effective solution and paving a new way for the comprehensive utilization of potassium feldspar.
Collapse
Affiliation(s)
- Yi Lin
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China; Modern Industry College of Ecology and Environmental Protection, Guilin University of Technology, Guilin 541006, China
| | - Xuehong Zhang
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China; Modern Industry College of Ecology and Environmental Protection, Guilin University of Technology, Guilin 541006, China
| | - Yuexin Fu
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China; Modern Industry College of Ecology and Environmental Protection, Guilin University of Technology, Guilin 541006, China
| | - Chuikun Xu
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China; Modern Industry College of Ecology and Environmental Protection, Guilin University of Technology, Guilin 541006, China
| | - Xuemeng Yang
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China; Modern Industry College of Ecology and Environmental Protection, Guilin University of Technology, Guilin 541006, China
| | - Zhiyu Tan
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China; Modern Industry College of Ecology and Environmental Protection, Guilin University of Technology, Guilin 541006, China
| | - Hua Lin
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China; Modern Industry College of Ecology and Environmental Protection, Guilin University of Technology, Guilin 541006, China.
| | - Gongning Chen
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China; Modern Industry College of Ecology and Environmental Protection, Guilin University of Technology, Guilin 541006, China.
| |
Collapse
|
19
|
Miyah Y, El Messaoudi N, Benjelloun M, Acikbas Y, Şenol ZM, Ciğeroğlu Z, Lopez-Maldonado EA. Advanced applications of hydroxyapatite nanocomposite materials for heavy metals and organic pollutants removal by adsorption and photocatalytic degradation: A review. CHEMOSPHERE 2024; 358:142236. [PMID: 38705409 DOI: 10.1016/j.chemosphere.2024.142236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/27/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
This comprehensive review delves into the forefront of scientific exploration, focusing on hydroxyapatite-based nanocomposites (HANCs) and their transformative role in the adsorption of heavy metals (HMs) and organic pollutants (OPs). Nanoscale properties, including high surface area and porous structure, contribute to the enhanced adsorption capabilities of HANCs. The nanocomposites' reactive sites facilitate efficient contaminant interactions, resulting in improved kinetics and capacities. HANCs exhibit selective adsorption properties, showcasing the ability to discriminate between different contaminants. The eco-friendly synthesis methods and potential for recyclability position the HANCs as environmentally friendly solutions for adsorption processes. The review acknowledges the dynamic nature of the field, which is characterized by continuous innovation and a robust focus on ongoing research endeavors. The paper highlights the HANCs' selective adsorption capabilities of various HMs and OPs through various interactions, including hydrogen and electrostatic bonding. These materials are also used for aquatic pollutants' photocatalytic degradation, where reactive hydroxyl radicals are generated to oxidize organic pollutants quickly. Future perspectives explore novel compositions, fabrication methods, and applications, driving the evolution of HANCs for improved adsorption performance. This review provides a comprehensive synthesis of the state-of-the-art HANCs, offering insights into their diverse applications, sustainability aspects, and pivotal role in advancing adsorption technologies for HMs and OPs.
Collapse
Affiliation(s)
- Youssef Miyah
- Laboratory of Materials, Processes, Catalysis, and Environment, Higher School of Technology, University Sidi Mohamed Ben Abdellah, Fez-Morocco, Morocco; Ministry of Health and Social Protection, Higher Institute of Nursing Professions and Health Techniques, Fez-Morocco, Morocco.
| | - Noureddine El Messaoudi
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Ibn Zohr University, 80000, Agadir, Morocco.
| | - Mohammed Benjelloun
- Laboratory of Materials, Processes, Catalysis, and Environment, Higher School of Technology, University Sidi Mohamed Ben Abdellah, Fez-Morocco, Morocco
| | - Yaser Acikbas
- Department of Materials Science and Nanotechnology Engineering, Usak University, 64200, Usak, Turkey
| | - Zeynep Mine Şenol
- Sivas Cumhuriyet University, Faculty of Health Sciences, Department of Nutrition and Diet, 58140, Sivas, Turkey
| | - Zeynep Ciğeroğlu
- Department of Chemical Engineering, Faculty of Engineering, Usak University, 64300, Usak, Turkey
| | - Eduardo Alberto Lopez-Maldonado
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja, California, CP: 22390, Tijuana, Baja California, Mexico
| |
Collapse
|
20
|
Li S, Hao J, Yang S, Wang Y, Li Y, E T. Alginate-based adsorbents with adjustable slit-shaped pore structure for selective removal of copper ions. Int J Biol Macromol 2024; 267:131484. [PMID: 38599421 DOI: 10.1016/j.ijbiomac.2024.131484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/02/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Adopting effective and efficient techniques for the treatment of heavy metal pollution in water bodies plays an important role in guaranteeing the quality of water and the sustainable development of water resources. In this study, GO, MMT and SA were used as raw materials to compare the adsorption behaviors of three alginate-based adsorbents crosslinked with different valence metal ions (Ca2+, Fe3+ and Zr4+) on Cu(II). The aerogels were based on sodium alginate as the matrix material with unique slit-shaped pore structures formed by stacking effect of sheets and chemical bonding. It was found that the pore structures of the aerogels were denser and more orderly with the increase of the valence states of the crosslinked ions, and the affinity for Cu(II) in planar configuration was stronger. The Zr4+-GMSA aerogel had the maximum adsorption capacity of 126.68 mg/g and the Kd of Cu(II) was up to 50.80 L/g, which exhibited good preferential adsorption performance. The adsorption mechanism of Mn+-GMSA aerogels on Cu(II) was mainly ionic exchange, surface complexation and physical adsorption, which was explored by combining XPS and EDS characterizations of Mn+-GMSA before and after adsorption. This scheme can provide valuable and meaningful contribution to realize the selective recovery of Cu(II).
Collapse
Affiliation(s)
- Suya Li
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013, Liaoning, China
| | - Jie Hao
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013, Liaoning, China
| | - Shuyi Yang
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013, Liaoning, China
| | - Yuanfei Wang
- Liaoning Huadian Environmental Texting Co., LTD, Jinzhou 121013, Liaoning, China
| | - Yun Li
- Chemistry & Chemical Engineering of College, Yantai University, Yantai 264005, Shandong, China
| | - Tao E
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013, Liaoning, China..
| |
Collapse
|
21
|
El-Monaem EMA, Gomaa H, Omer AM, El-Subruiti GM, Eltaweil AS. Sequestration of Pb(II) using channel-like porous spheres of carboxylated graphene oxide-incorporated cellulose acetate@iminodiacetic acid: optimization and mechanism study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:32664-32679. [PMID: 38658512 PMCID: PMC11133213 DOI: 10.1007/s11356-024-33185-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/28/2024] [Indexed: 04/26/2024]
Abstract
The adsorption property of the costless green cellulose acetate (CA) was boosted by the dual modifications: inner modification by incorporating carboxylated graphene oxide (COOH-GO) into the CA spheres and outer modification by the surface modification of the COOH-GO@CA spheres by iminodiacetic acid (IDA) for removing Pb(II). The adsorption experiments of the Pb(II) proceeded in a batch mode to evaluate the adsorption property of the COOH-GO@CA@IDA spheres. The maximal Pb(II) adsorption capacity attained 613.30 mg/g within 90 min at pH = 5. The removal of Pb(II) reached its equilibrium within 20 min, and the removal % was almost 100% after 30 min at the low Pb(II) concentration. The Pb(II) adsorption mechanism was proposed according to the kinetics and isotherms studies; in addition, the zeta potential (ZP) measurements and X-ray Photoelectron Spectroscopy (XPS) analysis defined the adsorption pathways. By comparing the XPS spectra of the authentic and used COOH-GO@CA@IDA, it was deduced that the contributed chemical adsorption pathways are Lewis acid-base, precipitation, and complexation. The zeta potential (ZP) measurements demonstrated the electrostatic interaction participation in adsorbing the cationic Pb(II) species onto the negatively charged spheres (ZP = 14.2 mV at pH = 5). The unique channel-like pores of the COOH-GO@CA@IDA spheres suggested the pore-filling mechanism of Pb(II). The promising adsorption results and the superb recyclability character of COOH-GO@CA@IDA enable it to extend of the bench scale to the industrial scale.
Collapse
Affiliation(s)
- Eman M Abd El-Monaem
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Hassanien Gomaa
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
| | - Ahmed M Omer
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P. O. Box: 21934, Alexandria, Egypt.
| | - Gehan M El-Subruiti
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Abdelazeem S Eltaweil
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
- Department of Engineering, Faculty of Engineering and Technology, University of Technology and Applied Sciences, Ibra, Sultanate of Oman
| |
Collapse
|
22
|
Li Q, Yang X, Li C, He A, He S, Li X, Zhang Y, Yao T. Comparison of bio-beads combined with Pseudomonas edaphica and three phosphate materials for lead immobilization: Performance, mechanism and plant growth. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 357:120797. [PMID: 38574707 DOI: 10.1016/j.jenvman.2024.120797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024]
Abstract
Phosphate materials (PMs) combine with phosphate solubilizing bacteria play an essential roles in lead (Pb) immobilization, but their resulting ability to reduce Pb bioavailability may vary depending on PMs used. In this study, Pseudomonas edaphica GAU-665 and three PMs: tricalcium phosphate, calcium phytate and nano-hydroxyapatite were respectively encapsulated into bio-beads by sodium alginate, which immobilization efficiency of Pb2+ were 99.11%, 97.76% and 99.02% at initial Pb2+ concentration of 200 mg L-1, respectively. The Pb2+ immobilization performance of bio-beads under different conditions and their organic acids secreted were examined. Most Pb2+ was immobilized by bio-beads through combined functions of adsorption, precipitation, ion exchange and biomineralization, accompanied by the formation of more stable compounds such as Pb3(PO4)2, Pb5(PO4)3OH and Pb5(PO4)3Cl. Meanwhile, pot experimental results indicated that the inoculation of CPhy (calcium phytate) bio-beads with PSB have highest biomass and root growth of oat (Avena sativa L.) in Pb-stressed compared with CK, which increased the content of chlorophyll b (167.51%) in shoot. In addition, the CPhy bio-beads enhance the peroxidase, catalase activities and reduce the malondialdehyde content to alleviating lead physiological toxicity in oat, which reductions the Pb accumulation in shoot (52.06%) and root (81.04%), and increased the residual fraction of Pb by 165.80% in soil. These findings suggest the bio-beads combined with P. edaphica GAU-665 and calcium phytate is an efficient Pb immobilization material and provided feasible way to improve safety agricultural production and Pb-contaminated soil remediation.
Collapse
Affiliation(s)
- Qi Li
- College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, Gansu, China; Key Laboratory of Grassland Ecosystem, Gansu Agricultural University, Ministry of Education, Lanzhou, 730070, Gansu, China
| | - Xiaolei Yang
- College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, Gansu, China; Key Laboratory of Grassland Ecosystem, Gansu Agricultural University, Ministry of Education, Lanzhou, 730070, Gansu, China
| | - Changning Li
- College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, Gansu, China; Key Laboratory of Grassland Ecosystem, Gansu Agricultural University, Ministry of Education, Lanzhou, 730070, Gansu, China
| | - Aolei He
- College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, Gansu, China; Key Laboratory of Grassland Ecosystem, Gansu Agricultural University, Ministry of Education, Lanzhou, 730070, Gansu, China
| | - Shanmu He
- College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, Gansu, China; Key Laboratory of Grassland Ecosystem, Gansu Agricultural University, Ministry of Education, Lanzhou, 730070, Gansu, China
| | - Xuemei Li
- College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, Gansu, China; Key Laboratory of Grassland Ecosystem, Gansu Agricultural University, Ministry of Education, Lanzhou, 730070, Gansu, China
| | - Ying Zhang
- College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, Gansu, China; Key Laboratory of Grassland Ecosystem, Gansu Agricultural University, Ministry of Education, Lanzhou, 730070, Gansu, China
| | - Tuo Yao
- College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, Gansu, China; Key Laboratory of Grassland Ecosystem, Gansu Agricultural University, Ministry of Education, Lanzhou, 730070, Gansu, China.
| |
Collapse
|
23
|
Huang H, Wang K, Li S, Liang K, Dai J, Jian J, Li Y, Liu H, Xu H. Different survival strategies of the phosphate-mineralizing bacterium Enterobacter sp. PMB-5 in response to cadmium stress: Biomineralization, biosorption, and bioaccumulation. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133284. [PMID: 38134699 DOI: 10.1016/j.jhazmat.2023.133284] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/24/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023]
Abstract
The phosphate-mineralizing bacteria (PMBs) has shown great potential as a sustainable solution to support pollution remediation through its induced mineralization capacity. However, few studies have been conducted on the mechanism of cadmium (Cd) tolerance in PMBs. In this study, a PMB strain, Enterobacter sp. PMB-5, screened from Cd-contaminated rhizosphere soil, has high resistance to Cd (540 - 1220 mg/L) and solubilized phosphate (232.08 mg/L). The removal experiments showed that the strain PMB-5 removed 71.69-98.24% and 34.83-76.36% of Cd with and without biomineralization, respectively. The characterization result of SEM, EDS, TEM, XPS and XRD revealed that PMB-5 induced Cd to form amorphous phosphate precipitation through biomineralization and adopted different survival strategies, including biomineralization, bioaccumulation, and biosorption to resistance Cd in the microbial induced phosphate precipitation (MIPP) system and the non-MIPP system, respectively. Moreover, the results of whole genome sequencing and qRT-PCR indicated that phosphorus metabolism genes such as pst, pit, phn, ugp, ppk, etc. and heavy metal tolerance genes (including ion transport, ion efflux, redox, antioxidant stress), such as czcD, zntA, mgtA, mgtC, katE, SOD2, dsbA, cysM, etc. were molecular for the PMB-5 mineralization and Cd tolerance of PMB-5. Together, our findings suggested Enterobacter sp. PMB-5 is a potential target for developing more effective bioinoculants for Cd contamination remediation.
Collapse
Affiliation(s)
- Huayan Huang
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Keke Wang
- Sichuan Academy of Eco-Environmental Sciences, Chengdu 610066, PR China
| | - Shiyao Li
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Ke Liang
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Jingtong Dai
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Jiannan Jian
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Yongyun Li
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Huakang Liu
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China; Key Laboratory of Environment Protection, Soil ecological protection and pollution control, Sichuan University & Department of Ecology and Environment of Sichuan, Chengdu 610065, Sichuan, PR China.
| | - Heng Xu
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China; Key Laboratory of Environment Protection, Soil ecological protection and pollution control, Sichuan University & Department of Ecology and Environment of Sichuan, Chengdu 610065, Sichuan, PR China.
| |
Collapse
|
24
|
Shang Z, Wang T, Ye Q, Wu P, Wu J, Sun L, Zhu N. An environmentally friendly strategy for reducing the environmental risks of heavy metals adsorbed by kaolinite. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 355:120506. [PMID: 38447514 DOI: 10.1016/j.jenvman.2024.120506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/16/2024] [Accepted: 02/25/2024] [Indexed: 03/08/2024]
Abstract
Plenty of heavy metals (HMs) that are adsorbed on clay minerals (such as kaolinite), in addition to low molecular-weight organic acids (such as oxalic acid (OA)) with high activities, are widespread in the natural environment. In the present study, the effects of OA on the environmental behaviors of Pb2+/Cd2+ adsorbed by kaolinite have been investigated. The effectiveness and mechanisms of calcium silicate (CS) and magnesium silicate (MS) in reducing the environmental risks of the HMs have also been studied. The results showed that the releases of Pb2+/Cd2+ increased with an increasing concentration of OA. When different dosages of CS/MS were added to the aging system, a redistribution of HMs took place and the free form of Pb2+/Cd2+ decreased to very low levels. Also, the unextractable Pb2+/Cd2+ increased to high levels. Furthermore, a series of characterizations showed that the released HMs were re-captured by the CS/MS. In addition, the CS immobilized the OA in the solution during the aging process, which also facilitated an immobilization of the carbon element in the environment. In general, the present study has contributed to a further understanding of the transport behaviors of the HMs in natural environments, and of the interactions between CS (or MS), the environmental media, and the heavy metal contaminants. In addition, this study has also provided an eco-friendly strategy for an effective remediation of heavy metal pollution.
Collapse
Affiliation(s)
- Zhongbo Shang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China
| | - Tianming Wang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China
| | - Quanyun Ye
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, China; Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, China.
| | - Jiayan Wu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China
| | - Leiye Sun
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China
| | - Nengwu Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China
| |
Collapse
|
25
|
Wang T, Cao W, Dong K, Li H, Wang D, Xu Y. Hydroxyapatite and its composite in heavy metal decontamination: Adsorption mechanisms, challenges, and future perspective. CHEMOSPHERE 2024; 352:141367. [PMID: 38331264 DOI: 10.1016/j.chemosphere.2024.141367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/22/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Nanohydroxyapatite (n-HAP), recognized by its peculiar crystal architecture and distinctive attributes showcased the underlying potential in adsorbing heavy metal ions (HMI). In this paper, the intrinsic mechanism of HMI adsorption by n-HAP was first revealed. Subsequently, the selectivity and competitiveness of n-HAP for HMI in a variety of environments containing various interferences from cations, anions, and organic molecules are elucidated. Next, n-HAP was further categorized according to its morphological dimensions, and its adsorption properties and intrinsic mechanisms were investigated based on these different morphologies. It was shown that although n-HAP has excellent adsorption capacity and cost-effectiveness, its application is often challenging to realize due to its inherent fragility and agglomeration, the technical problems required for its handling, and the difficulty of recycling. Finally, to address these issues, this paper discusses the tendency of n-HAP and its hybridized/modified materials to adsorb HMI as well as the limitations of their applications. By summarizing the limitations and future directions of hybridization/modification HAP in the field of HMI contamination abatement, this paper provides insightful perspectives for its gradual improvement and rational application.
Collapse
Affiliation(s)
- Ting Wang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
| | - Weiyuan Cao
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
| | - Kun Dong
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
| | - Haixiang Li
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
| | - Dunqiu Wang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
| | - Yufeng Xu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China; Chinese Acad Sci, Res Ctr Ecoenvironm Sci, Beijing 100085, China; Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China.
| |
Collapse
|
26
|
Gao ZW, Li YY, Li PH, Yang YF, Zhao YH, Yang M, Chen SH, Song ZY, Huang XJ. Synergistic activation of P and orbital coupling effect for ultra-sensitive and selective electrochemical detection of Cd(II) over Fe-doped CoP. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132842. [PMID: 37907008 DOI: 10.1016/j.jhazmat.2023.132842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/12/2023] [Accepted: 10/21/2023] [Indexed: 11/02/2023]
Abstract
Despite significant advancements in the detection of cadmium (Cd(II)) based on nanomaterial adsorbability, limited research has been conducted on ultra-sensitive and selective detection mechanisms, resulting in a lack of guidance for designing efficient interface materials to detect Cd(II). Herein, reductive Fe doping on CoP facilitates an efficient Fe-Co-P electron transfer path, which renders P the electron-rich site and subsequently splits a new orbital peak that matches with that of Cd(II) for excellent electrochemical performance. The sensitivity of Cd(II) was remarkably up to 109.75 μA μM-1 on the Fe-CoP modified electrode with excellent stability and repeatability, surpassing previously reported findings. Meanwhile, the electrode exhibits exceptional selectivity towards Cd(II) ions compared to some bivalent heavy metal ions (HMIs). Moreover, X-ray absorption fine structure (XAFS) analysis reveals the interaction between P and Cd(II), which is further verified via density functional theory (DFT) calculation with the new hybrid peaks resulting from the splitting peak of P atoms coupled with the orbital energy level of Cd(II). Generally, doping engineering for specific active sites and regulation of orbital electrons not only provides valuable insights for the subsequent regulation of electronic configuration but also lays the foundation for customizing highly sensitive and selectivity sensors.
Collapse
Affiliation(s)
- Zhi-Wei Gao
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China; Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yong-Yu Li
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Pei-Hua Li
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Yuan-Fan Yang
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China; Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yong-Huan Zhao
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China; Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Meng Yang
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China.
| | - Shi-Hua Chen
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China; State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem And Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Zong-Yin Song
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China.
| | - Xing-Jiu Huang
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China; Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
27
|
Proshad R, Li J, Sun G, Zheng X, Yue H, Chen G, Zhang S, Li Z, Zhao Z. Field application of hydroxyapatite and humic acid for remediation of metal-contaminated alkaline soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:13155-13174. [PMID: 38243026 DOI: 10.1007/s11356-024-32015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/10/2024] [Indexed: 01/21/2024]
Abstract
The quality of soil is essential for ensuring the safety and quality of agricultural products. However, soils contaminated with toxic metals pose a significant threat to agricultural production and human health. Therefore, remediation of contaminated soils is an urgent task, and humic acid (HA) with hydroxyapatite (HAP) materials was applied for this study in contaminated alkaline soils to remediate Cd, Pb, Cu, and Zn. Physiochemical properties, improved BCR sequential extraction, microbial community composition in soils with superoxide dismutase (SOD), peroxidase (POD), and chlorophyll content in plants were determined. Among the studied treatments, application of HAP-HA (2:1) (T7) had the most significant impact on reducing the active forms of toxic metals from soil such as Cd, Pb, Cu, and Zn decreased by 18.59%, 9.12%, 11.83%, and 3.33%, respectively, but HAP and HA had a minor impact on metal accumulation in Juncao. HAP (T2) had a beneficial impact on reducing the TCleaf/root of Cd, Cu, and Zn, whereas HAP-HA (T5) showed the best performance for reducing Cd and Cu in EFleaf/soil. HAP-HA (T5 and T7) showed higher biomass (57.3%) and chlorophyll (17.9%), whereas HAP (T4) showed better performance in POD (25.8%) than T0 in Juncao. The bacterial diversity in soil was increased after applying amendments of various treatments and enhancing metal remediation. The combined application of HAP and HA effectively reduced active toxic metals in alkaline soil. HAP-HA mixtures notably improved soil health, plant growth, and microbial diversity, advocating for their use in remediating contaminated soils.
Collapse
Affiliation(s)
- Ram Proshad
- Key Laboratory of Mountain Environment Evolvement and Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Jie Li
- CCTEG Chongqing Engineering (Group) Co., LTD., Chongqing, 400000, People's Republic of China
| | - Guohuai Sun
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Xu Zheng
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Haoyu Yue
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Geng Chen
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Shuangting Zhang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Ziyi Li
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Zhuanjun Zhao
- Key Laboratory of Mountain Environment Evolvement and Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
28
|
Wang X, Jiang Z, Qian J, Fu W, Pan B. Structure Evolution of Iron (Hydr)oxides under Nanoconfinement and Its Implication for Water Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:826-835. [PMID: 38154031 DOI: 10.1021/acs.est.3c05760] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
In the development of nanoenabled technologies for large-scale water treatment, immobilizing nanosized functional materials into the confined space of suitable substrates is one of the most effective strategies. However, the intrinsic effects of nanoconfinement on the decontamination performance of nanomaterials, particularly in terms of structural modulation, are rarely unveiled. Herein, we investigate the structure evolution and decontamination performance of iron (hydr)oxide nanoparticles, a widely used material for water treatment, when confined in track-etched (TE) membranes with channel sizes varying from 200 to 20 nm. Nanoconfinement drives phase transformation from ferrihydrite to goethite, rather than to hematite occurring in bulk systems, and the increase in the nanoconfinement degree from 200 to 20 nm leads to a significant drop in the fraction of the goethite phase within the aged products (from 41% to 0%). The nanoconfinement configuration is believed to greatly slow down the phase transformation kinetics, thereby preserving the specific adsorption of ferrihydrite toward As(V) even after 20-day aging at 343 K. This study unravels the structure evolution of confined iron hydroxide nanoparticles and provides new insights into the temporospatial effects of nanoconfinement on improving the water decontamination performance.
Collapse
Affiliation(s)
- Xuening Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Zhao Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Jieshu Qian
- Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Wanyi Fu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
- Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
- Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| |
Collapse
|
29
|
Vinayagam S, Sathishkumar K, Ayyamperumal R, Natarajan PM, Ahmad I, Saeed M, Alabdallah NM, Sundaram T. Distribution and transport of contaminants in soil through mining processes and its environmental impact and health hazard assessment: A review of the prospective solutions. ENVIRONMENTAL RESEARCH 2024; 240:117473. [PMID: 37871785 DOI: 10.1016/j.envres.2023.117473] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/21/2023] [Accepted: 10/21/2023] [Indexed: 10/25/2023]
Abstract
Environmental regulations were concerned with support in reaction to the enormous ecological harm caused by mining in the past. Because mining, dumping, and tailings can generate waste and radioactive consequences, society must develop methods for successfully treating mining waste from mine dumps, tailings, and abandoned mines. Strict policies associated with environmental regulations to avoid the possible dangers caused by garbage and radioactivity. Several characteristics, including background contamination from natural sources related to mineral deposits, contamination from industrial activities in three-dimensional subsurface space, a problem with long-term remediation following mine closure, a problem with secondary contaminated areas near mine sites, land use conflicts, and abandoned mines, distinguish it. Reusing and recycling mine waste occasionally results in cost-effective advantages in the mining sector by offsetting natural resource requirements and reducing the volume of garbage materials. These benefits stem from recycling and reusing mining waste, which can lower the amount of garbage that must be managed. This review focuses on realistic strategies for anticipating mining exploration control and attempts to examine those methods in-depth. Management strategies for limiting the environmental impact of mining dumps, stockpiles, and tailings were discussed. The environmental assessment was also mentioned to carry out specific control and take preventive actions.
Collapse
Affiliation(s)
- Saranya Vinayagam
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India
| | - Kuppusamy Sathishkumar
- Rhizosphere Biology Laboratory, Department of Microbiology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Ramamoorthy Ayyamperumal
- Key Laboratory of Western China's Environmental System, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Prabhu Manickam Natarajan
- Department of Clinical Sciences, Center of Medical and Bio-allied Health Sciences and Research, College of Dentistry, Ajman University, Ajman, United Arab Emirates
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Saudi Arabia
| | - Nadiyah M Alabdallah
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia; Basic & Applied Scientific Research Centre, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Thanigaivel Sundaram
- Department of Biotechnology, Faculty of Science & Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, Tamil Nadu, 603203, India.
| |
Collapse
|
30
|
Yu Q, Liu H, Lv G, Liu X, Wang L, Liao L. Mechanistic insight into lead immobilization on bone-derived carbon/hydroxyapatite composite at low and high initial lead concentration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165910. [PMID: 37524186 DOI: 10.1016/j.scitotenv.2023.165910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/06/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
The contamination of heavy metal lead has a serious impact on the natural environment and organisms. Among various materials for lead removal, animal bone derived hydroxyapatite has received extensive attention. However, there are different opinions among researchers regarding the mechanism of lead removal by hydroxyapatite, possibly due to varying initial lead concentrations used in different studies and lack of accuracy in the study of lead removal mechanisms. In present work, we synthesized a carbon-containing hydroxyapatite (CHAP) through pyrolysis of bovine bone with excellent lead removal efficiency, and further investigated the lead removal mechanism of CHAP under high and low initial lead concentrations by combining XRD Rietveld refinement, FTIR, XPS, HRTEM etc. methods. The results showed that under low initial Pb2+ concentration condition, the main mechanism of lead removal by CHAP was chemical precipitation (94.1 %), with small contributions of lead complexation with carbon functional groups and cation-π interactions on the amorphous carbon in CHAP, and surface adsorption on the precipitates. Under high initial Pb2+ concentration condition, chemical precipitation remained the main mechanism (74.68 %), but the contributions of the other three mechanisms increased, and ion exchange appeared in the later stage of the removal process. This study provides new insights on the lead immobilization mechanism by CHAP at different initial Pb2+ concentrations in water.
Collapse
Affiliation(s)
- Qihui Yu
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Hao Liu
- School of Science, China University of Geosciences, Beijing 100083, China
| | - Guocheng Lv
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Xin Liu
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Lijuan Wang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Libing Liao
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China.
| |
Collapse
|
31
|
Preparation of Mannitol-Modified Loofah and Its High-Efficient Adsorption of Cu(II) Ions in Aqueous Solution. Polymers (Basel) 2022; 14:polym14224883. [PMID: 36433010 PMCID: PMC9698831 DOI: 10.3390/polym14224883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Adsorption is considered the most favorable method for heavy metal removal. In this paper, a low-cost, high-efficiency heavy metal adsorbent, mannitol-modified loofah (MML) was prepared. Some characterization methods are used to characterize the structure of MML, such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The adsorption behavior of MML for Cu(II) ions was explored under different conditions, such as the amount of adsorbent, pH, initial concentration of Cu(II) ions, and adsorption time. The results indicated that the adsorption capacity of MML for Cu(II) ions was greatly improved. When the initial concentration of Cu(II) ions was 900 mg/L and the pH is 5.0, the adsorption capacity (Qe) was 888.9 mg/g at 298K, which was significantly higher than that of some other modified cellulose adsorbents. Isothermal adsorption results showed that the adsorption process was consistent with the Freundlich model. The adsorption kinetics conformed to the pseudo-second-order equation. Furthermore, the regeneration capability of MML indicates that MML is a cheap and excellent adsorbent for Cu(II) ions removal in wastewater treatment.
Collapse
|