1
|
Gan G, Shen H, Cheng Q, Li Y, Zhang G. Unveiling mechanistic insight into boosting oxygen species activation over CeO 2/Mn 2O 3 p-n heterojunction for efficient photothermal mineralization of toluene. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137423. [PMID: 39892128 DOI: 10.1016/j.jhazmat.2025.137423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/20/2025] [Accepted: 01/26/2025] [Indexed: 02/03/2025]
Abstract
The activation mechanism of oxygen species activation (including lattice oxygen and gaseous oxygen) in the photothermal catalytic reaction process is important for boosting the efficient removal of VOCs. Herein, we have successfully synthesized a p-n heterojunction photothermal catalyst CeO2/Mn2O3 for exploring the activation of molecular oxygen and lattice oxygen in toluene catalytic reaction under full spectrum conditions. Various characterization tests and theoretical calculations showed that the formed composite has enhanced light absorption ability, oxygen species migration and transformation ability as well as nice redox cycles, which is conducive to the fast replenishment of surface lattice oxygen and continuous capture and activation of molecular oxygen. Meanwhile, the results of in-situ DRIFTS tests not only confirmed the enhanced activation process of surface lattice oxygen and molecular oxygen under the synergistic effect of light and heat, but also revealed the pathway and mechanism of photothermal catalytic toluene over CeO2/Mn2O3.
Collapse
Affiliation(s)
- Guangmei Gan
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, People's Republic of China
| | - Han Shen
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, People's Republic of China
| | - Qiang Cheng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, People's Republic of China; College of Urban and Environmental Sciences, Huangshi Key Laboratory of Prevention and Control of Soil Pollution, Hubei Normal University, Huangshi, Hubei 435002, People's Republic of China
| | - Yuan Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, People's Republic of China
| | - Gaoke Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, People's Republic of China.
| |
Collapse
|
2
|
Li M, Liu X, Niu X, Zhu Y. Regulating the mobility of lattice oxygen on hollow cobalt-manganese sub-nanospheres for enhanced catalytic oxidation of toluene and o-xylene. J Colloid Interface Sci 2024; 671:192-204. [PMID: 38797145 DOI: 10.1016/j.jcis.2024.05.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Promoting lattice oxygen mobility of Co-based catalysts is crucial to making progress in catalytic oxidation technology. The addition of manganese, a transition metal with similar ionic radius to cobalt and variable valence, was supposed to enhance the mobility of lattice oxygen species of Co-based oxide. A range of hollow CoMnaOx sub-nanosphere catalysts with different Mn/Co ratios was synthesized via a template-sacrificed method, and the effects of different Mn/Co ratios on the structural properties of the catalysts and their catalytic performance for benzene series volatile organic compounds (VOCs) oxidation were investigated. Hollow CoMn2Ox sub-nanosphere exhibited good catalytic activity for oxidation of toluene (T90 = 265 °C) and o-xylene (T90 = 297 °C), as well as excellent recycling ability and water resistance. By adjusting the Mn/Co ratio, metal ions enter into the different tetrahedral or octahedral active sites. Compared with Co3O4, the desorption temperature of surface lattice oxygen on CoMn2Ox decreased by 110 °C. These results demonstrate that the addition of manganese can encourage the electron transfer on CoMnaOx, indicating that the introduction of the appropriate amount of manganese accelerates the activation of gas O2 and mobility of surface lattice oxygen species, thereby expediting the oxidation of benzene series VOCs.
Collapse
Affiliation(s)
- Mingyang Li
- Key Laboratory of Functional Inorganic Material Chemistry (Heilongjiang University), Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, 150080 PR China
| | - Xinzhu Liu
- Key Laboratory of Functional Inorganic Material Chemistry (Heilongjiang University), Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, 150080 PR China
| | - Xiaoyu Niu
- Key Laboratory of Functional Inorganic Material Chemistry (Heilongjiang University), Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, 150080 PR China.
| | - Yujun Zhu
- Key Laboratory of Functional Inorganic Material Chemistry (Heilongjiang University), Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, 150080 PR China.
| |
Collapse
|
3
|
Dai L, Zhou X, Yang Y, Hu P, Ci L. Ordered porous Mn - Co spinel oxide (CoMn 2O 4) with vacancies modulation as efficient electrocatalyst for Li - O 2 battery. J Colloid Interface Sci 2024; 670:719-728. [PMID: 38788439 DOI: 10.1016/j.jcis.2024.05.144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/12/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
Nonaqueous Li - O2 battery (LOB) is considered one of the most promising energy storage system due to its ultrahigh theoretical specific capacity (3500 Wh kg-1). Introducing vacancies in CoMn2O4 catalysts is regarded as an effective strategy to enhance the electrochemical performances of LOB. However, the relation between vacancy types in CoMn2O4 and catalytic performances in the LOB remains ambiguous. Herein, ordered porous CoMn2O4 with oxygen and metal vacancies is obtained via solvothermal reaction followed by temperature-controlled calcination using polystyrene spheres as templates. The increase in treatment temperature reduces the content of oxygen vacancies while increasing that of the metal vacancies. Notably, experimental results and theoretical calculations show that oxygen vacancies in CoMn2O4 have a greater influence than metal vacancies in modulating the LiO2 adsorption during the reaction processes and reducing the overpotential. CoMn2O4 synthesized at 500 ℃ (CoMnO-500) with higher oxygen vacancies exhibits stronger adsorption onto the LiO2, facilitating the formation of film-like Li2O2. Therefore, an LOB with the CoMnO-500 catalyst presents the lowest overpotential of 1.2 V and longest cycle lifespan of 286 cycles at a current density of 200 mA g-1. This study offers insights into the effect of CoMn2O4 vacancies on the formation pathway of Li2O2 discharge products.
Collapse
Affiliation(s)
- Linna Dai
- School of Science, Hubei University of Technology, Nanli Road #28, Wuhan, Hubei Province 430068, China
| | - Xin Zhou
- School of Science, Hubei University of Technology, Nanli Road #28, Wuhan, Hubei Province 430068, China
| | - Yuan Yang
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China
| | - Pei Hu
- School of Science, Hubei University of Technology, Nanli Road #28, Wuhan, Hubei Province 430068, China.
| | - Lijie Ci
- Research Center for Carbon Nanomaterials, Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan 250061, China.
| |
Collapse
|
4
|
Hua Y, Vikrant K, Kim KH, Heynderickx PM, Boukhvalov DW. The catalytic efficacy of modified manganese-cobalt oxides for room-temperature oxidation of formaldehyde in air. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135016. [PMID: 38986407 DOI: 10.1016/j.jhazmat.2024.135016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/12/2024] [Accepted: 06/22/2024] [Indexed: 07/12/2024]
Abstract
Formaldehyde (FA) is a hazardous indoor air pollutant with carcinogenic propensity. Oxidation of FA in the dark at low temperature (DLT) is a promising strategy for its elimination from indoor air. In this light, binary manganese-cobalt oxide (0.1 to 5 mol L-1-MnCo2O4) is synthesized and modified in an alkaline medium (0.1-5 mol L-1 potassium hydroxide) for FA oxidation under room temperature (RT) conditions. Accordingly, 1-MnCo2O4 achieves 100 % FA conversion at RT (50 ppm and 7022 h-1 gas hourly space velocity (GHSV)). The catalytic activity of 1-MnCo2O4 is assessed further as a function of diverse variables (e.g., catalyst mass, relative humidity, FA concentration, molecular oxygen (O2) content, flow rate, and time on-stream). In situ diffuse reflectance infrared Fourier-transform spectroscopy confirms that FA molecules are adsorbed onto the active surface sites of 1-MnCo2O4 and oxidized into water (H2O) and carbon dioxide (CO2) through dioxymethylene (DOM) and formate (HCOO-) as the reaction intermediates. According to the density functional theory simulations, the higher catalytic activity of 1-MnCo2O4 can be attributed to the combined effects of its meritful surface properties (e.g., the firmer attachment of FA molecules, lower energy cost of FA adsorption, and lower desorption energy for CO2 and H2O). This work is the first report on the synthesis of alkali (KOH)-modified MnCo2O4 and its application toward the FA oxidative removal at RT in the dark. The results of this study are expected to provide valuable insights into the development of efficient and cost-effective non-noble metal catalysts against indoor FA at DLT.
Collapse
Affiliation(s)
- Yongbiao Hua
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea
| | - Kumar Vikrant
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| | - Philippe M Heynderickx
- Center for Environmental and Energy Research, Engineering of Materials via Catalysis and Characterization, Ghent University Global Campus, 119-5 Songdo Munhwa-ro, Yeonsu-gu, Incheon 406-840, Republic of Korea; Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Danil W Boukhvalov
- College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing 210037, China; Institute of Physics and Technology, Ural Federal University, Mira Street 19, 620002 Yekaterinburg, Russia
| |
Collapse
|
5
|
Chen Y, Gong W, Niu K, Wang X, Lin Y, Lin D, Jin H, Luo Y, Qian Q, Chen Q. Chitosan -NH 2 derived efficient Co 3O 4 catalyst for styrene catalytic oxidation: Simultaneously regulating particle size and Co valence. J Colloid Interface Sci 2024; 659:439-448. [PMID: 38183810 DOI: 10.1016/j.jcis.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/26/2023] [Accepted: 01/02/2024] [Indexed: 01/08/2024]
Abstract
In this study, a Co3O4 catalyst is synthesised using the chitosan-assisted sol-gel method, which simultaneously regulates the grain size, Co valence and surface acidity of the catalyst through a chitosan functional group. The complexation of the free -NH2 complex inhibits particle agglomeration; thus, the average particle size of the catalyst decreases from 82 to 31 nm. Concurrently, Raman spectroscopy, hydrogen temperature-programmed reduction, electron paramagnetic resonance spectroscopy and X-ray photoelectron spectroscopy experiments demonstrate that doping with chitosan N sources effectively modulates Co2+ to promote the formation of oxygen vacancies. In addition, water washing after catalyst preparation can considerably improve the low-temperature (below 250 °C) activity of the catalyst and eliminate the side effects of alkali metal on catalyst activity. Moreover, the presence of Brønsted and Lewis acid sites promotes the adsorption of C8H8. Consequently, CS/Co3O4-W presents the highest catalytic oxidation activity for C8H8 at low temperatures (R250 °C = 8.33 μmol g-1 s-1, WHSV = 120,000 mL hr-1∙g-1). In situ DRIFTS and 18O2 isotope experiments demonstrate that the oxidation of the C8H8 reaction is primarily dominated by the Mars-van Krevelen mechanism. Furthermore, CS/Co3O4-W exhibits superior water resistance (1- and 2- vol% H2O), which has the potential to be implemented in industrial applications.
Collapse
Affiliation(s)
- Yinye Chen
- Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, China
| | - Wanyu Gong
- Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, China
| | - Kui Niu
- Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, China
| | - Xin Wang
- Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, China
| | - Yidian Lin
- Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, China
| | - Daifeng Lin
- Fujian Provincial Key Lab of Coastal Basin Environment, Fujian Polytechnic Normal University, Fuqing 350300, China.
| | - Hongjun Jin
- Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, China.
| | - Yongjin Luo
- Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, China.
| | - Qingrong Qian
- Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, China
| | - Qinghua Chen
- Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, China
| |
Collapse
|
6
|
Ruan M, Zhou H, Zhao L, Hu T, He L, Shan S. The ortho-substituent effect regulating the separation of photogenerated carriers to efficiently photodegrade tetracycline on the surface of FeCo-based MOFs. CHEMOSPHERE 2024; 352:141296. [PMID: 38296214 DOI: 10.1016/j.chemosphere.2024.141296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/25/2023] [Accepted: 01/23/2024] [Indexed: 02/13/2024]
Abstract
It is feasible to improve the photodegradation efficiency of organic pollutants by metal-organic frameworks (MOF)-based semiconductors via ligand engineering. In this work, three (Fe/Co)-XBDC-based MOFs were synthesized by introducing different ortho-functional groups X (X = -H, -NO2, -NH2) next to the carboxyl group of the organic ligand (i.e., terephthalic acid). The analysis focused on the influence mechanism of the adjacent functional group effect of the ligand on the physicochemical properties of the material and the actual photodegradation activity of TC. Multiple pieces of evidences suggested that the differences in electron-induced and photocharge-transfer mechanisms of the above ortho functional groups affect the crystal morphology and photocatalytic activity of FeCo-MOF during pyrolysis. Interestingly, (Fe/Co)-NH2BDC exhibited the highest photocatalytic activity under neutral conditions. The results of density functional theory show that the introduction of a strong donor-NH2 group can enhance light absorption and act as an "electron pump" to supply electrons to the iron center, accelerating the separation and efficient transport of photogenerated carriers on the ligand-metal bridge. In conclusion, this study is a proposal for a strategy of structural regulation for the enhancement of the catalytic activity of (Fe/Co)-MOFs in the photodegradation of TC.
Collapse
Affiliation(s)
- Ming Ruan
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, China
| | - Huajing Zhou
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming, China
| | - Lingxiang Zhao
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming, China
| | - Tianding Hu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, China
| | - Liang He
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, China.
| | - Shaoyun Shan
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, China.
| |
Collapse
|
7
|
Jiang N, Yan M, Li Q, Zheng S, Hu Y, Xu X, Wang L, Liu Y, Huang M. Bioelectrocatalytic reduction by integrating pyrite assisted manganese cobalt-doped carbon nanofiber anode and bacteria for sustainable antimony catalytic removal. BIORESOURCE TECHNOLOGY 2024; 395:130378. [PMID: 38281546 DOI: 10.1016/j.biortech.2024.130378] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
A novel manganese cobalt metal-organic framework based carbon nanofiber electrode (MnCo/CNF) was prepared and used as microbial fuel cell (MFC) anode. Pyrite was introduced into the anode chamber (MnCoPy_MFC). Synergistic function between pyrite and MnCo/CNF facilitated the pollutants removal and energy generation in MnCoPy_MFC. MnCoPy_MFC showed the highest chemical oxygen demand removal efficiency (82 ± 1%) and the highest coulombic efficiency (35 ± 1%). MnCoPy_MFC achieved both efficient electricity generation (maximum voltage: 658 mV; maximum power density: 3.2 W/m3) and total antimony (Sb) removal efficiency (99%). The application of MnCo/CNF significantly enhanced the biocatalytic efficiency of MnCoPy_MFC, attributed to its large surface area and abundant porous structure that provided ample attachment sites for electroactive microorganisms. This study revealed the synergistic interaction between pyrite and MnCo/CNF anode, which provided a new strategy for the application of composite anode MFC in heavy metal removal and energy recovery.
Collapse
Affiliation(s)
- Nan Jiang
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Mengying Yan
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Qi Li
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Shengyang Zheng
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Yuan Hu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiaoyang Xu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Lin Wang
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yanbiao Liu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Manhong Huang
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
8
|
Kuang Y, Zhou S, Liu Y, Feng X, Chen L, Zheng J, Ouyang G. Nanoscale-controlled organicinorganic hybrid spheres for comprehensive enrichment of ultratrace chlorobenzenes in marine and fresh water. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133541. [PMID: 38286049 DOI: 10.1016/j.jhazmat.2024.133541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/26/2023] [Accepted: 01/14/2024] [Indexed: 01/31/2024]
Abstract
The size of the adsorbent has the potential to influence extraction performance, but the size effect at the nanoscale is still poorly understood. In this study, organic-inorganic hybrid nanospheres (OIHNs) with controllable nanoscale sizes of 30, 50, and 100 nm were successfully prepared. These materials were further fabricated as solid phase microextraction (SPME) coatings with similar thicknesses, and coupled with gas chromatography-mass spectrometry (GC-MS) to investigate their extraction performance. The results showed that the extraction capacities of OIHNs for chlorobenzenes (CBs) and polycyclic aromatic hydrocarbons (PAHs) were much better than those of their corresponding derived carbon materials, despite the smaller specific surface areas and lower porosities of them. In addition, the enrichment performance increased significantly with decreasing particle size, and the OIHN-30 coating demonstrated the best performance, with enrichment factors ranging from 1098 to 6853 for CBs. Finally, a highly sensitive and practical analytical method was established with a wide linear range of 0.5-5000 ng·L-1, and the limits of quantification (LOQs) were 0.43-1.7 ng·L-1. The determinations of ultratrace CBs in five marine water samples and five fresh water samples were realized successfully. This study is expected to contribute to a deep understanding of the environmental effects of nanoparticles and the design of high-performance adsorbents.
Collapse
Affiliation(s)
- Yixin Kuang
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Suxin Zhou
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuefan Liu
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Xiaoying Feng
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Luyi Chen
- School of Chemistry, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangdong Provincial Engineering Technology Research Center for Materials for Energy Conversion and Storage, South China Normal University, Guangzhou 510006, China.
| | - Juan Zheng
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China.
| | - Gangfeng Ouyang
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China; School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| |
Collapse
|
9
|
Du Z, Zhou C, Zhang W, Song Y, Liu B, Wu H, Zhang Z, Yang H. Commercial SCR catalyst modified with Cu metal to simultaneously efficiently remove NO and toluene in the fuel gas. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:96543-96553. [PMID: 37578584 DOI: 10.1007/s11356-023-29303-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
Developing an environmentally friendly selective catalytic reduction (SCR) catalyst to effectively eliminate both nitric oxides (NO) and toluene has garnered significant attention for regulating emissions from automobiles and the combustion of fossil fuels. This study synthesized a series of novel commercial V2O5-WO3/TiO2 catalysts modified with Cu through the wet impregnation method, which was employed to simultaneously remove NO and toluene from the fuel gas. The assessment of catalyst removal performance was conducted at a selective catalytic reduction system, and the experimental results showed a significant increase in the catalytic activity due to the modification of the copper metal. The 10% Cu/SCR catalyst showed a superior activity that the NO and toluene conversion reached 100% and 95.56% at 300 °C, respectively. Subsequently, various characterization techniques were employed to investigate the crystal phase, morphology, physical features, chemical states, and surface acidity properties of the synthesis catalysts. According to the characterization results, the presence of Cu metal did not have a noticeable impact on the physical property. However, the redox performance was enhanced, and the number of surface acidic sites was also increased after adding Cu to the SCR catalyst. Furthermore, the redox cycle of Cu metal and V species was facilitated to produce more active oxygen which helped to improve the NO and toluene conversion. This work offered a novel perspective into the synergistic oxidation of both NO and toluene, which was potentially relevant for improving the selective catalytic reduction process in coal-fired power plants.
Collapse
Affiliation(s)
- Zhaohui Du
- Engineering Laboratory of Energy System Process Conversion and Emission Reduction Technology of Jiangsu Province, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Changsong Zhou
- Engineering Laboratory of Energy System Process Conversion and Emission Reduction Technology of Jiangsu Province, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, 210023, China.
| | - Wenjuan Zhang
- Engineering Laboratory of Energy System Process Conversion and Emission Reduction Technology of Jiangsu Province, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Yujia Song
- Engineering Laboratory of Energy System Process Conversion and Emission Reduction Technology of Jiangsu Province, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Biao Liu
- Engineering Laboratory of Energy System Process Conversion and Emission Reduction Technology of Jiangsu Province, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Hao Wu
- Engineering Laboratory of Energy System Process Conversion and Emission Reduction Technology of Jiangsu Province, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Zhen Zhang
- Engineering Laboratory of Energy System Process Conversion and Emission Reduction Technology of Jiangsu Province, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Hongmin Yang
- Engineering Laboratory of Energy System Process Conversion and Emission Reduction Technology of Jiangsu Province, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
10
|
Yan X, Zhao L, Huang Y, Zhang J, Jiang S. Three-dimensional porous CuO-modified CeO 2-Al 2O 3 catalysts with chlorine resistance for simultaneous catalytic oxidation of chlorobenzene and mercury: Cu-Ce interaction and structure. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131585. [PMID: 37163894 DOI: 10.1016/j.jhazmat.2023.131585] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/12/2023]
Abstract
Chlorine poisoning effects are still challenging to develop efficient catalysts for applications in chlorobenzene (CB) and mercury (Hg0) oxidation. Herein, three-dimensional porous CuO-modified CeO2-Al2O3 catalysts with macroporous framework and mesoporous walls prepared via a dual template method were employed to study simultaneous oxidation of CB and Hg0. CuO-modified CeO2-Al2O3 catalysts with three-dimensional porous structure exhibited outstanding activity and stability for simultaneous catalytic oxidation of CB and Hg0. The results demonstrated that the addition of CuO into CeO2-Al2O3 can simultaneously enhance the acid sites and redox properties through the electronic inductive effect between CuO and CeO2 (Cu2++Ce3+↔Cu++Ce4+). Importantly, the synergistic effect between Cu and Ce species can induce abundant oxygen vacancies formation, produce more reactive oxygen species and facilitate oxygen migration, which is beneficial for the deep oxidation of chlorinated intermediates. Moreover, macroporous framework and mesoporous nanostructure dramatically improved the specific surface area for enhancing the contact efficiency between reactants and active sites, leading to a remarkable decrease of byproducts deposition. CB and Hg0 had function of mutual promotion in this reaction system. In tune with the experimental results, the possible mechanistic pathways for simultaneous catalytic oxidation of CB and Hg0 were proposed.
Collapse
Affiliation(s)
- Xin Yan
- College of Environmental and Resources, Xiangtan University, Xiangtan 411105, PR China; Hunan Provincial Environmental Protection of Engineering Technology Center of Air Complex Pollution Control (XTU), Xiangtan 411105, PR China
| | - Lingkui Zhao
- College of Environmental and Resources, Xiangtan University, Xiangtan 411105, PR China; Hunan Provincial Environmental Protection of Engineering Technology Center of Air Complex Pollution Control (XTU), Xiangtan 411105, PR China.
| | - Yan Huang
- College of Environmental and Resources, Xiangtan University, Xiangtan 411105, PR China; Hunan Provincial Environmental Protection of Engineering Technology Center of Air Complex Pollution Control (XTU), Xiangtan 411105, PR China
| | - Junfeng Zhang
- College of Environmental and Resources, Xiangtan University, Xiangtan 411105, PR China; Hunan Provincial Environmental Protection of Engineering Technology Center of Air Complex Pollution Control (XTU), Xiangtan 411105, PR China
| | - Su Jiang
- College of Environmental and Resources, Xiangtan University, Xiangtan 411105, PR China; Hunan Provincial Environmental Protection of Engineering Technology Center of Air Complex Pollution Control (XTU), Xiangtan 411105, PR China
| |
Collapse
|