1
|
Zhong M, Zhang Z, Zhang J, Luo Z, Chen Y, Liu M, Gong B, Cui H, Cui L. Impact of sewage sludge biochar spheres as constructed wetland substrates on antibiotic removal and application. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:125186. [PMID: 40168822 DOI: 10.1016/j.jenvman.2025.125186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 03/18/2025] [Accepted: 03/28/2025] [Indexed: 04/03/2025]
Abstract
The persistence of antibiotics in wastewater poses significant environmental risks, with sulfadiazine (SDZ) being hardly remove by conventional treatment process. This study evaluated the efficacy of biochar spheres (BC-S) derived from sewage sludge in enhancing the removal of SDZ in plant-free filtration column for discussing the research of vertical flow constructed wetlands (VFCWs). Adsorption experiments showed that the highest adsorption capacity of SDZ by BC-S was 1.79 mg/g with chemisorption mechanism. The filtration columns were filled with BC-S through three filling methods. C1, C2, and C3 employed layered, multi-layered and uniformly mixed filling methods, respectively, to compare the effects of different substrate structures on pollutant removal. Results showed that C3, incorporating biochar spheres in uniform mixing mode, has the best removal performance. C3 achieved an average SDZ removal efficiency of 99.19 %, with effluent concentrations averaging 6.06 ng/L. And the average removal rate for conventional pollutants COD, NH4+-N, and TP were 95.03 %, 73.60 % and 96.91 %, respectively. Moreover, In the three systems, Proteobacteria, Patescibacteria, Bacteroidota and Firmicutes were the main dominant phylum accounting for >50 % of the total. Different filling method inside systems causes the different microbial structure and relative abundance in C1, C2 and C3, resulted in the differences of removal effect. This study offers a promising avenue for advancing the capabilities of constructed wetlands in treating SDZ wastewater.
Collapse
Affiliation(s)
- Mingjun Zhong
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Ze Zhang
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Jialiang Zhang
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Zihao Luo
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Yunxian Chen
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Mengxue Liu
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Beini Gong
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Hongcan Cui
- Department of Landscape Architecture, Guangdong Eco-Engineering Polytechnic, Guangzhou, 510520, China.
| | - Lihua Cui
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
2
|
Yang J, Cheng S, Wang Y, Li L, Lu S. Ecological restoration orientated application and modification of constructed wetland substrates. ENVIRONMENTAL RESEARCH 2025; 267:120635. [PMID: 39675452 DOI: 10.1016/j.envres.2024.120635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
Constructed wetlands (CWs) have gained recognition as an environmentally friendly and cost-efficient option for treating municipal, industrial, and agricultural wastewater. They treat wastewater by harnessing the combined action of physical, chemical, and biological processes within substrates, plants, and microorganisms, with substrates exerting the greatest influence on the life cycle and purification efficiency of the system. This review provides an in-depth discussion on the development and performance of various substrate types used in CWs, including natural materials, ore-based materials, biomass materials, waste materials, and modified and novel materials. Key substrate modification techniques are summarized in detail, such as acid-base treatment, metal doping, compound modification, and heat treatment, which enhance structural and functional properties to improve pollutant removal. The paper also systematically explores the mechanisms of introducing methods like inorganic electronic enhancement and describes their applications in improving pollutant removal in CW systems. This review provides a holistic evaluation of substrate classification and optimization strategies and a prospective discussion of their challenges and opportunities in practical applications. It contributes to the creation of more efficient and sustainable materials for CW systems and provides theoretical support for selecting and optimizing substrates, thereby driving progress in wastewater treatment technology.
Collapse
Affiliation(s)
- Jiapeng Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory for Lake Pollution Control, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Environmental Science and Engineering Institute of Eco-environmental Engineering, Tongji University, Shanghai, 200092, China
| | - Shuiping Cheng
- College of Environmental Science and Engineering Institute of Eco-environmental Engineering, Tongji University, Shanghai, 200092, China
| | - Yongqiang Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory for Lake Pollution Control, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - LinLin Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory for Lake Pollution Control, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Shaoyong Lu
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory for Lake Pollution Control, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Environmental Science and Engineering Institute of Eco-environmental Engineering, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
3
|
Panghal V, Singh A, Hooda V, Arora D, Bhateria R, Kumar S. Recent progress, challenges, and future prospects in constructed wetlands employing biochar as a substrate: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:1139-1166. [PMID: 39739227 DOI: 10.1007/s11356-024-35846-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 12/21/2024] [Indexed: 01/02/2025]
Abstract
Constructed wetlands (CWs) are a cost-effective, efficient, and long-term wastewater treatment solution in various countries. The efficacy and performance of constructed wetlands are greatly influenced by the substrate. Recently, biochar as a substrate, along with sand and gravel in constructed wetlands, has gained importance due to its various physical, chemical, and biological properties. This review presents a detailed study of biochar as a substrate in CWs and the mechanism involved in efficiency enhancement in pollutant removal. Different methods for producing biochar using various types of biomasses are also addressed. The effect of biochar in removing pollutants like biological oxygen demand (BOD), chemical oxygen demand (COD), nitrogen, heavy metals, and non-conventional pollutants (microcystin, phenanthrene, antibiotics, etc.) are also discussed. Furthermore, post-harvest utilization of constructed wetland macrophytic biomass via bioenergy production, biochar formation, and biosorbent formation is explained. Various challenges and future prospects in biochar-amended constructed wetlands are also discussed. Biochar proved to be an effective substrate in the removal of pollutants and proved to be a promising technique for wastewater treatment, especially for developing countries where the cost of treatment is a constraint. Biochar is an effective substrate; further modification in biochar with the right plant combination for different wastewater needs to be explored in the future. Future researchers in the field of constructed wetlands will benefit from this review during the utilization of biochar in constructed wetlands and optimization of biochar characteristics, viz., quantity, size, preparation method, and other biochar modifications.
Collapse
Affiliation(s)
- Vishal Panghal
- Department of Environmental Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Asha Singh
- Department of Environmental Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Vishwajit Hooda
- Department of Environmental Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Dinesh Arora
- Department of Environmental Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Rachna Bhateria
- Department of Environmental Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Sunil Kumar
- Department of Environmental Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
4
|
Wang Y, Li L, Guo X, Wang A, Pan Y, Ma J, Lu S, Liu D. A comprehensive review on iron‒carbon microelectrolysis constructed wetlands: Efficiency, mechanism and prospects. WATER RESEARCH 2025; 268:122648. [PMID: 39461209 DOI: 10.1016/j.watres.2024.122648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024]
Abstract
The traditional constructed wetlands (CWs) face challenges such as significant seasonal fluctuations in decontamination performance and susceptibility to clogging, with the bottlenecks in advanced wastewater treatment becoming increasingly prominent. The iron‒carbon microelectrolysis coupled with constructed wetlands (ICME‒CWs) represents a promising new type of CWs, capable of removing typical and emerging pollutants in water through various mechanisms including adsorption, precipitation, oxidation‒reduction, microelectrolysis, and plant‒microbial synergy. Therefore, this review summarizes the sources, preparation, and basic properties of the ICME substrate commonly used in ICME‒CWs in recent years. It systematically outlines the decontamination mechanisms of ICME‒CWs and their removal performance for pollutants. Additionally, the potential ecological effects of ICME on wetland organisms (microorganisms and plants) are discussed. Finally, the prospects and challenges of ICME‒CWs in applications such as greenhouse gas reduction, groundwater remediation, and the removal of emerging pollutants are proposed. This review aims to advance the development of ICME‒CWs technology for efficient wastewater treatment and provide prospects and guidance for the sustainable and environmentally friendly development of CWs.
Collapse
Affiliation(s)
- Yongqiang Wang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory for Lake Pollution Control, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Research Centre of Lake Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Linlin Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory for Lake Pollution Control, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Research Centre of Lake Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaochun Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory for Lake Pollution Control, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Research Centre of Lake Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Aiwen Wang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yunhao Pan
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shaoyong Lu
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory for Lake Pollution Control, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Research Centre of Lake Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Dongmei Liu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
5
|
Huang Q, Dai Y, Yang G, Zhuang L, Luo C, Li J, Zhang G. New insights into autochthonous fungal bioaugmentation mechanisms for recalcitrant petroleum hydrocarbon components using stable isotope probing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178082. [PMID: 39700984 DOI: 10.1016/j.scitotenv.2024.178082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Autochthonous fungal bioaugmentation (AFB) is a promising strategy for the microbial remediation of petroleum hydrocarbon (PH)-contaminated soils. However, the mechanisms underlying AFB, particularly for degrading recalcitrant PH components, are not fully understood. This study employed stable isotope probing (SIP) and high-throughput sequencing to investigate the AFB mechanisms of two hydrocarbon-degrading fungi, Fusarium solani LJD-11 and Aspergillus fumigatus LJD-29, focusing on three challenging PH components: n-Hexadecane (n-Hex), Benzo[a]pyrene (BaP), and Dibenzothiophene (DBT). Our findings indicate that both fungal strains significantly enhanced pollutant removal rates, with combined application yielding optimal results. AFB treatment reduced the microbial diversity index and altered the soil microbial community, especially affecting fungal populations. A significant correlation between the microbial diversity index and degradation efficiency suggests that greater diversity enhances pollutant removal. SIP analysis showed that LJD-11 and LJD-29 could directly assimilate n-Hex and DBT, but not BaP. Correlation analyses between functional microorganisms and other biological indicators suggest that the removal of pollutants is also attributable to indigenous functional bacteria. Additionally, non-inoculated functional fungi present in the soil play a crucial role in BaP degradation. These findings reveal distinct degradation pathways for the three pollutants. The addition of carrier substrate reduced the complexity of the network, while AFB treatment restored it. In addition, the combined fungal treatment resulted in higher network parameters, leading to a more complex and stable network structure. These results provide insights into the mechanisms of AFB for degrading recalcitrant PH components, underscoring its potential for in situ bioremediation of petroleum-contaminated soils.
Collapse
Affiliation(s)
- Qihui Huang
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, China; State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yeliang Dai
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Ningbo Research Institute of Ecological and Environmental Sciences, Ningbo 315000, China
| | - Guiqin Yang
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, China
| | - Li Zhuang
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, China.
| | - Chunling Luo
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jibing Li
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
6
|
Beljin J, Đukanović N, Anojčić J, Simetić T, Apostolović T, Mutić S, Maletić S. Biochar in the Remediation of Organic Pollutants in Water: A Review of Polycyclic Aromatic Hydrocarbon and Pesticide Removal. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 15:26. [PMID: 39791785 PMCID: PMC11722649 DOI: 10.3390/nano15010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025]
Abstract
This review explores biochar's potential as a sustainable and cost-effective solution for remediating organic pollutants, particularly polycyclic aromatic hydrocarbons (PAHs) and pesticides, in water. Biochar, a carbon-rich material produced from biomass pyrolysis, has demonstrated adsorption efficiencies exceeding 90% under optimal conditions, depending on the feedstock type, pyrolysis temperature, and functionalization. High surface area (up to 1500 m2/g), porosity, and modifiable surface functional groups make biochar effective in adsorbing a wide range of contaminants, including toxic metals, organic pollutants, and nutrients. Recent advancements in biochar production, such as chemical activation and post-treatment modifications, have enhanced adsorption capacities, with engineered biochar achieving superior performance in treating industrial, municipal, and agricultural effluents. However, scaling up biochar applications from laboratory research to field-scale wastewater treatment poses significant challenges. These include inconsistencies in adsorption performance under variable environmental conditions, the high cost of large-scale biochar production, logistical challenges in handling and deploying biochar at scale, and the need for integration with existing treatment systems. Such challenges impact the practical implementation of biochar-based remediation technologies, requiring further investigation into cost-effective production methods, long-term performance assessments, and field-level optimization strategies. This review underscores the importance of addressing these barriers and highlights biochar's potential to offer a sustainable, environmentally friendly, and economically viable solution for large-scale wastewater treatment.
Collapse
Affiliation(s)
- Jelena Beljin
- Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia; (N.Đ.); (J.A.); (T.A.); (S.M.); (S.M.)
| | | | | | | | | | | | | |
Collapse
|
7
|
Wang Y, Kang Y, Dong J, Ma H, Guo Z, Wu H, Hu Z, Xie H, Zhang J. Synergetic effect of pyrrhotite and zero-valent iron on Hg(Ⅱ) removal in constructed wetland: Mechanisms of electron transfer and microbial reaction. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136041. [PMID: 39368359 DOI: 10.1016/j.jhazmat.2024.136041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/09/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
Effective removal of mercury (Hg) from wastewater is significant due to its high toxicity, especially methylmercury (MeHg). Reducing of Hg(II) to Hg(0) in constructed wetlands (CWs) using iron-based materials is an effective strategy for preventing the formation of MeHg. However, the surface passivation of zero-valent iron (ZVI) limits its application. Herein, synergetic ZVI and pyrrhotite were utilized to enhance Hg removal in CWs. Results indicated that the removal of total Hg, dissolved Hg, and particulate Hg in CWs with ZVI and pyrrhotite were improved by 21.68 ± 0.76 %, 13.02 ± 0.88 %, and 22.27 ± 0.76 % compared to that with single ZVI or pyrrhotite. Pyrrhotite increased the surface corrosion of ZVI, thereby facilitating the process of iron reduction. The redox of iron promoted the generation of EPS, which could provide electrons for Hg(II) reduction. The sulfur also participates in electron transfer by driving the methylation of Hg and provides sulfides to form FeS-Hg complexes and HgS precipitation. The abundance of key enzymes that involved in iron reduction and Hg transformation was enhanced with the addition of ZVI and pyrrhotite. The synergetic of pyrrhotite and ZVI enhances the removal of Hg in CW, offering a promising technology for high-efficiency treatment of Hg.
Collapse
Affiliation(s)
- Yuqi Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yan Kang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Jiahao Dong
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Haoqin Ma
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zizhang Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Haiming Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Zhen Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Huijun Xie
- Shandong University Environment Research Institute, Shandong University, Jinan 250100, China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China
| |
Collapse
|
8
|
Tang Y, Khan E, Tsang DCW. Waste Nitrogen Upcycling to Amino Acids during Anaerobic Fermentation on Biochar: An Active Strategy for Regulating Metabolic Reducing Power. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20060-20072. [PMID: 39485020 DOI: 10.1021/acs.est.4c08890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
This study proposes a novel strategy that utilizes biochar (BC) during anaerobic fermentation (AF) to generate amino acids (AAs) toward nitrogen upcycling. The BC, pyrolyzed at 800 °C (BC800) to enhance graphite structures and electron-accepting sites, effectively addresses issues related to biosynthetic reducing power nicotinamide adenine dinucleotide phosphate insufficiency by altering cellular conditions and alleviates feedback inhibition through the immobilization of end products. This process establishes unique microbial signaling and energy networks, with Escherichia coli becoming dominant in the biofilm. The conversion rate of ammonia-N to AAs-N within the biofilm reached 67.4% in BC800-AF, which was significantly higher compared to the levels in other AF reactors with BC pyrolyzed at 600 and 400 °C (45.9 and 22.5%, respectively), as well as a control AF reactor (<5%). Furthermore, in BC800-AF, the aromatic AAs (Aro-AAs) were as high as 70.8% of the AAs within the biofilm. The activities of key enzymes for Aro-AAs biosynthesis uniquely positively correlated with the electron-accepting capacity on BC800 (R2 ≥ 0.95). These findings hold promise for transforming existing AF reactors into factories that produce BC-based AAs, providing a more sustainable fertilizing agent than chemical fertilizers.
Collapse
Affiliation(s)
- Yanfei Tang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Eakalak Khan
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, Nevada 89154, United States
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, 999077, Hong Kong, China
| |
Collapse
|
9
|
Liu P, Guo Z, Wang Y, He M, Kang Y, Wu H, Hu Z, Zhang J. Occurrence of polycyclic aromatic hydrocarbons in the Yellow River delta: Sources, ecological risks, and microbial response. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122432. [PMID: 39243646 DOI: 10.1016/j.jenvman.2024.122432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/22/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
This research investigated the distribution, sources, and ecological risks of polycyclic aromatic hydrocarbons (PAHs) in the Yellow River Delta (YRD), China, emphasizing the response of soil microorganisms. The study involved quantitative analyses of 16 PAHs specified by the U.S. Environmental Protection Agency (USEPA) in both water and soil, utilizing metagenomic technique to determine the response of microbial communities and metabolism within the soil. Results noted that PAHs in the water mainly originate from pyrogenic source and in the soil originate from mixture source, with higher concentrations found in wetland areas compared to river regions. The ecological risk assessment revealed low-to-moderate risk. Microbial analysis demonstrated increased diversity and abundance of bacteria associated with PAHs in areas with higher PAHs pollution. Metagenomic insights revealed significant effects of organic carbon on PAHs degradation genes (ko00624 and ko00626), as well as significant differences in specific metabolic pathways including phenanthrene degradation, with key enzymes showing significant differences between the two environments. The study underscores the importance of understanding PAHs distribution and microbial responses to effectively manage and mitigate pollution in estuarine environments.
Collapse
Affiliation(s)
- Peiqiong Liu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Zizhang Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| | - Yu Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Mingyu He
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Yan Kang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Haiming Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Zhen Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
10
|
Resitano M, Tucci M, Mezzi A, Kaciulis S, Matturro B, D'Ugo E, Bertuccini L, Fazi S, Rossetti S, Aulenta F, Cruz Viggi C. Anaerobic treatment of groundwater co-contaminated by toluene and copper in a single chamber bioelectrochemical system. Bioelectrochemistry 2024; 158:108711. [PMID: 38626620 DOI: 10.1016/j.bioelechem.2024.108711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/18/2024]
Abstract
Addressing the simultaneous removal of multiple coexisting groundwater contaminants poses a significant challenge, primarily because of their different physicochemical properties. Indeed, different chemical compounds may necessitate establishing distinct, and sometimes conflicting, (bio)degradation and/or removal pathways. In this work, we investigated the concomitant anaerobic treatment of toluene and copper in a single-chamber bioelectrochemical cell with a potential difference of 1 V applied between the anode and the cathode. As a result, the electric current generated by the bioelectrocatalytic oxidation of toluene at the anode caused the abiotic reduction and precipitation of copper at the cathode, until the complete removal of both contaminants was achieved. Open circuit potential (OCP) experiments confirmed that the removal of copper and toluene was primarily associated with polarization. Analogously, abiotic experiments, at an applied potential of 1 V, confirmed that neither toluene was oxidized nor copper was reduced in the absence of microbial activity. At the end of each experiment, both electrodes were characterized by means of a comprehensive suite of chemical and microbiological analyses, evidencing a highly selected microbial community competent in the biodegradation of toluene in the anodic biofilm, and a uniform electrodeposition of spherical Cu2O nanoparticles over the cathode surface.
Collapse
Affiliation(s)
- Marco Resitano
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, (RM), Italy
| | - Matteo Tucci
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, (RM), Italy
| | - Alessio Mezzi
- Institute for the Study of Nanostructured Materials, National Research Council (CNR), 00010 Montelibretti, (RM), Italy
| | - Saulius Kaciulis
- Institute for the Study of Nanostructured Materials, National Research Council (CNR), 00010 Montelibretti, (RM), Italy
| | - Bruna Matturro
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, (RM), Italy; National Biodiversity Future Center, Palermo 90133, Italy
| | - Emilio D'Ugo
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | | | - Stefano Fazi
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, (RM), Italy
| | - Simona Rossetti
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, (RM), Italy
| | - Federico Aulenta
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, (RM), Italy; National Biodiversity Future Center, Palermo 90133, Italy
| | - Carolina Cruz Viggi
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, (RM), Italy.
| |
Collapse
|
11
|
Zhou T, Hu W, Lai DYF, Yin G, Ren D, Guo Z, Zheng Y, Wang J. Interaction of reed litter and biochar presences on performances of constructed wetlands. WATER RESEARCH 2024; 254:121387. [PMID: 38457943 DOI: 10.1016/j.watres.2024.121387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/10/2024]
Abstract
Constructed wetlands (CWs) are frequently used for effective biological treatment of nitrogen-rich wastewater with external carbon source addition; however, these approaches often neglect the interaction between plant litter and biochar in biochar-amended CW environments. To address this, we conducted a comprehensive study to assess the impacts of single or combined addition of common reed litter and reed biochar (pyrolyzed at 300 and 500 °C) on nitrogen removal, greenhouse gas emission, dissolved organic matter (DOM) dynamics, and microbial activity. The results showed that combined addition of reed litter and biochar to CWs significantly improved nitrate and total nitrogen removal compared with biochar addition alone. Compared to those without reed litter addition, CWs with reed litter addition had more low-molecular-weight and less aromatic DOM and more protein-like fluorescent DOM, which favored the enrichment of bacteria associated with denitrification. The improved nitrogen removal could be attributed to increases in denitrifying microbes and the relative abundance of functional denitrification genes with litter addition. Moreover, the combined addition of reed litter and 300 °C-heated biochar significantly decreased nitrous oxide (30.7 %) and methane (43.9 %) compared to reed litter addition alone, while the combined addition of reed litter and 500 °C-heated biochar did not. This study demonstrated that the presences of reed litter and biochar in CWs could achieve both high microbial nitrogen removal and relatively low greenhouse gas emissions.
Collapse
Affiliation(s)
- Tongtong Zhou
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Department of Geography and Resource Management, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong Special Administrative Region
| | - Weifeng Hu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China
| | - Derrick Y F Lai
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong Special Administrative Region
| | - Gege Yin
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Dong Ren
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Zhilin Guo
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yan Zheng
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Junjian Wang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
12
|
Li J, Li F, Tong M, Zhao Z, Xi K, Guo S. Construction of an effective method combining in situ capping with electric field-enhanced biodegradation for treating PAH-contaminated soil at abandoned coking sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171209. [PMID: 38408657 DOI: 10.1016/j.scitotenv.2024.171209] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/08/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
The simultaneous application of in situ capping and electro-enhanced biodegradation may be a suitable method for ensuring the feasibility and safety of reusing abandoned coking sites. However, the capping layer type and applied electric field pattern may affect the efficiency of sequestering and removing pollutants. This study investigated changes in electric current, soil moisture content and pH, polycyclic aromatic hydrocarbon (PAH) concentration, bacterial number, and microbial community structure and metabolic function during soil remediation at abandoned coking plant sites under different applied electric field patterns and barrier types. The results indicated that polarity-reversal electric field was more conducive to maintaining electric current, soil properties, resulting in higher microbial number, community diversity, and functional gene abundance. At 21d, the mean PAH concentrations in contaminated soil, the capping layer's clean soil and barrier were 78.79, 7.56, and 1.57 mg kg-1 lower than those with a unidirectional electric field, respectively. The mean degradation rate of PAHs in the bio-barrier was 10.12 % higher than that in the C-Fe barrier. In the experiment combining a polarity-reversal electric field and a bio-barrier, the mean PAH concentrations in contaminated soil and the capping layer were 706.68 and 27.15 mg kg-1 lower than those in other experiments, respectively, and no PAHs were detected in the clean soil, demonstrating that the combination of the polarity-reversal electric field and the bio-barrier was effective in treating soil at abandoned coking plant sites. The established method of combining in situ capping with electro-enhanced biodegradation will provide technical support for the treatment and reuse of heavily PAH-contaminated soil at abandoned coking plant sites.
Collapse
Affiliation(s)
- Jingming Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengmei Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang 110016, China.
| | - Menghan Tong
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ze Zhao
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kailu Xi
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuhai Guo
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang 110016, China.
| |
Collapse
|
13
|
Yang Y, Zhan C, Li Y, Zeng J, Lin K, Sun J, Jiang F. In-situ reactivation and reuse of micronsized sulfidated zero-valent iron using SRB-enriched culture: A sustainable PRB technology. WATER RESEARCH 2024; 253:121270. [PMID: 38359598 DOI: 10.1016/j.watres.2024.121270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
Sulfidated zero-valent iron (S-ZVI) is an attractive material of permeable reactive barriers (PRBs) for the remediation of contaminated groundwater. However, S-ZVI is prone to be passivated due to the oxidation of reactive and conductive iron sulfide (FeSx) shell and the formation of inactive and non-conductive ferric (hydr)oxides, which serve as electron transfer barriers to hinder the electron flow from Fe° core to contaminants. This study thus proposed a novel approach for in-situ reactivation and reuse of micronsized S-ZVI (S-mZVI) in PRB using sulfate-reducing bacteria (SRB) enriched culture to realize long-lasting remediation of Cr(VI)-contaminated groundwater. S-mZVI were passivated after reactions with Cr(VI) due to the formation of electron transfer barriers (mainly inactive and non-conductive Fe(III) (hyd)oxides, which increased the polarization resistance from 16.38 to 27.38 kΩ cm2 and hindered the electron transfer from the Fe° core. Interestingly, the passivated S-mZVI was efficiently reactivated by providing the SRB-enriched culture and organic carbon within 12 h, and the Cr(VI) removal capacity of S-mZVI in the three use cycles increased to 37.4 mg Cr/g, which was 2.1 times higher than that of the virgin S-mZVI. After biological reactivation, the Rp of reactivated S-mZVI decreased to 12.30 kΩ cm2. SRB-mediated reactivation removed the electron transfer barriers via biotic and abiotic reduction of Fe(III) (hyd)oxides. Especially, the microbial Fe(III) reduction mediated by FmnA-dmkA-fmnB-pplA-ndh2-eetAB-dmkB protein family enhanced the Fe2+ release from the surface and the subsequent re-formation of reactive and conductive FeSx shell. A long-term PRB column test further demonstrated the feasibility of in-situ biological reactivation and reuse of S-mZVI for enhanced Cr(VI)-contaminated groundwater remediation. Within 64 days, the Cr(VI) removal capacity of S-mZVI in the four use cycles increased by 3.2 times, compared to the virgin one. The bio-reactivation using the SRB-enriched culture and sulfate locally-available in groundwater will reduce the chemical and maintenance costs associated with the frequent replacement of reactive ZVI-based materials. The PRB technology based on the bio-renewable S-mZVI can be a sustainable alternative to the conventional PRBs for the long-lasting and low-cost remediation of groundwater contaminated by oxidative pollutants.
Collapse
Affiliation(s)
- Yanduo Yang
- School of Environmental Science & Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Chungeng Zhan
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Yu Li
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Jiajia Zeng
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Keyue Lin
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Jianliang Sun
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China.
| | - Feng Jiang
- School of Environmental Science & Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
14
|
Wang J, Wang G, Zhang Z, Hao J. Characteristics of polycyclic aromatic hydrocarbons (PAHs) removal by nanofiltration with and without coexisting organics. CHEMOSPHERE 2024; 352:141426. [PMID: 38360411 DOI: 10.1016/j.chemosphere.2024.141426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/11/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are contaminants of great concern owing to their persistence, toxicity, and bioaccumulation in aquatic environments. In this study, nanofiltration (NF) was used to investigate the removal of naphthalene (NAP) and phenanthrene (PHE) using three membranes of NF270, NF90, and DK. Subsequently, we examined the effects of coexisting organics on PAHs removal. Based on the results, DK was determined to be the optimal membrane for removing PAHs by comparing the membrane flux and pollutant rejection. The membrane flux reached 34.32 L/m2·h, and the NAP and PHE rejections were 92.21% and 97.85%, respectively, at transmembrane pressure (TMP) of 5 bar using DK. Coexisting organics decreased the membrane fluxes of NF270 and DK in the following order: protein > glucose > humic acid. The NAP and PHE rejections were obviously improved using NF270 in the following order: humic acid > protein > glucose. The PHE rejection was slightly improved using DK. A low concentration of organics could reduce the NAP rejection using DK; however, the NAP rejection could be restored at high concentrations of organics, except for humic acid. Coexisting organics could cause severe membrane fouling. The order of the effect of different coexisting organics on membrane fouling was protein > humic acid > glucose. The total investment and operating costs were about 1.47 and 0.187 million dollars, respectively, for treating PAHs solution using DK when the feed flow was 300 m3/d.
Collapse
Affiliation(s)
- Jianxing Wang
- College of Environmental & Resources Sciences, Shanxi University, Taiyuan, 030031, China; Shanxi Laboratory for Yellow River, Taiyuan, 030031, China.
| | - Gaimei Wang
- College of Environmental & Resources Sciences, Shanxi University, Taiyuan, 030031, China
| | - Zhiling Zhang
- College of Environmental & Resources Sciences, Shanxi University, Taiyuan, 030031, China
| | - Jinxian Hao
- College of Environmental & Resources Sciences, Shanxi University, Taiyuan, 030031, China
| |
Collapse
|
15
|
He M, Dai P, Lu J, Kang Y, Zhang J, Wu H, Hu Z, Guo Z. Releasing and Assessing the Toxicity of Polycyclic Aromatic Hydrocarbons from Biochar Loaded with Iron. ACS OMEGA 2023; 8:48104-48112. [PMID: 38144079 PMCID: PMC10734020 DOI: 10.1021/acsomega.3c06950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/26/2023]
Abstract
Iron (Fe)-loaded biochar has garnered attention for its potential applications in recent years. However, the pyrolysis process of Fe-loaded biochar generates polycyclic aromatic hydrocarbons (PAHs), which can have adverse effects on both human health and the environment. This study explored the correlation between Fe loading and PAH production in Fe-loaded biochar. The results indicate that increasing Fe loading in biochar reduces the PAH concentration, with the most significant decrease observed in naphthalene (0.02-0.08 mg/kg). This reduction can be attributed to the decrease in precursor compounds (e.g., C2H2), substitution of the C=O bond by Fe-O, and a decrease in the dissolved organic matter concentration (3.19-10.76 mg/L) with Fe loading. When Fe loading increased from 0 to 10%, the ecological toxicity of biochar increased by 33.48% due to an elevated production of dibenzo[a,h]anthracene, which poses a significant risk to human health. Therefore, it is imperative to take into consideration the ecological risk of PAHs prior to the application of Fe-loaded biochar. This study presents a comprehensive risk assessment of Fe-loaded biochar and provides valuable insights into the optimization of its production and safe application.
Collapse
Affiliation(s)
- Mingyu He
- Key
Laboratory of Ecological Impacts of Hydraulic-projects and Restoration
of Aquatic Ecosystem of Ministry of Water Resources, Wuhan 430079, China
- Shandong
Key Laboratory of Water Pollution Control and Resource Reuse, School
of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Peng Dai
- Department
of Civil & Environmental Engineering, South Dakota State University, Brookings, South Dakota 57007, United States
| | - Jiaxing Lu
- Shandong
Key Laboratory of Water Pollution Control and Resource Reuse, School
of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yan Kang
- College
of Environment and Safety Engineering, Qingdao
University of Science and Technology, Qingdao 266042, China
| | - Jian Zhang
- Shandong
Key Laboratory of Water Pollution Control and Resource Reuse, School
of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Haiming Wu
- Shandong
Key Laboratory of Water Pollution Control and Resource Reuse, School
of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Zhen Hu
- Shandong
Key Laboratory of Water Pollution Control and Resource Reuse, School
of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Zizhang Guo
- Key
Laboratory of Ecological Impacts of Hydraulic-projects and Restoration
of Aquatic Ecosystem of Ministry of Water Resources, Wuhan 430079, China
- Shandong
Key Laboratory of Water Pollution Control and Resource Reuse, School
of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|
16
|
Li H, Zhen Z, Zhang D, Huang Y, Yang G, Yang C, Wu W, Lin Z, Liang YQ. Improved sea rice yield and accelerated di-2-ethylhexyl phthalate (DEHP) degradation by straw carbonization returning in coastal saline soils. JOURNAL OF HAZARDOUS MATERIALS 2023; 463:132850. [PMID: 39491994 DOI: 10.1016/j.jhazmat.2023.132850] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/21/2023] [Accepted: 10/22/2023] [Indexed: 11/05/2024]
Abstract
Di-2-ethylhexyl phthalate, a persistent organic contaminant, is widely distributed in the environment and poses substantial threats to human health; however, there have been few investigations regarding the risks and remediation of DEHP in coastal saline soils. In this work, we studied the influences of straw carbonization returning on sea rice yield and DEHP degradation. Straw carbonization returning significantly increased soil nutrients and reduced salt stress to improve sea rice yield. DEHP degradation efficiency was enhanced to a maximum of 78.27% in straw carbonized return with 60% sea rice, mainly attributed to the high pH value, high soil organic matter and enriched potential DEHP degraders of Nocardioides, Mycobacterium and Bradyrhizobium. Some key genes related to metabolism (esterase and cytochrome P450) and DEHP-degradation (pht4, pht5, pcaG, dmpB, catA and fadA) were elevated and explained the accelerated DEHP degradation, shifting from the benzoic acid pathway to the protocatechuate pathway in straw carbonization returning. The results obtained in this study provide a deep and comprehensive understanding of sea rice yield improvement and DEHP degradation mechanisms in coastal paddy soil by a straw carbonization returning strategy.
Collapse
Affiliation(s)
- Huijun Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhen Zhen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Yongxiang Huang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Guiqiong Yang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Changhong Yang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Weilong Wu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhong Lin
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China; Shenzhen Research Institute of Guangdong Ocean University, Shenzhen 518108, China.
| | - Yan-Qiu Liang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
17
|
Qi X, Zhu M, Yuan Y, Dang Z, Yin H. Bioremediation of PBDEs and heavy metals co-contaminated soil in e-waste dismantling sites by Pseudomonas plecoglossicida assisted with biochar. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132408. [PMID: 37647661 DOI: 10.1016/j.jhazmat.2023.132408] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 08/05/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023]
Abstract
Biochar-assisted microbial remediation has been proposed as a promising strategy to eliminate environmental pollutants. However, studies on this strategy used in the remediation of persistent organic pollutants and heavy metals co-contaminated soil are lacking, and the effect of the combined incorporation of biochar and inoculant on the assembly, functions, and microbial interactions of soil microbiomes are unclear. Here, we studied 2,2',4,4'-tetrabrominated diphenyl ether (BDE-47) degradation and heavy metal immobilization by and biochar-based bacterial inoculant (BC/PP) in an e-waste contaminated soil, and corresponding microbial regulation mechanisms. Results showed that BC/PP addition was more effective in reducing Cu and Pb availability and degrading BDE-47 than inoculant alone. Notably, BC/PP facilitated bound-residue formation of BDE-47, reducing the ecological risk of residual BDE-47. Meanwhile, microbial carbon metabolism and enzyme activities (related to C-, N-, and P- cycles) were enhanced in soil amended with BC/PP. Importantly, biochar played a crucial role in inoculant colonization, community assembly processes, and microbiome multifunction. In the presence of biochar, positive interactions in co-occurrence networks of the bacterial community were more frequent, and higher network stability and more keystone taxa were observed (including potential degraders). These findings provide a promising strategy for decontaminating complex-polluted environments and recovering soil ecological functions.
Collapse
Affiliation(s)
- Xin Qi
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Minghan Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yibo Yuan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China
| | - Hua Yin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China.
| |
Collapse
|