1
|
Wang M, Yue Z, Deng R, She Z, Zhang L, Yang F, Wang J. Molecular disruptions in microalgae caused by Acidithiobacillus ferrooxidans: Photosynthesis, oxidative stress, and energy metabolism in acid mine drainage. WATER RESEARCH 2025; 272:122974. [PMID: 39706058 DOI: 10.1016/j.watres.2024.122974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/29/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
Microalgae are recognized for their potential in the bioremediation of acid mine drainage (AMD), despite the challenges posed by AMD's low pH, high heavy metal content, and oligotrophic conditions. However, the impact of AMD chemoautotrophic microorganisms on microalgal growth and remediation efforts within AMD has been largely overlooked. This study aims to elucidate the effects the chemoautotrophic microorganism, Acidithiobacillus ferrooxidans, on the growth activity and metabolism of acid-tolerant microalgae, and to explore the molecular mechanisms of microalgal response. Our findings reveal that the presence of A. ferrooxidans inhibits the growth and alkaline production of Parachlorella sp. MP1, resulting in a 90.86 % reduction in biomass. Physiological, biochemical, and transcriptomic studies, indicate that oxidative stress, photosynthesis, and energy metabolism are the metabolic processes most affected by A. ferrooxidans. Specifically, A. ferrooxidans introduces an increased production of reactive oxygen species (ROS) in Parachlorella sp. MP1, leading to an upregulation of genes and enzymes associated with peroxisome activity and intensifying oxidative stress within the cells. Downregulation of photosynthesis-related genes disrupts the electron transport chain, inhibiting photosynthesis. Furthermore, alterations in the gene expression of pyruvate and acetyl-CoA metabolic pathways result in energetic pathway disruption. These insights contribute to a better understanding of how A. ferrooxidans influence the growth metabolism of acid-tolerant microalgae in AMD environments and inform the optimization of microalgal application strategies in AMD bioremediation engineering.
Collapse
Affiliation(s)
- Meichen Wang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Zhengbo Yue
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Rui Deng
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Zhixiang She
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Lu Zhang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Fan Yang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Jin Wang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China.
| |
Collapse
|
2
|
Yang X, Lou Y, Song L, Zhang D, Song Y, Liang J, Liu Z, Wang C, Zhao Z. Inhibition mechanism of Microcystis aeruginosa in coculture of Lemna and Azolla: Insights from non-targeted Metabonomics. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109529. [PMID: 39862460 DOI: 10.1016/j.plaphy.2025.109529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
Microcystis aeruginosa, a harmful alga in cyanobacterial blooms, damages aquatic ecosystems. Species diversity may control the blooms by increasing ecosystem stability and resource utilization. The growth and photosynthetic systems of M. aeruginosa were investigated using the water from monocultures of Lemna aequinoctialis and Azolla imbricata group, as well as their mixtures. The highest rate of inhibition (84%) of M. aeruginosa was observed in the water excretions from the mixture of the two species across the three experimental groups. Greater disruption of cell membranes and a more significant decrease in the maximum electron transfer rate and photochemical quantum yield of M. aeruginosa were observed under mixed conditions compared to the monoculture, indicating the increased disruption of their photosynthetic systems in the mixed group. Liquid chromatography-mass spectrometry identified 479 and 431 differential metabolites in the mixed group compared to monocultures of L. aequinoctialis group and A. imbricata, respectively. Dihydrocapsaicin and 13-hydroxy-9-methoxy-10-oxo-11-octadecenoic acid, previously known to participate in oxidative stress and induce the secretion of benzoic acid to disrupt the cell membrane, were found to be abundant in the mixed group compared to the monoculture groups of L. aequinoctialis and A. imbricata. Our results showed that a mixture of L. aequinoctialis and A. imbricata is a potential novel antialgal agent to inhibit harmful algae.
Collapse
Affiliation(s)
- Xiaobin Yang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China.
| | - Yushan Lou
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Linyuan Song
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Di Zhang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Yuzi Song
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Jingxuan Liang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Zikuo Liu
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Ce Wang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Zhao Zhao
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China.
| |
Collapse
|
3
|
Fu C, Wang X, Yu J, Cui H, Hou S, Zhu H. From winter dormancy to spring bloom: Regulatory mechanisms in Microcystis aeruginosa post-overwintering recovery. WATER RESEARCH 2025; 269:122807. [PMID: 39577387 DOI: 10.1016/j.watres.2024.122807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024]
Abstract
Cyanobacterial blooms pose a significant environmental threat in freshwater ecosystems. These cyanobacteria exhibit resilience to cold and dark conditions during winter and flourish as temperature rise in warmer seasons. However, there is a limited understanding of the dynamic growth recovery process and regulatory signaling mechanisms in cyanobacteria after overwintering. In this study, we employed Microcystis aeruginosa (M. aeruginosa) as a model to simulate its growth recovery when subjected to increasing temperature after overwintering under low temperature (4 °C) and dark conditions. We investigated changes in cell growth, microcystin levels, and signaling pathways throughout this recovery phase. Our results indicated that compared to the non-overwintering treatment (T1), the overwintered treatment (T2) experienced a 55.6 % decrease in algae density and a significant reduction in microcystin-LR (MC-LR) levels within the 15-20 °C temperature range (p < 0.05). Overwintering suppressed photosynthetic efficiency during the recovery phase of M. aeruginosa, activated the antioxidant system, and impaired cellular ultrastructure, making algal cells more vulnerable to death. At the transcriptional level, overwintering down-regulated pathways such as photosynthesis, ribosome, the Calvin cycle, and oxidative phosphorylation, hindering the growth and metabolic capacity of M. aeruginosa. In conclusion, this study highlights the inhibitory impacts of overwintering on growth and metabolism of cyanobacteria during the recovery process. It provides insights into the mechanistic foundations of seasonal cyanobacterial blooms and the crucial role of signaling regulation in these processes.
Collapse
Affiliation(s)
- Chenjun Fu
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyi Wang
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Jing Yu
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Hu Cui
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Shengnan Hou
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Hui Zhu
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Changchun 130102, China.
| |
Collapse
|
4
|
Wang Z, Yu S, Nie Y, Zhang Y, Liu Y, Li S, Xiang W, Diao J. Effects of acetochlor on the interaction between Scenedesmus and Microcystis: Integrated perspectives on toxicity, biotransformation, and competition strategies. JOURNAL OF HAZARDOUS MATERIALS 2025; 481:136470. [PMID: 39561538 DOI: 10.1016/j.jhazmat.2024.136470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/01/2024] [Accepted: 11/08/2024] [Indexed: 11/21/2024]
Abstract
To reveal the disruption caused by herbicides and the mechanisms of algal interactions on interspecific competitive strategies at a metabolic and population level, this study established short-term (7 d) and long-term (21 d) Scenedesmus-Microcystis competition coculture systems and investigated the toxicity of acetochlor (ACT) on algae competition. Scenedesmus obliquus (EC50 6.586 μg/L) is three orders of magnitude more sensitive to ACT than Microcystis aeruginosa (EC50 19,539 μg/L), placing it at a competitive disadvantage in environments with ACT pollution. Short-term coculture tests (ACT concentrations from 0 to 12.5 μg/L) showed that ACT suppresses S. obliquus growth and competition, while M. aeruginosa initially showed compensatory growth, which was negated by ACT. Metabolomics revealed that interspecies competition and ACT affect fatty acid synthesis and nitrogen assimilation metabolism of both microalgae, suggesting species differences in the mode of action (MOA) of ACT toxicity and resource competition strategies, respectively. ACT weakens the ability of M. aeruginosa to compete for nitrogen and synthesize microcystin under competitive stress. ACT biotransformation can be conducted across species. In an algal culture system with equal initial biomass, the 7 d ACT degradation rate increased by 24.9 % and 123.8 % with coculture of the two algae compared with monocultures of S. obliquus and M. aeruginosa, respectively. In long-term experiments, the degradation rate increased by 19.0 % and 8.9 % in cocultures compared with the monocultures. Lotka-Volterra models showed that competitive inhabitation was alleviated, implying that the competition interspecies relationship is beneficial for the coexistence of both algal populations under ACT stress.
Collapse
Affiliation(s)
- Zikang Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Simin Yu
- Hunan Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Yufan Nie
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Yue Zhang
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Yuping Liu
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Shanshan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wensheng Xiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jinling Diao
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
5
|
Cheng Y, Fu Q, Xiong G, Huang Y, Li X, Yu Q, He F, Li H, Liu R. The Degradation Characteristics and Soil Remediation Capabilities of the Butachlor-Degrading Strain DC-1. Microorganisms 2024; 12:2568. [PMID: 39770771 PMCID: PMC11677828 DOI: 10.3390/microorganisms12122568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Butachlor is a widely utilized acetamide herbicide noted for its systemic selectivity against pre-emergence grass weeds. Butachlor has negative effects on organisms and the environment, so it is necessary to screen degradation strains. In this investigation, Bacillus cereus strain DC-1 was isolated from soil persistently exposed to butachlor. Through rigorous single-factor and response surface analyses, strain DC-1 exhibited a notable 87.06% degradation efficiency under optimized conditions where the temperature was 32.89 °C, pH was 7.29, and inoculum concentration was 5.18%. It was further hypothesized by LC-MS that the degradation pathway of butachlor by strain DC-1 might be as follows: butachlor undergoes initial deoxygenation catalyzed by dioxygenases to form 2-chloro-N-(2,6-diethylphenyl)-N-methylacetamide, followed by N-demethylation yielding 2-chloro-N-(2,6-diethylphenyl) acetamide, and culminating in conversion to 2,6-diethylphenol. In addition, bioremediation experiments of butachlor-contaminated soil were conducted. The results show that strain DC-1 could degradable 99.23% of butachlor (100 mg·kg-1) from the soil within 12 d, and soil sucrase, cellulase, and urease activities are promoted by the bacteria. And through high-throughput sequencing, it was concluded that the strain DC-1 was able to influence the relative abundance of certain bacteria in the soil, and make the microbial community in the soil develop in a more stable and beneficial direction. DC-1 thus represents a valuable resource in the realm of butachlor degradation due to its robust efficacy, favorable characteristics, and ecological restorative capabilities, underscoring its promising role in the bioremediation of butachlor-contaminated soils.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Haitao Li
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (Y.C.); (Q.F.); (G.X.); (Y.H.); (X.L.); (Q.Y.); (F.H.)
| | - Rongmei Liu
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (Y.C.); (Q.F.); (G.X.); (Y.H.); (X.L.); (Q.Y.); (F.H.)
| |
Collapse
|
6
|
da Silva RMG, Lourenção A, Franciscatti Mecina G, Cordeiro-Araújo MK, Bittencourt-Oliveira MDC, Ahii Chia M, Granero FO, Malaguti Figueiredo CC, Pompermayer Machado L, Pereira Silva L. Physiological and toxicological response of Microcystis aeruginosa BCCUSP232 exposed to Salvinia auriculata extracts. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:701-717. [PMID: 38865103 DOI: 10.1080/15287394.2024.2366320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Microcystis aeruginosa is one of the most predominant freshwater bloom-forming cyanobacterium found globally which is capable of producing toxic secondary metabolites including microcystins that might intoxicate animals and humans when contaminated water or food is ingested. Salvinia auriculata Aubl is one of the plants that might possess bioactive compounds capable of controlling growth and reproduction of M. aeruginosa. The present study aimed to determine the presence of bioactive compounds in S. auriculata extracts and determine alterations occurred in growth and reproduction of M. aeruginosa when exposed to these plant extracts. In addition, this investigation aimed to examine the influence of S. auriculata on antioxidant enzymes detected in M. aeruginosa. The results obtained demonstrated that the aqueous and ethanolic extracts of S. auriculata presented potential for control of cyanobacteria populations, exhibiting algicidal action on M. aeruginosa as well as interfering in antioxidant enzymes activities and parameters associated with oxidative stress. Phytochemical analyses demonstrated the presence of polyphenols and flavonoids content in both extracts. In addition, application of S. auriculata extracts did not produce cytogenotoxicity and/or mutagenicity utilizing Allium cepa test. Therefore, further studies are needed in order to identify and characterize the compounds responsible for these effects on M. aeruginosa and provide information regarding the possible application of S. auriculata in the treatment of drinking water.
Collapse
Affiliation(s)
- Regildo Márcio Gonçalves da Silva
- School of Sciences, Humanities and Languages, Department of Biotechnology, São Paulo State University (UNESP), Assis, São Paulo, Brazil
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Anderson Lourenção
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | - Micheline Kézia Cordeiro-Araújo
- Luiz de Queiroz College of Agriculture, Department of Biological Sciences, University of São Paulo (USP), Piracicaba, São Paulo, Brazil
| | | | | | - Filipe Oiveira Granero
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | - Levi Pompermayer Machado
- School of Agricultural Sciences, Department of Fisheries Engineering, São Paulo State University (UNESP), Registro, São Paulo, Brazil
| | - Luciana Pereira Silva
- Department of Nursery, Fundação Educacional do Município de Assis (FEMA), Assis, São Paulo, Brazil
| |
Collapse
|
7
|
Romano P, Simonetti S, Gambi MC, Luckenbach T, Zupo V, Corsi I. Preliminary investigation on the potential involvement of an ABC-like gene in Halomicronema metazoicum (Cyanobacteria) tolerance to low seawater pH in an ocean acidification scenario. MARINE POLLUTION BULLETIN 2024; 205:116584. [PMID: 38878421 DOI: 10.1016/j.marpolbul.2024.116584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 07/24/2024]
Abstract
Decreasing ocean surface pH, called ocean acidification (OA), is among the major risks for marine ecosystems due to human-driven atmospheric pCO2 increase. Understanding the molecular mechanisms of adaptation enabling marine species to tolerate a lowered seawater pH could support predictions of consequences of future OA scenarios for marine life. This study examined whether the ATP-binding cassette (ABC)-like gene slr2019 confers tolerance to the marine cyanobacterium Halomicronema metazoicum to low seawater pH conditions (7.7, 7.2, 6.5) in short- and long-term exposures (7 and 30 d). Photosynthetic pigment content indicated that the species can tolerate all three lowered-pH conditions. At day 7, slr2019 was up-regulated at pH 7.7 while no changes were observed at lower pH. After 30-d exposure, a significant decrease in slr2019 transcript levels was observed in all low-pH treatments. These first results indicate an effect of low pH on the examined transporter expression in H. metazoicum.
Collapse
Affiliation(s)
- Patrizia Romano
- Department of Physical, Earth and Environmental Sciences, University of Siena, via Mattioli, 4, 53100 Siena, Italy; Stazione Zoologica Anton Dohrn, National Institute of Marine Biology, Ecology and Biotechnology, Department of BEOM, Napoli, Italy.
| | - Silvia Simonetti
- Department of Physical, Earth and Environmental Sciences, University of Siena, via Mattioli, 4, 53100 Siena, Italy; Stazione Zoologica Anton Dohrn, National Institute of Marine Biology, Ecology and Biotechnology, Integrative Marine Ecology Department, Napoli, Italy.
| | | | - Till Luckenbach
- Department Ecotoxicology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Valerio Zupo
- Stazione Zoologica Anton Dohrn, National Institute of Marine Biology, Ecology and Biotechnology, Integrative Marine Ecology Department, Napoli, Italy
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, via Mattioli, 4, 53100 Siena, Italy
| |
Collapse
|
8
|
Zhao Y, Yang SJ, Huang YF, Jiang FW, Si HL, Chen MS, Wang JX, Liu S, Jiang YJ, Li JL. Inhibition of the p62-Nrf2-GPX4 Pathway Confers Sensitivity to Butachlor-Induced Splenic Macrophage Ferroptosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16998-17007. [PMID: 39016055 DOI: 10.1021/acs.jafc.4c01086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Butachlor is widely used in agriculture around the world and therefore poses environmental and public health hazards due to persistent and poor biodegradability. Ferroptosis is a type of iron-mediated cell death controlled by glutathione (GSH) and GPX4 inhibition. P62 is an essential autophagy adaptor that regulates Keap1 to activate nuclear factor erythroid 2-related factor 2 (Nrf2), which effectively suppresses lipid peroxidation, thereby relieving ferroptosis. Here, we found that butachlor caused changes in splenic macrophage structure, especially impaired mitochondrial morphology with disordered structure, which is suggestive of the occurrence of ferroptosis. This was further confirmed by the detection of iron metabolism, the GSH system, and lipid peroxidation. Mechanistically, butachlor suppressed the protein level of p62 and promoted Keap1-mediated degradation of Nrf2, which results in decreased GPX4 expression and accelerated splenic macrophage ferroptosis. These findings suggest that targeting the p62-Nrf2-GPX4 signaling axis may be a promising strategy for treating inflammatory diseases.
Collapse
Affiliation(s)
- Yi Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, P.R. China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Shang-Jia Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yi-Feng Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Fu-Wei Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hong-Li Si
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Ming-Shan Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jia-Xin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shuo Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yu-Jun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, P.R. China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| |
Collapse
|
9
|
Guo Z, He H, Liu K, Li Z, Xi Y, Liao Z, Dao G, Huang B, Pan X. Toxic mechanisms of the antiviral drug arbidol on microalgae in algal bloom water at transcriptomic level. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134678. [PMID: 38781856 DOI: 10.1016/j.jhazmat.2024.134678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/30/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Increasing antivirals in surface water caused by their excessive consumption pose serious threats to aquatic organisms. Our recent research found that the input of antiviral drug arbidol to algal bloom water can induce acute toxicity to the growth and metabolism of Microcystis aeruginosa, resulting in growth inhibition, as well as decrease in chlorophyll and ATP contents. However, the toxic mechanisms involved remained obscure, which were further investigated through transcriptomic analysis in this study. The results indicated that 885-1248 genes in algae were differentially expressed after exposure to 0.01-10.0 mg/L of arbidol, with the majority being down-regulated. Analysis of commonly down-regulated genes found that the cellular response to oxidative stress and damaged DNA bonding were affected, implying that the stress defense system and DNA repair function of algae might be damaged. The down-regulation of genes in porphyrin metabolism, photosynthesis, carbon fixation, glycolysis, tricarboxylic acid cycle, and oxidative phosphorylation might inhibit chlorophyll synthesis, photosynthesis, and ATP supply, thereby hindering the growth and metabolism of algae. Moreover, the down-regulation of genes related to nucleotide metabolism and DNA replication might influence the reproduction of algae. These findings provided effective strategies to elucidate toxic mechanisms of contaminants on algae in algal bloom water.
Collapse
Affiliation(s)
- Ziwei Guo
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Huan He
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Kunqian Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Zihui Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yanting Xi
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhicheng Liao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Guohua Dao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Bin Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
10
|
Du Z, Huang X, Wu H, Luo X. Tri-layered core-shell structured deferoxamine magnetic particles promote Microcystis aeruginosa growth. ENVIRONMENTAL RESEARCH 2024; 252:119062. [PMID: 38719066 DOI: 10.1016/j.envres.2024.119062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/21/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024]
Abstract
This experiment prepared magnetic composite siderophores (DMPs) with strong magnetism, excellent adsorption capacity, and high specific surface area. Exploring the synergistic effect of magnetic nanoparticles and siderophores on Microcystis aeruginosa growth under iron-deficient condition, by utilizing the characteristics of the three-layer core-shell structure of DMPs. This study elucidated the potential mechanism by which DMPs promote the cyanobacterial growth through physiological indicators and transcriptome analysis. On the experiment's final day, cell density in DMPs treatment group at 2, 4, and 8 mg/L were 1.10, 1.14 and 1.16 times higher than those in the control group (Ct), respectively. Similarly, chlorophyll and photosynthetic efficiency results showed improved algae growth with increasing DMPs dosage. The microcystin content in DMPs experimental groups at low, medium, and high concentration were 0.91, 0.86, and 0.83 times that of Ct, indicating alleviation of iron deficiency stress. Additionally, based on extracellular polymers, intracellular and extracellular siderophores, and visualization techniques, DMPs nanoparticles captured free iron sources in the environment, promoting algae growth by entering algal cells and facilitating the uptake and utilization of free iron ions from the solution. During the experiment, the iron uptake and transport genes (feoA and feoB) were significantly upregulated, whereas the algal siderophore synthesis gene (pchF) and the TonB-dependent transport system gene (TonB_C) were significantly downregulated, suggesting heightened activity in intracellular iron uptake and transport. This indicates an abundance of intracellular iron, eliminating the need for secrete siderophores to overcome iron deficiency. Microcystis aeruginosa increased iron bioavailability by using iron transported through DMPs in the environment while internalizing these DMPs. This study explored the mechanism of this synergistic effect to boost algal growth, and provided new ideas for elucidating the mechanism of cyanobacterial bloom outbreaks as well as the innovative application of biotechnology.
Collapse
Affiliation(s)
- Zunqing Du
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Xuhui Huang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Hanqi Wu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Xingzhang Luo
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China.
| |
Collapse
|
11
|
Li L, Xie G, Dong P, Tang H, Wu L, Zhang L. Anticyanobacterial effect of p-coumaric acid on Limnothrix sp. determined by proteomic and metabolomic analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171632. [PMID: 38471589 DOI: 10.1016/j.scitotenv.2024.171632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/23/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
Regulating photosynthetic machinery is a powerful but challenging strategy for selectively inhibiting bloom-forming cyanobacteria, in which photosynthesis mainly occurs in thylakoids. P-coumaric acid (p-CA) has several biological properties, including free radical scavenging and antibacterial effects, and studies have shown that it can damage bacterial cell membranes, reduce chlorophyll a in cyanobacteria, and effectively inhibit algal growth at concentrations exceeding 0.127 g/L. Allelochemicals typically inhibit cyanobacteria by inhibiting photosynthesis; however, research on inhibiting harmful algae using phenolic acids has focused mainly on their inhibitory and toxic effects and metabolite levels, and the molecular mechanism by which p-CA inhibits photosynthesis remains unclear. Thus, we examined the effect of p-CA on the photosynthesis of Limnothrix sp. in detail. We found that p-CA inhibits algal growth and damages photosynthesis-related proteins in Limnothrix sp., reduces carotenoid and allophycocyanin levels, and diminishes the actual quantum yield of Photosystem II (PSII). Moreover, p-CA significantly altered algal cell membrane protein systems, and PSII loss resulting from p-CA exposure promoted reactive oxygen species production. It significantly altered algae cell membrane protein systems. Finally, p-CA was found to be environmentally nontoxic; 80 % of 48-h-old Daphnia magna larvae survived when exposed to 0.15 g/L p-CA. These findings provide insight into the mechanism of cyanobacterial inhibition by p-CA, providing a more practical approach to controlling harmful algal blooms.
Collapse
Affiliation(s)
- Lingzhi Li
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Gengxin Xie
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| | - Pan Dong
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Hui Tang
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Liping Wu
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Liang Zhang
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| |
Collapse
|
12
|
Xie Z, Nie Y, Dong M, Nie M, Tang J. Integrated physio-biochemical and transcriptomic analysis reveals the joint toxicity mechanisms of two typical antidepressants fluoxetine and sertraline on Microcystis aeruginosa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171802. [PMID: 38508265 DOI: 10.1016/j.scitotenv.2024.171802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/20/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
Selective serotonin reuptake inhibitor (SSRI) antidepressants are of increasing concern worldwide due to their ubiquitous occurrence and detrimental effects on aquatic organisms. However, little is known regarding their effects on the dominant bloom-forming cyanobacterium, Microcystis aeruginosa. Here, we investigated the individual and joint effects of two typical SSRIs fluoxetine (FLX) and sertraline (SER) on M. aeruginosa at physio-biochemical and molecular levels. Results showed that FLX and SER had strong growth inhibitory effects on M. aeruginosa with the 96-h median effect concentrations (EC50s) of 362 and 225 μg/L, respectively. Besides, the mixtures showed an additive effect on microalgal growth. Meanwhile, both individual SSRIs and their mixtures can inhibit photosynthetic pigment synthesis, cause oxidative damage, destroy cell membrane, and promote microcystin-leucine-arginine (MC-LR) synthesis and release. Moreover, the mixtures enhanced the damage to photosynthesis, antioxidant system, and cell membrane and facilitated MC-LR synthesis and release compared to individuals. Furthermore, transcriptomic analysis revealed that the dysregulation of the key genes related to transport, photosystem, protein synthesis, and non-ribosomal peptide structures was the fundamental molecular mechanism underlying the physio-biochemical responses of M. aeruginosa. These findings provide a better understanding of the toxicity mechanisms of SSRIs to microalgae and their risks to aquatic ecosystems.
Collapse
Affiliation(s)
- Zhengxin Xie
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Yunfan Nie
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Mingyue Dong
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Meng Nie
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Jun Tang
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
13
|
Sang W, Du C, Ni L, Li S, Hamad AAA, Xu C, Shao C. Physiological and molecular mechanisms of the inhibitory effects of artemisinin on Microcystis aeruginosa and Chlorella pyrenoidosa. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134241. [PMID: 38608594 DOI: 10.1016/j.jhazmat.2024.134241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/06/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
Artemisinin, a novel plant allelochemical, has attracted attention for its potential selective inhibitory effects on algae, yet to be fully explored. This study compares the sensitivity and action targets of Microcystis aeruginosa (M. aeruginosa) and Chlorella pyrenoidosa (C. pyrenoidosa) to artemisinin algaecide (AMA), highlighting their differences. Results indicate that at high concentrations, AMA displaces the natural PQ at the QB binding site within M. aeruginosa photosynthetic system, impairing the D1 protein repair function. Furthermore, AMA disrupts electron transfer from reduced ferredoxin (Fd) to NADP+ by interfering with the iron-sulfur clusters in the ferredoxin-NADP+ reductases (FNR) domain of Fd. Moreover, significant reactive oxygen species (ROS) accumulation triggers oxidative stress and interrupts the tricarboxylic acid cycle, hindering energy acquisition. Notably, AMA suppresses arginine synthesis in M. aeruginosa, leading to reduced microcystins (MCs) release. Conversely, C. pyrenoidosa counters ROS accumulation via photosynthesis protection, antioxidant defenses, and by regulating intracellular osmotic pressure, accelerating damaged protein degradation, and effectively repairing DNA for cellular detoxification. Additionally, AMA stimulates the expression of DNA replication-related genes, facilitating cell proliferation. Our finding offer a unique approach for selectively eradicating cyanobacteria while preserving beneficial algae, and shed new light on employing eco-friendly algicides with high specificity.
Collapse
Affiliation(s)
- Wenlu Sang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Cunhao Du
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Lixiao Ni
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Shiyin Li
- School of Environment, Nanjing Normal University, Nanjing 210023, PR China
| | - Amar Ali Adam Hamad
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Chu Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Chenxi Shao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
14
|
Huang S, Zuo L, Zhang L, Guo X, Cheng C, He Y, Cheng G, Yu J, Liu Y, Chen R, Tang G, Fan Y, Feng L. Design, Synthesis, and Mode of Action of Thioacetamide Derivatives as the Algicide Candidate Based on Active Substructure Splicing Strategy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7021-7032. [PMID: 38501582 DOI: 10.1021/acs.jafc.4c00912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Lakes and reservoirs worldwide are experiencing a growing problem with harmful cyanobacterial blooms (HCBs), which have significant implications for ecosystem health and water quality. Algaecide is an effective way to control HCBs effectively. In this study, we applied an active substructure splicing strategy for rapid discovery of algicides. Through this strategy, we first optimized the structure of the lead compound S5, designed and synthesized three series of thioacetamide derivatives (series A, B, C), and then evaluated their algicidal activities. Finally, compound A3 with excellent performance was found, which accelerated the process of discovering and developing new algicides. The biological activity assay data showed that A3 had a significant inhibitory effect on M. aeruginosa. FACHB905 (EC50 = 0.46 μM) and Synechocystis sp. PCC6803 (EC50 = 0.95 μM), which was better than the commercial algicide prometryn (M. aeruginosa. FACHB905, EC50 = 6.52 μM; Synechocystis sp. PCC6803, EC50 = 4.64 μM) as well as better than lead compound S5 (M. aeruginosa. FACHB905, EC50 = 8.80 μM; Synechocystis sp. PCC6803, EC50 = 7.70 μM). The relationship between the surface electrostatic potential, chemical reactivity, and global electrophilicity of the compounds and their activities was discussed by density functional theory (DFT). Physiological and biochemical studies have shown that A3 might affect the photosynthesis pathway and antioxidant system in cyanobacteria, resulting in the morphological changes of cyanobacterial cells. Our work demonstrated that A3 might be a promising candidate for the development of novel algicides and provided a new active skeleton for the development of subsequent chemical algicides.
Collapse
Affiliation(s)
- Shi Huang
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Lingzi Zuo
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Liexiong Zhang
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xiaoliang Guo
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Cai Cheng
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yanlin He
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Guonian Cheng
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jie Yu
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yanyang Liu
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan, Hubei 430083, China
| | - Ruiqing Chen
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Guangmei Tang
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yuxuan Fan
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Lingling Feng
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan, Hubei 430083, China
| |
Collapse
|
15
|
Yu S, Xu C, Tang T, Zhang Y, Effiong K, Hu J, Bi Y, Xiao X. Down-regulation of iron/zinc ion transport and toxin synthesis in Microcystis aeruginosa exposed to 5,4'-dihydroxyflavone. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132396. [PMID: 37672994 DOI: 10.1016/j.jhazmat.2023.132396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/04/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023]
Abstract
Flavonoids, common natural polyphenolic compounds from plants, have been proposed as highly effective and safe algicides. However, the molecular mechanism of flavonoids inhibiting Microcystis aeruginosa remains unclear. This study aims in exploring the global transcriptional changes and molecular docking in cyanobacterial cells in response to flavonoids. Transcriptomic analysis revealed that 5,4'-dihydroxyflavone (DHF) primarily affected the genes transcription of iron and zinc ion transport, resulting in the blockage of transport for iron (II), iron (III) and zinc (II), which eventually led to a decrease in intracellular iron and zinc content. 5,4'-DHF can also interfere with iron and zinc transport by binding to metal ion transport-related proteins, leading to eliminated biological activities in M. aeruginosa. Meanwhile, 5,4'-DHF inhibit microcystin synthesis and reduce the content of intercellular toxin by inhibiting the transcription of mcyC and binding with McyC protein, implying that 5,4'-DHF have potential to reduce the risk of microcystins in the environment. Moreover, iron starvation and down-regulation of photosynthesis-related genes transcription led to the inhibition of electron transport in photosynthetic system. These results provide more information for the inhibitory mechanism of flavonoids, and the inhibition of flavonoids on metal ion transmembrane transport provides a new perspective for the development of allelochemical algicides.
Collapse
Affiliation(s)
- Shumiao Yu
- Ocean College, Zhejiang University, 1 Zheda Road, Zhoushan, Zhejiang 316021, China; Key Laboratory of Marine Ecological Monitoring and Restoration Technologies of the Ministry of Natural Resources of China, Shanghai 201206, China; Donghai Laboratory, Zhoushan, Zhejiang 316021, China
| | - Caicai Xu
- Ocean College, Zhejiang University, 1 Zheda Road, Zhoushan, Zhejiang 316021, China
| | - Tao Tang
- Ocean College, Zhejiang University, 1 Zheda Road, Zhoushan, Zhejiang 316021, China
| | - Yiyi Zhang
- Ocean College, Zhejiang University, 1 Zheda Road, Zhoushan, Zhejiang 316021, China
| | - Kokoette Effiong
- Ocean College, Zhejiang University, 1 Zheda Road, Zhoushan, Zhejiang 316021, China
| | - Jing Hu
- Ocean College, Zhejiang University, 1 Zheda Road, Zhoushan, Zhejiang 316021, China
| | - Yonghong Bi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xi Xiao
- Ocean College, Zhejiang University, 1 Zheda Road, Zhoushan, Zhejiang 316021, China; Key Laboratory of Marine Ecological Monitoring and Restoration Technologies of the Ministry of Natural Resources of China, Shanghai 201206, China; Donghai Laboratory, Zhoushan, Zhejiang 316021, China; Key Laboratory of Watershed Non-point Source Pollution Control and Water Eco-security of Ministry of Water Resources, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|