1
|
Salma U, Alam MZ, Ahmad S, Mohasin M, Khan SA. Recent Progress in Triazole Based Chromogenic and Fluorogenic Chemosensor for the Detection of Hg 2+ Metal ion: A Review. J Fluoresc 2025:10.1007/s10895-025-04269-z. [PMID: 40257515 DOI: 10.1007/s10895-025-04269-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/18/2025] [Indexed: 04/22/2025]
Abstract
Triazole, a heterocyclic organic molecule containing nitrogen, exhibits strong coordination abilities with various metal ions. Several synthetic techniques, including Claisen-Schmidt condensation, Huisgen-1,3-dipolar cycloaddition reaction (CuAAC), Pellizzari synthesis, Einhorn-Brunner synthesis, Dimroth rearrangement and Boulton-Katritzky Rearrangement have been employed to synthesize triazole derivatives. Experimental and spectroscopic investigations have demonstrated that triazole possesses a high binding affinity for heavy metal ions such as Pb2+, Hg2+, Cd2+, Cu2+ and Al3+. The increasing environmental pollution caused by the uncontrolled discharge of heavy metal ions into water bodies and open spaces poses a serious threat to ecosystem and public health. To address this issue, a cost-effective and efficient chemosensor based on triazole has been developed for selective detection of toxic heavy metal ions. Notably, triazole exhibits fluorescence quenching or enhancement upon interaction with the Hg2+ ions, attributed to changes in its absorption and emission spectra upon coordination. This unique photophysical behaviour makes triazole-based probes valuable tools for monitoring Hg2+ ions in environmental and biological samples. This review provides a comprehensive overview of triazole-based fluorescent chemosensors for Hg2+ ions detection, covering advancements made between 2010-2025. The study highlights the high specificity, excellent sensitivity, and low detection limits of these sensors, emphasizing their potential for practical applications in environmental monitoring and analytical chemistry.
Collapse
Affiliation(s)
- Umme Salma
- Department of Chemistry, School of Sciences, Maulana Azad National Urdu University, Hyderabad, 500032, Telangana, India
| | - Md Zafer Alam
- Department of Chemistry, School of Sciences, Maulana Azad National Urdu University, Hyderabad, 500032, Telangana, India.
| | - Suhail Ahmad
- Department of Chemistry, School of Sciences, Maulana Azad National Urdu University, Hyderabad, 500032, Telangana, India
| | - Md Mohasin
- Department of Chemistry, School of Sciences, Maulana Azad National Urdu University, Hyderabad, 500032, Telangana, India
| | - Salman A Khan
- Department of Chemistry, School of Sciences, Maulana Azad National Urdu University, Hyderabad, 500032, Telangana, India
| |
Collapse
|
2
|
Zou Y, Zhang Y, Wang HZ, Jiang MW, Gui GF, Fu D, Ren W. Dual-mode ratiometric fluorescent and colorimetric sensor for rapid visual detection of Hg 2+ using poly(T)-tailed ssDNA-silver nanoclusters. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 330:125751. [PMID: 39826171 DOI: 10.1016/j.saa.2025.125751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/09/2025] [Accepted: 01/12/2025] [Indexed: 01/22/2025]
Abstract
Rapid, sensitive, and accurate detection of heavy metal ions is significant for human health and ecological security. Herein, a novel single-stranded DNA with poly(thymidine) tail is tactfully designed as template to synthesize dual-emission silver nanoclusters (ssDNA-AgNCs). The obtained AgNCs simultaneously emit red and green fluorescence, and the red emission can be selectively quenched by Hg2+, meanwhile the green emission of AgNCs increases synchronously. Thus ssDNA-AgNCs as a single probe shows excellent ratiometric fluorescence sensing for Hg2+ with a detection limit of 0.2 nM, and Hg2+ as low as 10.0 nM can be fluorescently identified by naked eye within 5 min. Moreover, the proposed nanoprobe also exhibits a good ratiometric colorimetric sensing for Hg2+, and the obvious color change of nanoprobe also enables a rapid and visual monitoring of Hg2+ under visible light. The dual mode ratiometric response of Hg2+ can be ascribed to the rapid redox reaction between Hg2+ and Ag0 on the surface of AgNCs and the subsequent formation of silver amalgam. The resultant dual-mode ratiometric sensor has been successfully applied to the determination of Hg2+ in environmental water samples. This study provides a new strategy to synthesize dual-emission AgNCs by scientifically designing terminus sequence of ssDNA template, and develops a facile and efficient single-probe and dual-mode ratiometric sensor for visual monitoring of Hg2+.
Collapse
Affiliation(s)
- Yu Zou
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000 PR China
| | - Ying Zhang
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000 PR China.
| | - Hui Zhu Wang
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000 PR China
| | - Meng Wei Jiang
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000 PR China
| | - Guo Feng Gui
- College of Chemistry and Chemical Engineering, Guizhou University of Engineering Science, Bijie 551700 PR China
| | - Dong Fu
- Key Laboratory of Low-cost Rural Environmental Treatment Technology at Sichuan University of Arts and Science, Education Department of Sichuan Province, Dazhou 635000 PR China
| | - Wang Ren
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000 PR China.
| |
Collapse
|
3
|
Xu X, Dong CY, Lu AX, Wang SS, Harvey P, Yan CH. Mercury levels in freshwater aquatic products across China: Spatial distribution, species differences, and health risk assessment. MARINE POLLUTION BULLETIN 2025; 212:117592. [PMID: 39864351 DOI: 10.1016/j.marpolbul.2025.117592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/28/2025]
Abstract
Freshwater product consumption is a major source of mercury (Hg) exposure in China. This study analyzed Hg concentrations in 12,560 samples from 29 provinces across China (2010-2021) and conducted probabilistic health risk assessments across various life stages. The average Hg concentration in China's freshwater products was 40.9 ± 32.3 ng/g (wet weight), lower than global averages. However, certain species, Gymnocypris and Schizothoracids from Tibet, exhibited elevated levels (216.2 ± 84.2 ng/g and 156.7 ± 89.9 ng/g, respectively). The estimated dietary intakes (EDIs) of MeHg for all age groups were well below the JECFA threshold of 1.6 μg/kg BW, even at the P95 exposure level. However, long-term exposure assessments revealed elevated risks for children aged 2-12, with Target hazard quotients (THQ) values exceeding 1 at the P95 exposure level, particularly among younger children aged 2-7. Spatially, elevated Hg exposure risks were identified in Hong Kong, Zhejiang, Guizhou, and the Songhua River regions, with contamination in Zhejiang tied to the compact fluorescent lamp industry. Furthermore, prenatal MeHg exposure through freshwater product consumption was estimated to result in Intelligence Quotient (IQ) losses of 0.00548-0.193 points in infants. These findings underscore the need for targeted interventions to mitigate Hg exposure and provides recommendations for safer freshwater fish selection in the Chinese market.
Collapse
Affiliation(s)
- Xi Xu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, Zhejiang Province, China
| | - Chen-Yin Dong
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, China
| | - An-Xin Lu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Su-Su Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Paul Harvey
- Environmental Science Solutions, Sydney, Australia; Biami Scientific Pty Ltd, Sydney, Australia
| | - Chong-Huai Yan
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Okeke ES, Nwankwo CEI, Owonikoko WM, Emencheta SC, Ozochi CA, Nweze EJ, Okeke VC, Nwuche CO, Enochoghene AE. Mercury's poisonous pulse: Blazing a new path for aquatic conservation with eco-friendly mitigation strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177719. [PMID: 39631341 DOI: 10.1016/j.scitotenv.2024.177719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024]
Abstract
Many compounds and inorganic elements released from natural and anthropogenic origins contaminate the environment and are implicated in catastrophes involving most biologically driven ecological processes and public health. One such element is Mercury. Mercury exists in both inorganic elemental form and the more metabolically active molecular form e.g. methyl mercury. They enjoy wide applications in medicine and form key components of numerous electrical and electronic devices. Unfortunately, severe health and adverse physiological conditions have developed from the impacts of mercury on the flora and fauna of both aquatic and terrestrial organisms. Despite being present in tiny amounts in water bodies, mercury undergoes a process of trophic amplification where its concentration increases significantly as it moves up the food chain through processes like biomethylation, bioaccumulation, and biomagnification. Most current methods for removing mercury through physical and chemical means have significant drawbacks, including high costs, complex technical requirements, and harmful secondary effects on the environment. Therefore, only environmentally friendly and sustainable approaches are acceptable to mitigate the risks to public health and ecosystem damage. Bioremediation involves the use of biological systems, i.e., plants and microbes, to recover mercury from the environment. The application of microorganisms in remediation is the hallmark of all mitigation strategies targeted at mercury pollution in the soil and aquatic matrices. The present paper provides a comprehensive overview of the current knowledge on mercury pollution in the environment (i.e., atmosphere, soil, water, and sediments). Many symptoms of mercury poisoning in fish, birds, and other animals, including man, were extensively treated. Information on the existing physico-chemical treatment methods, as well as the more ecologically friendly bioremediation measures available, was summarized. The importance of strengthening existing international policies, commitments, protocols, and alignments on the control of anthropogenic generation, treatment, and reduction of mercury discharges to the environment was highlighted.
Collapse
Affiliation(s)
- Emmanuel Sunday Okeke
- Natural Science Unit, School of General Studies, University of Nigeria, Nsukka 410001, Enugu State, Nigeria; Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Enugu State, Nigeria; Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., Zhenjiang 212013, Jiangsu, China
| | - Chidiebele Emmanuel Ikechukwu Nwankwo
- Natural Science Unit, School of General Studies, University of Nigeria, Nsukka 410001, Enugu State, Nigeria; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., Zhenjiang 212013, Jiangsu, China; Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Enugu State, Nigeria
| | - Wasiu Mathew Owonikoko
- Laboratory for Environmental Physiology and Toxicology Research Unit, Department of Physiology, Igbinedion University, Nigeria
| | - Stephen Chijioke Emencheta
- Department of Pharmaceutical Microbiology and Biotechnology, University of Nigeria, Nsukka 410001, Nigeria; VBLab - Laboratory of Bacterial Viruses, University of Sorocaba, 18023-000 Sorocaba, SP, Brazil
| | - Chizoba Anthonia Ozochi
- Department of Science Laboratory Technology, Federal Polytechnic, Ohodo 411103, PMB 01801, Enugu, Enugu State, Nigeria
| | - Ekene John Nweze
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Enugu State, Nigeria.
| | - Veronica Chisom Okeke
- Department of Pharmaceutical Microbiology and Biotechnology, University of Nigeria, Nsukka 410001, Nigeria
| | - Charles Ogugua Nwuche
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Enugu State, Nigeria.
| | - Adebisi Esther Enochoghene
- Environmental Management and Toxicology Unit, Department of Biological Sciences, Lead City University, Ibadan, Nigeria.
| |
Collapse
|
5
|
Alam MZ, Khan SA. A Review on Pyridine Based Colorimetric and Fluorometric Chemosensor for Detection of Hg 2+ ion. J Fluoresc 2024:10.1007/s10895-024-04005-z. [PMID: 39527360 DOI: 10.1007/s10895-024-04005-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
Pyridine, N-containing heterocyclic organic compound, displays strong coordination capabilities with various metal ions. It can be synthesized through various methods, such as Friedlander synthesis, heterocumulene synthesis, cross-coupling reactions, the Radziszewski reaction, Bonnemann cyclization, as well as cobalt-catalyzed synthesis. Experimental and spectroscopic analyses have demonstrated a strong binding affinity between pyridine and several heavy metal ions, including Pb2+, Hg2+, and Cd2+ ions. The escalating environmental pollution caused by the disposal of heavy metal ions in rivers, open air, and water reservoirs poses a significant threat to both ecosystem and human health. To address these environmental challenges, a cost-effective and easily synthesized chemosensor has been prepared for identifying toxic heavy metal ions in various samples. Pyridine's photophysical properties make it an effective sensor for detecting Hg2+ ions, displaying fluorescence quenching or enhancement in their presence. The coordination between pyridine and Hg2+ ions lead to shifts in the absorption spectra. The pyridine-based sensor has been evaluated for its sensitivity, selectivity, and detection limits under different experimental conditions. Pyridine's solubility and environmental stability make it applicable for real-time detection, making pyridine probes valuable tool for monitoring toxic Hg2+ ions in the environment. The results demonstrate that the pyridine-based chemosensor exhibits good selectivity and sensitivity for targeting Hg2+ ions, with detection limits within acceptable ranges. This review (from years 2011 to 2023) emphasizes the preparation of various substituted pyridine compounds as selective, sensitive, and specific sensors for real-time detection of Hg2+ ions.
Collapse
Affiliation(s)
- Md Zafer Alam
- Department of Chemistry, School of Sciences, Maulana Azad National Urdu University, Hyderabad, 500032, Telangana, India
| | - Salman Ahmad Khan
- Department of Chemistry, School of Sciences, Maulana Azad National Urdu University, Hyderabad, 500032, Telangana, India.
| |
Collapse
|
6
|
Li Z, Zhu H, García-Girón J, Gu S, Heino J, Xiong X, Yang J, Zhao X, Jia Y, Xie Z, Zhang J. Historical and dispersal processes drive community assembly of multiple aquatic taxa in glacierized catchments in the Qinghai-Tibet plateau. ENVIRONMENTAL RESEARCH 2024; 251:118746. [PMID: 38513751 DOI: 10.1016/j.envres.2024.118746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/27/2024] [Accepted: 03/16/2024] [Indexed: 03/23/2024]
Abstract
Understanding the relative role of dispersal dynamics and niche constraints is not only a core task in community ecology, but also becomes an important prerequisite for bioassessment. Despite the recent progress in our knowledge of community assembly in space and time, patterns and processes underlying biotic communities in alpine glacierized catchments remain mostly ignored. To fill this knowledge gap, we combined the recently proposed dispersal-niche continuum index (DNCI) with traditional constrained ordinations and idealized patterns of species distributions to unravel community assembly mechanisms of different key groups of primary producers and consumers (i.e., phytoplankton, epiphytic algae, zooplankton, macroinvertebrates, and fishes) in rivers in the Qinghai-Tibet Plateau, the World's Third Pole. We tested whether organismal groups with contrasting body sizes differed in their assembly processes, and discussed their applicability in bioassessment in alpine zones. We found that community structure of alpine river biotas was always predominantly explained in terms of dispersal dynamics and historical biogeography. These patterns are most likely the result of differences in species-specific functional attributes, the stochastic colonization-extinction dynamics driven by multi-year glacier disturbances and the repeated hydrodynamic separation among alpine catchments after the rising of the Qilian mountains. Additionally, we found that the strength of dispersal dynamics and niche constraints was partially mediated by organismal body sizes, with dispersal processes being more influential for microscopic primary producers. Finding that zooplankton and macroinvertebrate communities followed clumped species replacement structures (i.e., Clementsian gradients) supports the notion that environmental filtering also contributes to the structure of high-altitude animal communities in glacierized catchments. In terms of the applied fields, we argue that freshwater bioassessment in glacierized catchments can benefit from incorporating the metacommunity perspective and applying novel approaches to (i) detect the optimal spatial scale for species sorting and (ii) identify and eliminate the species that are sensitive to dispersal-related processes.
Collapse
Affiliation(s)
- Zhengfei Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Huan Zhu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jorge García-Girón
- Department of Biodiversity and Environmental Management, University of León, Campus de Vegazana, 24007, León, Spain; Geography Research Unit, University of Oulu, P.O. Box 3000, FI-90014, Oulu, Finland
| | - Siyu Gu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jani Heino
- Geography Research Unit, University of Oulu, P.O. Box 3000, FI-90014, Oulu, Finland
| | - Xiong Xiong
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jiali Yang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xianfu Zhao
- Institute of Hydroecology, Ministry of Water Resources and Chinese Academy of Sciences, Wuhan, China
| | - Yintao Jia
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zhicai Xie
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
| | - Junqian Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
7
|
Escudero L, Ojanguren AF, Álvarez R, García C, Pañeda J, Alberquilla F, Ordóñez A. Assessment of hydrological, geological, and biological parameters of a river basin impacted by old Hg mining in NW Spain. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:11081-11095. [PMID: 38217815 PMCID: PMC10850224 DOI: 10.1007/s11356-024-31888-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/02/2024] [Indexed: 01/15/2024]
Abstract
Mercury (Hg) is a toxic metal that can cause adverse effects for the health of ecosystems. The Caudal River is one of the main rivers in the Asturias region (NW Spain), whose basin is highly anthropized, hosting several Hg mines, closed in the last century. Arsenic (As) is also found in the mineral paragenesis of the Hg deposits, posing a greater environmental risk. In the mining sites, remaining old facilities and tailings continue to release these elements into the environment. In this work, samples of fluvial sediments and water were taken, both in areas affected by anthropic activity and in pristine areas, in order to establish the background levels for the critical elements. The mineralogical study of the sediments, combined with EDS microanalysis, is useful to identify mineralogical traps such as Fe oxides or clays to retain the As. The As content in all sampled sediments is above the threshold effect levels (TEL), the possible effect range within which adverse effects occasionally occur, according to the Canadian Sediment Quality Guidelines for the Protection of Aquatic Life. This fact is related to a naturally high geochemical background in the basin, due to the existing mineral deposits. The PEL threshold (the probable effect range within which adverse effects frequently occur) is exceeded by more than an order of magnitude in the sediments downstream of the Hg mines. In these points, the As content in the water, exceeding 700 μg L-1 As, is also above the quality standard established in Spanish legislation. As a result, the Caudal River tributaries in the lower part of the basin do not reach a good ecological state, according to the Hydrological Planning Office, and in some cases their state is deficient, showing low richness and high dominance of macroinvertebrates. Although the concentrations decrease with distance from the source, these findings justify the low ecological quality of the affected watercourses.
Collapse
Affiliation(s)
- Lucía Escudero
- Department Exploitation and Prospecting of Mines, University of Oviedo, Asturias, Spain
| | - Alfredo F Ojanguren
- Department Biology of Organisms and Systems, University of Oviedo, Asturias, Spain
| | - Rodrigo Álvarez
- Department Exploitation and Prospecting of Mines, University of Oviedo, Asturias, Spain
| | - Carmen García
- Department Exploitation and Prospecting of Mines, University of Oviedo, Asturias, Spain
| | - Jose Pañeda
- Department Exploitation and Prospecting of Mines, University of Oviedo, Asturias, Spain
| | - Fernando Alberquilla
- Department Exploitation and Prospecting of Mines, University of Oviedo, Asturias, Spain
| | - Almudena Ordóñez
- Department Exploitation and Prospecting of Mines, University of Oviedo, Asturias, Spain.
| |
Collapse
|