1
|
Zheng Y, Yan W, Li N, Nie J, Zhang Y, Niu W, Yuan Y. Unveiling a novel nanozyme cofactor: a highly activated Fe-CDs-derived colorimetric sensor array for comprehensive authentication of diverse tea products. Biosens Bioelectron 2025; 282:117510. [PMID: 40288313 DOI: 10.1016/j.bios.2025.117510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 04/07/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Tea has antioxidant, anti-aging, hypotensive, and other functions. The tea polyphenol profile is of great significance for the identification and quality control of diverse tea products. Herein, an iron-doped carbon dots (Fe-CDs) with peroxidase-like activity was synthesized to construct a colorimetric sensor array for the tea polyphenols analysis in a complex matrix. Unexpectedly, it is found that the addition of tea polyphenols leads to an admirable increase in the activity of Fe-CDs, indicating the role of tea polyphenols as a cofactor of Fe-CDs nanozyme. The exploration based on multiple techniques reveals that the polyphenols can absorb on the Fe-CDs surface to form the new complex and effectively enhance the catalytic performance of Fe-CDs. This enhancement effect is closely related to the elemental doping, surface condition of nanozyme, and the polyphenol concentration. Taking TMB as the substrate, the colorimetric fingerprint generated in the presence of different tea polyphenols are extracted from the sensing array. The results of principal component analysis (PCA) and hierarchical clustering analysis (HCA) show that five tea polyphenols of different types, concentrations, and tea polyphenol mixtures of different proportions are successfully distinguished through pattern recognition methods. Moreover, the identification of tea leaves from different years and types, as well as various tea drinks, has been further realized. This study not only paves a new direction for enhancing the nanozyme activity, but provides an effective and convenient strategy for the quality control of tea products.
Collapse
Affiliation(s)
- Yanying Zheng
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, China
| | - Wenju Yan
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, China
| | - Nansheng Li
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, China
| | - Jinfang Nie
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, China
| | - Yun Zhang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, China
| | - Wenxin Niu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin, 130022, China
| | - Yali Yuan
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, China.
| |
Collapse
|
2
|
Teng X, Gui L, Liang W, Liu T, Chen J, Liu Y, Li Q, Zeng J, Liang Y, Li L. Efficient Separation-Free and Wash-Free Immunoassay for Sensitive Detection of Biomarkers Based on the Distance-Driven Chemiluminescent Technique. Anal Chem 2025; 97:6661-6669. [PMID: 40108884 DOI: 10.1021/acs.analchem.4c06593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
The wash-free method represents a promising strategy for enhancing the detection efficiency of automated chemiluminescent (CL) immunoassay analyzers. Herein, a novel separation-free and wash-free immunoassay was developed for the first time based on the distance-driven CL technique. In the CL immunoassay, the well-designed Au-Co metal nanoclusters (NCs) exhibited excellent peroxidase-like activity and good stability, allowing for efficient catalysis of luminol or its analogue (ABEI)-H2O2 system even at low concentrations. Furthermore, the large specific surface area of Au-Co NCs facilitated the accommodation of a greater number of antibodies, thereby enhancing the capture of antigens and achieving dual amplification of the CL signal. The distance-driven CL technique relied on the formation of sandwich-type immunocomplexes. Upon the generation of hydroxyl radicals and superoxide anion radicals through the catalytic decomposition of H2O2 by Au-Co NCs, the ABEI within sandwich-type immunocomplexes could efficiently react with these radicals, leading to a significant enhancement in CL signals. Furthermore, C-reactive protein (CRP) was chosen as the model analyte to evaluate the practicability of the proposed immunoassay. Notably, the proposed immunoassay presented high sensitivity, selectivity, reproducibility, and stability, successfully determining CRP in serum samples with recoveries of 96.55-106.29%. Accordingly, the proposed strategy with the advantage of separation-free, wash-free, and reliable characteristics could drastically simplify the detection operation steps and enhance the detection efficiency, which would make significant advances in the revolution of traditional CL immunoassay.
Collapse
Affiliation(s)
- Xu Teng
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan 511518, China
| | - Lingyan Gui
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan 511518, China
| | - Weiyuan Liang
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan 511518, China
| | - Tao Liu
- Department of Pharmacy, The Third People's Hospital of Chengdu, Chengdu 610031, China
| | - Jiuyang Chen
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Yue Liu
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Qiguang Li
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan 511518, China
| | - Jun Zeng
- The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan 511518, China
| | - Yaru Liang
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan 511518, China
| | - Linhai Li
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan 511518, China
| |
Collapse
|
3
|
Zhu F, Li M, Yang Y, Ai F, Fan Y, Deng C, Zeng K, Wei D, Deng Y, Zhang Z. Sensing array based on imidazole-regulated Cu@MOFs nanozymes with enhanced laccase-like activity for the discrimination of phenolic pollutants. Anal Chim Acta 2025; 1338:343592. [PMID: 39832862 DOI: 10.1016/j.aca.2024.343592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/12/2024] [Accepted: 12/26/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND Phenolic pollutants with high toxicity and low biodegradability can disrupt environmental balance and severely affect human health, whereas existing methods are difficult to implement the rapid and high-throughput detection of multiple phenolic pollutants. RESULTS Herein, we developed a four-dimensional colorimetric sensor array based on imidazole-modulated Cu@MOFs for distinguishing and determining phenolic pollutants. Wherein, four Cu@MOFs (ATP@Cu, ADP@Cu, AMP@Cu, and GMP@Cu) nanozyme with laccase-like activity were firstly prepared, and a novel strategy of imidazole-containing molecules-regulated was proposed to improve the laccase-like activity of Cu@MOFs nanozymes. Interestingly, imidazole (IM) exhibited the strongest enhancing effects on the laccase-like activity of the four Cu@MOFs by accelerating electron transfer on the surface of laccase nanozymes and producing more reactive oxygen species. Subsequently, by using Cu@MOFs@IM as the recognition elements of the sensor array, a colorimetric sensor array based on imidazole-modulated Cu@MOFs was developed, and differentiation and classification of phenolic pollutants were carried out using LDA and HCA methods. More importantly, the proposed sensor array could accomplish the identification of 6 phenolic pollutants and their mixtures. SIGNIFICANCE Additionally, the designed sensor array was applied to identify these phenolic pollutants in real water samples, further highlighting the potentials for assessing water pollution.
Collapse
Affiliation(s)
- Fang Zhu
- School of the Environment and Safety Engineering, School of the Emergency Management, Jiangsu University, Zhenjiang, 212013, China
| | - Mengfan Li
- School of the Environment and Safety Engineering, School of the Emergency Management, Jiangsu University, Zhenjiang, 212013, China
| | - Yudi Yang
- School of the Environment and Safety Engineering, School of the Emergency Management, Jiangsu University, Zhenjiang, 212013, China
| | - Fengxiang Ai
- School of the Environment and Safety Engineering, School of the Emergency Management, Jiangsu University, Zhenjiang, 212013, China
| | - Yunxiang Fan
- School of the Environment and Safety Engineering, School of the Emergency Management, Jiangsu University, Zhenjiang, 212013, China
| | - Chunmeng Deng
- School of the Environment and Safety Engineering, School of the Emergency Management, Jiangsu University, Zhenjiang, 212013, China
| | - Kun Zeng
- School of the Environment and Safety Engineering, School of the Emergency Management, Jiangsu University, Zhenjiang, 212013, China
| | - Dali Wei
- School of the Environment and Safety Engineering, School of the Emergency Management, Jiangsu University, Zhenjiang, 212013, China.
| | - Yibin Deng
- Center for Medical Laboratory Science, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China; Key Laboratory of Clinical Molecular Diagnosis and Research for High Incidence Diseases in Western Guangxi, Guangxi, 533000, China.
| | - Zhen Zhang
- School of the Environment and Safety Engineering, School of the Emergency Management, Jiangsu University, Zhenjiang, 212013, China; Center for Medical Laboratory Science, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China; Key Laboratory of Clinical Molecular Diagnosis and Research for High Incidence Diseases in Western Guangxi, Guangxi, 533000, China.
| |
Collapse
|
4
|
Wang X, Tang X, Ji C, Wu L, Zhu Y. Advances and Future Trends in Nanozyme-Based SERS Sensors for Food Safety, Environmental and Biomedical Applications. Int J Mol Sci 2025; 26:709. [PMID: 39859423 PMCID: PMC11765993 DOI: 10.3390/ijms26020709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Nanozymes, a kind of nanoparticles with enzyme-mimicking activities, have attracted considerable attention due to their robust catalytic properties, ease of preparation, and resistance to harsh conditions. By combining nanozymes with surface-enhanced Raman spectroscopy (SERS) technology, highly sensitive and selective sensors have been developed. These sensors are capable of detecting a wide range of analytes, such as foodborne toxins, environmental pollutants, and biomedical markers. This review provides an overview of recent advancements in the synthesis and surface modification of nanozymes, highlighting their ability to mimic multiple enzymes and enhance catalytic performance. In addition, we explore the development and applications of nanozyme-based SERS sensors in food contaminants, environmental pollutants, and biomedical markers. The review concludes with perspectives and challenges facing the field, involving the need for deeper understanding of nanozyme principles and mechanisms, development of standardized systems for characterization, and the engineering of nanozymes with tailored properties for specific applications. Finally, we discuss the potential for integrating various techniques with nanozymes to create multi-modal detection platforms, paving the way for the next generation of analytical tools in the fields of food safety, environmental monitoring, and biomedical diagnostics.
Collapse
Affiliation(s)
- Xingyu Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China;
| | - Xuemei Tang
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Chengzhen Ji
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Long Wu
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, School of Food Science and Engineering, Hainan University, Haikou 570228, China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China
| | - Yongheng Zhu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China;
| |
Collapse
|
5
|
Wu S, Khan MA, Huang T, Liu X, Kang R, Zhao H, Cao H, Ye D. Smartphone-assisted colorimetric sensor arrays based on nanozymes for high throughput identification of heavy metal ions in salmon. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135887. [PMID: 39305600 DOI: 10.1016/j.jhazmat.2024.135887] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/30/2024] [Accepted: 09/16/2024] [Indexed: 12/01/2024]
Abstract
The rapid, precise, and high-throughput identification of multiple heavy metals ions holds immense importance in ensuring food safety and promoting public health. This study presents a novel smartphone-assisted colorimetric sensor array for the rapid and precise detection of multiple heavy metals ions. The sensor array is based on three signal recognition elements (AuPt@Fe-N-C, AuPt@N-C, and Fe-N-C) and the presence of different heavy metal ions affects the nanozymes-chromogenic substrate (TMB) catalytic color production, enabling the differentiation and quantification of various heavy metal ions. Combined with a smartphone-based RGB mode, the colorimetric sensor array can successfully identify five different heavy metal ions (Hg2+, Pb2+, Co2+, Cr6+, and Fe3+) as low as 0.5 μM and different ratios of binary and ternary mixed heavy metal ions in just 5 min. The sensor array successfully tested seawater and salmon samples with a total heavy metal content of 10 μM in the South China Sea (Haikou and Wenchang). Overall, this study highlights the potential of smartphone-assisted colorimetric sensor arrays for the rapid and precise detection of multiple heavy metal ions, which could significantly contribute to food safety and public health monitoring.
Collapse
Affiliation(s)
- Shuo Wu
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Muhammad Arif Khan
- Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| | - Tianzeng Huang
- School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, PR China
| | - Xing Liu
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Rui Kang
- Hainan Institute for Food Control, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou 570314, PR China
| | - Hongbin Zhao
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Hongmei Cao
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China; Hainan Institute for Food Control, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou 570314, PR China.
| | - Daixin Ye
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
6
|
Xu L, Luo ML, Dai JJ, Zhu H, Li P, Wang D, Yang FQ. Applications of nanomaterials with enzyme-like activity for the detection of phytochemicals and hazardous substances in plant samples. Chin Med 2024; 19:140. [PMID: 39380087 PMCID: PMC11462967 DOI: 10.1186/s13020-024-01014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024] Open
Abstract
Plants such as herbs, vegetables, fruits, and cereals are closely related to human life. Developing effective testing methods to ensure their safety and quantify their active components are of significant importance. Recently, nanomaterials with enzyme-like activity (known as nanozymes) have been widely developed in various assays, including colorimetric, fluorescence, chemiluminescence, and electrochemical analysis. This review presents the latest advances in analyzing phytochemicals and hazardous substances in plant samples based on nanozymes, including some active ingredients, organophosphorus pesticides, heavy metal ions, and mycotoxins. Additionally, the current shortcomings and challenges of the actual sample analysis were discussed.
Collapse
Affiliation(s)
- Lei Xu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, People's Republic of China
| | - Mao-Ling Luo
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, People's Republic of China
| | - Jing-Jing Dai
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, People's Republic of China
| | - Huan Zhu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, People's Republic of China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Dan Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, People's Republic of China
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, People's Republic of China.
| |
Collapse
|
7
|
Luo L, Li J, Bi X, Jiang P, Li L, Qiao G, You T. Engineering "three-in-one" fluorescent nanozyme of Ce-Au NCs for on-site visual detection of Hg 2. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134967. [PMID: 38936190 DOI: 10.1016/j.jhazmat.2024.134967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
Hg2+ contamination poses a serious threat to the environment and human health. Although gold nanoclusters (Au NCs) have been utilized as fluorescence probes or colorimetric nanozymes for performing Hg2+ assays by using a single method, designing multifunctional nanoclusters as fluorescent nanozyme remains challenging. Herein, Ce-aggregated gold nanoclusters (Ce-Au NCs) were reported with "three in one" functions to generate strong fluorescence, excellent peroxidase-like activity, and the highly specific recognition of Hg2+ via its metallophilic interaction. A portable fluorescence and colorimetric dual-mode sensing device based on Ce-Au NCs was developed for on-site visual analysis of Hg2+. In the presence of Hg2+, fluorescence was effectively quenched and the paper-based chips gradually darkened from green till they became completely absent, while peroxidase-like activity was significantly enhanced. Two independent signals were captured by one identification unit, which provided self-validation to improve reliability and accuracy. Therefore, this work presents a simple synthesis of a multifunctional fluorescent nanozyme, and the developed portable device for on-site visual detection has considerable potential for application in the rapid on-site analysis of heavy metal ions in the environment.
Collapse
Affiliation(s)
- Lijun Luo
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jiamin Li
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Tianjin Lishen Battery Joint-Stock Co., Ltd, Tianjin 300000, China
| | - Xiaoya Bi
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Panao Jiang
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Libo Li
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Jiangsu Province and Education Ministry Co-sponsored Synergistic Innovation Center of Modern Agricultural Equipment, Jiangsu University, Zhenjiang 212013, China.
| | - Guanjun Qiao
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, Henan 471003, China.
| |
Collapse
|
8
|
Guo J, Li J, Xing X, Xiong W, Li H. Development of MOF-derived Co 3O 4 microspheres composed of fiber stacks for simultaneous electrochemical detection of Pb 2+ and Cu 2. Mikrochim Acta 2024; 191:542. [PMID: 39153097 PMCID: PMC11330412 DOI: 10.1007/s00604-024-06623-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/31/2024] [Indexed: 08/19/2024]
Abstract
As an ideal transition metal oxide, Co3O4 is a P-type semiconductor with excellent electrical conductivity, non-toxicity and low cost. This work reports the successful construction of Co3O4 materials derived from metal-organic frameworks (MOFs) using a surfactant micelle template-solvothermal method. The modified electrodes are investigated for their ability to electrochemically detect Pb2+ and Cu2+ in aqueous environments. By adjusting the mass ratios of alkaline modifiers, the morphological microstructures of Co3O4-X exhibit a transition from distinctive microspheres composed of fiber stacks to rods. The results indicate that Co3O4-1(NH4F/CO(NH2)2 = 1:0) has a distinctive microsphere structure composed of stacked fibers, unlike the other two materials. Co3O4-1/GCE is used as the active material of the modified electrode, it shows the largest peak response currents to Pb2+ and Cu2+, and efficiently detects Pb2+ and Cu2+ in the aqueous environment individually and simultaneously. The linear response range of Co3O4-1/GCE for the simultaneous detection of Pb2+ and Cu2+ is 0.5-1.5 μM, with the limits of detection (LOD, S/N = 3) are 9.77 nM and 14.97 nM, respectively. The material exhibits a favorable electrochemical response, via a distinctive Co3O4-1 microsphere structure composed of stacked fibers. This structure enhances the number of active adsorption sites on the material, thereby facilitating the adsorption of heavy metal ions (HMIs). The presence of oxygen vacancies (OV) can also facilitate the adsorption of ions. The Co3O4-1/GCE electrode also exhibits excellent anti-interference ability, stability, and repeatability. This is of great practical significance for detecting Pb2+ and Cu2+ in real water samples and provides a new approach for developing high-performance metal oxide electrochemical sensors derived from MOFs.
Collapse
Affiliation(s)
- Jieli Guo
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Hubei Key Laboratory of Novel Reactor & Green Chemical Technology, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Jin Li
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Hubei Key Laboratory of Novel Reactor & Green Chemical Technology, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Xiujing Xing
- Chemistry Department, University of California, Davis, 95616, USA
| | - Wei Xiong
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Hubei Key Laboratory of Novel Reactor & Green Chemical Technology, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Hao Li
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan.
| |
Collapse
|
9
|
Bu L, Li S, Nie L, Jiang L, Dong G, Song D, Liu W, Geng X, Meng D, Zhou Q. Construction of fluorescent sensor array with nitrogen-doped carbon dots for sensing Sudan Orange G and identification of various azo compounds. J Colloid Interface Sci 2024; 667:403-413. [PMID: 38640659 DOI: 10.1016/j.jcis.2024.04.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/07/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
In this study, nitrogen-doped carbon dots (N-CDs) were facilely fabricated by one-pot hydrothermal method with levulinic acid and triethanolamine. A fluorescent sensor array was established for identifying azo compounds including Sudan Orange G (SOG), p-diaminoazobenzene, p-aminoazobenzene, azobenzene and quantitative detection of SOG. Experimental results revealed that azo compounds could quench the fluorescent intensity of N-CDs. Owing to various azo compounds showing different affinities to N-CDs, the sensor array exhibited different fluorescence quenching changes, which were further analyzed with principal component analysis to discriminate azo compounds. The sensor array was able to differentiate and recognize diverse concentrations of azo compounds from 0.25 to 2 mg/L. Simultaneously, a variety of factors affecting the detection of SOG were optimized. Under the optimized conditions, the sensor showed excellent stability and sensitivity. The sensor possessed marvelous linearity in the range of 0.1-1 mg/L and 1-4 mg/L and the detection limit was 27.82 μg/L. Spiked recoveries of 90.8-98.2 % were attained at spiked levels of 0.2 mg/L and 1 mg/L, demonstrating that the constructed fluorescence sensor was dependable and feasible for sensing SOG in environmental water samples.
Collapse
Affiliation(s)
- Lutong Bu
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Shuangying Li
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Linchun Nie
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Liushan Jiang
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Guangyu Dong
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Denghao Song
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Wenjing Liu
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Xiaodie Geng
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Dejing Meng
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Qingxiang Zhou
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China.
| |
Collapse
|
10
|
Lin Y, Cheng JH, Ma J, Zhou C, Sun DW. Elevating nanomaterial optical sensor arrays through the integration of advanced machine learning techniques for enhancing visual inspection of food quality and safety. Crit Rev Food Sci Nutr 2024:1-22. [PMID: 39015031 DOI: 10.1080/10408398.2024.2376113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Food quality and safety problems caused by inefficient control in the food chain have significant implications for human health, social stability, and economic progress and optical sensor arrays (OSAs) can effectively address these challenges. This review aims to summarize the recent applications of nanomaterials-based OSA for food quality and safety visual monitoring, including colourimetric sensor array (CSA) and fluorescent sensor array (FSA). First, the fundamental properties of various advanced nanomaterials, mainly including metal nanoparticles (MNPs) and nanoclusters (MNCs), quantum dots (QDs), upconversion nanoparticles (UCNPs), and others, were described. Besides, the diverse machine learning (ML) and deep learning (DL) methods of high-dimensional data obtained from the responses between different sensing elements and analytes were presented. Moreover, the recent and representative applications in pesticide residues, heavy metal ions, bacterial contamination, antioxidants, flavor matters, and food freshness detection were comprehensively summarized. Finally, the challenges and future perspectives for nanomaterials-based OSAs are discussed. It is believed that with the advancements in artificial intelligence (AI) techniques and integrated technology, nanomaterials-based OSAs are expected to be an intelligent, effective, and rapid tool for food quality assessment and safety control.
Collapse
Affiliation(s)
- Yuandong Lin
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Ji Ma
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Chenyue Zhou
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Ireland
| |
Collapse
|
11
|
Aihaiti A, Wang J, Zhang W, Shen M, Meng F, Li Z, Zhang Y, Ren M, Zhang M. Recent advances and trends in innovative biosensor-based devices for heavy metal ion detection in food. Compr Rev Food Sci Food Saf 2024; 23:e13358. [PMID: 38923121 DOI: 10.1111/1541-4337.13358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 06/28/2024]
Abstract
Low-cost, reliable, and efficient biosensors are crucial in detecting residual heavy metal ions (HMIs) in food products. At present, based on distance-induced localized surface plasmon resonance of noble metal nanoparticles, enzyme-mimetic reaction of nanozymes, and chelation reaction of metal chelators, the constructed optical sensors have attracted wide attention in HMIs detection. Besides, based on the enrichment and signal amplification strategy of nanomaterials on HMIs and the construction of electrochemical aptamer sensing platforms, the developed electrochemical biosensors have overcome the plague of low sensitivity, poor selectivity, and the inability of multiplexed detection in the optical strategy. Moreover, along with an in-depth discussion of these different types of biosensors, a detailed overview of the design and application of innovative devices based on these sensing principles was provided, including microfluidic systems, hydrogel-based platforms, and test strip technologies. Finally, the challenges that hinder commercial application have also been mentioned. Overall, this review aims to establish a theoretical foundation for developing accurate and reliable sensing technologies and devices for HMIs, thereby promoting the widespread application of biosensors in the detection of HMIs in food.
Collapse
Affiliation(s)
- Aihemaitijiang Aihaiti
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Ürümqi, China
| | - Jingkang Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Ürümqi, China
| | - Wenrui Zhang
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning, China
| | - Mingping Shen
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Ürümqi, China
| | - Fanxing Meng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Ürümqi, China
| | - Zongda Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Ürümqi, China
| | - Yukun Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Ürümqi, China
| | - Mengyao Ren
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Ürümqi, China
| | - Minwei Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Ürümqi, China
| |
Collapse
|
12
|
Tian T, Song D, Zhang L, Huang H, Li Y. Facile and selective recognition of sulfonylurea pesticides based on the multienzyme-like activities enhancement of nanozymes combining sensor array. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133847. [PMID: 38422731 DOI: 10.1016/j.jhazmat.2024.133847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
Traditional identification methods based on cholinesterase inhibition are limited to recognizing organic phosphorus and carbamate esters, and their response to sulfonylurea pesticides is weak. Residual sulfonylurea pesticides can pose a threat to human health. So, it is very important to develop an effective, rapid and portable method for sulfonylurea pesticides detection. Herein, we first found that sulfonylurea pesticides have activity-enhancing effects on copper-based nanozymes, and then combined them with the array technology to construct a six-channel sensing array method for selectively identifying sulfonylurea pesticides and detecting total concentration of sulfonylurea pesticides (the limit of detection was 0.03 µg/mL). This method has good selectivity towards sulfonylurea pesticides. In addition, a smartphone-based colorimetric paper sensor analysis method was developed to achieve the on-site detection of the total concentration of sulfonylurea pesticides. And this array can also be used for individual differentiation (1-100 µg/mL). Our work not only investigates the specific responses of copper-based nanozymes to sulfonylurea pesticides, but also develops a simple method that contributes to directly detect sulfonylurea pesticides at the source of pollution, providing insights for further research on sulfonylurea pesticides detection and filling the gap in pesticide residue studies.
Collapse
Affiliation(s)
- Tian Tian
- College of Food Science and Engineering, Jilin University, Changchun 130025, PR China
| | - Donghui Song
- College of Food Science and Engineering, Jilin University, Changchun 130025, PR China
| | - Ling Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130025, PR China
| | - Hui Huang
- College of Food Science and Engineering, Jilin University, Changchun 130025, PR China
| | - Yongxin Li
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, College of New Energy and Environment, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
13
|
Zhang J, Hu H, Wang J, Lu K, Zhou Y, Zhao L, Peng J. Gold nanoclusters-based fluorescence sensor array for herbicides qualitative and quantitative analysis. Anal Chim Acta 2024; 1298:342380. [PMID: 38462337 DOI: 10.1016/j.aca.2024.342380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 03/12/2024]
Abstract
Herbicides have been extensively used around the world, which poses a potential hazard to humans and wildlife. Accurate detection of herbicides is crucial for the environment and human health. Herein, a simple and sensitive fluorescence sensor array was constructed for discrimination and identification of herbicides. Fluorescent gold nanoclusters modified with 11-mercaptoundecanoic acid or reduced glutathione were prepared, respectively. Metal ions quenched the fluorescence of nanoclusters through coordination and leading to the aggregation of gold nanoclusters. The addition of auxin herbicides (2,4-dichlorophenoxyacetic acid, 2-methyl-4-chlorophenoxyacetic acid, decamba, picloram, quinclorac) restored the fluorescence of nanoclusters with different degrees. The mechanism study showed auxin herbicides can bind with metal ions and re-disperse the gold nanoclusters from the aggregation state. The "on-off-on" fluorescent sensor array was constructed basic on above detection mechanism. Combined with principal component analysis (PCA) and hierarchical cluster analysis (HCA) methods, auxin herbicides are well separated on 2D/3D PCA score plots and HCA dendrogram in the range of 40-500 μm. In addition, the fluorescence sensor array performed successful in detecting real samples and blind samples. The developed sensor system shows a promising in practical detection of herbicides.
Collapse
Affiliation(s)
- Jingyu Zhang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Huihui Hu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Jian Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Keqiang Lu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Yunyun Zhou
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Lingzhi Zhao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Juanjuan Peng
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
14
|
Liu B, Tang Z, Pan J, Liu J, Zhu H, Hu P, Niu X. Triple-Emission Single Sensing Element-Enabled Ratiometric Fluorescent Array Identification of Multiple Antibiotics. ACS Sens 2024; 9:433-443. [PMID: 38097397 DOI: 10.1021/acssensors.3c02229] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Given that intricate toxicological profiles exist among different antibiotics and pose serious threats to the environment and human health, synchronous analysis of multiple residues becomes crucial. Sensor arrays show potential to achieve the above purpose, but it is challenging to develop easy-to-use and high-sensitivity tools because the state-of-the-art arrays often require more than one recognition unit and are monosignal dependent. Here we exquisitely designed a fluorescent nanoprobe (2-aminoterephthalic acid-anchored CdTe quantum dots with Eu3+ coordination, CdTe-ATPA-Eu3+) featuring triple emissions at the same excitation as the only element to fabricate a luminescent sensor array with ratiometric calculations for identifying multiple antibiotics. By taking tetracycline, chlortetracycline, doxycycline, oxytetracycline, penicillin G, and sulfamethoxazole as models, the six species exhibited distinguishable motivation or/and quenching impacts on the three emissions of CdTe-ATPA-Eu3+, which were employed as indicators to perform the ratiometric logical operation and further combined with pattern recognition analysis for multitarget determination. Evidently, such a design exhibits two advances: (1) with the triple-emission probe as the sole receptor requiring neither internal nor external adjustments, the fabricated array acts as an extremely facile tool for multianalyte detection; (2) the ratiometric calculations offer excellent sensitivity and reliability for high-performance determination. Consequently, accurate identification and quantification of individual antibiotics and their combinations at various levels were verified in both laboratory and practical matrices. Our work provides a new tool for simultaneously detecting multiple antibiotics, and it will inspire the development of advanced sensor arrays for multitarget analysis.
Collapse
Affiliation(s)
- Bangxiang Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zheng Tang
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jinjin Liu
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Hengjia Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Panwang Hu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiangheng Niu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
- Fujian Key Laboratory of Functional Marine Sensing Materials, Minjiang University, Fuzhou 350108, China
- Shandong Key Laboratory of Biochemical Analysis, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
15
|
Yu X, Pu H, Sun DW. Developments in food neonicotinoids detection: novel recognition strategies, advanced chemical sensing techniques, and recent applications. Crit Rev Food Sci Nutr 2023; 65:1216-1234. [PMID: 38149655 DOI: 10.1080/10408398.2023.2290698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Neonicotinoid insecticides (NEOs) are a new class of neurotoxic pesticides primarily used for pest control on fruits and vegetables, cereals, and other crops after organophosphorus pesticides (OPPs), carbamate pesticides (CBPs), and pyrethroid pesticides. However, chronic abuse and illegal use have led to the contamination of food and water sources as well as damage to ecological and environmental systems. Long-term exposure to NEOs may pose potential risks to animals (especially bees) and even human health. Consequently, it is necessary to develop effective, robust, and rapid methods for NEOs detection. Specific recognition-based chemical sensing has been regarded as one of the most promising detection tools for NEOs due to their excellent selectivity, sensitivity, and robust interference resistance. In this review, we introduce the novel recognition strategies-enabled chemical sensing in food neonicotinoids detection in the past years (2017-2023). The properties and advantages of molecular imprinting recognition (MIR), host-guest recognition (HGR), electron-catalyzed recognition (ECR), immune recognition (IR), aptamer recognition (AR), and enzyme inhibition recognition (EIR) in the development of NEOs sensing platforms are discussed in detail. Recent applications of chemical sensing platforms in various food products, including fruits and vegetables, cereals, teas, honey, aquatic products, and others are highlighted. In addition, the future trends of applying chemical sensing with specific recognition strategies for NEOs analysis are discussed.
Collapse
Affiliation(s)
- Xinru Yu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland
| |
Collapse
|
16
|
Yu J, Huang M, Tian H, Xu X. Silver Nanoparticle Sensor Array-Based Meat Freshness Inspection System. Foods 2023; 12:3814. [PMID: 37893707 PMCID: PMC10606817 DOI: 10.3390/foods12203814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
The series of biochemical reactions, metabolic pathways, and regulatory interactions that occur during the storage of meat are the main causes of meat loss and waste. The volatile compounds produced by these reactions, such as hydrogen sulfide, acids, and amines, can directly indicate changes in the freshness of meat during storage and sales. In this study, a one-pot hydrothermal method based on a surface control strategy was used to develop nanoparticles of silver with different reactivities, which were further immobilized in agar powder to develop a colorimetric sensor array. Due to the different chemical interactions with various volatile compounds, the colorimetric sensor array exhibited distinct color changes. The study demonstrates significant differences between 12 different volatile compounds and provides a quantitative and visual method to reveal rich detection indicators. The colorimetric sensor array is an economical and practical multi-analyte identification method. It has many potential applications such as food packaging, anti-counterfeiting, health monitoring, environmental monitoring, and optical filters.
Collapse
Affiliation(s)
- Jiahang Yu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.Y.); (M.H.); (H.T.)
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou 239000, China
| | - Mingyuan Huang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.Y.); (M.H.); (H.T.)
| | - Huixin Tian
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.Y.); (M.H.); (H.T.)
| | - Xinglian Xu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.Y.); (M.H.); (H.T.)
| |
Collapse
|