1
|
Han F, Zhou Z, Liu C, Lu Z, Tian L, Li X. Dynamic microbial community assembly and molecular ecological network responses in biological activated carbon filters: effects of algal organic matter exposure and empty bed contact time. ENVIRONMENTAL RESEARCH 2025; 279:121833. [PMID: 40368045 DOI: 10.1016/j.envres.2025.121833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Revised: 05/03/2025] [Accepted: 05/10/2025] [Indexed: 05/16/2025]
Abstract
Biological activated carbon (BAC) filtration plays a crucial role in advanced drinking water treatment. Recent researches have shifted from decontamination performance evaluation to process optimization and customization of microbial communities. The responses of microbial communities to seasonal water quality variations caused by algal outbreaks or deaths, and operational conditions of filtration medium and empty bed contact time (EBCT), along with dynamics of assembly processes and molecular ecological networks remain insufficiently understood. Herein, the decontamination performance of four BAC columns packed with varied physicochemical properties of granular activated carbon (GAC), exposed to algal organic matter (AOM) and changes of EBCT was investigated. Microbial diversity, assembly mechanisms, and dynamics of molecular ecological networks were systematically evaluated. Results showed that coal-based BAC exhibited superior decontamination performance under AOM exposure, with average removals of CODMn (47.23 %), UV254 (55.82 %), and NH4+-N (65.01 %), along with higher microbial diversity and richness than that of wood-based BAC. AOM exposure increased microbial diversity, while shortened EBCT reduced it. Deterministic processes in community assembly intensified under both AOM exposure and a shortened EBCT of 10 min, the proportion were up to 82 % and 75 %, respectively. AOM exposure increased network scale and complexity, whereas the opposite trend was observed with a shortened EBCT of 10min. Structural equation modeling identified that influent water quality (path coefficient = 1.00) was the dominant driver of microbial diversity, followed by GAC properties (0.30) and EBCT (-0.35). These findings provide insights for microbial community customization and BAC process optimization to control algal-derived organic contamination.
Collapse
Affiliation(s)
- Fei Han
- College of Architecture & Civil Engineering, Beijing University of Technology, Beijing, 100124, China.
| | - Zhiwei Zhou
- College of Architecture & Civil Engineering, Beijing University of Technology, Beijing, 100124, China.
| | - Chaoran Liu
- Beijing Waterworks Group Co., LTD, Beijing, 100031, China.
| | - Zedong Lu
- College of Architecture & Civil Engineering, Beijing University of Technology, Beijing, 100124, China.
| | - Liping Tian
- Weifang Municipal Public Utility Service Center, Weifang, 261041, China.
| | - Xing Li
- College of Architecture & Civil Engineering, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
2
|
Shi H, Huang X, Hou W, Liu H, Li W, Kim Y, Yu J. Long-term storage of rainwater: Assessing the efficacy of disinfection methods on water quality and pathogenic species dynamics. ENVIRONMENTAL RESEARCH 2025; 271:121066. [PMID: 39922255 DOI: 10.1016/j.envres.2025.121066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/05/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
Ultraviolet (UV) disinfection and solar pasteurization are commonly used methods for rainwater treatment, but the changes in water quality and pathogenic species during long-term storage require further investigation. This study conducts a 60-day static rainwater storage experiment to evaluate changes in microbial community structure and pathogen characteristics under different disinfection methods, providing guidance for the resource utilization of rainwater. The results show that both UV disinfection and solar pasteurization effectively reduce microbial diversity and the abundance of pathogenic species. During storage, UV disinfection is particularly effective in controlling pathogenic species, while solar pasteurization has a more pronounced effect on improving water quality. Pathogens species in UV-disinfected rainwater begin to increase around the 20th day of storage, whereas their growth in solar-pasteurized rainwater persists throughout the storage period. UV-disinfected rainwater is suitable for domestic non-potable uses and livestock in the early stages, but as storage time increases, it becomes more appropriate for agricultural use. The lowest health risk occurs on the 20th day, with secondary disinfection recommended on the 60th day. Similarly, during the first 20 days, solar pasteurized rainwater is comparable to UV-disinfected rainwater in terms of usability. However, by the 60th day, due to an increase in animal-associated pathogenic species, solar pasteurized rainwater becomes more suitable for agricultural use. Multiple disinfections on the 20th and 60th days are advised to reduce microbial risks. Additionally, UV disinfection reduces pathogenic diversity, forming stable microbial clusters, while solar pasteurization increases diversity and promotes complex interactions. These findings provide new insights into microbial community structure and pathogenic species changes during long-term rainwater storage and offer important guidance for rainwater reuse.
Collapse
Affiliation(s)
- Haoqian Shi
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Xudong Huang
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Wanli Hou
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Haiyang Liu
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Wanqi Li
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Youngchul Kim
- Department of Environmental Engineering, Hanseo University, Seosan City, 356-706, South Korea
| | - Jianghua Yu
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| |
Collapse
|
3
|
Hou T, Lu S, Shao J, Dong X, Yang Z, Yang Y, Yao D, Lin Y. Assessment of planktonic community diversity and stability in lakes and reservoirs based on eDNA metabarcoding--A case study of Minghu National Wetland Park, China. ENVIRONMENTAL RESEARCH 2025; 271:121025. [PMID: 39920970 DOI: 10.1016/j.envres.2025.121025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/17/2025] [Accepted: 02/01/2025] [Indexed: 02/10/2025]
Abstract
To evaluate the potential differences in plankton diversity and stability within freshwater lake and reservoir ecosystems, this study employed eDNA metabarcoding to analyze the diversity, assembly mechanisms, stability, and environmental drivers of plankton communities in natural water (Y region) and artificial lake water (M region) at Liupanshui Minghu National Wetland Park, Guizhou Province, China. The study revealed notable regional variations in plankton diversity and assembly mechanisms. Specifically, Shannon, Simpson, and Pielou's evenness indices were higher in the M region, suggesting a more complex species composition compared to the Y region. Analysis of community assembly mechanisms indicated that both regions were influenced by a combination of stochastic and deterministic processes, with stochastic processes serving as the dominant driver. Through LEfSe analysis, Random Forest predictions, and molecular ecological network evaluations, certain OTUs identified as "dual-characteristic" species were consistently highlighted. These species may play a critical role in shaping community composition and contributing to stability. Environmental drivers further clarified these differences. Redundancy analysis (RDA) demonstrated that TDS was the primary factor driving regional differences in key zooplankton species, while EC and DO were significant factors influencing the distribution of key phytoplankton species. Stability assessments, which combined molecular ecological network analysis and the coefficient of variation in species population density, revealed higher stability in the Y region. This indicates that the natural water system (Y region) has a greater resistance to disturbances compared to the artificial system in the M region. The findings provide fundamental support for assessing the health of aquatic ecosystems, as well as for the effective monitoring and biodiversity conservation of lake and reservoir ecosystems.
Collapse
Affiliation(s)
- Tianye Hou
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, 550025, Guiyang, China; Laboratory of Fishery Resources and Environmental Protection, 550025, Guiyang, China; College of Animal Science, Guizhou University, 550025, Guiyang, China; Special Fishes Research Institute, Guizhou University, 550025, Guiyang, China
| | - Shengchao Lu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, 550025, Guiyang, China; Laboratory of Fishery Resources and Environmental Protection, 550025, Guiyang, China; College of Animal Science, Guizhou University, 550025, Guiyang, China; Special Fishes Research Institute, Guizhou University, 550025, Guiyang, China
| | - Jian Shao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, 550025, Guiyang, China; Laboratory of Fishery Resources and Environmental Protection, 550025, Guiyang, China; College of Animal Science, Guizhou University, 550025, Guiyang, China; Special Fishes Research Institute, Guizhou University, 550025, Guiyang, China
| | - Xianghong Dong
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, 550025, Guiyang, China; Laboratory of Fishery Resources and Environmental Protection, 550025, Guiyang, China; College of Animal Science, Guizhou University, 550025, Guiyang, China; Special Fishes Research Institute, Guizhou University, 550025, Guiyang, China
| | - Zuchang Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, 550025, Guiyang, China; Laboratory of Fishery Resources and Environmental Protection, 550025, Guiyang, China; College of Animal Science, Guizhou University, 550025, Guiyang, China; Special Fishes Research Institute, Guizhou University, 550025, Guiyang, China
| | - Yuanwei Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, 550025, Guiyang, China; Laboratory of Fishery Resources and Environmental Protection, 550025, Guiyang, China; College of Animal Science, Guizhou University, 550025, Guiyang, China; Special Fishes Research Institute, Guizhou University, 550025, Guiyang, China
| | - Dengdiao Yao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, 550025, Guiyang, China; Laboratory of Fishery Resources and Environmental Protection, 550025, Guiyang, China; College of Animal Science, Guizhou University, 550025, Guiyang, China; Special Fishes Research Institute, Guizhou University, 550025, Guiyang, China
| | - Yanhong Lin
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, 550025, Guiyang, China; Laboratory of Fishery Resources and Environmental Protection, 550025, Guiyang, China; College of Animal Science, Guizhou University, 550025, Guiyang, China; Special Fishes Research Institute, Guizhou University, 550025, Guiyang, China.
| |
Collapse
|
4
|
Wu G, Zhang H, Huang T, Song Y, Liu X, Liu X, Wang X, Pei T, Xu G, Wang Z. Hydraulic and thermal performance trigger the deterministic assembly of water microbiomes: From biogeographical homogenization to machine learning model. WATER RESEARCH 2025; 282:123626. [PMID: 40262432 DOI: 10.1016/j.watres.2025.123626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/03/2025] [Accepted: 04/09/2025] [Indexed: 04/24/2025]
Abstract
Water quality at the point of consumption has long been a health issue because of the potential for microbial ecology. However, research on water hydraulic performance remains in its infancy, and in particular, little is known about the effects of thermal performance during winter. This study explored the effects of stagnation and municipal heating on microbial communities in tap water, focusing on spatial and temporal variations in microbial community composition. The results revealed that stagnation significantly alters the microbial community, especially in heating areas, where the temperature exacerbates microbial growth. Furthermore, hydraulic and thermal performance drive deterministic assembly processes in microbial communities, as evidenced by the reductions in β-diversity, normalized stochasticity ratio (NST), and neutral community model (NCM) fit. Machine learning models revealed that stagnation time greater than 8 h results in increased community abundance because of longer exposure to organic matter and nutrients. The study finding illustrate the importance of environmental influences on microbial community dynamics, and provide valuable insights into the water microbial community, particularly in areas with prolonged stagnation.
Collapse
Affiliation(s)
- Guilin Wu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountain, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Haihan Zhang
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountain, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China.
| | - Tinglin Huang
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountain, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Yutong Song
- School of Future Technology, Xi'an University of Architecture and Technology, Xi'an, China
| | - Xiang Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountain, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Xiaoyan Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountain, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Xiaolong Wang
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountain, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Tingting Pei
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountain, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Guojia Xu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountain, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Zhihan Wang
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountain, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| |
Collapse
|
5
|
Miao L, Li W, Li C, Adyel TM, You G, Xu Y, Wu J, Yao Y, Kong M, Feng J, Hou J. Effects of reduced flow gradient on benthic biofilm communities' ecological network and community assembly. ENVIRONMENTAL RESEARCH 2025; 264:120362. [PMID: 39547568 DOI: 10.1016/j.envres.2024.120362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
The intensification of human activities has led to flow reduction and cut-off in most global rivers, seriously affecting riverine organisms and the biogeochemical processes. As key indicators of river ecosystems' structure and function, benthic biofilms play a critical role in driving primary production and material cycling in rivers. This research aimed to investigate the characteristics of microbial communities' complexity and stability during river flow reduction. Benthic biofilms were grown in artificial channels and subjected to eight gradients of flow reduction (represented by flow velocity from 0.4 to 110 cm/s). Biofilms' biodiversity, ecological networks and community assembly of bacteria, fungi and algae were investigated by high-throughput sequencing. Results showed significant differences in community composition and structure under different flow conditions. The eight flow gradients' microbial communities were divided into three groups: low, medium and high flows. The flow reduction led to significant decreases in bacterial and fungal communities' Chao1 index. Low flow conditions enriched the bacterial phyla Oxyphotobacteria, Alphaproteobacteria and Mollicutes, but significantly decreased the fungal phylum Chytridiomycota. Lowering flow reduced the fungal network's number of nodes and increased the algal network's number of edges. Cross-domain interactions network analysis showed a gradual increase in node and edge numbers with decreasing flow, while decreasing average path length. The neutral model predicted stochastic processes primarily drove biofilm community assembly, and that model's explanations decreased as the flow gradient decreased. The null model analysis revealed diffusion limitation as the most common stochastic ecological process for bacterial and algal communities, with reduced flow reducing heterogeneous selection and increasing diffusion-limited processes. This study provides an in-depth analysis of flow reduction's effects on biofilm communities' ecological networks and community assembly.
Collapse
Affiliation(s)
- Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Weiyu Li
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Chaoran Li
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Tanveer M Adyel
- Biosciences and Food Technology Discipline, RMIT University, Melbourne, VIC, 3000, Australia
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Yi Xu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Yu Yao
- School of Environment, Nanjing Normal University, Nanjing, 210023, People's Republic of China.
| | - Ming Kong
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, People's Republic of China.
| | - Jingjie Feng
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, 610065, People's Republic of China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| |
Collapse
|
6
|
Tang S, Luo Z, Zhu L, Yu Y, Zhu M, Yin H, Han L, Xu L, Niu J. Electrochemical degradation of aromatic organophosphate esters: Mechanisms, toxicity changes, and ecological risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136455. [PMID: 39522156 DOI: 10.1016/j.jhazmat.2024.136455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Aromatic organophosphate esters (AOPEs), including triphenyl phosphate (TPHP), tricresyl phosphate (TCP), and 2-ethylhexyl diphenyl phosphate (EHDPP), pose significant health and ecological risks. Electrochemical advanced oxidation process (EAOP) is effective in removing refractory pollutants. In this study, the degradation performance and detoxication ability of AOPEs by EAOP were investigated. Hydroxylation, oxidation, and bond cleavage products were identified as major degradation products (DPs) due to the reaction with ·OH and O₂·-. Toxicity assessments using ecological structure activity relationship (ECOSAR) model and flow cytometry (FCM) revealed the cytotoxicity and aquatic toxicity for DPs were significantly decreased. 16S rRNA gene sequencing of sediment exposure to AOPEs and DPs were applied to assess ecological toxicity, and results showed reduced bacterial richness and diversity with EHDPP and TCP, while TPHP slightly enhanced richness. AOPEs and DPs altered bacterial genera involved in carbon, nitrogen, sulfur cycling and organic compound degradation. Bacterial community assembly suggested elevated stochastic processes and reduced ecotoxicity, confirming AOPEs can be effectively detoxified by 10-min EAOP treatment. Molecular ecological network analysis indicated increased complexity and stability of bacterial communities with DPs. These findings comprehensively revealed the toxicity of AOPEs and their DPs and provided the first evidence of effective degradation and detoxification by EAOP from ecotoxicological perspective.
Collapse
Affiliation(s)
- Shaoyu Tang
- Research Center for Eco-Environmental Engineering, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Zhujun Luo
- Research Center for Eco-Environmental Engineering, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China.
| | - Linbin Zhu
- Research Center for Eco-Environmental Engineering, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Yuanyuan Yu
- China Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Minghan Zhu
- Research Center for Eco-Environmental Engineering, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China; China Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Hua Yin
- China Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Lanfang Han
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Lei Xu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Junfeng Niu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
7
|
Liu Q, Duan X, Zhang Y, Duan L, Zhang X, Liu F, Li D, Zhang H. Rainfall seasonality shapes microbial assembly and niche characteristics in Yunnan Plateau lakes, China. ENVIRONMENTAL RESEARCH 2024; 257:119410. [PMID: 38871273 DOI: 10.1016/j.envres.2024.119410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Microorganisms are crucial components of freshwater ecosystems. Understanding the microbial community assembly processes and niche characteristics in freshwater ecosystems, which are poorly understood, is crucial for evaluating microbial ecological roles. The Yunnan Plateau lakes in China represent a freshwater ecosystem that is experiencing eutrophication due to anthropogenic activities. Here, variation in the assembly and niche characteristics of both prokaryotic and microeukaryotic communities was explored in Yunnan Plateau lakes across two seasons (dry season and rainy season) to determine the impacts of rainfall and environmental conditions on the microbial community and niche. The results showed that the environmental heterogeneity of the lakes decreased in the rainy season compared to the dry season. The microbial (bacterial and microeukaryotic) α-diversity significantly decreased during the rainy season. Deterministic processes were found to dominate microbial community assembly in both seasons. β-Diversity decomposition analysis revealed that microbial community compositional dissimilarities were dominated by species replacement processes. The co-occurrence networks indicated reduced species complexity for microbes and a destabilized network for prokaryotes prior to rainfall, while the opposite was found for microeukaryotes following rainfall. Microbial niche breadth decreased significantly in the rainy season. In addition, lower prokaryotic niche overlap, but greater microeukaryotic niche overlap, was observed after rainfall. Rainfall and environmental conditions significantly affected the microbial community assembly and niche characteristics. It can be concluded that rainfall and external pollutant input during the seasonal transition alter the lake environment, thereby regulating the microbial community and niche in these lakes. Our findings offer new insight into microbiota assembly and niche patterns in plateau lakes, further deepening the understanding of freshwater ecosystem functioning.
Collapse
Affiliation(s)
- Qi Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650500, China
| | - Xinlu Duan
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650500, China
| | - Yang Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650500, China
| | - Lizeng Duan
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650500, China
| | - Xiaonan Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650500, China
| | - Fengwen Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650500, China
| | - Donglin Li
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650500, China
| | - Hucai Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650500, China; Southwest United Graduate School, Kunming, 650500, Yunnan, China.
| |
Collapse
|
8
|
Gao D, Wu X, Huang Y, Zhou S, Wang G, Li B. Deciphering the interplay between wastewater compositions and oxytetracycline in recovered struvite: Unveiling mechanisms and introducing control strategies. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135259. [PMID: 39047570 DOI: 10.1016/j.jhazmat.2024.135259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Struvite recovery from wastewater offers a sustainable phosphorus and nitrogen source, yet it harbors the challenge of variable antibiotic residues, notably oxytetracycline (OTC), increasing the ecological risk during subsequent use. Despite the need, mechanisms behind these residues and regulatory solutions remain obscure. We characterized OTC in recovered struvite and showed that increased dissolved organic matter (DOM) enhanced OTC accumulation, while PO43- suppressed it. NH4+ modulated OTC levels through the saturation index (SI), with a rise in SI significantly reducing OTC content. Additionally, excess Mg2+ formed complexes with OTC and DOM (humic acid, HA), leading to increased residue levels. Complexation was stronger at higher pH, whereas electrostatic interactions dominated at lower pH. The primary binding sites for antibiotics and DOM were Mg-OH and P-OH groups in struvite. OTC's dimethylamino, amide, and phenolic diketone groups primarily bound to struvite and DOM, with the carboxyl group of DOM serving as the main binding site. Mg2+ complexation was the primary pathway for OTC transportation, whereas electrostatic attraction of PO43- dominated during growth. Controlling magnesium (Mg) dosage and adjusting pH were effective for reducing OTC in recovered products. Our findings provided insights into the intricate interactions between struvite and antibiotics, laying the groundwork for further minimizing antibiotic residues in recovered phosphorus products.
Collapse
Affiliation(s)
- Degui Gao
- Water Research Center, Tsinghua Shenzhen International Graduate School, Tsinghua, Shenzhen 518055, China
| | - Xiaofeng Wu
- Water Research Center, Tsinghua Shenzhen International Graduate School, Tsinghua, Shenzhen 518055, China
| | - Yuefei Huang
- Water Research Center, Tsinghua Shenzhen International Graduate School, Tsinghua, Shenzhen 518055, China; School of Water Resources and Electric Power, Key Laboratory of Ecological Protection and High Quality Development in the Upper Yellow River, Key Laboratory of Water Ecological Remediation and Protection at Headwater Regions of Big Rivers, Ministry of Water Resources, Qinghai University, Xining, Qinghai, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture, China
| | - Guangqian Wang
- Water Research Center, Tsinghua Shenzhen International Graduate School, Tsinghua, Shenzhen 518055, China
| | - Bing Li
- Water Research Center, Tsinghua Shenzhen International Graduate School, Tsinghua, Shenzhen 518055, China.
| |
Collapse
|
9
|
Yang Z, Wang Y, Lukwambe B, Nicholaus R, Yang W, Zhu J, Zheng Z. Using ozone nanobubbles, and microalgae to promote the removal of nutrients from aquaculture wastewater: Insights from the changes of microbiomes. ENVIRONMENTAL RESEARCH 2024; 257:119349. [PMID: 38844029 DOI: 10.1016/j.envres.2024.119349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
Integrated aquaculture wastewater treatment systems (IAWTSs) are widely used in treating aquaculture wastewater with the aeration-microalgae unit serving as an important component. In this study, we artificially constructed an IAWTS and applied two aeration-microalgae methods: ordinary aeration or ozone nanobubbles (ONBs) with microalgae (Nannochloropsis oculata). The impact of N.oculata and ONBs on the removal performance of nutrients and the underlying micro-ecological mechanisms were investigated using 16S rRNA gene amplicon sequencing. The results demonstrated that the combined use of ONBs and N.oculata exhibited superior purification effects with 78.25%, 76.59% and 86.71% removal of CODMn, TN and TP. N.oculata played a pivotal role as the primary element in wastewater purification, while ONBs influenced nutrient dynamics by affecting both N.oculata and bacterial communities. N.oculata actively shaped bacterial communities, with a specific focus on nitrogen and phosphorus cycling in the micro-environment remodeled by ONBs. Rare bacterial communities displayed heightened activity in response to the changes in N.oculata, ONBs, and nutrient levels. These findings provide a novel approach to improve the technological processes the IAWTS, contributing to the advancement of sustainable aquaculture practices by offering valuable insights into wastewater purification efficiency and micro-ecological mechanisms.
Collapse
Affiliation(s)
- Zhao Yang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Yangcai Wang
- Ningbo Academy of Oceanology and Fishery, Ningbo, 315048, China.
| | - Betina Lukwambe
- School of Aquatic Sciences and Fisheries Technology, University of Dar es Salaam, Tanzania
| | - Regan Nicholaus
- Department of Natural Sciences, Mbeya University of Science and Technology, Tanzania
| | - Wen Yang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Jinyong Zhu
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Zhongming Zheng
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
10
|
Pickering L, Castro-Gutierrez V, Holden B, Haley J, Jarvis P, Campo P, Hassard F. How bioaugmentation for pesticide removal influences the microbial community in biologically active sand filters. CHEMOSPHERE 2024; 363:142956. [PMID: 39074664 DOI: 10.1016/j.chemosphere.2024.142956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/10/2024] [Accepted: 07/25/2024] [Indexed: 07/31/2024]
Abstract
Removing pesticides from biological drinking water filters is challenging due to the difficulty in activating pesticide-degrading bacteria within the filters. Bioaugmented bacteria can alter the filter's microbiome, affecting its performance either positively or negatively, depending on the bacteria used and their interaction with native microbes. We demonstrate that adding specific bacteria strains can effectively remove recalcitrant pesticides, like metaldehyde, yielding compliance to regulatory standards for an extended period. Our experiments revealed that the Sphingobium CMET-H strain was particularly effective, consistently reducing metaldehyde concentrations to levels within regulatory compliance, significantly outperforming Acinetobacter calcoaceticus E1. This success is attributed to the superior acclimation and distribution of the Sphingobium strain within the filter bed, facilitating more efficient interactions with and degradation of the pesticide, even when present at lower population densities compared to Acinetobacter calcoaceticus E1. Furthermore, our study demonstrates that the addition of pesticide-degrading strains significantly impacts the filter's microbiome at various depths, despite these strains making up less than 1% of the total microbial community. The sequence in which these bacteria are introduced influences the system's ability to degrade pesticides effectively. This research shows the potential of carefully selected and dosed bioaugmented bacteria to improve the pesticide removal capabilities of water filtration systems, while also highlighting the dynamics between bioaugmented and native microbial communities. Further investigation into optimizing bioaugmentation strategies is suggested to enhance the resilience and efficiency of drinking water treatment systems against pesticide contamination.
Collapse
Affiliation(s)
- Laura Pickering
- Cranfield University, College Road, Cranfield, Bedfordshire, MK43 0AL, UK
| | - Victor Castro-Gutierrez
- Environmental Pollution Research Center (CICA), University of Costa Rica, Montes de Oca, 11501, Costa Rica
| | | | - John Haley
- UK Water Industry Research Limited, London, UK
| | - Peter Jarvis
- Cranfield University, College Road, Cranfield, Bedfordshire, MK43 0AL, UK
| | - Pablo Campo
- Cranfield University, College Road, Cranfield, Bedfordshire, MK43 0AL, UK
| | - Francis Hassard
- Cranfield University, College Road, Cranfield, Bedfordshire, MK43 0AL, UK.
| |
Collapse
|
11
|
Liu J, Zhao R, Feng J, Fu W, Cao L, Zhang J, Lei Y, Liang J, Lin L, Li X, Li B. Bacterial assembly and succession patterns in conventional and advanced drinking water systems: From source to tap. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134613. [PMID: 38788571 DOI: 10.1016/j.jhazmat.2024.134613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/01/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024]
Abstract
Bacteria are pivotal to drinking water treatment and public health. However, the mechanisms of bacterial assembly and their impact on species coexistence remain largely unexplored. This study explored the assembly and succession of bacterial communities in two full-scale drinking water systems over one year. We observed a decline in bacterial biomass, diversity, and co-occurrence network complexity along the treatment processes, except for the biological activated carbon filtration stage. The conventional plant showed higher bacterial diversity than the advanced plant, despite similar bacterial concentrations and better removal efficiency. The biological activated carbon filter exhibited high phylogenetic diversity, indicating enhanced bacterial metabolic functionality for organic matter removal. Chlorination inactivated most bacteria but favored some chlorination-resistant and potentially pathogenic species, such as Burkholderia, Bosea, Brevundimonas, and Acinetobacter. Moreover, the spatiotemporal dynamics of the bacterial continuum were primarily driven by stochastic processes, explaining more than 78% of the relative importance. The advanced plant's bacterial community was less influenced by dispersal limitation and more by homogeneous selection. The stochastic process regulated bacterial diversity and influenced the complexity of the species co-occurrence network. These findings deepen our understanding of microbial ecological mechanisms and species interactions, offering insights for enhancing hygienic safety in drinking water systems.
Collapse
Affiliation(s)
- Jie Liu
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Renxin Zhao
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Jie Feng
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Wenjie Fu
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Lijia Cao
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Jiayu Zhang
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Yusha Lei
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Jiajin Liang
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Lin Lin
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Xiaoyan Li
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Bing Li
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.
| |
Collapse
|
12
|
Geng Y, Zhou P, Wang Z, Peng C, Li G, Li D. The roles of rare and abundant microbial species in the primary succession of biological soil crusts are differentiated in metal tailings ponds with different states. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134577. [PMID: 38749248 DOI: 10.1016/j.jhazmat.2024.134577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/27/2024] [Accepted: 05/08/2024] [Indexed: 05/30/2024]
Abstract
Tailings ponds formed by long-term accumulation of mineral processing waste have become a global environmental problem. Even worse, tailings ponds are often simply abandoned or landfilled after they cease to be used. This allows pollution to persist and continue to spread in the environment. The significance of primary succession mediated by biological soil crusts for tailings pond remediation has been illustrated by previous studies. However, the process of primary succession may not be the same at different stages during the lifetime of tailings ponds. Therefore, we investigated the environmental differences and the successional characteristics of microbial communities in the primary successional stage of tailings ponds at three different states. The results showed that the primary succession process positively changed the environment of tailings ponds in any state of tailings ponds. The primary successional stage determined the environmental quality more than the state of the tailings pond. In the recently abandoned tailings ponds, abundant species were more subjected to heavy metal stress, while rare species were mainly limited by nutrient content. We found that as the succession progressed, rare species gradually acquired their own community space and became more responsive to environmental stresses. Rare species played an important role in microbial keystone species groups.
Collapse
Affiliation(s)
- Yuchen Geng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Panpan Zhou
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhicong Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Chengrong Peng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Genbao Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Dunhai Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
13
|
Wu T, Ding J, Zhao YJ, Ding L, Zang Y, Sun HJ, Zhong L, Pang JW, Li Y, Ren NQ, Yang SS. Microplastics shaped performance, microbial ecology and community assembly in simultaneous nitrification, denitrification and phosphorus removal process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172651. [PMID: 38653406 DOI: 10.1016/j.scitotenv.2024.172651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/28/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
The widespread use of microplastics (MPs) has led to an increase in their discharge to wastewater treatment plants. However, the knowledge of impact of MPs on macro-performance and micro-ecology in simultaneous nitrification, denitrification, and phosphorus removal (SNDPR) systems is limited, hampering the understanding of potential risks posed by MPs. This study firstly comprehensively investigated the performance, species interactions, and community assembly under polystyrene (PS) and polyvinyl chloride (PVC) exposure in SNDPR systems. The results showed under PS (1, 10 mg/L) and PVC (1, 10 mg/L) exposure, total nitrogen removal was reduced by 3.38-10.15 %. PS and PVC restrained the specific rates of nitrite and nitrate reduction (SNIRR, SNRR), as well as the activities of nitrite and nitrate reductase enzymes (NIR, NR). The specific ammonia oxidation rate (SAOR) and activity of ammonia oxidase enzyme (AMO) were reduced only at 10 mg/L PVC. PS and PVC enhanced the size of co-occurrence networks, niche breadth, and number of key species while decreasing microbial cooperation by 5.85-13.48 %. Heterogeneous selection dominated microbial community assembly, and PS and PVC strengthened the contribution of stochastic processes. PICRUSt prediction further revealed some important pathways were blocked by PS and PVC. Together, the reduced TN removal under PS and PVC exposure can be attributed to the inhibition of SAOR, SNRR, and SNIRR, the restrained activities of NIR, NR, and AMO, the changes in species interactions and community assembly mechanisms, and the suppression of some essential metabolic pathways. This paper offers a new perspective on comprehending the effects of MPs on SNDPR systems.
Collapse
Affiliation(s)
- Tong Wu
- Department of Analytical Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ying-Jun Zhao
- Zhe Jiang University of Technology Engineering Design Group CO., Ltd, China
| | - Lan Ding
- Department of Analytical Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Yani Zang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Han-Jun Sun
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Le Zhong
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ji-Wei Pang
- China Energy Conservation and Environmental Protection Group, CECEP Digital Technology Co., Ltd., Beijing 100096, China
| | - Yan Li
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
14
|
Smith SK, Weaver JE, Ducoste JJ, de Los Reyes FL. Microbial community assembly in engineered bioreactors. WATER RESEARCH 2024; 255:121495. [PMID: 38554629 DOI: 10.1016/j.watres.2024.121495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/10/2024] [Accepted: 03/19/2024] [Indexed: 04/02/2024]
Abstract
Microbial community assembly (MCA) processes that shape microbial communities in environments are being used to analyze engineered bioreactors such as activated sludge systems and anaerobic digesters. The goal of studying MCA is to be able to understand and predict the effect of design and operation procedures on bioreactor microbial composition and function. Ultimately, this can lead to bioreactors that are more efficient, resilient, or resistant to perturbations. This review summarizes the ecological theories underpinning MCA, evaluates MCA analysis methods, analyzes how these MCA-based methods are applied to engineered bioreactors, and extracts lessons from case studies. Furthermore, we suggest future directions in MCA research in engineered bioreactor systems. The review aims to provide insights and guidance to the growing number of environmental engineers who wish to design and understand bioreactors through the lens of MCA.
Collapse
Affiliation(s)
- Savanna K Smith
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC, USA
| | - Joseph E Weaver
- School of Engineering, Newcastle University, Newcastle upon Tyne, UK
| | - Joel J Ducoste
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC, USA
| | - Francis L de Los Reyes
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
15
|
Liu S, Xia S, Zhang X, Cai X, Yang J, Hu Y, Zhou S, Wang H. Microbial communities exhibit distinct diversities and assembly mechanisms in rainwater and tap-water storage systems. WATER RESEARCH 2024; 253:121305. [PMID: 38367380 DOI: 10.1016/j.watres.2024.121305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 02/19/2024]
Abstract
Roof-harvested rainwater stored for potable and nonpotable usages represent a clean and sustainable water supply resource. However, the microbial dynamics and mechanisms of community assembly in long-termed operated rainwater storage systems remain elusive. In this study, characteristics of microbial communities in different habitats were systematically compared within rainwater and tap-water simulated storage systems (SWSSs) constructed with different tank materials (PVC, stainless steel and cement). Distinct microbial communities were observed between rainwater and tap-water SWSSs for both water and biofilm samples (ANOSIM, p < 0.05), with lower diversity indexes noted in rainwater samples. Notably, a divergent potential pathogen profile was observed between rainwater and tap-water SWSSs, with higher relative abundances of potential pathogens noted in rainwater SWSSs. Moreover, tank materials had a notable impact on microbial communities in rainwater SWSSs (ANOSIM, p < 0.05), rather than tap-water SWSSs, illustrating the distinct interplay between water chemistry and engineering factors in shaping the SWSS microbiomes. Deterministic processes contributed predominantly to the microbial community assembly in cement rainwater SWSSs and all tap-water SWSSs, which might be ascribed to the high pH levels in cement rainwater SWSSs and low-nutrient levels in all tap-water SWSSs, respectively. However, microbial communities in the PVC and stainless-steel rainwater SWSSs were mainly driven by stochastic processes. Overall, the results provided insights to the distinct microbial assembly mechanisms and potential health risks in stored roof-harvested rainwater, highlighting the importance of developing tailored microbial management strategies for the storage and utilization of rainwater.
Collapse
Affiliation(s)
- Sihang Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Xiaodong Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xucheng Cai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jinhao Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yuxing Hu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shuang Zhou
- School of Medicine, Tongji University, Shanghai 200092, China
| | - Hong Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
16
|
Yang J, Hu Y, Zhang Y, Zhou S, Meng D, Xia S, Wang H. Deciphering the diversity and assemblage mechanisms of nontuberculous mycobacteria community in four drinking water distribution systems with different disinfectants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168176. [PMID: 37907107 DOI: 10.1016/j.scitotenv.2023.168176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/02/2023]
Abstract
Nontuberculous mycobacteria (NTM) represent an emerging health concern due to their escalating infections worldwide. Although drinking water distribution systems (DWDSs) have been considered as NTM reservoirs and a potential infection route, NTM community at the species level remain largely elusive in DWDSs. This study employed high-throughput sequencing coupled with qPCR to profile NTM community and estimate their abundances at the species level in water and biofilm samples in four DWDSs using three different disinfectants (i.e. free chlorine, chloramine and chlorine dioxide). Results demonstrated the dominance of Mycobacterium paragordonae and Mycobacterium mucogenicum in both biofilm and water across four DWDSs, whereas Mycobacterium abscessus and Mycobacterium chelonae, the two clinically significant species, exhibited low abundance but high prevalence. Comparable NTM community was observed in biofilm across these four DWDSs. Distinct separation of NTM community between SH-chloramine DWDSs water and other DWDSs highlighted the selective pressure of chloramine on NTM community. Furthermore, the research revealed that biofilm and water exhibited distinct NTM community structures, with biofilm harboring more diverse NTM community. Certain NTM species displayed a preference for biofilm, such as Mycobacterium gordonae, while others, like Mycobacterium mucogenicum, were more abundant in water samples (P < 0.05). In terms of NTM community assembly, stochastic processes dominated biofilm, while comparable role of stochastic and deterministic processes was observed in water. In conclusion, this study offers a pioneering and comprehensive insight into the dynamics and assembly mechanisms of NTM community within four DWDSs treated with three distinct disinfectants. These findings serve as a critical foundation for assessing NTM exposure risks and devising effective management strategies within DWDSs.
Collapse
Affiliation(s)
- Jinhao Yang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yuxing Hu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yue Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Shuang Zhou
- School of Medicine, Tongji University, Shanghai 200092, China
| | - Die Meng
- Shanghai Pulmonary Hospital, Tongji University, Shanghai 200433, China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Hong Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|