1
|
Wang T, Wang Z, Shi J, Yin Y, Du W, Wu J, Guo H. A green sulfidated micro zero-valent iron based-hydrogel for the synergistic removal of heavy metal cations and anions in groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 972:179096. [PMID: 40088792 DOI: 10.1016/j.scitotenv.2025.179096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 02/13/2025] [Accepted: 03/09/2025] [Indexed: 03/17/2025]
Abstract
Heavy metal cations and anions contaminated groundwater was a big challenge to water resource safety. Herein, a green sulfidated micro zero-valent iron-based hydrogel (SA-S-mZVI) was synthesized using sodium alginate biomass for the simultaneous removal of heavy metal cations (Cu(II), Pb(II), Cd(II)) and anions (Cr(VI)). The sulfur modification and incorporation of sodium alginate hydrogel facilitated the efficient and sustainable removal of both single and multi-heavy metals. The co-existing heavy metal cations benefited the removal of Cr(VI), and heavy metals were mostly transformed into stable precipitates. The presence of organic substance and ions slightly affected the removal of heavy metals. Long-term column experiments (240 days) showed that SA-S-mZVI maintained over 99.9 % removal efficiency for heavy metal cations and anions, without adverse impacts on the groundwater environment. This study provided new insights into the development of eco-friendly, long-lasting zero-valent iron-based hydrogels for in-situ remediation of heavy metals-contaminated groundwater.
Collapse
Affiliation(s)
- Tingting Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Zhewen Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Junxiang Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wenchao Du
- School of Environment, Nanjing Normal University, Nanjing 210036, China
| | - Jichun Wu
- School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China.
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Quanzhou Institute for Environment Protection lndustry, Nanjing University, Quanzhou 362000, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
2
|
Li X, Wang L, Huang C, Hou R, Hou D. Long-term soil remediation using layered double hydroxides: Field evidence for simultaneous immobilization of both cations and oxyanions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125417. [PMID: 39615565 DOI: 10.1016/j.envpol.2024.125417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/14/2024] [Accepted: 11/28/2024] [Indexed: 12/06/2024]
Abstract
Layered double hydroxides (LDHs) have great potential for immobilizing potentially toxic elements in soil. Nevertheless, their practical effectiveness under field conditions remains largely unknown. In this study, we conducted a 2.5-year field trial using pristine Mg-Al LDHs, Ca-Al LDHs, and iron (Fe)-modified LDHs to simultaneously immobilize both oxyanions (including As and Sb) and cations (including Cd and Pb) in historically contaminated soil affected by mining activities since the 1950s. The immobilization performance of LDHs was examined using various batch tests, including water and DTPA extraction, and by measuring metal(loid) concentrations in Coriandrum sativum (coriander). We found that both pristine and Fe-modified LDHs showed promising initial immobilization performance 7 days after application, achieving significant reductions in DTPA-extractable concentrations of As, Sb, Cd, and Pb by 45.6%-68.3%, 55.4%-94.2%, 11.2%-50.9%, and 62.9%-64.9%, respectively, compared to the control soil without amendment. Notably, pristine LDHs showed diminished immobilization performance in the long term, while Fe-modified LDHs exhibited long-term stability over 2.5 years. A conditional probability-based model was used to depict long-term metal(loid) leaching characteristics in LDH-amended soils. Temporal changes in metal(loid) concentrations in the aboveground edible parts (namely, stems and leaves) of coriander corroborated well with DTPA extraction results. Coriander grown in Fe-modified LDH-amended soils had much lower metal(loid) concentrations compared to those grown in pristine LDH-amended soils. As a result, reductions of 35.1%-42.2% for As, 54.4%-66.2% for Sb, 8.5%-22.8% for Cd, and 56.0%-62.7% for Pb concentrations in coriander were still observed 2.5 years after soil amendment with Fe-modified LDHs. To the best of our knowledge, this is the first field-based evidence using LDHs to simultaneously stabilize both cations and oxyanions in soil. The findings support the potential of LDHs for long-term immobilization of metal(loid)s in soil.
Collapse
Affiliation(s)
- Xuanru Li
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Liuwei Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Caide Huang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Renjie Hou
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
3
|
Senila M, Cadar O. Composites Based on Natural Zeolites and Green Materials for the Immobilization of Toxic Elements in Contaminated Soils: A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5977. [PMID: 39685413 DOI: 10.3390/ma17235977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024]
Abstract
Soil contamination by toxic elements is a global problem, and the remediation of contaminated soils requires complex and time-consuming technology. Conventional methods of soil remediation are often inapplicable, so an intensive search is underway for innovative and environmentally friendly ways to clean up ecosystems. The use of amendments that stabilize the toxic elements in soil by reducing their mobility and bioavailability is one of the simplest and most cost-effective ways to remediate soil. This paper provides a summary of studies related to the use of composites based on natural zeolites and green materials for the immobilization of toxic elements in contaminated soils and highlights positive examples of returning land to agricultural use. The published literature on natural zeolites and their composites has shown that combinations of zeolite with biochar, chitosan and other clay minerals have beneficial synergistic effects on toxic element immobilization and soil quality. The effects of zeolite properties, different combinations, application rates, or incubation periods on toxic elements immobilization were tested in laboratory scale or field experiments, whereas the mobility of toxic elements in soil was evaluated by chemical extractions of toxic elements transferred to the plants. This review highlights the excellent potential of natural zeolites to be used as single or combined sustainable green materials to solve environmental pollution problems related to the presence of toxic elements.
Collapse
Affiliation(s)
- Marin Senila
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania
| | - Oana Cadar
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania
| |
Collapse
|
4
|
Lu Y, Li T, Li R, Zhang P, Li X, Bai Z, Wu J. Role of SbNRT1.1B in cadmium accumulation is attributed to nitrate uptake and glutathione-dependent phytochelatins biosynthesis. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135655. [PMID: 39217923 DOI: 10.1016/j.jhazmat.2024.135655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/16/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Phytoremediation of cadmium (Cd)-polluted soil by using sweet sorghum displays a tremendous potential as it is a fast-growing, high biomass and Cd tolerant energy plant. Previous study has demonstrated SbNRT1.1B expression change is in accordance with enhanced Cd accumulation by external nitrate supply in sweet sorghum. Nevertheless, underlying mechanism of SbNRT1.1B response to Cd stress is still elusive. SbNRT1.1B exhibited a positive response to Cd stress in sweet sorghum. Overexpressing SbNRT1.1B increased primary root length, shoot fresh weight, nitrate and chlorophyll concentrations compared with Col-0 under Cd stress, while complementary SbNRT1.1B rescued these decreased values in mutant chl1-5. Cd concentrations in overexpressing SbNRT1.1B, complementary SbNRT1.1B and Col-0 lines were 3.2-4.1, 2.5-3.1 and 1.2-2.1 folds of that in chl1-5. Consistent with Cd concentrations, non-protein thiol (NPT), reduced glutathione (GSH) and phytochelatins (PCs) concentrations as well as the related genes expression levels showed the same trends under Cd stress. GSH biosynthesis inhibitor failed to reverse the patterns of GSH-dependent PCs concentrations changes in different lines, suggesting that SbNRT1.1B plays an upstream role in GSH-dependent PCs biosynthesis under Cd treatment. Altogether, SbNRT1.1B enhances nitrate concentrations contributing to increased chlorophyll concentrations and GSH-dependent PCs metabolites biosynthesis, thereby improving growth and Cd concentrations in plants.
Collapse
Affiliation(s)
- Yuan Lu
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Ting Li
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Ruijuan Li
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Pan Zhang
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan'an University, Yan'an, Shaanxi 716000, China
| | - XiaoXiao Li
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Zhenqing Bai
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Jiawen Wu
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan'an University, Yan'an, Shaanxi 716000, China.
| |
Collapse
|
5
|
Hu T, Zhang M, Wei X, Xu Z, Li D, Deng J, Li Y, Zhang Y, Lin X, Wang J. Efficient Pb(II) removal from contaminated soils by recyclable, robust lignosulfonate/polyacrylamide double-network hydrogels embedded with Fe 2O 3 via one-pot synthesis. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135712. [PMID: 39236531 DOI: 10.1016/j.jhazmat.2024.135712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
Soil heavy metal removal strategies are increasingly valued for effectively reducing contamination and preventing secondary pollution. In this work, a double network hydrogel (Fe2O3@LH), consisting of lignosulfonate (LS) and polyacrylamide with embedded Fe2O3 nanoparticles, was synthesized successfully via a one-pot method and subsequently applied to adsorb lead (Pb) from contaminated soil. Incorporating Fe2O3 into the hydrogel enhances the adsorption capacity of Fe2O3@LH for Pb(II). The Fe2O3@LH hydrogel demonstrates a maximum Pb(II) adsorption capacity of 143.11 mg g-1, with Pb(II) removal mechanisms involving electrostatic adsorption, cation exchange, precipitation reactions, and the formation of coordination complexes, achieving a 22.3 % maximum removal efficiency in soil cultivation experiments. Additionally, the application of Fe2O3@LH markedly reduces the concentrations of cadmium (Cd) and arsenic (As) in the soil, meanwhile enhances the levels of total nitrogen (TN), soil organic matter (SOM), and cation exchange capacity (CEC) by 23.1 %, 10.6 %, and 16.9 %, respectively. Following 90 days of continuous application in the soil, the recovery rate of Fe2O3@LH remains above 75 %. The toxicity assay using zebrafish larvae indicates that Fe2O3@LH demonstrates good biosafety. This study demonstrates the considerable potential of Fe2O3@LH hydrogel for practical application in reducing Pb(II) levels in contaminated soil.
Collapse
Affiliation(s)
- Tian Hu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Mingkai Zhang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xiujiao Wei
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Zhaoxin Xu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Deyun Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jianbin Deng
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yongtao Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Province Key Laboratory for Land Use and Consolidation, Guangzhou 510642, China; Key Laboratory of Arable Land Conservation (South China), Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
| | - Yulong Zhang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Province Key Laboratory for Land Use and Consolidation, Guangzhou 510642, China; Key Laboratory of Arable Land Conservation (South China), Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
| | - Xueming Lin
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Jinjin Wang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Arable Land Conservation (South China), Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China.
| |
Collapse
|
6
|
Hu T, Liu BN, Bu H, Hu HJ, Zhu QS, Tang S, Li Y, Wang J, Jiang GB. Self-separating core-shell spheres with a carboxymethyl chitosan/acrylic acid/Fe 3O 4 composite core for soil Cd removal. Carbohydr Polym 2024; 343:122428. [PMID: 39174116 DOI: 10.1016/j.carbpol.2024.122428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/12/2024] [Accepted: 06/21/2024] [Indexed: 08/24/2024]
Abstract
Cadmium (Cd) removal from soil is crucial as Cd enters the food chain and affect food safety, thus impose severe threaten to human health. We developed PPC@PC-Fe, a dual-functional core-shell sphere for efficient soil Cd reduction. The shell (PPC) was composed of encapsulated citric acid (CA) in a polylactic acid (PLA) and polyethylene glycol (PEG) network, which endows a function of activating Cd; and the core (PC-Fe) consisted of a polyacrylic acid/carboxymethyl chitosan (PAA/CMC) hydrogel with Fe3O4 nanoparticles to adsorb adjacent activated Cd. Upon water contact, the shell dissolved, releasing CA to activate soil Cd. Simultaneously, the swellable PC-Fe core absorbed water and expanded in size, promoting the disintegration of PLA in the shell, which triggered the automatic separation of core from shell, enabling the exposed PC-Fe core to rapidly adsorb Cd. Furthermore, the PC-Fe core can be magnetically removed after adsorption of Cd. Soil culture tests showed that 2 % PPC@PC-Fe reduced soil Cd from 6.009 mg/kg to 4.834 mg/kg in 10 days, with the acid-soluble Cd being the predominantly target to be activated and remove. This study demonstrates an effective stepwise activation and adsorption mechanism by a single carrier, with simple magnetic collection minimizing secondary pollution. It offers an innovative approach to the remediation of cadmium-contaminated sites in the field.
Collapse
Affiliation(s)
- Tian Hu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, Guangdong, China; School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, Guangdong, China.
| | - Bu-Ning Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Huaitian Bu
- Department of Materials and Nanotechnology, SINTEF Industry, Forskningsveien 1, 0373 Oslo, Norway
| | - Han-Jian Hu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Qi-Shun Zhu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Shipeng Tang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Yongtao Li
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Jinjin Wang
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou 510642, Guangdong, China.
| | - Gang-Biao Jiang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, Guangdong, China.
| |
Collapse
|
7
|
Irshad MK, Ansari JR, Noman A, Javed W, Lee JC, Aqeel M, Waseem M, Lee SS. Seed priming with Fe 3O 4-SiO 2 nanocomposites simultaneously mitigate Cd and Cr stress in spinach (Spinacia oleracea L.): A way forward for sustainable environmental management. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117195. [PMID: 39447293 DOI: 10.1016/j.ecoenv.2024.117195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/09/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024]
Abstract
Seed priming with a composite of iron oxide (Fe3O4) and silicon dioxide (SiO2) nanoparticles (NPs) is an innovative technique to mitigate cadmium (Cd) and chromium (Cr) uptake in plants from rooting media. The current study explored the impact of seed priming with varying levels of Fe3O4 NPs, SiO2 NPs, and Fe3O4-SiO2 nanocomposites on Cd and Cr absorption and phytotoxicity, metal-induced oxidative stress mitigation, growth and biomass yield of spinach (Spinacia oleracea L.). The results showed that seed priming with the optimum level of 100 mg L-1 of Fe3O4-SiO2 nanocomposites significantly (p ≤ 0.05) increased root dry weight (144 %), shoot dry weight (243 %) and leaf area (34.4 %) compared to the control, primarily by safeguarding plant's photosynthetic machinery, oxidative stress and phytotoxicity of metals. Plants treated with this highest level of Fe3O4-SiO2 nanocomposites exhibited a substantial increase in photosynthetic and gas exchange indices of spinach plants and enhanced activities of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) antioxidant enzymes by 45 %, 48 %, and 60 %, respectively. Correspondingly, the relative gene expression levels of SOD, CAT, and APX also rose by 109 %, 181 %, and 137 %, respectively, compared to non-primed plants. This nanocomposite application also boosted the levels of phenolics (28 %), ascorbic acid (68 %), total sugars (129 %), flavonoids (39 %), and anthocyanin (29 %) in spinach leaves, while significantly reducing Cd (34.7 %, 53.4 %) and Cr (20.2 %, 28.8 %) contents in plant roots and shoots, respectively. These findings suggest that seed priming with Fe3O4-SiO2 nanocomposites effectively mitigated the toxic effects of Cd and Cr, enhancing the growth and biomass yield of spinach in Cd and Cr co-contaminated environments, offering a promising sustainable approach for producing metal-free crops.
Collapse
Affiliation(s)
- Muhammad Kashif Irshad
- Department of Environmental and Energy Engineering, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do 26493, Republic of Korea; Department of Environmental Sciences, Government College University Faisalabad, Pakistan
| | - Jamilur R Ansari
- Department of Packaging & Logistics, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do 26493, Republic of Korea
| | - Ali Noman
- Department of Botany, Government College University Faisalabad, Pakistan
| | - Wasim Javed
- Water Management Research Centre, University of Agriculture Faisalabad, Pakistan
| | - Jong Cheol Lee
- Department of Environmental and Energy Engineering, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do 26493, Republic of Korea
| | - Muhammad Aqeel
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Muhammad Waseem
- Department of Environmental Sciences, Government College University Faisalabad, Pakistan
| | - Sang Soo Lee
- Department of Environmental and Energy Engineering, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do 26493, Republic of Korea.
| |
Collapse
|
8
|
Zheng L, Cai X, Tang J, Qin H, Li J. Bioelectrochemical technologies for soil and sediment remediation: Recent advances and future perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122602. [PMID: 39316876 DOI: 10.1016/j.jenvman.2024.122602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/31/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
Soil and sediment serve as the ultimate repositories of pollutants, presenting a significant environmental concern on a global scale. However, there is no effective measure due to the low mobility, high resistance and high cost of contaminated soil or sediment. The bioelectrochemical systems (BESs) combine microbial and electrochemical technology to achieve efficient and rapid degradation of pollutants by enriching electroactive microbial membranes with electrodes. Specifically, BESs offer an ideal solution for in-situ remediation, eliminating the secondary pollution and high energy consumption issues associated with traditional technologies. However, in soil or sediment bioelectrochemical systems (SBESs), further summarization and improvement are required to address the influencing factors during the process of pollutant remediation, given the fragility of complex geographical and natural environments. This paper provides a comprehensive overview and analysis of the removal mechanisms of organic pollutants, heavy metals and emerging contaminants within contaminated soil or sediment, elucidating the influential factors and strategies aimed at enhancing pollutant removal processes within SBESs. The current emerging problems and limitations of microbial electrochemical remediation technology are summarized, and it is suggested that future development should focus on microorganisms, reactors and practical applications.
Collapse
Affiliation(s)
- Linlan Zheng
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xixi Cai
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China.
| | - Jiahuan Tang
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan, 354300, China.
| | - Hongjie Qin
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
| | - Jibing Li
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| |
Collapse
|
9
|
Tian Y, Dong X, Fan Y, Deng C, Yang D, Chen R, Chai W. Performance of coal slime-based silicon fertilizer in simulating lead-contaminated soil: Heavy metal solidification and multi-nutrient release characteristics. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135453. [PMID: 39126851 DOI: 10.1016/j.jhazmat.2024.135453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/05/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
High-ash coal slime-based silica fertilizer (CSF) has the potential to provide mineral nutrients and passivate lead (Pb) in the soil to ensure the sustainable development of the coal industry and agriculture. This study investigated the performance and passivation mechanism of CSF, which contains potassium tobermorite and potassium silicate as the main components for soil improvement. Leaching experiments showed that low-crystalline muscovite was the only crystalline phase for CSF etching and that the silicon (Si), calcium (Ca), and potassium (K) in CSF had significant citric solubility. Soil cultivation and planting trials confirmed the ability of CSF to neutralize soil acidity, increase available soil Si and K, improve exchangeable Ca content, reduce the bioefficacy of Pb (exchangeable Pb by 19-75 % and carbonate-bound Pb by 6-18 %), and increase residual state Pb content. Compared to untreated Pb-contaminated soil, the 0.4 % CSF treatment reduced Pb in Chinese cabbage (Brassica rapa) by 25 % and increased plant biomass, Ca, and K by 37 %, 36 %, and 4 %, respectively. At the same time, soil pH increased by 0.58, and residual state Pb increased by 5 %. In CSF-treated soils, lead silicate is the dominant form of Pb present in the residual state. First-principle calculations showed that Pb3Si2O7 (cohesion energy -1.98 eV) formed by the passivation of Pb by CSF had greater stability in the soil compared to lead carbonate (PbCO3) (cohesion energy -1.38 eV) and lead sulfate (PbSO4) (cohesion energy -1.41 eV). This work shows the promising application of coal slime mineral fertilizers prepared using hydrothermal methods for soil improvement.
Collapse
Affiliation(s)
- Yanfei Tian
- Department of Mineral Processing Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi Engineering Research Center of Ecological Mining, Taiyuan 030024, China
| | - Xianshu Dong
- Department of Mineral Processing Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi Engineering Research Center of Ecological Mining, Taiyuan 030024, China.
| | - Yuping Fan
- Department of Mineral Processing Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Chunsheng Deng
- College of Safety and Emergency Management Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Key Lab of In-situ Modification of Deposit Properties for Improving Mining, Ministry of Education of the People's Republic of China, Taiyuan University of Technology, Taiyuan 030024, China
| | - Dong Yang
- Key Lab of In-situ Modification of Deposit Properties for Improving Mining, Ministry of Education of the People's Republic of China, Taiyuan University of Technology, Taiyuan 030024, China; State Center for Research and Development of Oil Shale Exploitation, Beijing 100083, China
| | - Ruxia Chen
- Department of Mineral Processing Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Wenjing Chai
- Department of Mineral Processing Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|
10
|
Li F, Chen C, Jin H, Ding T, Feng J, Qiu W, Wang Q. Selective lead capture using amide-containing COFs: A novel strategy for efficient soil remediation. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135424. [PMID: 39116749 DOI: 10.1016/j.jhazmat.2024.135424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
A critical consideration in the application of phytoremediation to remediate sludge soil contaminated with heavy metals is the potential for leaching risks that prevail prior to the efficient uptake of these metals by plants. The most cost-effective method is to use heavy metal stabilizers with selective adsorption. A novel amide-based COF material (COF-TH) has been synthesized as a heavy metal stabilizer for Pb. COF-TH exhibits significant selectivity for Pb in five-metal-mixed solutions, with a distribution coefficient KD as high as 3279 mL·g-1, which was more than 7.3 times that of other heavy metals. The maximum adsorption capacity of COF-TH for Pb was 189 mg·g-1. The adsorption fitted Langmuir model and intra-particle diffusion model, and satisfied pseudo-second-order kinetic model. The excellent selectivity and adsorption performance originate from the complexation between abundant amide groups and Pb ions. Pot experiments and leaching assays confirm that COF-TH decreased Pb leachate concentrations by 77.8 % without significantly decreasing total phytoextracted amounts of other heavy metals, due to the high selectivity of COF-TH to Pb. Additionally, its positive impact on plant growth and microbial diversity makes it a promising soil remediation agent. This investigation offers a novel approach to mitigate the leaching risk of a specific heavy metal Pb during sludge land application by integrating soil phytoremediation with stabilization techniques.
Collapse
Affiliation(s)
- Feili Li
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China.
| | - Cheng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Hui Jin
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Tianzheng Ding
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Jianru Feng
- Zhejiang GuoFu Environmental Technology Co, Ltd, Hangzhou 311100, PR China
| | - Wanting Qiu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Qiaoli Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China.
| |
Collapse
|
11
|
Irshad MK, Lee JC, Aqeel M, Javed W, Noman A, Lam SS, Naggar AE, Niazi NK, Lee HH, Ibrahim M, Lee SS. Efficacy of Fe-Mg-bimetallic biochar in stabilization of multiple heavy metals-contaminated soil and attenuation of toxicity in spinach (Spinacia oleracea L.). CHEMOSPHERE 2024; 364:143184. [PMID: 39197684 DOI: 10.1016/j.chemosphere.2024.143184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/30/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024]
Abstract
Globally, soil contamination with heavy metals (HMs) pose serious threats to soil health, crop productivity, and human health. The present investigation involved synthesis and analysis of biochar with bimetallic combination of iron and magnesium (Fe-Mg-BC). Our study evaluated how Fe-Mg-BC affects the absorption of cadmium (Cd), lead (Pb), and copper (Cu) in spinach (Spinacia oleracea L.) and remediation of soil contaminated with multiple HMs. Results demonstrated the successful loading of iron (Fe) and magnesium (Mg) onto pristine biochar (BC) derived from peanut shells. The addition of Fe-Mg-BC (3%) notably increased spinach biomass, enhancing photosynthesis, transpiration, stomatal conductance, and intercellular CO2 levels by 22%, 21%, 103%, and 15.3%, respectively. Compared to control, Fe-Mg-BC (3%) suppressed metal-induced oxidative stress by boosting levels of superoxide dismutase (SOD), ascorbate peroxidase (APX) and catalase (CAT) in roots by 40.9%, 57%, 54.8 %, and in shoots by 55.5%, 65.5%, and 37.4% in shoots, respectively. The Fe-Mg-BC effectively reduced the uptake of Cd, Pb, and Cu in spinach tissues by transforming their bioavailable fractions to non-bioavailable forms. The Fe-Mg-BC (3%) significantly reduced the mobility of Cd, Pb and Cu in soil and limited the concentration of Cd, Pb, and Cu in plant roots by 34.1%, 79.2%, 47%, and shoots by 56.3%, 43.3%, and 54.1%, respectively, compared to control. These findings underscore the potential of Fe-Mg-BC as a promising amendment for reclaiming soils contaminated with variety of HMs, thereby making a significant contribution to the promotion of safer food production.
Collapse
Affiliation(s)
- Muhammad Kashif Irshad
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, 26493, Republic of Korea; Department of Environmental Sciences, Government College University Faisalabad, Pakistan
| | - Jong Cheol Lee
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, 26493, Republic of Korea
| | - Muhammad Aqeel
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, Gansu, PR China
| | - Wasim Javed
- Water Management Research Center (WMRC), University of Agriculture Faisalabad, Pakistan
| | - Ali Noman
- Department of Botany, Government College University, Faisalabad, Pakistan
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Ali El Naggar
- Department of Soil Sciences, Faculty of Agriculture, Ain Shams University, Cairo, 11241, Egypt
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Hun Ho Lee
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, 26493, Republic of Korea
| | - Muhammad Ibrahim
- Department of Environmental Sciences, Government College University Faisalabad, Pakistan
| | - Sang Soo Lee
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, 26493, Republic of Korea.
| |
Collapse
|
12
|
Long HY, Feng GF, Fang J. In-situ remediation of cadmium contamination in paddy fields: from rhizosphere soil to rice kernel. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:404. [PMID: 39207539 DOI: 10.1007/s10653-024-02099-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/24/2024] [Indexed: 09/04/2024]
Abstract
Cadmium (Cd) has become an important heavy metal pollutant because of its strong migration and high toxicity. The industrial production process aggravated the Cd pollution in rice fields. Human exposure to Cd through rice can cause kidney damage, emphysema, and various cardiovascular and metabolic diseases, posing a grave threat to health. As modern technology develops, the Cd accumulation model in rice and in-situ remediation of Cd pollution in cornfields have been extensively studied and applied, so it is necessary to sort out and summarize them systematically. Therefore, this paper reviewed the primary in-situ methods for addressing heavy metal contamination in rice paddies, including chemical remediation (inorganic-organic fertilizer remediation, nanomaterials, and composite remediation), biological remediation (phytoremediation and microbial remediation), and crop management remediation technologies. The factors that affect Cd transformation in soil and Cd migration in crops, the advantages and disadvantages of remediation techniques, remediation mechanisms, and the long-term stability of remediation were discussed. The shortcomings and future research directions of in situ remediation strategies for heavily polluted paddy fields and genetic improvement strategies for low-cadmium rice varieties were critically proposed. To sum up, this review aims to enhance understanding and serve as a reference for the appropriate selection and advancement of remediation technologies for rice fields contaminated with heavy metals.
Collapse
Affiliation(s)
- Hai Yan Long
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Guang Fu Feng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
13
|
Li X, Lin S, Ouvrard S, Sirguey C, Qiu R, Wu B. Environmental remediation potential of a pioneer plant (Miscanthus sp.) from abandoned mine into biochar: Heavy metal stabilization and environmental application. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121751. [PMID: 38972191 DOI: 10.1016/j.jenvman.2024.121751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Pyrolysis stands out as an effective method for the disposal of phytoremediation residues in abandoned mines, yielding a valuable by-product, biochar. However, the environmental application of biochar derived from such residues is limited by the potential environmental risks of heavy metals. Herein, Miscanthus sp. residues from abandoned mines were pyrolyzed into biochars at varied pyrolysis temperatures (300-700 °C) to facilitate the safe reuse of phytoremediation residues. The results showed that pyrolysis significantly stabilizes heavy metals in biomass, with Cd exhibiting the most notable stabilization effect. Acid-soluble/exchangeable and reducible fractions of Cd decreased significantly from 69.91 % to 2.52 %, and oxidizable and residue fractions increased approximately 3.24 times at 700 °C. The environmental risk assessment indicated that biochar pyrolyzed over 500 °C pose lower environmental risk (RI < 30), making them optimal for the safe utilization of phytoremediation residues. Additionally, adsorption experiments suggested that biochars prepared at higher temperature (500-700 °C) exhibit superior adsorption capacity, attributed to alkalinity and precipitation effect. This study highlights that biochars produced by pyrolyzing Miscanthus sp. from abandoned mines above 500 °C hold promise for environmental remediation, offering novel insight into the reutilization of metal-rich biomass.
Collapse
Affiliation(s)
- Xiao Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Shukun Lin
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | | | | | - Rongliang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Bohan Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
14
|
Feng Y, Darma AI, Yang J, Wang X, Shakouri M. Protaetia brevitarsis larvae produce frass that can be used as an additive to immobilize Cd and improve fertility in alkaline soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134379. [PMID: 38733779 DOI: 10.1016/j.jhazmat.2024.134379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/17/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024]
Abstract
Bioconversion of agricultural waste by Protaetia brevitarsis larvae (PBL) holds significant promise for producing high-quality frass organic amendments. However, the effects and mechanisms of PBL frass on Cd immobilization in an alkaline environment remain poorly understood. In this study, three types of frass, namely maize straw frass (MF), rice straw frass (RF), and sawdust frass (SF), were produced by feeding PBL. The Cd immobilization efficiencies of three frass in alkaline solutions and soils were investigated through batch sorption and incubation experiments, and spectroscopic techniques were employed to elucidate the sorption mechanisms of Cd onto different frass at the molecular level. The results showed that MF proved to be an efficient sorbent for Cd in alkaline solutions (176.67-227.27 mg g-1). X-ray absorption near-edge structure (XANES) spectroscopy indicated that Cd immobilization in frass is primarily attributed to the association with organic matter (OM-Cd, 78-90%). And MF had more oxygen-containing functional groups than the other frass. In weakly alkaline soils, MF application (0.5-1.5%) significantly decreased Cd bioavailability (5.65-18.48%) and concurrently improved soil nutrients (2.21-56.79%). Redundancy analysis (RDA) unveiled that pH, CEC, and available P were important factors controlling Cd fractions. Path analysis demonstrated that MF application affected Cd bioavailability directly and indirectly by influencing soil chemical properties and nutrients. In summary, MF, the product of PBL-mediated conversion maize straw, demonstrated promise as an effective organic amendment for Cd immobilization and fertility improvement in alkaline soils.
Collapse
Affiliation(s)
- Ya Feng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Aminu Inuwa Darma
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China (Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, China)
| | - Jianjun Yang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China (Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, China).
| | - Xudong Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Mohsen Shakouri
- Canadian Light Source Inc., University of Saskatchewan, Saskatoon S7N 2V3, Canada
| |
Collapse
|
15
|
Hu Y, Wang J, Yang Y, Li S, Wu Q, Nepovimova E, Zhang X, Kuca K. Revolutionizing soil heavy metal remediation: Cutting-edge innovations in plant disposal technology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170577. [PMID: 38311074 DOI: 10.1016/j.scitotenv.2024.170577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/08/2024] [Accepted: 01/28/2024] [Indexed: 02/06/2024]
Abstract
Soil contamination with heavy metals has emerged as a global environmental threat, compromising agricultural productivity, ecosystem integrity, and human health. Conventional remediation techniques often fall short due to high costs, operational complexities, and environmental drawbacks. Plant-based disposal technologies, including biochar, phytometallurgy, and phrolysis, have emerged as promising solutions in this regard. Grounded in a novel experimental framework, biochar is studied for its dual role as soil amendment and metal adsorbent, while phytometallurgy is explored for its potential in resource recovery and economic benefits derived from harvested metal-rich plant biomass. Pyrolysis, in turn, is assessed for transforming contaminated biomass into value-added products, thereby minimizing waste. These plant disposal technologies create a circular model of remediation and resource utilization that holds the potential for application in large-scale soil recovery projects, development of environmentally friendly agro-industries, and advancement in sustainable waste management practices. This review mainly discussed cutting-edge plant disposal technologies-biochar application, phytometallurgy, and pyrolysis-as revolutionary approaches to soil heavy metal remediation. The efficacy, cost-effectiveness, and environmental impact of these innovative technologies are especially evaluated in comparison with traditional methods. The success of these applications could signal a paradigm shift in how we approach both environmental remediation and resource recovery, with profound implications for sustainable development and circular economy strategies.
Collapse
Affiliation(s)
- Yucheng Hu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Junbang Wang
- National Ecosystem Science Data Center, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongsheng Yang
- The Key Laboratory of Restoration Ecology in Cold Region of Qinghai Province/Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810001, China
| | - Sha Li
- School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
| | - Qinghua Wu
- College Life Science, Yangtze University, Jingzhou 434025, China; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 500 03, Czech Republic
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 500 03, Czech Republic
| | - Xiujuan Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 500 03, Czech Republic.
| |
Collapse
|
16
|
Zong X, Liu Y, Lin X, He D, Dong Z, Guo T, Li J, Li H, Wang F. Foliar spraying of lanthanum activates endocytosis in lettuce (Lactuca sativa L.) root cells, increasing Cd and Pb accumulation and their bioaccessibility. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168374. [PMID: 37956851 DOI: 10.1016/j.scitotenv.2023.168374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/15/2023]
Abstract
Cadmium (Cd) and lead (Pb) accumulate easily in leafy vegetables and can harm human health. Lanthanum (La) have been used to improve agricultural yield and quality, but the effect of La application on Cd/Pb enrichment in leafy vegetables remains incomplete currently. A previous study reported that the endocytosis in lettuce leaf cells can be activated by La, leading to an increase in Pb accumulation in lettuce leaves. However, it has not been investigated whether foliar application of La enhances root cellular endocytosis and promotes its uptake of Cd and Pb. In this study, the influence of La on the uptake of Cd and Pb, Cd bioaccessibility, and the safety risks of cultivating lettuce under Cd and Pb stress were explored. It was found that La increased Cd (16-30 % in shoot, 16-34 % in root) and Pb (25-29 % in shoot, 17-23 % in root) accumulation in lettuce. The increased accumulation of Cd and Pb could be attributed to La-enhanced endocytosis. Meanwhile, La enhanced the toxicity of both Cd and Pb, inhibited lettuce growth, and aggravated the damage to the photosynthetic and antioxidant systems. Finally, gastrointestinal simulation experiments showed that La increased the Cd bioaccessibility in both gastric and intestinal phase by 7-108 % and 9-87 %, respectively. These results offer valuable insights into the safety of REEs for agricultural applications.
Collapse
Affiliation(s)
- Xinyan Zong
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, Jiangsu 210023, China
| | - Yongqiang Liu
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, Jiangsu 210023, China
| | - Xinying Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ding He
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, Jiangsu 210023, China
| | - Zhongtian Dong
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Ting Guo
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, Jiangsu 210023, China
| | - Jining Li
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, Jiangsu 210023, China
| | - Hongbo Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Fenghe Wang
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, Jiangsu 210023, China.
| |
Collapse
|