1
|
Cheng W, Chen H, Zhou Y, You Y, Feng Y, Wang Y. Low dose of micro-/nano-plastics mixture induced cardiac hypertrophy and reductive stress: The liver-heart crosstalk and hepatic-cardiac organoids-on-a-chip. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137686. [PMID: 40022920 DOI: 10.1016/j.jhazmat.2025.137686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/26/2025] [Accepted: 02/19/2025] [Indexed: 03/04/2025]
Affiliation(s)
- Wei Cheng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hange Chen
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yue Zhou
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yifei You
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yan Feng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yan Wang
- Ninth People's Hospital of Shanghai Jiao Tong University School of Medicine, School of Public Health, Shanghai Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Chen L, Han B, Yang S, Guo L, Zhao L, Liu P, Hong X, Zhao Y, Peng Y, Qi S, Hu L, Chen Y. Toxicological effects and mechanisms of renal injury induced by inhalation exposure to airborne nanoplastics. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137393. [PMID: 39892132 DOI: 10.1016/j.jhazmat.2025.137393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/15/2025] [Accepted: 01/24/2025] [Indexed: 02/03/2025]
Abstract
Micro-nanoplastics (MNPs) are ubiquitously present in various natural habitats, and the kidney plays a critical role in eliminating metabolic waste from the body. Therefore, nephrotoxicity studies of MNPs are necessary. Consequently, we conducted a study utilizing a mouse model that underwent autonomous inhalation of polystyrene nanoplastics (PS-NPs) to investigate the impact of airborne nanoplastics (NPs) on kidney. The results demonstrated that airborne NPs could accumulate within the kidney subsequent to pulmonary entry. Transcriptome analysis showed that exposure to airborne NPs persistently interfered with important signaling pathways including oxidative stress, inflammation, and coagulation, which activated the NR4A1/CASP3 and TF/F12 signaling pathways. In vitro studies have shown that NPs were internalized by human kidney proximal tubular epithelial (HK-2) cells, leading to a range of pathological responses, and ultimately affecting cell fate. Furthermore, we pioneered the exposure of NPs to human kidney organoids. Our findings revealed a heightened sensitivity in kidney organoids towards NPs as compared to immortalized cell lines. This suggested that exposure to NPs could potentially inflict a more substantial toxic effect on the development of embryonic kidneys. In conclusion, this study has revealed the deleterious effects of exposure to airborne NPs on the mouse kidney.
Collapse
Affiliation(s)
- Liqun Chen
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, China
| | - Bin Han
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, China; Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, China
| | - Shushuai Yang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, China; Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, China
| | - Liqiong Guo
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Lei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Ping Liu
- Tianjin Bioscience Diagnostic Technology Co.Ltd, Tianjin, China
| | - Xiaoming Hong
- Tianjin Mid-Link Biomedical Technology Group, Tianjin, China
| | - Yan Zhao
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, China; Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, China
| | - Yahang Peng
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, China; Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, China
| | - Shiyong Qi
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, China.
| | - Lidan Hu
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| | - Yue Chen
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, China.
| |
Collapse
|
3
|
Volsa AM, Iacono E, Merlo B. Micro-nanoplastics pollution and mammalian fertility: A systematic review and meta-analysis. Theriogenology 2025; 238:117369. [PMID: 40037030 DOI: 10.1016/j.theriogenology.2025.117369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/07/2025] [Accepted: 02/25/2025] [Indexed: 03/06/2025]
Abstract
MICRO: and nanoplastics (MNPs) are fragments derived from physical, chemical, or biological degradation of plastic items. MNPs are one of the main sources of both marine and terrestrial plastic pollution. This study systematically and meta-analytically assesses the reproductive toxicity in mammals of key plastic components found in MNPs, focusing on polystyrene (PS), polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), and polyvinyl chloride (PVC). PubMed, Medline, and CAB Abstracts databases were used to identify the relevant scientific papers, and 79 articles were selected for the systematic review. Six articles included two different species, and 19 papers contained both in vivo and in vitro studies, resulting in a total of 102 experiments being considered and analysed in the meta-analysis. Interest in the reproductive toxicity of MNPs in mammals has increased, peaking in the last two years. Five species (rat, mouse, bovine, pig, and human) have been studied, with most experiments carried out in vivo in mice, focusing on male fertility. The most studied plastic polymer is PS, and both micro- and nanoparticles were tested at single or multiple concentrations. Toxic effects are documented across various species, particle size, and polymer type. A pronounced concentration-dependent toxicity has been observed, particularly at high concentrations/doses of MNPs. There is a gap in research on food-producing animals, which are both relevant models for human health and potential vectors for MNPs into the human food supply chain. Overall, these findings emphasizpe the importance of continued research to elucidate the pathways and mechanisms through which MNPs impact mammalian reproductive health, ultimately advancing our understanding of how these pervasive pollutants interact with biological systems across diverse species.
Collapse
Affiliation(s)
- Alessandro Marino Volsa
- Department of Physiology, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), University of Murcia, C. Campus Universitario 7, 30100, Murcia, Spain.
| | - Eleonora Iacono
- Department of Veterinary Medical Sciences, University of Bologna, via Tolara di Sopra 50, 40064, Bologna, Italy; Health Science and Technologies Interdepartmental Centre for Industrial Research (CIRI-SDV), University of Bologna, Bologna, Italy.
| | - Barbara Merlo
- Department of Veterinary Medical Sciences, University of Bologna, via Tolara di Sopra 50, 40064, Bologna, Italy; Health Science and Technologies Interdepartmental Centre for Industrial Research (CIRI-SDV), University of Bologna, Bologna, Italy.
| |
Collapse
|
4
|
Bian DD, Zhang X, Zhu XR, Tang WH, Peng Q, Chen YH, Wang G, Zhang DZ, Tang BP, Liu QN. The Nrf2-Keap1/ARE signaling pathway in aquatic animals. Int J Biol Macromol 2025; 308:142595. [PMID: 40158560 DOI: 10.1016/j.ijbiomac.2025.142595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 03/12/2025] [Accepted: 03/22/2025] [Indexed: 04/02/2025]
Abstract
The complex and fluctuating conditions of aquatic ecosystems make aquatic organisms vulnerable to oxidative stress. The Nrf2-Keap1/ARE signaling pathway serves as an important intracellular defense mechanism, particularly for aquatic organisms exposed to environmental stressors and toxic substances. Environmental stimuli can disrupt an organism's internal redox balance, leading to cellular oxidative stress responses. To counteract these effects, cells develop intricate defense mechanisms, with the Nrf2-Keap1/ARE signaling pathway is playing a crucial role. In this pathway, the nuclear transcription factor Nrf2 translocates into the nucleus to initiate the transcription of antioxidant genes, thereby reducing reactive oxygen species (ROS)-induced cellular damage and maintaining the organism's oxidative-antioxidative equilibrium. While research on this pathway in mammals is well-established, studies on aquatic organisms are still limited. This review provides a comprehensive analysis of the regulatory functions of the Nrf2-Keap1/ARE pathway on oxidative stress and delves into the molecular structures of Nrf2, Keap1, and ARE, offering insights into the physiological regulation of antioxidant defenses in aquatic organisms.
Collapse
Affiliation(s)
- Dan-Dan Bian
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China; Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, College of Life Sciences, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Xue Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, College of Aquaculture and Life Science, Shanghai Ocean University, Shanghai 201306, People's Republic of China
| | - Xi-Rong Zhu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Wen-Hui Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Qin Peng
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Yao-Hui Chen
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Gang Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Dai-Zhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China.
| |
Collapse
|
5
|
Xiao B, Yang W, Dong H, Liu T, Li C, Wang Y, Gao D, Han G, Kiran F, Wang A, Jin Y, Yuan Y, Chen H. Co-Exposure to Polystyrene Microplastics and Bisphenol A Contributes to the Formation of Liver Fibrosis in Mice through Inhibition of the BMAL1/E-Cad Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7405-7422. [PMID: 40073227 DOI: 10.1021/acs.jafc.4c08790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
The food safety risks posed by exposure to polystyrene microplastics (PS-MPs) and bisphenol A (BPA) have become an issue worldwide. However, the toxic effects of PS-MPs and BPA coexposure on the mammalian liver remain elusive. In this study, we found that PS-MPs and BPA coexposure have synergistic toxic effects on AML12 cells and the mouse liver. Histopathological staining revealed excessive accumulation of the extracellular matrix in the coexposure liver. Co-exposure to PS-MPs and BPA downregulated Bmal1 and E-cad both in vitro and in vivo. Additionally, Bmal1-/- AML12 cells and liver-specific Bmal1-/- mice exhibited significantly reduced E-cad levels, with no significant reduction under PS-MPs and BPA coexposure. Notably, overexpression of BMAL1 and CLOCK significantly enhanced luciferase activity driven by the E-cad gene intron region (containing an E-box cis-element). These results demonstrated that coexposure to PS-MPs and BPA contributed to the development of liver fibrosis by inhibiting the BMAL1/E-cad signaling pathway.
Collapse
Affiliation(s)
- Bonan Xiao
- Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wanghao Yang
- Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hao Dong
- Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tian Liu
- Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chao Li
- Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yiqun Wang
- Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dengke Gao
- Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Guohao Han
- Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fouzia Kiran
- Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Aihua Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Preventative Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yaping Jin
- Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yalin Yuan
- Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huatao Chen
- Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
6
|
Zhao Q, Fang Z, Wang P, Qian Z, Yang Y, Ran L, Zheng J, Tang Y, Cui X, Li YY, Zhang Z, Jiang H. Polylactic Acid Micro/Nanoplastic Exposure Induces Male Reproductive Toxicity by Disrupting Spermatogenesis and Mitochondrial Dysfunction in Mice. ACS NANO 2025; 19:5589-5603. [PMID: 39869919 DOI: 10.1021/acsnano.4c15112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Although considered an "eco-friendly" biodegradable plastic, polylactic acid (PLA) microplastic (PLA-MP) poses a growing concern for human health, yet its effects on male reproductive function remain underexplored. This study investigated the reproductive toxicity of PLA in male mice and its potential mechanisms. To this end, our in vivo and in vitro experiments demonstrated that after degradation in the digestive system, a significant number of PLA-MP-derived nanoparticles could penetrate the blood-testis barrier (BTB) and localize within the spermatogenic microenvironment. Mice exposed to PLA-MPs for a long time exhibited significant reproductive toxicity, evidenced by decreased sperm concentration and motility, increased sperm deformity rates, and disrupted sex hormone levels. Further analysis revealed that PLA impaired BTB, induced mitochondrial dysfunction in the testes, and triggered oxidative stress through excessive ROS production from mitochondria, leading to further testicular damage. Notably, PLA nanoplastics internalized in the mitochondrial sheath and disrupted the mitochondrial structure of sperm, causing dose-dependent impairments in mitochondrial function. Transcriptome analyses further indicated that PLA-MPs disrupted spermatogenesis by inhibiting the expression of key mRNA involved in this process. Collectively, our findings highlight the reproductive toxic effect of biodegradable PLA by damaging BTB and impairing mitochondrial function, which provides insights into the toxicological implications of biodegradable microplastics for mammalian fertility.
Collapse
Affiliation(s)
- Qiancheng Zhao
- Department of Urology, Peking University First Hospital, Beijing 100034, China
| | - Zishui Fang
- Department of Urology, Peking University First Hospital, Beijing 100034, China
| | - Pengcheng Wang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
| | - Zhenwei Qian
- Peking University 302 Clinical Medical School, Beijing 100039, China
| | - Yuzhuo Yang
- Department of Urology, Peking University First Hospital, Beijing 100034, China
| | - Lingxiang Ran
- Department of Urology, Peking University First Hospital, Beijing 100034, China
| | - Jiachen Zheng
- Department of Urology, Peking University First Hospital, Beijing 100034, China
| | - Yanlin Tang
- Department of Urology, Peking University Third Hospital, Beijing 100191, China
| | - Xuejing Cui
- CAS, Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Yuan-Yuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhe Zhang
- Department of Urology, Peking University Third Hospital, Beijing 100191, China
| | - Hui Jiang
- Department of Urology, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
7
|
Gong FH, Liu L, Wang X, Xiang Q, Yi X, Jiang DS. Ferroptosis induced by environmental pollutants and its health implications. Cell Death Discov 2025; 11:20. [PMID: 39856053 PMCID: PMC11759704 DOI: 10.1038/s41420-025-02305-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/19/2024] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Environmental pollution represents a significant public health concern, with the potential health risks associated with environmental pollutants receiving considerable attention over an extended period. In recent years, a substantial body of research has been dedicated to this topic. Since the discovery of ferroptosis, an iron-dependent programmed cell death typically characterized by lipid peroxidation, in 2012, there have been significant advances in the study of its role and mechanism in various diseases. A growing number of recent studies have also demonstrated the involvement of ferroptosis in the damage caused to the organism by environmental pollutants, and the molecular mechanisms involved have been partially elucidated. The targeting of ferroptosis has been demonstrated to be an effective means of ameliorating the health damage caused by PM2.5, organic and inorganic pollutants, and ionizing radiation. This review begins by providing a summary of the most recent and important advances in ferroptosis. It then proceeds to offer a critical analysis of the health effects and molecular mechanisms of ferroptosis induced by various environmental pollutants. Furthermore, as is the case with all rapidly evolving research areas, there are numerous unanswered questions and challenges pertaining to environmental pollutant-induced ferroptosis, which we discuss in this review in an attempt to provide some directions and clues for future research in this field.
Collapse
Affiliation(s)
- Fu-Han Gong
- Department of Cardiology, Tongren People's Hospital, Tongren, Guizhou, China
| | - Liyuan Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xuesheng Wang
- Department of Cardiology, Tongren People's Hospital, Tongren, Guizhou, China
| | - Qi Xiang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Ding-Sheng Jiang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China.
| |
Collapse
|
8
|
Chen D, Pan L, Ran X, Huang J, Teng X, Yang F, Liu H. Microbial diversity and metabolomics analysis of colon contents exposed to cadmium and polystyrene microplastics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117585. [PMID: 39709704 DOI: 10.1016/j.ecoenv.2024.117585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
Cadmium and microplastics, common pollutants, can accumulate in the body, impacting the intestinal barrier and harming livestock breeding. In order to explore the damage mechanism of cadmium and cadmium combined microplastic on the colon of mice, 60 mice were divided into three groups: The control group (0.2 mL of saline), cadmium group (Cd group, 0.2 mL of 4.8 mg/kg/d CdCl2) and mixed group (Mix group, 0.2 mL of mixed solution containing 4.8 mg/kg/d CdCl2 and 10.0 mg/d MPs) were fed for 42 d. The changes of colon histopathology were observed, and the changes of microbial diversity and metabolomics of colon contents were analyzed. Pathological sections of the colon showed abnormal mucosal hyperemia with mixed exposure compared to cadmium exposure. Microbial diversity analysis showed increased abundances of Enterococcus, Adlercreutzia, and Bifidobacterium in the Cd and Mix groups, with Dubosiella being the most significantly increased. Metabolomic analysis indicated significant differences in nucleotide and purine metabolism between the Cd and control groups, and in linoleic acid and bile acid metabolism between the Mix and control groups. The ABC transporter metabolites increased with Cd exposure, while the PPAR pathway metabolites were enriched with MPs exposure. Correlation analysis highlighted several key findings: Pasteurella exhibited a notably negative association with pantothenate. Conversely, Enterococcus demonstrated a significant positive link with palmitoylcarnitine. Additionally, both Adlercreutzia and norank_f_Eggerthellaceae showed a positive correlation with azelaic acid. These findings suggest that Cd and MPs disrupt intestinal microbiota and metabolic pathways, providing insights into potential treatments for such exposures.
Collapse
Affiliation(s)
- Dechun Chen
- Key Laboratory of Animal Medicine of Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Liyu Pan
- Key Laboratory of Animal Medicine of Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Xuan Ran
- Key Laboratory of Animal Medicine of Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Junyu Huang
- Key Laboratory of Animal Medicine of Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Falong Yang
- Key Laboratory of Animal Medicine of Sichuan Province, Southwest Minzu University, Chengdu 610041, China.
| | - Haifeng Liu
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
9
|
Wu SF, Ga Y, Ma DY, Hou SL, Hui QY, Hao ZH. The role of ferroptosis in environmental pollution-induced male reproductive system toxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125118. [PMID: 39414070 DOI: 10.1016/j.envpol.2024.125118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/28/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
This article provides a comprehensive review of the toxic effects of environmental pollution on the male reproductive system, with a particular emphasis on ferroptosis, a form of programmed cell death. Research has shown that environmental pollutants, such as heavy metals, pesticide residues, and plastic additives, can disrupt oxidative stress, increasing the production of reactive oxygen species (ROS) in germ cells. This disruption damages cellular lipids, proteins, and DNA, culminating in cell dysfunction or death. Ferroptosis, a cell death pathway closely linked to oxidative stress, is characterized by the accumulation of intracellular iron ions and elevated levels of lipid ROS. This review also explores the role of ferroptosis in male reproductive disorders, including its contributions to reduced sperm count, decreased motility, and abnormal morphology. Environmental pollutants, particularly heavy metals, can induce ferroptosis by interfering with intracellular antioxidant systems, notably the NRF2, GSH, and GPX4 pathways, accumulating toxic lipid peroxides. Furthermore, the article examines the potential interplay between ferroptosis and other forms of cell death, such as apoptosis, autophagy, pyroptosis, and necrosis, in the context of male reproductive health. The review underscores the critical need for further research into the link between environmental pollutants and male fertility, particularly focusing on ferroptosis. It advocates for targeted research efforts to mitigate the adverse effects of ferroptosis and protect reproductive health, emphasizing that a deeper understanding of these mechanisms could lead to innovative preventive strategies against environmental threats to fertility.
Collapse
Affiliation(s)
- Shao-Feng Wu
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya, 572025, China.
| | - Yu Ga
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya, 572025, China.
| | - Dan-Yang Ma
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya, 572025, China.
| | - Si-Lu Hou
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya, 572025, China.
| | - Qiao-Yue Hui
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya, 572025, China.
| | - Zhi-Hui Hao
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya, 572025, China; Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China; National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing, 100193, China.
| |
Collapse
|
10
|
Fröhlich E. Local and systemic effects of microplastic particles through cell damage, release of chemicals and drugs, dysbiosis, and interference with the absorption of nutrients. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2024; 27:315-344. [PMID: 39324551 DOI: 10.1080/10937404.2024.2406192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Microplastic particles (MPs) have been detected in a variety of environmental samples, including soil, water, food, and air. Cellular studies and animal exposures reported that exposure to MPs composed of different polymers might result in adverse effects at the portal of entry (local) or throughout the body (systemic). The most relevant routes of particle uptake into the body are oral and respiratory exposure. This review describes the various processes that may contribute to the adverse effects of MPs. Only MPs up to 5 µm were found to cross epithelial barriers to a significant extent. However, MPs may also exert a detrimental impact on human health by acting at the epithelial barrier and within the lumen of the orogastrointestinal and respiratory tract. The potential for adverse effects on human health resulting from the leaching, sorption, and desorption of chemicals, as well as the impact of MPs on nutritional status and dysbiosis, are reviewed. In vitro models are suggested as a means of (1) assessing permeation, (2) determining adverse effects on cells of the epithelial barrier, (3) examining influence of digestive fluids on leaching, desorption, and particle properties, and (4) role of microbiota-epithelial cell interactions. The contribution of these mechanisms to human health depends upon exposure levels, which unfortunately have been estimated very differently.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Center for Medical Research, Medical University of Graz, Graz, Austria
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria
| |
Collapse
|
11
|
Zhang L, Lu G, Ling X, Yan Z, Liu J, Ding K. Toxicokinetics of microplastics in Macrobrachium nipponense and their impact on the bioavailability of loaded pollutants. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135610. [PMID: 39178771 DOI: 10.1016/j.jhazmat.2024.135610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Microplastics (MPs) have unique toxicokinetic (TK) processes that differ from those of soluble pollutants. This study investigated the ingestion, migration, accumulation, and clearance of environmental aging MPs in the Japanese swamp shrimp (Macrobrachium nipponense). The concentrations of plastic additives and personal care products adsorbed onto MPs in natural river water were determined, and TK models for MPs and MPs-loaded pollutants were developed. Results showed that the formation of surface biofilms and alterations in the distribution of MPs in waters caused by environmental aging affect MPs bioavailability, which is mainly related to the feeding habits of shrimp. The decrease in MPs particle size caused by biological digestion and the increase in the number of oxygen-containing functional groups caused by environmental aging affect the TK process of MPs. The TK model of MPs-loaded pollutants revealed the cleaning effect of shrimp on pollutants adsorbed onto MPs during swallowing and spitting MPs. This cleaning effect significantly increases the bioavailability of MPs-associated pollutants in aquatic environments. This study provides a new perspective for understanding the interactions between environmental MPs and their associated pollutants in aquatic ecosystems.
Collapse
Affiliation(s)
- Leibo Zhang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Xin Ling
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jianchao Liu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Keqiang Ding
- School of Environmental Engineering, Nanjing Institute of Technology, Nanjing 211167, China
| |
Collapse
|
12
|
Lan Y, Wang M, Yuan H, Xu H. Catechins counteracted hepatotoxicity induced by cadmium through Keap1-Nrf2 pathway regulation. FOOD BIOSCI 2024; 61:104593. [DOI: 10.1016/j.fbio.2024.104593] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
13
|
Chen X, Sun W, Song Y, Wu S, Xie S, Xiong W, Peng C, Peng Y, Wang Z, Lek S, Hogstrand C, Sørensen M, Pan L, Liu D. Acute waterborne cadmium exposure induces liver ferroptosis in Channa argus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116947. [PMID: 39213749 DOI: 10.1016/j.ecoenv.2024.116947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/17/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
The impact of cadmium (Cd) toxicity on fish liver injury has received much attention in recent years. Currently, autophagy, apoptosis and endoplasmic reticulum stress were reported in Cd exposed fish liver, and if there are other mechanisms (such as ferroptosis) and relevant signaling pathways involved in fish remains unknown. An experiment was conducted to investigate Cd toxicity in Channa argus (Cantor, 1842) exposed to 0, 1.0, and 2.0 mg Cd/L of water for 96 h. Cd disrupted the structure of mitochondria in the liver. Besides, Cd induced ferroptosis by significantly increasing the level of Fe2+, ROS, MDA and significantly decreasing the level of Ferritin, GSH, GSH-Px, GPX4, GST and SOD (p < 0.05 in all cases). In addition, the mRNA expression of ferroptosis related genes, gpx4 and slc7a11, were significantly downregulated by Cd. Moreover, Cd exposure significantly inhibited the Nrf2/Keap1 signaling pathway, one of the pathways involved in ferroptosis, by upregulating the mRNA levels of keap1a and keap1b, and downregulating the mRNA levels of nrf2 and its target genes (ho-1, nqo1 and cat). Cd exposure also caused extensive accumulation of vacuoles and lipid droplets in liver, as well as an increase in triglyceride content. Cd significantly affected lipid metabolism related enzyme activity and gene expression, which were also regulated by Nrf2/Keap1 signaling pathway. In summary, these results indicate that ferroptosis is a mechanism in waterborne Cd exposed fish liver injury via the Nrf2/Keap1 signaling pathway and the Cd induced hepatic steatosis is also modulated by Nrf2/Keap1 pathway at the whole-body level in fish. These findings provide new insights into the fish liver injury and molecular basis of Cd toxicity.
Collapse
Affiliation(s)
- Xingyu Chen
- Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China; Hubei Key Laboratory of Regional Development and Environmental Response, Hubei University, Wuhan 430062, China
| | - Wenqian Sun
- Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China; Hubei Key Laboratory of Regional Development and Environmental Response, Hubei University, Wuhan 430062, China
| | - Yanting Song
- Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China; Hubei Key Laboratory of Regional Development and Environmental Response, Hubei University, Wuhan 430062, China
| | - Shangong Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, China
| | - Shouqi Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, China
| | - Wen Xiong
- College of Life Sciences, Hubei Normal University, Huangshi 435002, China
| | - Chengdong Peng
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu Peng
- Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China; Hubei Key Laboratory of Regional Development and Environmental Response, Hubei University, Wuhan 430062, China
| | - Zhengxiang Wang
- Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China; Hubei Key Laboratory of Regional Development and Environmental Response, Hubei University, Wuhan 430062, China
| | - Sovan Lek
- Laboratoire Evolution & Diversité Biologique, UMR 5174, Université Paul Sabatier-Toulouse III, 118 routes de Narbonne, 31062, Toulouse Cedex 4, France
| | - Christer Hogstrand
- Department of Nutritional Sciences, King's College London, London WC2R 2LS, UK
| | - Mette Sørensen
- Faculty of Biosciences and Aquaculture, Nord University, Bodø 8049, Norway
| | - Lei Pan
- Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China; Hubei Key Laboratory of Regional Development and Environmental Response, Hubei University, Wuhan 430062, China.
| | - Dong Liu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
14
|
Xiao S, Cui J, Yang J, Hou H, Yao J, Ma X, Zheng L, Zhao F, Liu X, Liu D, Zhou Z, Wang P. Systematic health risks assessment of chiral fungicide famoxadone: Stereoselectivities in ferroptosis-mediated cytotoxicity and metabolic behavior. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135199. [PMID: 39053069 DOI: 10.1016/j.jhazmat.2024.135199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/20/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
Famoxadone is a chiral fungicide frequently found in the environment and agricultural products. However, the health risks of famoxadone enantiomers are not well understood. This study investigated the stereoselective cytotoxicity and metabolic behavior of famoxadone enantiomers in mammals. Results showed that R-famoxadone was 1.5 times more toxic to HepG2 cells than S-famoxadone. R-famoxadone induced more pronounced ferroptosis compared to S-famoxadone. It caused greater upregulation of genes related to iron transport and lipid peroxidation, and greater downregulation of genes related to peroxide clearance. Furthermore, R-famoxadone induced more severe lipid peroxidation and reactive oxygen species (ROS) accumulation through ACSL4 activation and GPX4 inhibition. Additionally, the bioavailability of R-famoxadone in mice was six times higher than that of S-famoxadone. Liver microsome assays, cytochrome P450 (CYP450) inhibition assays, human recombinant CYP450 assays, and molecular docking suggested that the lower binding affinities of CYP2C8, CYP2C19, and CYP2E1 for R-famoxadone caused its preferential accumulation. Overall, R-famoxadone poses a higher risk than S-famoxadone due to its greater cytotoxicity and persistence. This study provides the first evidence of ferroptosis-induced stereoselective toxicity, offering insights for the comprehensive health risk assessment of chiral famoxadone and valuable references for the application of high-efficiency, low-risk pesticide enantiomers.
Collapse
Affiliation(s)
- Shouchun Xiao
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Jingna Cui
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Jiaxing Yang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Haonan Hou
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Jianing Yao
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Xiaoran Ma
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Li Zheng
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Fanrong Zhao
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Xueke Liu
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Donghui Liu
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Peng Wang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing 100193, PR China.
| |
Collapse
|
15
|
Huang F, Chen L, Yang X, Jeyakumar P, Wang Z, Sun S, Qiu T, Zeng Y, Chen J, Huang M, Wang H, Fang L. Unveiling the impacts of microplastics on cadmium transfer in the soil-plant-human system: A review. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135221. [PMID: 39096630 DOI: 10.1016/j.jhazmat.2024.135221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/02/2024] [Accepted: 07/14/2024] [Indexed: 08/05/2024]
Abstract
The co-contamination of soils by microplastics (MPs) and cadmium (Cd), one of the most perilous heavy metals, is emerging as a significant global concern, posing risks to plant productivity and human health. However, there remains a gap in the literature concerning comprehensive evaluations of the combined effects of MPs and Cd on soil-plant-human systems. This review examines the interactions and co-impacts of MPs and Cd in soil-plant-human systems, elucidating their mechanisms and synergistic effects on plant development and health risks. We also review the origins and contamination levels of MPs and Cd, revealing that sewage, atmospheric deposition, and biosolid applications are contributors to the contamination of soil with MPs and Cd. Our meta-analysis demonstrates that MPs significantly (p<0.05) increase the bioavailability of soil Cd and the accumulation of Cd in plant shoots by 6.9 and 9.3 %, respectively. The MPs facilitate Cd desorption from soils through direct adsorption via surface complexation and physical adsorption, as well as indirectly by modifying soil physicochemical properties, such as pH and dissolved organic carbon, and altering soil microbial diversity. These interactions augment the bioavailability of Cd, along with MPs, adversely affect plant growth and its physiological functions. Moreover, the ingestion of MPs and Cd through the food chain significantly enhances the bioaccessibility of Cd and exacerbates histopathological alterations in human tissues, thereby amplifying the associated health risks. This review provides insights into the coexistence of MPs and Cd and their synergistic effects on soil-plant-human systems, emphasizing the need for further research in this critical subject area.
Collapse
Affiliation(s)
- Fengyu Huang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Li Chen
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xing Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China.
| | - Paramsothy Jeyakumar
- Environmental Sciences Group, School of Agriculture and Environment, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Zhe Wang
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang 621010, China
| | - Shiyong Sun
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang 621010, China
| | - Tianyi Qiu
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| | - Yi Zeng
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| | - Jing Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Min Huang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China; Guangdong Provincial Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Linchuan Fang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
16
|
Ma T, Cheng H, Kong L, Shen C, Jin H, Li H, Pan C, Liang J. Combined exposure of PS-MPs with NaF induces Sertoli cell death and dysfunction via ferroptosis and apoptosis. Toxicology 2024; 506:153849. [PMID: 38821197 DOI: 10.1016/j.tox.2024.153849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
The individual toxicity of sodium fluoride (NaF) and microplastics (MPs) has been extensively documented. Owing to their high specific surface area, widespread presence and durability, MPs can adsorb a broad spectrum of environmental contaminants into the organism. However, the combined toxicity of NaF and MPs has not been investigated. This study aimed to assess the effects of combined exposure to NaF and MPs on the function of testicular Sertoli cells (SCs) in male mice, and to investigate the underlying molecular mechanisms. The study revealed that combined exposure to NaF and MPs resulted in a decrease in the negative surface charge of MPs, along with an increase in the number of MPs entering the SCs. Through in vivo observation of the testicular pathological structure, spermatogenesis, and cell apoptosis in 180-day-old male mice, we discovered that combined exposure to NaF (80 mg/L) and MPs (10 mg/L) heightened reproductive toxicity compared to the individual exposure groups. This was evidenced by testicular structural defects, impaired spermatogenesis, and increased testicular cell apoptosis. Our in vitro studies showed that NaF (21 μg/mL) and MPs (100 μg/mL) synergistically induced SCs apoptosis and ferroptosis, leading to a reduction in SCs number and dysfunction. This ultimately resulted in structural and functional damage to the testes. Our findings demonstrate, for the first time, the synergistic effects of NaF and MPs on reproductive toxicity in mammals. These insights may provide valuable contributions to co-toxicity studies involving MPs and other environmental pollutants.
Collapse
Affiliation(s)
- Tan Ma
- Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Disease, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Huixian Cheng
- Department of Anesthesiology, Yijishan Hospital of Wannan Medical College, No. 2 Zheshan Road, Wuhu, Anhui 241001, China
| | - Liang Kong
- Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Disease, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Chenghao Shen
- Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Disease, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Haibo Jin
- School of Public Health, Yangzhou University, Yangzhou 225000, China
| | - Hongliang Li
- Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Disease, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Chun Pan
- Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Disease, Yangzhou University, Yangzhou, Jiangsu 225001, China.
| | - Jingyan Liang
- Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Disease, Yangzhou University, Yangzhou, Jiangsu 225001, China.
| |
Collapse
|
17
|
Wen Y, Cai J, Zhang H, Li Y, Yu M, Liu J, Han F. The Potential Mechanisms Involved in the Disruption of Spermatogenesis in Mice by Nanoplastics and Microplastics. Biomedicines 2024; 12:1714. [PMID: 39200182 PMCID: PMC11351746 DOI: 10.3390/biomedicines12081714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 09/02/2024] Open
Abstract
BACKGROUND Plastic-based products are ubiquitous due to their tremendous utility in our daily lives. Nanoplastic (NP) and microplastic (MP) pollution has become a severe threat to the planet and is a growing concern. It has been widely reported that polystyrene (PS) MPs are severely toxic to the male reproduction system, with effects including decreased sperm parameters, impaired spermatogenesis, and damaged testicular structures. However, the molecular mechanisms for impaired spermatogenesis remain poorly understood. METHODS C57BL/6 male mice were treated with PS-NPs (80 nm) and PS-MPs (5 μm) by oral gavage every day for 60 days. A series of morphological analyses were completed to explore the influence of PS-NP and PS-MP exposure on the testes. Compared to other cell types in the seminiferous tubule, PS-NP and PS-MP exposure can lead to decreased spermatocytes. Then, more refined molecular typing was further performed based on gene expression profiles to better understand the common and specific molecular characteristics after exposure to PS-NPs and PS-MPs. RESULTS There were 1794 common DEGs across the PS-NP groups at three different doses and 1433 common DEGs across the PS-MP groups at three different doses. GO and KEGG analyses of the common DEGs in the PS-NP and PS-MP groups were performed to enrich the common and specific functional progress and signaling pathways, including 349 co-enriched GO entries and 13 co-enriched pathways. Moreover, 348 GO entries and 33 pathways were specifically enriched in the PS-NP group, while 526 GO entries and 15 pathways were specifically enriched in the PS-MPs group. CONCLUSIONS PS-NPs were predominantly involved in regulating retinoic acid metabolism, whereas PS-MPs primarily influenced pyruvate metabolism and thyroid hormone metabolism. Our results highlight the different molecular mechanisms of PS-NPs and PS-MPs in the impairment of spermatogenesis in male mammals for the first time, providing valuable insights into the precise mechanisms of PS-NPs and PS-MPs in male reproduction.
Collapse
Affiliation(s)
- Yixian Wen
- School of Public Health, Chongqing Medical University, Chongqing 400016, China; (Y.W.); (J.C.); (H.Z.); (Y.L.); (M.Y.)
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education, Chongqing 400016, China
| | - Jing Cai
- School of Public Health, Chongqing Medical University, Chongqing 400016, China; (Y.W.); (J.C.); (H.Z.); (Y.L.); (M.Y.)
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education, Chongqing 400016, China
| | - Huilian Zhang
- School of Public Health, Chongqing Medical University, Chongqing 400016, China; (Y.W.); (J.C.); (H.Z.); (Y.L.); (M.Y.)
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education, Chongqing 400016, China
| | - Yi Li
- School of Public Health, Chongqing Medical University, Chongqing 400016, China; (Y.W.); (J.C.); (H.Z.); (Y.L.); (M.Y.)
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education, Chongqing 400016, China
| | - Manyao Yu
- School of Public Health, Chongqing Medical University, Chongqing 400016, China; (Y.W.); (J.C.); (H.Z.); (Y.L.); (M.Y.)
| | - Jinyi Liu
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing 400038, China;
| | - Fei Han
- School of Public Health, Chongqing Medical University, Chongqing 400016, China; (Y.W.); (J.C.); (H.Z.); (Y.L.); (M.Y.)
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education, Chongqing 400016, China
| |
Collapse
|
18
|
Hong Y, Yuan Q, Wang L, Yang Z, Xu P, Guan X, Chen C. Integrative bioinformatics analysis to identify ferroptosis-related genes in non-obstructive azoospermia. J Assist Reprod Genet 2024; 41:2145-2161. [PMID: 38902567 PMCID: PMC11339017 DOI: 10.1007/s10815-024-03155-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024] Open
Abstract
PURPOSE The objective of this study was to discern ferroptosis-related genes (FRGs) linked to non-obstructive azoospermia and investigate the associated molecular mechanisms. METHOD A dataset related to azoospermia was retrieved from the Gene Expression Omnibus database, and FRGs were sourced from GeneCards. Ferroptosis-related differentially expressed genes (FRDEGs) were discerned. Subsequently, these genes underwent analyses encompassing Gene Ontology and Kyoto Encyclopedia of Genes and Genomes, as well as protein-protein interaction (PPI) networks and assessments of functional similarity. Following the identification of hub genes, an exploration of immune infiltration, single-cell expression, diagnostic utility, and interactions involving hub genes, RNA-binding proteins (RBPs), transcription factors (TFs), microRNAs (miRNAs), and drugs was conducted. RESULTS A total of 35 differentially expressed FRGs were discerned. These genes demonstrated enrichment in functions and pathways associated with ferroptosis. From the PPI network, eight hub genes were selected. Functional similarity analysis highlighted the potential pivotal roles of HMOX1 and GPX4 in azoospermia. Analysis of immune cell infiltration indicated a significant decrease in activated dendritic cells in the azoospermia group, with notable correlations between hub genes, particularly SAT1 and HMGCR, and immune cell infiltration. Unique expression patterns of hub genes across various cell types in the human testis were observed, with GPX4 prominently enriched in spermatid/sperm. Eight hub genes exhibited robust diagnostic value (AUC > 0.75). Lastly, a comprehensive hub gene-miRNA-TF-RBP-drug network was constructed. CONCLUSION In summary, our investigation unveiled eight FRDEGs associated with azoospermia, which hold potential as biomarkers for the diagnosis and treatment of azoospermia.
Collapse
Affiliation(s)
- Yanggang Hong
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Key Laboratory of Children Genitourinary Diseases of Wenzhou, Wenzhou, 325000, Zhejiang, China
| | - Qichao Yuan
- Department of Pediatric Urology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Key Laboratory of Children Genitourinary Diseases of Wenzhou, Wenzhou, 325000, Zhejiang, China
| | - Lingfei Wang
- Department of Pediatric Urology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Key Laboratory of Children Genitourinary Diseases of Wenzhou, Wenzhou, 325000, Zhejiang, China
| | - Zihan Yang
- Department of Pediatric Urology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Key Laboratory of Children Genitourinary Diseases of Wenzhou, Wenzhou, 325000, Zhejiang, China
| | - Peiyu Xu
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Key Laboratory of Children Genitourinary Diseases of Wenzhou, Wenzhou, 325000, Zhejiang, China
| | - Xiaoju Guan
- Department of Pediatric Urology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
- Key Laboratory of Children Genitourinary Diseases of Wenzhou, Wenzhou, 325000, Zhejiang, China.
| | - Congde Chen
- Department of Pediatric Urology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
- Key Laboratory of Children Genitourinary Diseases of Wenzhou, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
19
|
Wang M, Wu Y, Li G, Xiong Y, Zhang Y, Zhang M. The hidden threat: Unraveling the impact of microplastics on reproductive health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173177. [PMID: 38750730 DOI: 10.1016/j.scitotenv.2024.173177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/20/2024] [Accepted: 05/10/2024] [Indexed: 05/27/2024]
Abstract
Microplastics, with intricate physical and chemical characteristics, infiltrate the food chain and extensively impact ecosystems. Despite acknowledging the link between environmental pollution and declining fertility, the specific mechanisms affecting reproductive health remain to be elucidated. This review emphasizes the global correlation between microplastics and subfertility, focusing on entry pathways and impacts on ecosystems. Research suggests that microplastics disrupt the neuroendocrine system, influencing sex hormone synthesis through the hypothalamic-pituitary-gonadal (HPG) axis. In the reproductive system, microplastics interfere with the blood-testis barrier, impairing spermatogenesis in males, and causing placental dysfunction, ovarian atrophy, endometrial hyperplasia, and fibrosis in females. Moreover, microplastics potentially affect offspring's lipid metabolism and reproductive functions. However, complex microplastic compositions and detection method limitations impede research progress. Mitigation strategies for reproductive effects, combined with addressing microplastic pollution through sustainable practices, are imperative. This review underscores the urgency of global initiatives and collaborative research to safeguard reproductive health amid escalating microplastic contamination.
Collapse
Affiliation(s)
- Mei Wang
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China; Hubei Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health, Wuhan 430071, Hubei, PR China; Wuhan Clinical Research Center for Reproductive Health and Optimal Birth, Wuhan 430071, Hubei, PR China
| | - Ying Wu
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China; Hubei Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health, Wuhan 430071, Hubei, PR China; Wuhan Clinical Research Center for Reproductive Health and Optimal Birth, Wuhan 430071, Hubei, PR China
| | - Guigui Li
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China; Hubei Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health, Wuhan 430071, Hubei, PR China; Wuhan Clinical Research Center for Reproductive Health and Optimal Birth, Wuhan 430071, Hubei, PR China
| | - Yao Xiong
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China; Hubei Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health, Wuhan 430071, Hubei, PR China; Wuhan Clinical Research Center for Reproductive Health and Optimal Birth, Wuhan 430071, Hubei, PR China
| | - Yuanzhen Zhang
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China; Hubei Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health, Wuhan 430071, Hubei, PR China; Wuhan Clinical Research Center for Reproductive Health and Optimal Birth, Wuhan 430071, Hubei, PR China
| | - Ming Zhang
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China; Hubei Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health, Wuhan 430071, Hubei, PR China; Wuhan Clinical Research Center for Reproductive Health and Optimal Birth, Wuhan 430071, Hubei, PR China.
| |
Collapse
|
20
|
Qiao Z, Sun X, Fu M, Zhou S, Han Y, Zhao X, Gong K, Peng C, Zhang W, Liu F, Ye C, Yang J. Co-exposure of decabromodiphenyl ethane and cadmium increases toxicity to earthworms: Enrichment, oxidative stress, damage and molecular binding mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134684. [PMID: 38788581 DOI: 10.1016/j.jhazmat.2024.134684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
The increase of electronic waste worldwide has resulted in the exacerbation of combined decabromodiphenyl ethane (DBDPE) and cadmium (Cd) pollution in soil, posing a serious threat to the safety of soil organisms. However, whether combined exposure increases toxicity remains unclear. Therefore, this study primarily investigated the toxic effects of DBDPE and Cd on earthworms at the individual, tissue, and cellular levels under single and combined exposure. The results showed that the combined exposure significantly increased the enrichment of Cd in earthworms by 50.32-90.42 %. The toxicity to earthworms increased with co-exposure, primarily resulting in enhanced oxidative stress, inhibition of growth and reproduction, intensified intestinal and epidermal damage, and amplified coelomocyte apoptosis. PLS-PM analysis revealed a significant and direct relationship between the accumulation of target pollutants in earthworms and oxidative stress, damage, as well as growth and reproduction of earthworms. Furthermore, IBR analysis indicated that SOD and POD were sensitive biomarkers in earthworms. Molecular docking elucidated that DBDPE and Cd induced oxidative stress responses in earthworms through the alteration of the conformation of the two enzymes. This study enhances understanding of the mechanisms behind the toxicity of combined pollution and provides important insights for assessing e-waste contaminated soils.
Collapse
Affiliation(s)
- Zhihua Qiao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xinlin Sun
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Mengru Fu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shanqi Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yanna Han
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuan Zhao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kailin Gong
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Fang Liu
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Chunmei Ye
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Jie Yang
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| |
Collapse
|
21
|
Jiang J, Shu Z, Qiu L. Adverse effects and potential mechanisms of polystyrene microplastics (PS-MPs) on the blood-testis barrier. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:238. [PMID: 38849627 DOI: 10.1007/s10653-024-02033-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/13/2024] [Indexed: 06/09/2024]
Abstract
Microplastics (MPs) are defined as plastic particles or fragments with a diameter of less than 5 mm. These particles have been identified as causing male reproductive toxicity, although the precise mechanism behind this association is yet to be fully understood. Recent research has found that exposure to polystyrene microplastics (PS-MPs) can disrupt spermatogenesis by impacting the integrity of the blood-testis barrier (BTB), a formidable barrier within mammalian blood tissues. The BTB safeguards germ cells from harmful substances and infiltration by immune cells. However, the disruption of the BTB leads to the entry of environmental pollutants and immune cells into the seminiferous tubules, resulting in adverse reproductive effects. Additionally, PS-MPs induce reproductive damage by generating oxidative stress, inflammation, autophagy, and alterations in the composition of intestinal flora. Despite these findings, the precise mechanism by which PS-MPs disrupt the BTB remains inconclusive, necessitating further investigation into the underlying processes. This review aims to enhance our understanding of the pernicious effects of PS-MP exposure on the BTB and explore potential mechanisms to offer novel perspectives on BTB damage caused by PS-MPs.
Collapse
Affiliation(s)
- Jinchen Jiang
- School of Public Health, Nantong University, 9 Seyuan Rd, Nantong, 226019, People's Republic of China
| | - Zhenhao Shu
- School of Public Health, Nantong University, 9 Seyuan Rd, Nantong, 226019, People's Republic of China
| | - Lianglin Qiu
- School of Public Health, Nantong University, 9 Seyuan Rd, Nantong, 226019, People's Republic of China.
| |
Collapse
|
22
|
Liu Z, Bian Q, Wang D. Exposure to 6-PPD quinone causes ferroptosis activation associated with induction of reproductive toxicity in Caenorhabditis elegans. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134356. [PMID: 38643579 DOI: 10.1016/j.jhazmat.2024.134356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/29/2024] [Accepted: 04/17/2024] [Indexed: 04/23/2024]
Abstract
Exposure to N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6-PPDQ) caused toxicity on Caenorhabditis elegans, including reproductive toxicity. However, the underlying mechanisms for this induced reproductive toxicity by 6-PPDQ remain largely unclear. We examined possible association of ferroptosis activation with reproductive toxicity of 6-PPDQ. In 1-100 μg/L 6-PPDQ exposed nematodes, Fe2+ content was increased, which was accompanied with enhanced lipid peroxidation, increased malonydialdehyde (MDA) content, and decreased L-glutathione (GSH) content. Exposure to 1-100 μg/L 6-PPDQ decreased expressions of ftn-1 encoding ferritin, ads-1 encoding AGPS, and gpx-6 encoding GPX4 and increased expression of bli-3 encoding dual oxidase. After 6-PPDQ exposure, RNAi of ftn-1 decreased ads-1 and gpx-6 expressions and increased bli-3 expression. RNAi of ftn-1, ads-1, and gpx-6 strengthened alterations in ferroptosis related indicators, and RNAi of bli-3 suppressed changes of ferroptosis related indicators in 6-PPDQ exposed nematodes. Meanwhile, RNAi of ftn-1, ads-1, and gpx-6 induced susceptibility, and RNAi of bli-3 caused resistance to 6-PPDQ reproductive toxicity. Moreover, expressions of DNA damage checkpoint genes (clk-2, mrt-2, and hus-1) could be increased by RNAi of ftn-1, ads-1, and gpx-6 in 6-PPDQ exposed nematodes. Therefore, our results demonstrated activation of ferroptosis in nematodes exposed to 6-PPDQ at environmentally relevant concentrations, and this ferroptosis activation was related to reproductive toxicity of 6-PPDQ.
Collapse
Affiliation(s)
- Zhengying Liu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Qian Bian
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, China.
| |
Collapse
|
23
|
Liu H, Du X, Zhang Z, Ge K, Chen X, Losiewicz MD, Guo H, Zhang H. Co-exposure of microcystin and nitrite enhanced spermatogenic disorders: The role of mtROS-mediated pyroptosis and apoptosis. ENVIRONMENT INTERNATIONAL 2024; 188:108771. [PMID: 38805914 DOI: 10.1016/j.envint.2024.108771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/26/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024]
Abstract
Microcystins (MCs) and nitrites are coexisted in the environment and have reproductive toxicity. The combined toxic effect and mechanism of MCs and nitrite on spermatogenesis remain largely unclear. In the present study, co-exposure to microcystin-leucine arginine (MC-LR) and sodium nitrite (NaNO2) aggravated testicular damage of Balb/c mice and mitochondrial impairment of spermatogonia, Sertoli cells, and sperm. Furthermore, MC-LR and NaNO2 reduced sperm density with a synergistic effect. In addition, MC-LR and NaNO2 synergistically induced oxidative stress in the reproductive system by decreasing superoxide dismutase (SOD) activity and glutathione (GSH) levels and increasing levels of mitochondrial reactive oxygen species (mtROS) and reactive oxygen species (ROS). More importantly, mitoquidone mesylate (MitoQ), an inhibitor of mtROS, blocked MC-LR and NaNO2-induced spermatogonia and Sertoli cell apoptosis by inhibiting high expression of Bax, Fadd, Caspase-8, and cleaved-Caspase-3. On the other hand, MitoQ suppressed pyroptosis of Sertoli cells by inhibiting the expression of NLRP3, N-GSDMD, and cleaved-Caspase-1. Additionally, MitoQ alleviated co-exposure-induced sperm density reduction and organ index disorders in F1 generation mice. Together, co-exposure of MC-LR and NaNO2 can enhance spermatogenic disorders by mitochondrial oxidative impairment-mediated germ cell death. This study emphasizes the potential risks of MC-LR and NaNO2 on reproduction in realistic environments and highlights new insights into the cause and treatment of spermatogenic disorders.
Collapse
Affiliation(s)
- Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; Department of Public Health, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Zongxin Zhang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Kangfeng Ge
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xinghai Chen
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, TX, USA
| | - Michael D Losiewicz
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, TX, USA
| | - Hongxiang Guo
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002 Henan, China.
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
24
|
Zhu J, Dai X, Wang Y, Cui T, Huang B, Wang D, Pu W, Zhang C. Molybdenum and cadmium co-induce apoptosis and ferroptosis through inhibiting Nrf2 signaling pathway in duck (Anas platyrhyncha) testes. Poult Sci 2024; 103:103653. [PMID: 38537407 PMCID: PMC10987903 DOI: 10.1016/j.psj.2024.103653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/04/2024] [Accepted: 03/09/2024] [Indexed: 04/07/2024] Open
Abstract
Cadmium (Cd) and high molybdenum (Mo) are injurious to the body. Previous research has substantiated that Cd and Mo exposure caused testicular injury of ducks, but concrete mechanism is not fully clarified. To further survey the toxicity of co-exposure to Cd and Mo in testis, 40 healthy 8-day-old Shaoxing ducks (Anas platyrhyncha) were stochasticly distributed to 4 groups and raised with basic diet embracing Cd (4 mg/kg Cd) or Mo (100 mg/kg Mo) or both. At the 16th wk, testis tissues were gathered. The characteristic ultrastructural changes related to apoptosis and ferroptosis were observed in Mo or Cd or both groups. Besides, Mo or Cd or both repressed nuclear factor erythroid 2-related factor 2 (Nrf2) pathway via decreasing Nrf2, Heme oxygenase-1 (HO-1), NAD(P)H quinone oxidoreductase 1 (NQO1), Glutamate-cysteine ligase catalytic subunit (GCLC) and Glutamate-cysteine ligase modifier subunit (GCLM) mRNA expression of and Nrf2 protein expression, then stimulated apoptosis by elevating Bcl-2 antagonist/killer-1 (Bak-1), Bcl-2-associated X-protein (Bax), Cytochrome complex (Cyt-C), caspase-3 mRNA expression, cleaved-caspase-3 protein expression and apoptosis rate, as well as reducing B-cell lymphoma-2 (Bcl-2) mRNA expression and ratio of Bcl-2 to Bax, and triggered ferroptosis by upregulating Acyl-CoA Synthetase Long Chain Family Member 4 (ACSL4), transferrin receptor (TFR1) and Prostaglandin-Endoperoxide Synthase 2 (PTGS2) expression levels, and downregulating ferritin heavy chain 1 (FTH1), ferritin light chain 1 (FTL1), ferroportin 1 (FPN1), solute carrier family 7 member 11 (SCL7A11) and glutathione peroxidase 4 (GPX4) expression levels. The most obvious changes of these indexes were observed in co-treated group. Altogether, the results announced that Mo or Cd or both evoked apoptosis and ferroptosis by inhibiting Nrf2 pathway in the testis of ducks, and co-exposure to Mo and Cd exacerbated these variations.
Collapse
Affiliation(s)
- Jiamei Zhu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xueyan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yan Wang
- College of Forestry/School of Landscape and Art, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Ting Cui
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Bingyan Huang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Dianyun Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Wenjing Pu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| |
Collapse
|
25
|
Ye J, Qiu W, Pang X, Su Y, Zhang X, Huang J, Xie H, Liao J, Tang Z, Chen Z, Li F, Xiong Z, Su R. Polystyrene nanoplastics and cadmium co-exposure aggravated cardiomyocyte damage in mice by regulating PANoptosis pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123713. [PMID: 38462200 DOI: 10.1016/j.envpol.2024.123713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/30/2023] [Accepted: 03/03/2024] [Indexed: 03/12/2024]
Abstract
Micro/nanoplastics (M/NPs) are the novel contaminants ubiquitous in the environment. Cadmium (Cd), a kind of heavy metal pollutant widely distributed, could potentially co-exist with PS-NPs in the environment. However, their combined effects on cardiomyocyte and its molecular mechanism in mammals remained ambiguous. Here, we examined whether PANoptosis, an emerging and complicated kind of programmed cell death, was involved in PS-NPs and Cd co-exposure-elicited cardiac injury. In this study, 60 male mice were orally subjected to environmentally relevant concentrations of PS-NPs (1 mg/kg) and/or CdCl2 (1.5 mg/kg) for 35 days. As we speculated, PS-NPs and Cd co-exposure affected the expression of pyroptosis(Caspase-1, Cleaved-Caspase-1, GSDMD, N-GSDMD, AIM2, Pyrin, NLRP3, IL-18, IL-1β)-, apoptosis(Caspase-3, Cleaved-Caspase-3, Caspase-8, Cleaved-Caspase-8, Caspase-7, BAX)- and necroptosis (t-RIPK3, p-RIPK3, t-RIPK1, p-RIPK1, t-MLKL, p-MLKL, ZBP1)-related genes and protein, resulting in growth restriction and damaged myocardial microstructure in mice. Notably, the combined effects on Cd and PS-NPs even predominantly aggravated the toxic damage. Intriguingly, we fortuitously discovered PS-NPs and/or Cd exposure facilitated linear ubiquitination of certain proteins in mice myocardium. In summation, this study shed light toward the effects of Cd and PS-NPs on cardiotoxicity, advanced the understanding of myocardial PANoptosis and provided a scientific foundation for further exploration of the combined toxicological effects of PS-NPs and heavy metals.
Collapse
Affiliation(s)
- Jiali Ye
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wenyue Qiu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiaoyue Pang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yiman Su
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xinting Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jianjia Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Haoming Xie
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zefeng Chen
- Department of Cardiovascular Medicine, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou City, Guangdong Province, China
| | - Fei Li
- Department of Cardiovascular Medicine, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou City, Guangdong Province, China
| | - Zhaojun Xiong
- Department of Cardiovascular Medicine, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou City, Guangdong Province, China
| | - Rongsheng Su
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
26
|
Guo W, Kang C, Wang X, Zhang H, Yuan L, Wei X, Xiao Q, Hao W. Chlorocholine chloride exposure induced spermatogenic dysfunction via iron overload caused by AhR/PERK axis-dependent ferritinophagy activation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116193. [PMID: 38460407 DOI: 10.1016/j.ecoenv.2024.116193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Chlorocholine chloride (CCC) is a plant growth regulator used worldwide that is detectable in cereals, fruits and animal products. The health effects of CCC exposure have raised public concern. Our previous research showed that CCC exposure decreased testosterone synthesis in pubertal rats. However, little is known about whether and how pubertal CCC exposure impacts spermatogenesis. In this study, we used BALB/c mice and spermatogonia-derived GC-1 cells to examine CCC-induced spermatogenic dysfunction. In vivo, pubertal CCC exposure led to decreased testicular weight, decreased testicular germ cells and poor sperm quality. This effect worsened after cessation of CCC exposure for the next 30 days. RNA-seq and western blot analysis revealed that CCC induced aryl hydrocarbon receptor (AhR) signaling, endoplasmic reticulum stress (ERS) and ferritinophagy. Increased iron content and lipid peroxidation levels were also observed in CCC-treated testes. In vitro, it was identified that iron overload mediated by enhanced ferritinophagy occurred in CCC-treated GC-1 cells, which might be attributed to the PERK pathway in ERS. Further, for the first time, our study elucidated the involvement of AhR in CCC-induced iron overload, which aggravated testicular oxidative damage via lipid peroxidation. Considering the adverse impact of CCC exposure on rodents, supportive evidence from GC-1 cells, and the critical importance of spermatogenesis on male development, the effects of CCC on the male reproduction warrant increased attention.
Collapse
Affiliation(s)
- Wanqian Guo
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Chenping Kang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Xiaoxia Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Haoran Zhang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Lilan Yuan
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Xuetao Wei
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Qianqian Xiao
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China.
| | - Weidong Hao
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China.
| |
Collapse
|
27
|
Hu L, Feng X, Lan Y, Zhang J, Nie P, Xu H. Co-exposure with cadmium elevates the toxicity of microplastics: Trojan horse effect from the perspective of intestinal barrier. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133587. [PMID: 38280329 DOI: 10.1016/j.jhazmat.2024.133587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/04/2024] [Accepted: 01/19/2024] [Indexed: 01/29/2024]
Abstract
Microplastics (MPs) have been shown to adsorb heavy metals and serve as vehicles for their environmental transport. To date, insufficient studies have focused on enterohepatic injury in mice co-exposed to both MPs and cadmium (Cd). Here, we report that Cd adsorption increased the surface roughness and decreased the monodispersity of PS-MPs. Furthermore, exposure to both PS-MPs and Cd resulted in a more severe toxic effect compared to single exposure, with decreased body weight gain, shortened colon length, and increased colonic and hepatic inflammatory response observed. This can be attributed to an elevated accumulation of Cd resulting from increased gut permeability, coupled with the superimposed effects of oxidative stress. In addition, using 16 S sequencing and fecal microbiota transplantation, it was demonstrated that gut microbiota dysbiosis plays an essential role in the synergistic toxicity induced by PS-MPs and Cd in mice. This study showed that combined exposure to MPs and Cd induced more severe intestinal and liver damage in mice compared to individual exposure, and provided a new perspective for a more systematic risk assessment process related to MPs exposure.
Collapse
Affiliation(s)
- Liehai Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China
| | - Xiaoyan Feng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China
| | - Yuzhi Lan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China
| | - Jingfeng Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China
| | - Penghui Nie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang 330200, PR China.
| |
Collapse
|
28
|
Shen Q, Liu YJ, Qiu TT, Loon K S, Zhou D. Microplastic-induced NAFLD: Hepatoprotective effects of nanosized selenium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:115850. [PMID: 38290310 DOI: 10.1016/j.ecoenv.2023.115850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/26/2023] [Accepted: 12/15/2023] [Indexed: 02/01/2024]
Abstract
Polystyrene microplastics (MPs) are persistent environmental pollutants commonly encountered in daily human life. Numerous studies have demonstrated their ability to induce liver damage, including oxidative stress, inflammation, and lipid accumulation. However, limited information exists regarding preventive measures against this issue. In our study, we investigated the potential preventive role of selenium nanoparticles (YC-3-SeNPs) derived from Yak-derived Bacillus cereus, a novel nanobiomaterial known for its antioxidant properties and lipid metabolism regulation. Using transcriptomic and metabolomic analyses, we identified key genes and metabolites associated with oxidative stress and lipid metabolism imbalance induced by MPs. Upregulated genes (Scd1, Fasn, Irs2, and Lpin) and elevated levels of arachidonic and palmitic acid accumulation were observed in MP-exposed mice, but not in those exposed to SeNPs. Further experiments confirmed that SeNPs significantly attenuated liver lipid accumulation and degeneration caused by MPs. Histological results and pathway screening validated our findings, revealing that MPs suppressed the Pparα pathway and Nrf2 pathway, whereas SeNPs activated both pathways. These findings suggest that MPs may contribute to the development of nonalcoholic fatty liver disease (NAFLD), while SeNPs hold promise as a future nanobio-product for its prevention.
Collapse
Affiliation(s)
- Qi Shen
- Huazhong Agricultural University, Shizishan Street, Hongshan District, Wuhan, Hubei Province, PR China
| | - Yun Jie Liu
- Huazhong Agricultural University, Shizishan Street, Hongshan District, Wuhan, Hubei Province, PR China
| | - Tian Tian Qiu
- Huazhong Agricultural University, Shizishan Street, Hongshan District, Wuhan, Hubei Province, PR China
| | - San Loon K
- Huazhong Agricultural University, Shizishan Street, Hongshan District, Wuhan, Hubei Province, PR China
| | - DongHai Zhou
- Huazhong Agricultural University, Shizishan Street, Hongshan District, Wuhan, Hubei Province, PR China.
| |
Collapse
|