1
|
Guan S, Lu S, Zhang R, Wang Y, Yao X, Deng X, Lu J. Lactoferrin Alleviates LPS-Induced Oxidative Stress and Necroptosis in Liver by Promoting Mitophagy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:11948-11959. [PMID: 40323104 DOI: 10.1021/acs.jafc.4c12425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Lactoferrin (LF) is an important component of dairy products. Studies have shown that LF has a protective effect against liver injury, but the mechanism of action remains incompletely understood. Lipopolysaccharide (LPS), a key component of bacterial endotoxins, can lead to liver injury when exposure is excessive. Necroptosis is a newly identified type of programmed cell death characterized by cell swelling, rupture, and necrosis, and its excessive activation contributes to tissue damage. In this study, we demonstrated that LF alleviates LPS-induced oxidative stress and necroptosis in liver cells by modulating the ROS-RIPK1-RIPK3 pathway. In further mechanistic studies, we discovered that LF promotes mitophagy in liver cells to promptly remove damaged mitochondria caused by LPS, thereby reducing the increase in reactive oxygen species (ROS) levels associated with damaged mitochondria and alleviating oxidative stress and necrosis. To validate our findings, we used mitophagy inhibitor cyclosporin A (CsA) as a negative control, and the results confirmed our findings. These results provide novel strategies and insights into utilizing LF to alleviate LPS-induced liver injury.
Collapse
Affiliation(s)
- Shuang Guan
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Shujing Lu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Ranran Zhang
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Yuanmeng Wang
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Xinyu Yao
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Xuming Deng
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Jing Lu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| |
Collapse
|
2
|
Luo Y, Zhang K, Mao L, Tan M, Dong X, Li N, Zhou Y, Chen C, Zou Z, Zhang J. Copper oxide nanoparticles disrupt lysosomal function and promote foam cell formation in RAW264.7 macrophages. Toxicology 2025; 513:154101. [PMID: 39986641 DOI: 10.1016/j.tox.2025.154101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/10/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
Macrophage-derived foam cells are crucial in the development of atherosclerosis, a multifaceted and progressive disorder characterized by lipid and fibrous accumulation in major arteries. Copper oxide nanoparticles (CuONPs) have found widespread applications but their potential role in atherosclerosis remains understudied. In this study, we investigated the impact of CuONPs on foam cell formation in RAW264.7 macrophages. Our results showed that CuONPs, at concentrations as low as 10 μg/ml, significantly exacerbated foam cell formation induced by oxidized low-density lipoprotein (ox-LDL). Exposure to CuONPs stimulated LDL release and elevated the expression of NLRP3 inflammasome components, including NLRP3, Caspase-1, and IL-1β. Transmission electron microscopy (TEM) revealed accumulation of CuONPs within macrophage lysosomes, leading to disrupted lysosomal function. CuONPs-treated cells exhibited autophagosome accumulation due to impaired lysosomal degradation, as confirmed by Western blot analysis showing abnormal expression of LAMP-1 and LAMP-2 proteins. Flow cytometry analysis further demonstrated decreased lysosomal acidity in CuONPs-exposed cells. Our findings reveal a novel mechanism whereby CuONPs activate the inflammasome, disrupt lysosomal function, and hinder cholesterol efflux, thereby exacerbating the formation of macrophage-derived foam cells. These results highlight the potential risks of CuONPs exposure and provide important insights into the role of environmental particulate matter in the development of atherosclerosis.
Collapse
Affiliation(s)
- Yilin Luo
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, PR China
| | - Kun Zhang
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, PR China
| | - Lejiao Mao
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, PR China
| | - Meiling Tan
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, PR China
| | - Xiaomei Dong
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, PR China
| | - Na Li
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, PR China
| | - Yuexing Zhou
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China
| | - Zhen Zou
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, PR China
| | - Jun Zhang
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, PR China.
| |
Collapse
|
3
|
Chen K, Chen J, Cong Y, He Q, Liu C, Chen J, Li H, Ju Y, Chen L, Song Y, Xing Y. TTK promotes mitophagy by regulating ULK1 phosphorylation and pre-mRNA splicing to inhibit mitochondrial apoptosis in bladder cancer. Cell Death Differ 2025:10.1038/s41418-025-01492-w. [PMID: 40269198 DOI: 10.1038/s41418-025-01492-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/20/2025] [Accepted: 03/20/2025] [Indexed: 04/25/2025] Open
Abstract
Bladder cancer (BC) remains a major global health challenge, with poor prognosis and limited therapeutic options in advanced stages. TTK protein kinase (TTK), a serine/threonine kinase, has been implicated in the progression of various cancers, but its role in BC has not been fully elucidated. In this study, we show that TTK is significantly upregulated in BC tissues and cell lines, correlating with poor patient prognosis. Functional assays revealed that TTK promotes proliferation and inhibits apoptosis of BC cells. Mechanistically, TTK enhances mitophagy by directly phosphorylating ULK1 at Ser477, thereby activating the ULK1/FUNDC1-mediated mitophagy pathway. TTK knockdown disrupts mitophagy, leading to impaired clearance of damaged mitochondria, excessive accumulation of mitochondrial reactive oxygen species (mtROS), and activation of mitochondrial apoptosis. Furthermore, TTK phosphorylates SRSF3 at Ser108, preventing ULK1 exon 5 skipping and maintaining ULK1 mRNA stability. These findings show that TTK plays a key role in maintaining mitophagy in BC cells. Targeting TTK could offer a promising new approach for BC treatment by disrupting mitophagy and inducing mitochondrial apoptosis.
Collapse
Affiliation(s)
- Kang Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinyu Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yukun Cong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingliu He
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Chunyu Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiawei Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoran Li
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunjie Ju
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yarong Song
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yifei Xing
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Guo J, Hu JP, Liu M, Chen Y, Zhang S, Guan S. Apigenin-Mediated ESCRT-III Activation and Mitophagy Alleviate LPS-Induced Necroptosis in Renal Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9906-9919. [PMID: 40211127 DOI: 10.1021/acs.jafc.5c00627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2025]
Abstract
Apigenin (API) is a flavonoid widely distributed in vegetables and fruits that exhibits numerous biological functions. Lipopolysaccharide (LPS), a key component of the outer membrane of Gram-negative bacteria, can cause kidney injury when released into the bloodstream. Necroptosis is a form of programmed cell death characterized by the rupture of cell membranes. Excessive occurrence of necroptosis can lead to substantial damage to cells and tissues. In the study, we discovered that API could mitigate LPS-induced kidney injury in mice and alleviate LPS-induced necroptosis in Normal Rat Kidney-52E (NRK-52E) cells by targeting the mitochondrial reactive oxygen species (mtROS)-RIPK3-MLKL pathway. Further mechanistic studies revealed that API could potentially activate the endosomal sorting complexes required for transport-III (ESCRT-III), and activated ESCRT-III could repair cell membrane rupture caused by LPS-induced necroptosis. Simultaneously, we discovered that activated ESCRT-III could promote mitophagy, which facilitates the timely removal of damaged mitochondria and reduces intracellular mtROS levels. In conclusion, our results suggested that API alleviates LPS-induced renal cell necroptosis by activating ESCRT-III-dependent membrane repair and mitophagy. Our study provides new insights into the daily dietary intake of API to alleviate kidney injury caused by LPS.
Collapse
Affiliation(s)
- Jiakang Guo
- College of Food science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Jin-Ping Hu
- College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Meitong Liu
- College of Food science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Yuelin Chen
- College of Food science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Shengzhuo Zhang
- College of Food science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Shuang Guan
- College of Food science and Engineering, Jilin University, Changchun, Jilin 130062, China
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130012, China
| |
Collapse
|
5
|
Yang Y, Chen X, Deng L, Huang Y, Mo Y, Ye J, Liang R, Qin Y, Zhang Q, Wang S. Arsenic exposure provoked prostatic PANoptosis by inducing mitochondrial dysfunction in mice and WPMY-1 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 295:118139. [PMID: 40185034 DOI: 10.1016/j.ecoenv.2025.118139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/27/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
Inorganic arsenic, a widespread environmental toxicant, significantly contributes to prostate injury. However, the exact cellular mechanisms remain unclear. This study explored the involvement of pyroptosis, apoptosis, and necroptosis (PANoptosis), and their interconnections in arsenic-induced prostate injury. Herein, by employing in vitro (WPMY-1 cells exposed to arsenic for 48 h with or without reactive oxygen species (ROS) and mitochondrial ROS scavenger treatments) and in vivo (C57BL/6 mice were orally gavaged with arsenic and/or N-acetylcysteine for 90 consecutive days) models of arsenic-induced prostate injury and intervention, we demonstrated that sodium arsenite (NaAsO2) triggered mitochondrial damage-activated PANoptosis via the Bax/Bcl-xL/caspase-3/Gasdermin E (GSDME) pathway and the Z-DNA binding protein 1/receptor-interacting protein kinases 1 (RIPK1)/RIPK3/mixed lineage kinase domain-like protein (MLKL) signaling pathway. Notably, treatment with NaAsO2, GSDME, or MLKL knockdown in WPMY-1 cells increased the phenotype of PANoptosis. Mechanistically, the GSDME-N, GSDMD-N, p-MLKL, and cleaved caspase-3 protein levels were increased (1.4-, 2.67-, 3.51-, and 2.16-fold, respectively) in NaAsO2-treated GSDME knockdown WPMY-1 cells, whereas GSDME-N and cleaved caspase-3 protein levels were increased (1.30- and 1.21-fold, respectively) in NaAsO2-treated MLKL knockdown WPMY-1 cells. Our study highlights the crucial role of mitochondrial dysfunction in the initiation of PANoptosis during arsenic-induced prostate injury. Furthermore, we provide novel insights into the connections between apoptosis, pyroptosis, and necroptosis, indicating that GSDME and MLKL proteins may act as crucial regulators and potential therapeutic targets for arsenic-induced PANoptosis.
Collapse
Affiliation(s)
- Yiping Yang
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Xianglan Chen
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Longxin Deng
- Department of Urology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Yurun Huang
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Yingxi Mo
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Jiazhou Ye
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Rong Liang
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Yaxin Qin
- The Second Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Qingyun Zhang
- Department of Urology, Guangxi Medical University Cancer Hospital, Nanning 530021, China.
| | - Shan Wang
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning 530021, China.
| |
Collapse
|
6
|
Wang X, Nie T, Li A, Ma J. Hesperidin mitigated deoxynivalenol-induced liver injury by inhibiting ROS/ P53/ PGC-1α-mediated disruption of mitochondrial dynamics and PANoptosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 142:156747. [PMID: 40315639 DOI: 10.1016/j.phymed.2025.156747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/20/2025] [Accepted: 04/08/2025] [Indexed: 05/04/2025]
Abstract
BACKGROUND Deoxynivalenol (DON) is a physico-chemically stable food contaminant that is difficult to destroy during food production and culinary processing. Consumption of food contaminated with DON can impair the liver's antioxidant capacity and trigger various forms of programmed cell death. Hesperidin (HDN) is a highly antioxidant flavonoid compound with excellent biological activity and is a potential drug for treating liver damage. While the various pharmacological actions of HDN have been increasingly clarified over time, its protective role and precise mechanisms in mitigating liver damage caused by DON exposure are still largely shrouded in mystery. PURPOSE AND METHODS To investigate the potential of HDN to mitigate DON-induced liver injury and elucidate its specific mechanisms of action, we established both in vitro and in vivo models of DON exposure and administered HDN intervention. RESULTS Our findings revealed that DON exposure triggered oxidative stress in the liver, DNA damage, and P53 pathway activation, resulted in mitochondrial dynamics disorder and dysfunction, and induced PANoptosis in the liver. HDN significantly attenuated these changes. Using COIP, protein-protein molecular docking, and immunofluorescence methods, we discovered that PGC-1α and P53 can connect tightly, regulating the dynamics and function of the mitochondria. In addition, we intervened in vitro using the N-acetyl-l-cysteine, the pifithrin α, and the Mito TEMPO. CONCLUSION The findings demonstrated that HDN attenuated PANoptosis induced through mtROS overproduction by inhibiting ROS/ P53/ PGC-1α-mediated mitochondrial damage, which ameliorated DON-induced liver injury.
Collapse
Affiliation(s)
- Xin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Tong Nie
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Aqun Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jun Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin, 150030, PR China.
| |
Collapse
|
7
|
Kang ZY, Xuan NX, Zhou QC, Huang QY, Yu MJ, Zhang GS, Cui W, Zhang ZC, Du Y, Tian BP. Targeting alveolar epithelial cells with lipid micelle-encapsulated necroptosis inhibitors to alleviate acute lung injury. Commun Biol 2025; 8:573. [PMID: 40188179 PMCID: PMC11972349 DOI: 10.1038/s42003-025-08010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 03/27/2025] [Indexed: 04/07/2025] Open
Abstract
Acute lung injury (ALI) or its more severe form, acute respiratory distress syndrome (ARDS), represents a critical condition characterized by extensive inflammation within the airways. Necroptosis, a form of cell death, has been implicated in the pathogenesis of various inflammatory diseases. However, the precise characteristics and mechanisms of necroptosis in ARDS remain unclear. Thus, our study seeks to elucidate the specific alterations and regulatory factors associated with necroptosis in ARDS and to identify potential therapeutic targets for the disease. We discovered that necroptosis mediates the progression of ALI through the activation and formation of the RIPK1/RIPK3/MLKL complex. Moreover, we substantiated the involvement of both MYD88 and TRIF in the activation of the TLR4 signaling pathway in ALI. Furthermore, we have developed a lipid micelle-encapsulated drug targeting MLKL in alveolar type II epithelial cells and successfully applied it to treat ALI in mice. This targeted nanoparticle selectively inhibited necroptosis, thereby mitigating epithelial cell damage and reducing inflammatory injury. Our study delves into the specific mechanisms of necroptosis in ALI and proposes novel targeted therapeutic agents, presenting innovative strategies for the management of ARDS.
Collapse
Affiliation(s)
- Zhi-Ying Kang
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Nan-Xia Xuan
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Qi-Chao Zhou
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Qian-Yu Huang
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Meng-Jia Yu
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Gen-Sheng Zhang
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Wei Cui
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Zhao-Cai Zhang
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.
| | - Yang Du
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.
| | - Bao-Ping Tian
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
8
|
Wu S, Zhang X, Lu Y, Ma Y, Qi X, Wang X, Tan J. SO 2 derivatives impair ovarian function by inhibiting Serpine1/NF-κB pathway-mediated ovarian granulosa cell survival. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137116. [PMID: 39818051 DOI: 10.1016/j.jhazmat.2025.137116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/29/2024] [Accepted: 01/02/2025] [Indexed: 01/18/2025]
Abstract
Sulfur dioxide (SO2) is a contributor to air pollution. Human evidence has demonstrated an association between SO2 exposure and diminished ovarian reserve. The toxicity of SO2 is mainly attributed to its derivatives, bisulfite and sulfite, which have a variety of adverse effects on both human health and the environment, yet have been widely used as additives in food processing and transportation. However, the reproductive toxicity of SO2 derivatives remained elusive. In this study, we explored the impact of SO2 derivatives (bisulfite and sulfite) on ovarian function and further investigated the underlying mechanism. Exposure to SO2 derivatives in vivo could significantly reduce the ovarian reserve, the number and the quality of oocytes retrieved, induce ovarian granulosa cell apoptosis, and lead to an increased number of atretic follicles, thus affecting the ovarian function of mice. In addition, we isolated and cultured the primary mouse ovarian granulosa cells (mGCs) to explore the impact of SO2 derivatives on the biological functions of mGCs and investigate the mechanism by which SO2 derivatives induced apoptosis of mGCs. We detected that SO2 derivatives could induce cell cycle arrest, apoptosis, a decrease of mitochondrial membrane potential, increased abnormal mitochondria, and impaired function of sex hormone synthesis and secretion. Further, we found that SO2 derivatives could significantly downregulate the Serpine1 gene expression, inhibiting the NF-κB signaling pathway and thereby inducing the apoptosis of mGCs.
Collapse
Affiliation(s)
- Shanshan Wu
- Centre of Reproductive Medicine, Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, Liaoning 110022, PR China; Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodelling of Liaoning Province, Shenyang, Liaoning 110022, PR China
| | - Xudong Zhang
- Centre of Reproductive Medicine, Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, Liaoning 110022, PR China; Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodelling of Liaoning Province, Shenyang, Liaoning 110022, PR China
| | - Yimeng Lu
- Centre of Reproductive Medicine, Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, Liaoning 110022, PR China; Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodelling of Liaoning Province, Shenyang, Liaoning 110022, PR China
| | - Yujiu Ma
- Centre of Reproductive Medicine, Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, Liaoning 110022, PR China; Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodelling of Liaoning Province, Shenyang, Liaoning 110022, PR China
| | - Xiaohan Qi
- Centre of Reproductive Medicine, Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, Liaoning 110022, PR China; Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodelling of Liaoning Province, Shenyang, Liaoning 110022, PR China
| | - Xinxin Wang
- Centre of Reproductive Medicine, Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, Liaoning 110022, PR China; Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodelling of Liaoning Province, Shenyang, Liaoning 110022, PR China; Shenyang Maternity and Child Health Hospital, Shenyang, Liaoning 110022, PR China
| | - Jichun Tan
- Centre of Reproductive Medicine, Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, Liaoning 110022, PR China; Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodelling of Liaoning Province, Shenyang, Liaoning 110022, PR China.
| |
Collapse
|
9
|
Sivalingam AM, Sureshkumar DD, Pandurangan V. Cerebellar pathology in forensic and clinical neuroscience. Ageing Res Rev 2025; 106:102697. [PMID: 39988260 DOI: 10.1016/j.arr.2025.102697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/30/2025] [Accepted: 02/16/2025] [Indexed: 02/25/2025]
Abstract
Recent research underscores the cerebellum's growing importance in forensic science and neurology, showing its functions extend beyond motor control, especially in identifying causes of death. Critical neuropathological markers including alpha-synuclein and tau protein aggregates, cellular degeneration, inflammation, and vascular changes are vital for identifying neurodegenerative diseases, injuries, and toxic exposures. Advanced forensic methods, such as Magnetic resonance imaging (MRI), immunohistochemistry, and molecular analysis, have greatly improved the accuracy of diagnoses. Promising new therapies, including neuroprotective agents like resveratrol and transcranial magnetic stimulation (TMS), offer potential in treating cerebellar disorders. The cerebellum's vulnerability to toxins, drugs, and traumatic brain injuries (TBIs) highlights its forensic relevance. Moreover, advancements in genetic diagnostics, such as next-generation sequencing and CRISPR-Cas9, are enhancing the understanding and treatment of genetic conditions like Joubert syndrome and Dandy-Walker malformation. These findings emphasize the need for further research into cerebellar function and its broader significance in both forensic science and neurology.
Collapse
Affiliation(s)
- Azhagu Madhavan Sivalingam
- Natural Products & Nanobiotechnology Research Lab, Department of Community Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), (Saveetha University), Thandalam, Chennai, Tamil Nadu 602 105, India.
| | - Darshitha D Sureshkumar
- Department of Forensic Science, NIMS Institute of Allied Medical Science and Technology, (NIMS University), Jaipur, Rajasthan 303121, India
| | - Vijayalakshmi Pandurangan
- Department of Radiology, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), (Saveetha University), Thandalam, Chennai-602 105, Tamil Nadu, India
| |
Collapse
|
10
|
Xiong W, Li J, Tian A, Mao X. Unravelling the Role of PANoptosis in Liver Diseases: Mechanisms and Therapeutic Implications. Liver Int 2025; 45:e70000. [PMID: 40116786 DOI: 10.1111/liv.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/28/2024] [Accepted: 01/08/2025] [Indexed: 03/23/2025]
Abstract
PANoptosis is a multimodal form of cell death that involves inflammatory, apoptotic, and necroptotic pathways, playing a key role in the development of liver diseases. This article first outlines the definition and characteristics of PANoptosis, and then explores its mechanisms of action in different types of liver diseases, including acute liver injury, liver failure, metabolic dysfunction-associated fatty liver disease, and hepatocellular carcinoma. Furthermore, this article analyses the molecular regulatory network of PANoptosis and potential therapeutic targets. Finally, this article summarises the current research on PANoptosis in liver diseases and future research directions, and it reviews the role of the emerging cell death mechanism of PANoptosis in liver diseases.
Collapse
Affiliation(s)
- Wanyuan Xiong
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, Gansu, China
- Department of Infectious Disease, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Junfeng Li
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, Gansu, China
- Department of Infectious Disease, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
- Department of Liver Disease, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Aiping Tian
- Department of Infectious Disease, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xiaorong Mao
- Department of Infectious Disease, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
11
|
Wang Z, Zhong D, Yan T, Zheng Q, Zhou E, Ye Z, He X, Liu Y, Yan J, Yuan Y, Wang Y, Cai X. Stem Cells from Human Exfoliated Deciduous Teeth-Derived Exosomes for the Treatment of Acute Liver Injury and Liver Fibrosis. ACS APPLIED MATERIALS & INTERFACES 2025; 17:17948-17964. [PMID: 40087139 PMCID: PMC11955941 DOI: 10.1021/acsami.4c19748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/06/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
Mesenchymal stem cells (MSCs) play a crucial role in regenerative medicine due to their regenerative potential. However, traditional MSC-based therapies are hindered by issues such as microvascular obstruction and low cell survival after transplantation. Exosomes derived from MSCs (MSC-Exo) provide a cell-free, nanoscale alternative, mitigating these risks and offering therapeutic potential for liver diseases. Nonetheless, the functional variability of MSCs from different sources complicates their clinical application. Stem cells derived from human exfoliated deciduous teeth (SHED) offer advantages such as ease of procurement and robust proliferative capacity, but their secretome, particularly SHED-Exo, remains underexplored in the context of liver disease therapy. This study analyzed MSC-Exo from various sources via small RNA sequencing to identify differences in microRNA profiles, aiding in the selection of optimal MSC sources for clinical use. SHED-Exo was subsequently tested in an acute liver injury model, showing notable regenerative effects, including enhanced hepatocyte proliferation, macrophage polarization, and reduced inflammation. Despite strong liver-targeting properties, the rapid hepatic clearance of SHED-Exo limits its effectiveness in chronic liver diseases. To address this challenge, a GelMA-based hydrogel was developed for in situ delivery, ensuring sustained release and enhanced antifibrotic efficacy, providing a promising strategy for chronic liver disease management.
Collapse
Affiliation(s)
- Ziyuan Wang
- Department
of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Danyang Zhong
- Department
of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Tingting Yan
- Department
of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Qiang Zheng
- Department
of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Enjie Zhou
- Department
of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Zhichao Ye
- Department
of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Xiaoyan He
- Department
of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Yu Liu
- Department
of Cardiac Surgery, Zhejiang University
School of Medicine Sir Run Run Shaw Hospital, Hangzhou 310016, Zhejiang, China
| | - Jianing Yan
- Department
of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Yuyang Yuan
- Department
of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Yifan Wang
- Department
of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- National
Engineering Research Center of Innovation and Application of Minimally
Invasive Instruments, Hangzhou 310016, China
- Zhejiang
Minimal Invasive Diagnosis and Treatment Technology Research Center
of Severe Hepatobiliary Disease, Hangzhou 310016, China
| | - Xiujun Cai
- Department
of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- National
Engineering Research Center of Innovation and Application of Minimally
Invasive Instruments, Hangzhou 310016, China
- Zhejiang
Minimal Invasive Diagnosis and Treatment Technology Research Center
of Severe Hepatobiliary Disease, Hangzhou 310016, China
| |
Collapse
|
12
|
Qian Y, Qi Y, Lin J, Zhang T, Mo L, Xue Q, Zheng N, Niu Y, Dong X, Shi Y, Jiang Y. AdipoRon ameliorates chronic ethanol induced cardiac necroptosis by reducing ceramide mediated mtROS. Free Radic Biol Med 2025; 229:237-250. [PMID: 39805512 DOI: 10.1016/j.freeradbiomed.2025.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/30/2024] [Accepted: 01/11/2025] [Indexed: 01/16/2025]
Abstract
Chronic ethanol (EtOH) consumption has been widely recognized as a significant contributor to cardiotoxicity. However, no specific treatment is currently available to ameliorate chronic ethanol induced cardiotoxicity. Adiponectin receptor agonist AdipoRon exerts protective effects in multiple organs through alleviating lipotoxicity. Our previous study showed that chronic ethanol consumption increased de novo ceramide synthesis and necroptosis in myocardium. In this study, we investigated the role of AdipoRon on ceramide metabolism and necroptosis in chronic ethanol-treated myocardium. Eight-week-old C57/BL6J mice were fed with a Lieber-Decarli diet containing vehicle or AdipoRon for 12 weeks. Cardiac function, histology and oxidative stress were assessed. We found that chronic ethanol treatment decreased expression of AdipoR2 in myocardium and H9c2 cells, whereas AdipoRon improved cardiac function, reduced myocardium ceramide levels and suppressed necroptosis. By pharmacological interventions, RNA interference and point mutations in AdipoR2, we demonstrated that AdipoRon reduced ceramide levels through PPARα mediated lipid metabolism rather than AdipoR2's ceramidase activity. Using transmission electron microscope and reactive oxygen species (ROS) staining, we showed that chronic ethanol induced myocardium mitochondria damage and mitochondrial reactive oxygen species (mtROS) accumulation. Meanwhile, we found that AdipoRon ameliorated chronic ethanol induced cardiac necroptosis via the SIRT3-SOD2-mtROS pathway. Moreover, C6 ceramide treatment recapitulated chronic ethanol in inducing mtROS and necroptosis, whereas the ceramide synthesis inhibitors myriocin (MYR) and fumonisin B1 (FB1) attenuated chronic ethanol induced mtROS and necroptosis. Collectively, AdipoRon ameliorates chronic ethanol induced cardiac necroptosis by reducing ceramide de novo synthesis and mtROS, which highlights the therapeutic potential of targeting ceramide metabolism and oxidative stress pathways in treating ethanol induced cardiotoxicity.
Collapse
Affiliation(s)
- Yile Qian
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yanyu Qi
- School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Junyi Lin
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Tianyi Zhang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Lingjie Mo
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Qiupeng Xue
- Forensic Science and Information Technology Research Centre of Supreme People's Procuratorate, Beijing, 100726, China
| | - Nianchang Zheng
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yaqin Niu
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Xiaoru Dong
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yan Shi
- Academy of Forensic Science Shanghai Key Laboratory of Forensic Medicine, Shanghai, 200063, China.
| | - Yan Jiang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
13
|
Jian Y, Li Y, Zhou Y, Mu W. Pollutants in Microenvironmental Cellular Interactions During Liver Inflammation Cancer Transition and the Application of Multi-Omics Analysis. TOXICS 2025; 13:163. [PMID: 40137490 PMCID: PMC11945810 DOI: 10.3390/toxics13030163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/18/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025]
Abstract
This study categorizes pollutant-induced inflammation-cancer transition into three stages: non-alcoholic fatty liver disease (NAFLD), liver fibrosis, and hepatocellular carcinoma (HCC). It systematically reveals the temporal heterogeneity of pollutant-induced liver damage. The findings indicate that pollutants not only directly damage hepatocytes but also modulate key cells in the immune microenvironment, such as hepatic stellate cells (HSCs) and Kupffer cells, thereby amplifying inflammatory and fibrotic responses, ultimately accelerating the progression of HCC. Mechanistically, in the early stage (NAFLD), pollutants primarily cause hepatocyte injury through oxidative stress and lipid metabolism dysregulation. During the fibrosis stage, pollutants promote liver fibrosis by inducing extracellular matrix accumulation, while in the HCC stage, they drive tumorigenesis via activation of the Wnt/β-catenin pathway and p53 inactivation. Through multi-omics analyses, this study identifies critical pathogenic molecules and signaling pathways regulated by pollutants, providing new insights into their pathogenic mechanisms, potential biomarkers, and therapeutic targets. These findings offer valuable guidance for the development of diagnostic and therapeutic strategies for liver diseases and the formulation of environmental health risk prevention measures.
Collapse
Affiliation(s)
| | | | | | - Wei Mu
- School of Public Health, Center for Single-Cell Omics, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Y.J.); (Y.L.); (Y.Z.)
| |
Collapse
|
14
|
Bai M, Lei J, Li F, Wang X, Fu H, Yan Z, Zhu Y. Short-Chain Chlorinated Paraffins May Induce Ovarian Damage in Mice via AIM2- and NLRP12-PANoptosome. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:163-176. [PMID: 39754571 DOI: 10.1021/acs.est.4c08622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Humans may intake 0.02 mg/kg/day of short-chain chlorinated paraffins (SCCPs), and no study is available on mammalian ovarian damage caused by low-level SCCPs. In this study, four groups of 5-week-old female Institute of Cancer Research (ICR) mice were orally administered 0, 0.01, 0.1, and 1.0 mg/kg/day SCCPs for 21 consecutive days, and serum and ovaries were collected 20 h after the last SCCPs-administration. SCCPs at ≥0.1 mg/kg/day were found to reduce follicle counts at each stage, induce dose-dependent oxidative stress in mice, and lower serum E2 and ovarian anti-Müllerian hormone levels. The data indicated that cellular PANoptosis increased in the ovaries of all SCCP-treated mice. Furthermore, AIM2- and NLRP12-PANoptosome gene and protein levels were considerably elevated. Female germline stem cells (FGSCs) in the cortical portion of the ovary exhibited substantial damage in all SCCP groups, additionally, the expression of FGSC marker genes and major marker proteins was diminished in the ovaries. Oral administration of SCCPs with 0.01, 0.1, and 1.0 mg/kg/day to mice resulted in PANoptosis of the ovaries. Therefore, it was suggested that the oral administration of ≥0.1 mg/kg/day of SCCPs suppressed ovarian function, which may be attributed to the fact that SCCPs induced the generation of AIM2- and NLRP12-PANoptosome in ovary cells.
Collapse
Affiliation(s)
- Mingxin Bai
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Preventive Medicine, Medical school, Hunan Normal University, Changsha, Hunan 410013, China
| | - Jiawei Lei
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Preventive Medicine, Medical school, Hunan Normal University, Changsha, Hunan 410013, China
| | - Fan Li
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Preventive Medicine, Medical school, Hunan Normal University, Changsha, Hunan 410013, China
| | - Xuning Wang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Preventive Medicine, Medical school, Hunan Normal University, Changsha, Hunan 410013, China
| | - Hu Fu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Preventive Medicine, Medical school, Hunan Normal University, Changsha, Hunan 410013, China
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Ministry of Education, Hunan Normal University, Changsha, 410081, China
| | - Zhengli Yan
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Preventive Medicine, Medical school, Hunan Normal University, Changsha, Hunan 410013, China
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Ministry of Education, Hunan Normal University, Changsha, 410081, China
| | - Yongfei Zhu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Preventive Medicine, Medical school, Hunan Normal University, Changsha, Hunan 410013, China
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Ministry of Education, Hunan Normal University, Changsha, 410081, China
| |
Collapse
|
15
|
Chen J, Dai X, Xing C, Zhang Y, Cao H, Hu G, Guo X, Gao X, Liu P, Yang F. Cooperative application of transcriptomics and ceRNA hypothesis: lncRNA-00742/miR-116 targets CD74 to mediate vanadium-induced mitochondrial apoptosis in duck liver. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135904. [PMID: 39303616 DOI: 10.1016/j.jhazmat.2024.135904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Vanadium (V) is a poisonous metallic environmental pollutant which poses hazard to the animal health of the liver. Competitive endogenous ribonucleic acids (ceRNAs) are essential elements of mitochondrial function and apoptosis, and their effects have been associated with the metal toxicity mechanism. However, the specific mechanism of ceRNAs in V-induced mitochondrial apoptosis in the liver has not been adequately investigated. Hence, we established an in vivo model of ducks exposed to V for 44 days and an in vitro model of V exposure duck hepatocyte knockdown/overexpression. Results showed that V exposure triggered the differential expression of 1106 lncRNAs and 11 miRNAs in the liver. Besides, we established the lncRNA-00742/miR-116/CD74 regulatory network by the dual luciferase reporter gene. Our results also found that V induced mitochondrial injury and up-regulated the expression levels of mitochondrial apoptosis-related factors. Furthermore, knockdown of miR-116 attenuated V-induced mitochondrial injury and apoptosis in hepatocytes. In contrast, overexpression of miR-116 and knockdown of CD74 exacerbated mitochondrial injury and apoptosis. BTZO-1 upregulated the CD74 level and alleviated V-induced mitochondrial apoptosis. In summary, V induced mitochondrial damage and apoptosis in duck liver by activating the lncRNA-00742/miR-116/CD74 axis. This research firstly revealed the mechanism of lncRNA-related ceRNAs regulating V-induced mitochondrial apoptosis.
Collapse
Affiliation(s)
- Jing Chen
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Xueyan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Yike Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Xiaona Gao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Ping Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China.
| |
Collapse
|
16
|
Xu HL, Wan SR, An Y, Wu Q, Xing YH, Deng CH, Zhang PP, Long Y, Xu BT, Jiang ZZ. Targeting cell death in NAFLD: mechanisms and targeted therapies. Cell Death Discov 2024; 10:399. [PMID: 39244571 PMCID: PMC11380694 DOI: 10.1038/s41420-024-02168-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a group of chronic liver disease which ranges from simple steatosis (NAFL) to non-alcoholic steatohepatitis (NASH) and is characterized by lipid accumulation, inflammation activation, fibrosis, and cell death. To date, a number of preclinical studies or clinical trials associated with therapies targeting fatty acid metabolism, inflammatory factors and liver fibrosis are performed to develop effective drugs for NAFLD/NASH. However, few therapies are cell death signaling-targeted even though the various cell death modes are present throughout the progression of NAFLD/NASH. Here we summarize the four types of cell death including apoptosis, necroptosis, pyroptosis, and ferroptosis in the NAFLD and the underlying molecular mechanisms by which the pathogenic factors such as free fatty acid and LPS induce cell death in the pathogenesis of NAFLD. In addition, we also review the effects of cell death-targeted therapies on NAFLD. In summary, our review provides comprehensive insight into the roles of various cell death modes in the progression of NAFLD, which we hope will open new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Hui-Li Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, PR China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, PR China
| | - Sheng-Rong Wan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, PR China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, PR China
| | - Ying An
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, PR China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, PR China
| | - Qi Wu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, PR China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, PR China
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
- Precision Pathology Diagnosis for Serious Diseases Key Laboratory of LuZhou, Luzhou, Sichuan, PR China
| | - Yi-Hang Xing
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, PR China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, PR China
| | - Chen-Hao Deng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, PR China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, PR China
| | - Ping-Ping Zhang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, PR China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, PR China
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
- Precision Pathology Diagnosis for Serious Diseases Key Laboratory of LuZhou, Luzhou, Sichuan, PR China
| | - Yang Long
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, PR China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, PR China
| | - Bu-Tuo Xu
- The People's Hospital of Pingyang, Wenzhou, Zhejiang, PR China.
| | - Zong-Zhe Jiang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China.
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, PR China.
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, PR China.
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China.
| |
Collapse
|
17
|
Gao L, Shay C, Teng Y. Cell death shapes cancer immunity: spotlighting PANoptosis. J Exp Clin Cancer Res 2024; 43:168. [PMID: 38877579 PMCID: PMC11179218 DOI: 10.1186/s13046-024-03089-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024] Open
Abstract
PANoptosis represents a novel type of programmed cell death (PCD) with distinctive features that incorporate elements of pyroptosis, apoptosis, and necroptosis. PANoptosis is governed by a newly discovered cytoplasmic multimeric protein complex known as the PANoptosome. Unlike each of these PCD types individually, PANoptosis is still in the early stages of research and warrants further exploration of its specific regulatory mechanisms and primary targets. In this review, we provide a brief overview of the conceptual framework and molecular components of PANoptosis. In addition, we highlight recent advances in the understanding of the molecular mechanisms and therapeutic applications of PANoptosis. By elucidating the complex crosstalk between pyroptosis, apoptosis and necroptosis and summarizing the functional consequences of PANoptosis with a special focus on the tumor immune microenvironment, this review aims to provide a theoretical basis for the potential application of PANoptosis in cancer therapy.
Collapse
Affiliation(s)
- Lixia Gao
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, College of Pharmacy, Chongqing University of Arts and Sciences, Chongqing, 402160, People's Republic of China
| | - Chloe Shay
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30322, USA
| | - Yong Teng
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30322, USA.
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA, 30322, USA.
| |
Collapse
|
18
|
Zhang N, Han Z, Zhang R, Liu L, Gao Y, Li J, Yan M. Ganoderma lucidum Polysaccharides Ameliorate Acetaminophen-Induced Acute Liver Injury by Inhibiting Oxidative Stress and Apoptosis along the Nrf2 Pathway. Nutrients 2024; 16:1859. [PMID: 38931214 PMCID: PMC11206445 DOI: 10.3390/nu16121859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The excessive employment of acetaminophen (APAP) is capable of generating oxidative stress and apoptosis, which ultimately result in acute liver injury (ALI). Ganoderma lucidum polysaccharides (GLPs) exhibit hepatoprotective activity, yet the protective impact and potential mechanism of GLPs in relation to APAP-induced ALI remain ambiguous. The intention of this research was to scrutinize the effect of GLPs on APAP-induced ALI and to shed light on their potential mechanism. The results demonstrated that GLPs were capable of notably alleviating the oxidative stress triggered by APAP, as shown through a significant drop in the liver index, the activities of serum ALT and AST, and the amounts of ROS and MDA in liver tissue, along with an increase in the levels of SOD, GSH, and GSH-Px. Within these, the hepatoprotective activity at the high dose was the most conspicuous, and its therapeutic efficacy surpassed that of the positive drug (bifendate). The results of histopathological staining (HE) and apoptosis staining (TUNEL) indicated that GLPs could remarkably inhibit the necrosis of hepatocytes, the permeation of inflammatory cells, and the occurrence of apoptosis induced by APAP. Moreover, Western blot analysis manifested that GLPs enhanced the manifestation of Nrf2 and its subsequent HO-1, GCLC, and NQO1 proteins within the Nrf2 pathway. The results of qPCR also indicated that GLPs augmented the expression of antioxidant genes Nrf2, HO-1, GCLC, and NQO1. The results reveal that GLPs are able to set off the Nrf2 signaling path and attenuate ALI-related oxidative stress and apoptosis, which is a potential natural medicine for the therapy of APAP-induced liver injury.
Collapse
Affiliation(s)
- Nan Zhang
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun 130112, China; (N.Z.); (L.L.); (Y.G.); (J.L.)
- College of Traditional Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Z.H.); (R.Z.)
- Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun 130112, China
| | - Zhongming Han
- College of Traditional Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Z.H.); (R.Z.)
| | - Rui Zhang
- College of Traditional Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Z.H.); (R.Z.)
| | - Linling Liu
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun 130112, China; (N.Z.); (L.L.); (Y.G.); (J.L.)
- Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun 130112, China
| | - Yanliang Gao
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun 130112, China; (N.Z.); (L.L.); (Y.G.); (J.L.)
- Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun 130112, China
| | - Jintao Li
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun 130112, China; (N.Z.); (L.L.); (Y.G.); (J.L.)
- Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun 130112, China
| | - Meixia Yan
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun 130112, China; (N.Z.); (L.L.); (Y.G.); (J.L.)
- Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun 130112, China
| |
Collapse
|
19
|
Wan P, Zhong L, Yu L, Shen C, Shao X, Chen S, Zhou Z, Wang M, Zhang H, Liu B. Lysosome-related genes predict acute myeloid leukemia prognosis and response to immunotherapy. Front Immunol 2024; 15:1384633. [PMID: 38799454 PMCID: PMC11117069 DOI: 10.3389/fimmu.2024.1384633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
Background Acute myeloid leukemia (AML) is a highly aggressive and pathogenic hematologic malignancy with consistently high mortality. Lysosomes are organelles involved in cell growth and metabolism that fuse to form specialized Auer rods in AML, and their role in AML has not been elucidated. This study aimed to identify AML subtypes centered on lysosome-related genes and to construct a prognostic model to guide individualized treatment of AML. Methods Gene expression data and clinical data from AML patients were downloaded from two high-throughput sequencing platforms. The 191 lysosomal signature genes were obtained from the database MsigDB. Lysosomal clusters were identified by unsupervised consensus clustering. The differences in molecular expression, biological processes, and the immune microenvironment among lysosomal clusters were subsequently analyzed. Based on the molecular expression differences between lysosomal clusters, lysosomal-related genes affecting AML prognosis were screened by univariate cox regression and multivariate cox regression analyses. Algorithms for LASSO regression analyses were employed to construct prognostic models. The risk factor distribution, KM survival curve, was applied to evaluate the survival distribution of the model. Time-dependent ROC curves, nomograms and calibration curves were used to evaluate the predictive performance of the prognostic models. TIDE scores and drug sensitivity analyses were used to explore the implication of the model for AML treatment. Results Our study identified two lysosomal clusters, cluster1 has longer survival time and stronger immune infiltration compared to cluster2. The differences in biological processes between the two lysosomal clusters are mainly manifested in the lysosomes, vesicles, immune cell function, and apoptosis. The prognostic model consisting of six prognosis-related genes was constructed. The prognostic model showed good predictive performance in all three data sets. Patients in the low-risk group survived significantly longer than those in the high-risk group and had higher immune infiltration and stronger response to immunotherapy. Patients in the high-risk group showed greater sensitivity to cytarabine, imatinib, and bortezomib, but lower sensitivity to ATRA compared to low -risk patients. Conclusion Our prognostic model based on lysosome-related genes can effectively predict the prognosis of AML patients and provide reference evidence for individualized immunotherapy and pharmacological chemotherapy for AML.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/diagnosis
- Lysosomes/metabolism
- Prognosis
- Female
- Male
- Immunotherapy/methods
- Biomarkers, Tumor/genetics
- Middle Aged
- Gene Expression Profiling
- Adult
- Nomograms
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
- Aged
- Gene Expression Regulation, Leukemic
- Transcriptome
Collapse
Affiliation(s)
- Peng Wan
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Liang Zhong
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Lihua Yu
- Clinical Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Chenlan Shen
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Xin Shao
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Shuyu Chen
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Ziwei Zhou
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Meng Wang
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Hongyan Zhang
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Beizhong Liu
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, China
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
20
|
Voronina MV, Frolova AS, Kolesova EP, Kuldyushev NA, Parodi A, Zamyatnin AA. The Intricate Balance between Life and Death: ROS, Cathepsins, and Their Interplay in Cell Death and Autophagy. Int J Mol Sci 2024; 25:4087. [PMID: 38612897 PMCID: PMC11012956 DOI: 10.3390/ijms25074087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Cellular survival hinges on a delicate balance between accumulating damages and repair mechanisms. In this intricate equilibrium, oxidants, currently considered physiological molecules, can compromise vital cellular components, ultimately triggering cell death. On the other hand, cells possess countermeasures, such as autophagy, which degrades and recycles damaged molecules and organelles, restoring homeostasis. Lysosomes and their enzymatic arsenal, including cathepsins, play critical roles in this balance, influencing the cell's fate toward either apoptosis and other mechanisms of regulated cell death or autophagy. However, the interplay between reactive oxygen species (ROS) and cathepsins in these life-or-death pathways transcends a simple cause-and-effect relationship. These elements directly and indirectly influence each other's activities, creating a complex web of interactions. This review delves into the inner workings of regulated cell death and autophagy, highlighting the pivotal role of ROS and cathepsins in these pathways and their intricate interplay.
Collapse
Affiliation(s)
- Maya V. Voronina
- Research Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia; (M.V.V.); (A.S.F.); (E.P.K.); (N.A.K.); (A.P.)
| | - Anastasia S. Frolova
- Research Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia; (M.V.V.); (A.S.F.); (E.P.K.); (N.A.K.); (A.P.)
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Ekaterina P. Kolesova
- Research Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia; (M.V.V.); (A.S.F.); (E.P.K.); (N.A.K.); (A.P.)
| | - Nikita A. Kuldyushev
- Research Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia; (M.V.V.); (A.S.F.); (E.P.K.); (N.A.K.); (A.P.)
| | - Alessandro Parodi
- Research Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia; (M.V.V.); (A.S.F.); (E.P.K.); (N.A.K.); (A.P.)
| | - Andrey A. Zamyatnin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Department of Biological Chemistry, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|