1
|
Maquedano M, Cerdán-Vélez D, Tress ML. More than 2,500 coding genes in the human reference gene set still have unsettled status. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.05.626965. [PMID: 39713347 PMCID: PMC11661123 DOI: 10.1101/2024.12.05.626965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
In 2018 we analysed the three main repositories for the human proteome, Ensembl/GENCODE, RefSeq and UniProtKB. They disagreed on the coding status of one of every eight annotated coding genes. The analysis inspired bilateral collaborations between annotation groups. Here we have repeated our analysis with updated versions of the three reference coding gene sets. Superficially, little appears to have changed. Although there are slightly fewer genes predicted as coding overall, the three groups still disagree on the status of 2,606 annotated genes. However, a comparison without read-through genes and immunoglobulin fragments shows that the three reference sets have merged or reclassified more than 700 genes since the last analysis and that just 0.6% of Ensembl/GENCODE coding genes are not also annotated by the other two reference sets. We used eight features indicative of non-coding genes to examine the 21,873 coding genes annotated across the three reference sets. We found that more than 2,000 had one or more potential non-coding features. While some of these genes will be protein coding, we believe that most are likely to be non-coding genes or pseudogenes. Our results suggest that annotators still vastly overestimate the number of true coding genes.
Collapse
Affiliation(s)
- Miguel Maquedano
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO)
| | | | - Michael L Tress
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO)
| |
Collapse
|
2
|
Mohammad-Sadeghipour M, Nematollahi MH, Ahmadinia H, Hajizadeh MR, Mahmoodi M. The activation of the G-protein-coupled estrogen receptor promotes the aggressiveness of MDA-MB231 cells by targeting the IRE1α/TXNIP pathway. Res Pharm Sci 2024; 19:606-621. [PMID: 39691302 PMCID: PMC11648343 DOI: 10.4103/rps.rps_96_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/02/2024] [Accepted: 08/21/2024] [Indexed: 12/19/2024] Open
Abstract
Background and purpose This study investigated modulating the G protein-coupled estrogen receptor (GPER) on the IRElα/TXNIP pathway and its role in drug resistance in MDA-MB231 cells. Experimental approach To determine the optimal concentrations of G1 and 4-hydroxytamoxifen (TAM), GPER expression and ERK1/2 phosphorylation were analyzed using qRT-PCR and western blotting, respectively. Cells were treated with individual concentrations of G1 (1000 nM), G15 (1000 nM), and TAM (2000 nM), as well as combinations of these treatments (G1 + G15, TAM + G15, and G1 + TAM) for 24 and 48 h. The expression levels of GPER, IRE1α, miR-17-5p, TXNIP, ABCB1, and ABCC1 genes and TXNIP protein expression were evaluated. Finally, apoptosis and cell migration were examined using flow cytometry and the wound-healing assay, respectively. Findings/Results Activating GPER with its specific agonist G1 and TAM significantly increased IRE1α levels in MDA-MB231 cells. IRE1α through splicing XBP1 led to unfolded protein response. In addition, decreased TXNIP gene and protein expression reduced apoptosis, increased migration, and upregulated the genes associated with drug resistance. Conclusion and implication Our investigation revealed that blocking the GPER/IRE1α/TXNIP pathway in MDA-MB231 cells could enhance treatment efficacy and improve chemotherapy responsiveness. The distinct unfolded protein response observed in MDA-MB231 cells may stem from the unique characteristics of these cells, which lack receptors for estrogen, progesterone, and HER2/neu hormones, possessing only the GPER receptor (ER-/PR-/HER2-/GPER+). This study introduced a new pathway in TNBC cells, indicating that targeting GPER could be crucial in comprehensive therapeutic strategies in TNBC cells.
Collapse
Affiliation(s)
- Maryam Mohammad-Sadeghipour
- Department of Clinical Biochemistry, Afzalipoor Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Hassan Ahmadinia
- Department of Epidemiology and Biostatistics, School of Health, Occupational Environment Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Reza Hajizadeh
- Molecular Medicine Research Center, Institute of Basic Medical Sciences Research, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mehdi Mahmoodi
- Department of Clinical Biochemistry, Afzalipoor Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Molecular Medicine Research Center, Institute of Basic Medical Sciences Research, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
3
|
Meng JH, Huang YB, Long J, Cai QC, Qiao X, Zhang QL, Zhang LD, Yan X, Jing R, Liu XS, Zhou SJ, Yuan YS, Yin-Chen Ma, Zhou LX, Peng NN, Li XC, Cai CH, Tang HM, Martins AF, Jiang JX, Kai-Jun Luo. Innexin hemichannel activation by Microplitis bicoloratus ecSOD monopolymer reduces ROS. iScience 2024; 27:109469. [PMID: 38577101 PMCID: PMC10993139 DOI: 10.1016/j.isci.2024.109469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/31/2024] [Accepted: 03/07/2024] [Indexed: 04/06/2024] Open
Abstract
The extracellular superoxide dismutases (ecSODs) secreted by Microplitis bicoloratus reduce the reactive oxygen species (ROS) stimulated by the Microplitis bicoloratus bracovirus. Here, we demonstrate that the bacterial transferase hexapeptide (hexapep) motif and bacterial-immunoglobulin-like (BIg-like) domain of ecSODs bind to the cell membrane and transiently open hemichannels, facilitating ROS reductions. RNAi-mediated ecSOD silencing in vivo elevated ROS in host hemocytes, impairing parasitoid larva development. In vitro, the ecSOD-monopolymer needed to be membrane bound to open hemichannels. Furthermore, the hexapep motif in the beta-sandwich of ecSOD49 and ecSOD58, and BIg-like domain in the signal peptides of ecSOD67 were required for cell membrane binding. Hexapep motif and BIg-like domain deletions induced ecSODs loss of adhesion and ROS reduction failure. The hexapep motif and BIg-like domain mediated ecSOD binding via upregulating innexins and stabilizing the opened hemichannels. Our findings reveal a mechanism through which ecSOD reduces ROS, which may aid in developing anti-redox therapy.
Collapse
Affiliation(s)
- Jiang-Hui Meng
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, P.R. China
- Yunnan International Joint Laboratory of Virology & Immunology, Kunming, Yunnan 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, Yunnan 650500, P.R. China
| | - Yong-Biao Huang
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, P.R. China
- Yunnan International Joint Laboratory of Virology & Immunology, Kunming, Yunnan 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, Yunnan 650500, P.R. China
| | - Jin Long
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, P.R. China
- Yunnan International Joint Laboratory of Virology & Immunology, Kunming, Yunnan 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, Yunnan 650500, P.R. China
| | - Qiu-Chen Cai
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, 72076 Tübingen, Germany
| | - Xin Qiao
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, P.R. China
- Yunnan International Joint Laboratory of Virology & Immunology, Kunming, Yunnan 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, Yunnan 650500, P.R. China
| | - Qiong-Li Zhang
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, P.R. China
- Yunnan International Joint Laboratory of Virology & Immunology, Kunming, Yunnan 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, Yunnan 650500, P.R. China
| | - Li-Dan Zhang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Xiang Yan
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, P.R. China
- Yunnan International Joint Laboratory of Virology & Immunology, Kunming, Yunnan 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, Yunnan 650500, P.R. China
| | - Rui Jing
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, P.R. China
- Yunnan International Joint Laboratory of Virology & Immunology, Kunming, Yunnan 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, Yunnan 650500, P.R. China
| | - Xing-Shan Liu
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, P.R. China
- Yunnan International Joint Laboratory of Virology & Immunology, Kunming, Yunnan 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, Yunnan 650500, P.R. China
| | - Sai-Jun Zhou
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, P.R. China
- Yunnan International Joint Laboratory of Virology & Immunology, Kunming, Yunnan 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, Yunnan 650500, P.R. China
| | - Yong-Sheng Yuan
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, P.R. China
- Yunnan International Joint Laboratory of Virology & Immunology, Kunming, Yunnan 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, Yunnan 650500, P.R. China
| | - Yin-Chen Ma
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, P.R. China
- Yunnan International Joint Laboratory of Virology & Immunology, Kunming, Yunnan 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, Yunnan 650500, P.R. China
| | - Li-Xiang Zhou
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, P.R. China
- Yunnan International Joint Laboratory of Virology & Immunology, Kunming, Yunnan 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, Yunnan 650500, P.R. China
| | - Nan-Nan Peng
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, P.R. China
- Yunnan International Joint Laboratory of Virology & Immunology, Kunming, Yunnan 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, Yunnan 650500, P.R. China
| | - Xing-Cheng Li
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, P.R. China
- Yunnan International Joint Laboratory of Virology & Immunology, Kunming, Yunnan 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, Yunnan 650500, P.R. China
| | - Cheng-Hui Cai
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, P.R. China
- Yunnan International Joint Laboratory of Virology & Immunology, Kunming, Yunnan 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, Yunnan 650500, P.R. China
| | - Hong-Mei Tang
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, P.R. China
- Yunnan International Joint Laboratory of Virology & Immunology, Kunming, Yunnan 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, Yunnan 650500, P.R. China
| | - André F. Martins
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, 72076 Tübingen, Germany
| | - Jean X. Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Kai-Jun Luo
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, P.R. China
- Yunnan International Joint Laboratory of Virology & Immunology, Kunming, Yunnan 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
4
|
Kaur N, Arora K, Radhakrishnan P, Narayanan DL, Shukla A. Intragenic homozygous duplication in HEPACAM is associated with megalencephalic leukoencephalopathy with subcortical cysts type 2A. Neurogenetics 2024; 25:85-91. [PMID: 38280046 DOI: 10.1007/s10048-024-00743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/05/2024] [Indexed: 01/29/2024]
Abstract
Disease-causing variants in HEPACAM are associated with megalencephalic leukoencephalopathy with subcortical cysts 2A (MLC2A, MIM# 613,925, autosomal recessive), and megalencephalic leukoencephalopathy with subcortical cysts 2B, remitting, with or without impaired intellectual development (MLC2B, MIM# 613,926, autosomal dominant). These disorders are characterised by macrocephaly, seizures, motor delay, cognitive impairment, ataxia, and spasticity. Brain magnetic resonance imaging (MRI) in these individuals shows swollen cerebral hemispheric white matter and subcortical cysts, mainly in the frontal and temporal regions. To date, 45 individuals from 39 families are reported with biallelic and heterozygous variants in HEPACAM, causing MLC2A and MLC2B, respectively. A 9-year-old male presented with developmental delay, gait abnormalities, seizures, macrocephaly, dysarthria, spasticity, and hyperreflexia. MRI revealed subcortical cysts with diffuse cerebral white matter involvement. Whole-exome sequencing (WES) in the proband did not reveal any clinically relevant single nucleotide variants. However, copy number variation analysis from the WES data of the proband revealed a copy number of 4 for exons 3 and 4 of HEPACAM. Validation and segregation were done by quantitative PCR which confirmed the homozygous duplication of these exons in the proband and carrier status in both parents. To the best of our knowledge, this is the first report of an intragenic duplication in HEPACAM causing MLC2A.
Collapse
Affiliation(s)
- Namanpreet Kaur
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Khyati Arora
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Periyasamy Radhakrishnan
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Dhanya Lakshmi Narayanan
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
- DBT-Wellcome Trust India Alliance Early Career Clinical and Public Health Research Fellow, Hyderabad, India
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
5
|
De A, Lattier JM, Morales JE, Kelly JR, Zheng X, Chen Z, Sebastian S, Nassiri Toosi Z, Huse JT, Lang FF, McCarty JH. Glial Cell Adhesion Molecule (GlialCAM) Determines Proliferative versus Invasive Cell States in Glioblastoma. J Neurosci 2023; 43:8043-8057. [PMID: 37722850 PMCID: PMC10669794 DOI: 10.1523/jneurosci.1401-23.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 09/20/2023] Open
Abstract
The malignant brain cancer glioblastoma (GBM) contains groups of highly invasive cells that drive tumor progression as well as recurrence after surgery and chemotherapy. The molecular mechanisms that enable these GBM cells to exit the primary mass and disperse throughout the brain remain largely unknown. Here we report using human tumor specimens and primary spheroids from male and female patients that glial cell adhesion molecule (GlialCAM), which has normal roles in brain astrocytes and is mutated in the developmental brain disorder megalencephalic leukoencephalopathy with subcortical cysts (MLC), is differentially expressed in subpopulations of GBM cells. High levels of GlialCAM promote cell-cell adhesion and a proliferative GBM cell state in the tumor core. In contrast, GBM cells with low levels of GlialCAM display diminished proliferation and enhanced invasion into the surrounding brain parenchyma. RNAi-mediated inhibition of GlialCAM expression leads to activation of proinvasive extracellular matrix adhesion and signaling pathways. Profiling GlialCAM-regulated genes combined with cross-referencing to single-cell transcriptomic datasets validates functional links among GlialCAM, Mlc1, and aquaporin-4 in the invasive cell state. Collectively, these results reveal an important adhesion and signaling axis comprised of GlialCAM and associated proteins including Mlc1 and aquaporin-4 that is critical for control of GBM cell proliferation and invasion status in the brain cancer microenvironment.SIGNIFICANCE STATEMENT Glioblastoma (GBM) contains heterogeneous populations of cells that coordinately drive proliferation and invasion. We have discovered that glial cell adhesion molecule (GlialCAM)/hepatocyte cell adhesion molecule (HepaCAM) is highly expressed in proliferative GBM cells within the tumor core. In contrast, GBM cells with low levels of GlialCAM robustly invade into surrounding brain tissue along blood vessels and white matter. Quantitative RNA sequencing identifies various GlialCAM-regulated genes with functions in cell-cell adhesion and signaling. These data reveal that GlialCAM and associated signaling partners, including Mlc1 and aquaporin-4, are key factors that determine proliferative and invasive cell states in GBM.
Collapse
Affiliation(s)
- Arpan De
- Department of Neurosurgery, MD Anderson Cancer Center, The University of Texas, Houston, Texas 77030
| | - John M Lattier
- Department of Neurosurgery, MD Anderson Cancer Center, The University of Texas, Houston, Texas 77030
| | - John E Morales
- Department of Neurosurgery, MD Anderson Cancer Center, The University of Texas, Houston, Texas 77030
| | - Jack R Kelly
- Department of Neurosurgery, MD Anderson Cancer Center, The University of Texas, Houston, Texas 77030
| | - Xiaofeng Zheng
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, The University of Texas, Houston, Texas 77030
| | - Zhihua Chen
- Department of Neurosurgery, MD Anderson Cancer Center, The University of Texas, Houston, Texas 77030
| | - Sumod Sebastian
- Department of Neurosurgery, MD Anderson Cancer Center, The University of Texas, Houston, Texas 77030
| | - Zahra Nassiri Toosi
- Department of Neurosurgery, MD Anderson Cancer Center, The University of Texas, Houston, Texas 77030
| | - Jason T Huse
- Department of Pathology, MD Anderson Cancer Center, The University of Texas, Houston, Texas 77030
| | - Frederick F Lang
- Department of Neurosurgery, MD Anderson Cancer Center, The University of Texas, Houston, Texas 77030
| | - Joseph H McCarty
- Department of Neurosurgery, MD Anderson Cancer Center, The University of Texas, Houston, Texas 77030
| |
Collapse
|
6
|
He Z, Gao Y, Li T, Yu C, Ou L, Luo C. HepaCAM‑PIK3CA axis regulates the reprogramming of glutamine metabolism to inhibit prostate cancer cell proliferation. Int J Oncol 2022; 60:37. [PMID: 35191516 PMCID: PMC8878713 DOI: 10.3892/ijo.2022.5327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 02/09/2022] [Indexed: 12/24/2022] Open
Abstract
Energy metabolism reprogramming is becoming an increasingly important hallmark of cancer. Specifically, cancers tend to undergo metabolic reprogramming to upregulate a cell-dependent glutamine (Gln) metabolism. Notably, hepatocellular cell adhesion molecule (HepaCAM) has been previously reported to serve a key role as a tumour suppressor. However, the possible regulatory role of HepaCAM in Gln metabolism in prostate cancer (PCa) remains poorly understood. In the present study, bioinformatics analysis predicted a significant negative correlation among the expression of HepaCAM, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit α (PIK3CA), glutaminase (GLS) and solute carrier family 1 member 5 (SLC1A5), components of Gln metabolism, in clinical and genomic datasets. Immunohistochemistry results verified a negative correlation between HepaCAM and PIK3CA expression in PCa tissues. Subsequently, liquid chromatography-tandem mass spectrometry (LC-MS/MS) and gas chromatography-mass spectrometry (GC-MS) assays were performed, and the results revealed markedly reduced levels of Gln and metabolic flux in the blood samples of patients with PCa and in PCa cells. Mechanistically, overexpression of HepaCAM inhibited Gln metabolism and proliferation by regulating PIK3CA in PCa cells. In addition, Gln metabolism was discovered to be stress-resistant in PCa cells, since the expression levels of GLS and SLC1A5 remained high for a period of time after Gln starvation. However, overexpression of HepaCAM reversed this resistance to some extent. Additionally, alpelisib, a specific inhibitor of PIK3CA, effectively potentiated the inhibitory effects of HepaCAM overexpression on Gln metabolism and cell proliferation through mass spectrometry and CCK-8 experiments. In addition, the inhibitory effect of PIK3CA on the growth of tumor tissue in nude mice was also confirmed by immunohistochemistry in vivo. To conclude, the results from the present study revealed an abnormal Gln metabolic profile in the blood samples of patients with PCa, suggesting that it can be applied as a clinical diagnostic tool for PCa. Additionally, a key role of the HepaCAM/PIK3CA axis in regulating Gln metabolism, cell proliferation and tumour growth was identified. The combination of alpelisib treatment with the upregulation of HepaCAM expression may serve as a novel method for treating patients with PCa.
Collapse
Affiliation(s)
- Zhenting He
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yingying Gao
- Department of Laboratory Diagnosis, People's Hospital of Chongqing Banan District, Chongqing 401320, P.R. China
| | - Ting Li
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Chaowen Yu
- Center for Clinical Molecular Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Liping Ou
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Chunli Luo
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
7
|
Chen E, Liu N, Zhao Y, Tang M, Ou L, Wu X, Luo C. Panobinostat reverses HepaCAM gene expression and suppresses proliferation by increasing histone acetylation in prostate cancer. Gene 2022; 808:145977. [PMID: 34592353 DOI: 10.1016/j.gene.2021.145977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/16/2021] [Accepted: 09/24/2021] [Indexed: 12/22/2022]
Abstract
Increased expression of histone deacetylases (HDACs) affiliated to the epigenetic regulation is common aberration in prostate cancer (PCa). We have confirmed that hepatocyte cell adhesion molecule (hepaCAM), acting as a tumor suppressor gene, is rarely expressed in PCa previously, However, the mechanisms of which is still unknown. The level of histone acetylation reportedly may involve anti-oncogene transcription and expression. In this study, we investigated the effect of panobinostat, the broad-spectrum histone deacetylases inhibitor, on PCa LNCaP and DU145 cell growth, and observed re-expression of hepaCAM when treated with panobinostat. We demonstrated that intranuclear acetylation of lys9 of histone H3 (Ac-H3K9) were increased, while that of both mRNA and protein of HDAC1, HDAC3, and HDAC4 were decreased when the treating concentration of panobinostat increased. We confirmed the relationship between histone acetylation and the expression of hepaCAM and AR in prostate cancer tissues. We also confirmed that panobinostat could overcome the resistance for androgen deprivation therapy (ADT). Further, we combined panobinostat with Ad-hepaCAM, which resulted in significantly increased antitumor activity and significant attenuation of the proliferation-associated genes CCND1 and PCNA compared to each single treatment. In conclusion, panobinostat may enhance the acetylation of lys9 of histone 3 and reverse the hepaCAM expression through its inhibitory effect on HDACs activity in PCa LNCaP and DU145 cells; Ad-hepaCAM combined with panobinostat may synergistically inhibit the growth of LNCaP and DU145 cells, via a potential mechanism associated with the down-regulation of the expression of CCND1 and PCNA. These findings suggest that this therapeutic strategy should be further developed in clinical trials.
Collapse
Affiliation(s)
- E Chen
- The Key Laboratory of Diagnostics Medicine, Ministry of Education, Chongqing Medical University, Chongqing 400016, People's Republic of China; Center for Clinical Molecular Medicine, Children's Hospital, Chongqing Medical University, Chongqing 400015, People's Republic of China
| | - NanJing Liu
- The Key Laboratory of Diagnostics Medicine, Ministry of Education, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yan Zhao
- The Key Laboratory of Diagnostics Medicine, Ministry of Education, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Min Tang
- The Key Laboratory of Diagnostics Medicine, Ministry of Education, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - LiPing Ou
- The Key Laboratory of Diagnostics Medicine, Ministry of Education, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - XiaoHou Wu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, People's Republic of China
| | - ChunLi Luo
- The Key Laboratory of Diagnostics Medicine, Ministry of Education, Chongqing Medical University, Chongqing 400016, People's Republic of China
| |
Collapse
|
8
|
Control of membrane protein homeostasis by a chaperone-like glial cell adhesion molecule at multiple subcellular locations. Sci Rep 2021; 11:18435. [PMID: 34531445 PMCID: PMC8446001 DOI: 10.1038/s41598-021-97777-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/24/2021] [Indexed: 01/17/2023] Open
Abstract
The significance of crosstalks among constituents of plasma membrane protein clusters/complexes in cellular proteostasis and protein quality control (PQC) remains incompletely understood. Examining the glial (enriched) cell adhesion molecule (CAM), we demonstrate its chaperone-like role in the biosynthetic processing of the megalencephalic leukoencephalopathy with subcortical cyst 1 (MLC1)-heteromeric regulatory membrane protein complex, as well as the function of the GlialCAM/MLC1 signalling complex. We show that in the absence of GlialCAM, newly synthesized MLC1 molecules remain unfolded and are susceptible to polyubiquitination-dependent proteasomal degradation at the endoplasmic reticulum. At the plasma membrane, GlialCAM regulates the diffusional partitioning and endocytic dynamics of cluster members, including the ClC-2 chloride channel and MLC1. Impaired folding and/or expression of GlialCAM or MLC1 in the presence of diseases causing mutations, as well as plasma membrane tethering compromise the functional expression of the cluster, leading to compromised endo-lysosomal organellar identity. In addition, the enlarged endo-lysosomal compartments display accelerated acidification, ubiquitinated cargo-sorting and impaired endosomal recycling. Jointly, these observations indicate an essential and previously unrecognized role for CAM, where GliaCAM functions as a PQC factor for the MLC1 signalling complex biogenesis and possess a permissive role in the membrane dynamic and cargo sorting functions with implications in modulations of receptor signalling.
Collapse
|
9
|
Tan B, Chen X, Fan Y, Yang Y, Yang J, Tan L. STAT3 phosphorylation is required for the HepaCAM-mediated inhibition of castration-resistant prostate cancer cell viability and metastasis. Prostate 2021; 81:603-611. [PMID: 33909312 DOI: 10.1002/pros.24141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/18/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Castration-resistant prostate cancer (CRPC) is an advanced disease that is difficult to treat, the mechanism of it is unclear. This study illustrated the function of hepatocyte cell adhesion molecule (HepaCAM) on CRPC cell viability and metastasis. METHODS The expression of HepaCAM and p-STAT3 in CRPC tissues were determined by immunohistochemistry and western blot analysis. Cell Counting Kit-8 and colony formation assays were deployed to analyze the growth ability of CRPC cells following the adenovirus-mediated re-expression of HepaCAM. CRPC cell migration and invasion capacity were investigated by wound healing and Matrigel-coated transwell assays, respectively. The messenger RNA or protein levels of p-STAT3, CyclinD1, cMyc, MMP2, MMP9, and VEGF were determined by reverse transcription (RT) followed by quantitative real-time polymerase chain reaction (RT-qPCR), and western blot analysis after either HepaCAM re-expression alone or in combination with IL-22 treatment. A CRPC orthotopic xenograft mouse model was applied to investigate the functional effect of HepaCAM on the metastasis of CRPC cells to the lungs. RESULTS The expression levels of HepaCAM were decreased while those of p-STAT3 were elevated in CRPC cells compare with surrounding benign tissues (p < .001). The overexpression of HepaCAM in CRPC cells notably reduced proliferation, migration, and invasion by inhibiting the expression of p-STAT3, CyclinD1, cMyc, MMP2, MMP9, and VEGF (p < .05). In addition, the expression of HepaCAM significantly inhibited the IL-22/p-STAT3 axis and the metastasis of CRPC cells to the lungs. CONCLUSIONS Our data suggested that HepaCAM suppressed the viability of CRPC cells via the IL-22/p-STAT3 axis and inhibited the metastasis of CRPC cells from the prostate to the lungs (p < .05).
Collapse
Affiliation(s)
- Bing Tan
- School of Clinical Medicine, Chongqing Medical and Pharmaceutical College, Chongqing, China
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing, China
- Department of Urology, Chenjiaqiao Hospital/The Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Xiaoming Chen
- Department of Pathology, Chenjiaqiao Hospital/The Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Yanru Fan
- The Key Laboratory of Diagnostics Medicine Designated by the National Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yuanjuan Yang
- School of Clinical Medicine, Chongqing Medical and Pharmaceutical College, Chongqing, China
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing, China
| | - Junjie Yang
- Department of Urology, Chenjiaqiao Hospital/The Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Li Tan
- School of Clinical Medicine, Chongqing Medical and Pharmaceutical College, Chongqing, China
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing, China
| |
Collapse
|
10
|
Wendt FR, Pathak GA, Levey DF, Nuñez YZ, Overstreet C, Tyrrell C, Adhikari K, De Angelis F, Tylee DS, Goswami A, Krystal JH, Abdallah CG, Stein MB, Kranzler HR, Gelernter J, Polimanti R. Sex-stratified gene-by-environment genome-wide interaction study of trauma, posttraumatic-stress, and suicidality. Neurobiol Stress 2021; 14:100309. [PMID: 33665242 PMCID: PMC7905234 DOI: 10.1016/j.ynstr.2021.100309] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/20/2021] [Accepted: 02/10/2021] [Indexed: 12/27/2022] Open
Abstract
Epidemiologic studies recognize that trauma and posttraumatic stress are associated with heightened suicidal behavior severity, yet examination of these associations from a genetic perspective is limited. We performed a multivariate gene-by-environment genome-wide interaction study (GEWIS) of suicidality in 123,633 individuals using a covariance matrix based on 26 environments related to traumatic experiences, posttraumatic stress, social support, and socioeconomic status. We discovered five suicidality risk loci, including the male-associated rs2367967 (CWC22), which replicated in an independent cohort. All GEWIS-significant loci exhibited interaction effects where at least 5% of the sample had environmental profiles conferring opposite SNP effects from the majority. We identified PTSD as a primary driving environment for GxE at suicidality risk loci. The male suicidality GEWIS was enriched for three middle-temporal-gyrus inhibitory neuron transcriptomic profiles: SCUBE- and PVALB-expressing cells (β = 0.028, p = 3.74 × 10-4), OPRM1-expressing cells (β = 0.030, p = 0.001), and SPAG17-expressing cells (β = 0.029, p = 9.80 × 10-4). Combined with gene-based analyses (CNTN5 p association = 2.38 × 10-9, p interaction = 1.51 × 10-3; PSMD14 p association = 2.04 × 10-7, p interaction = 7.76 × 10-6; HEPACAM p association = 2.43 × 10-6, p interaction = 3.82 × 10-7) including information about brain chromatin interaction profiles (UBE2E3 in male neuron p = 1.07 × 10-5), our GEWIS points to extracellular matrix biology and synaptic plasticity as biological interactors with the effects of potentially modifiable lifetime traumatic experiences on genetic risk for suicidality. Characterization of molecular basis for the effects of traumatic experience and posttraumatic stress on risk of suicidal behaviors may help to identify novel targets for which more effective treatments can be developed for use in high-risk populations.
Collapse
Affiliation(s)
- Frank R. Wendt
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
- VA CT Healthcare System, West Haven, CT, 06520, USA
| | - Gita A. Pathak
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
- VA CT Healthcare System, West Haven, CT, 06520, USA
| | - Daniel F. Levey
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
- VA CT Healthcare System, West Haven, CT, 06520, USA
| | - Yaira Z. Nuñez
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
- VA CT Healthcare System, West Haven, CT, 06520, USA
| | - Cassie Overstreet
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
- VA CT Healthcare System, West Haven, CT, 06520, USA
- National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, West Haven CT, 06520, USA
| | - Chelsea Tyrrell
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
- VA CT Healthcare System, West Haven, CT, 06520, USA
| | - Keyrun Adhikari
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
- VA CT Healthcare System, West Haven, CT, 06520, USA
| | - Flavio De Angelis
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
- VA CT Healthcare System, West Haven, CT, 06520, USA
| | - Daniel S. Tylee
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
- VA CT Healthcare System, West Haven, CT, 06520, USA
| | - Aranyak Goswami
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
- VA CT Healthcare System, West Haven, CT, 06520, USA
| | - John H. Krystal
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Chadi G. Abdallah
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
- VA CT Healthcare System, West Haven, CT, 06520, USA
| | - Murray B. Stein
- Psychiatry Service, VA San Diego Healthcare System, San Diego, CA, USA
- Departments of Psychiatry and Family Medicine & Public Health, University of California San Diego, La Jolla, CA, USA
| | - Henry R. Kranzler
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104, USA
| | - Joel Gelernter
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
- VA CT Healthcare System, West Haven, CT, 06520, USA
- Departments of Genetics and Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Renato Polimanti
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
- VA CT Healthcare System, West Haven, CT, 06520, USA
| |
Collapse
|
11
|
Cohen-Salmon M, Slaoui L, Mazaré N, Gilbert A, Oudart M, Alvear-Perez R, Elorza-Vidal X, Chever O, Boulay AC. Astrocytes in the regulation of cerebrovascular functions. Glia 2020; 69:817-841. [PMID: 33058289 DOI: 10.1002/glia.23924] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/18/2022]
Abstract
Astrocytes are the most numerous type of neuroglia in the brain and have a predominant influence on the cerebrovascular system; they control perivascular homeostasis, the integrity of the blood-brain barrier, the dialogue with the peripheral immune system, the transfer of metabolites from the blood, and blood vessel contractility in response to neuronal activity. These regulatory processes occur in a specialized interface composed of perivascular astrocyte extensions that almost completely cover the cerebral blood vessels. Scientists have only recently started to study how this interface is formed and how it influences cerebrovascular functions. Here, we review the literature on the astrocytes' role in the regulation of the cerebrovascular system. We cover the anatomy and development of the gliovascular interface, the known gliovascular functions, and molecular factors, the latter's implication in certain pathophysiological situations, and recent cutting-edge experimental tools developed to examine the astrocytes' role at the vascular interface. Finally, we highlight some open questions in this field of research.
Collapse
Affiliation(s)
- Martine Cohen-Salmon
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris, France
| | - Leila Slaoui
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris, France
| | - Noémie Mazaré
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris, France
| | - Alice Gilbert
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris, France
| | - Marc Oudart
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris, France
| | - Rodrigo Alvear-Perez
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris, France
| | - Xabier Elorza-Vidal
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris, France
| | - Oana Chever
- Normandie University, UNIROUEN, INSERM, DC2N, IRIB, Rouen, France
| | - Anne-Cécile Boulay
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris, France
| |
Collapse
|
12
|
Li T, Liu N, Gao Y, Quan Z, Hao Y, Yu C, Li L, Yuan M, Niu L, Luo C, Wu X. Long noncoding RNA HOTAIR regulates the invasion and metastasis of prostate cancer by targeting hepaCAM. Br J Cancer 2020; 124:247-258. [PMID: 33024272 PMCID: PMC7782544 DOI: 10.1038/s41416-020-01091-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/15/2020] [Accepted: 08/27/2020] [Indexed: 12/16/2022] Open
Abstract
Background The role of HOX transcript antisense RNA (HOTAIR) has been proven to be important in tumorigenesis. However, how this molecule promotes metastasis and invasion in PCa is still unclear. Methods The relationship between HOTAIR and hepatocellular adhesion molecule (hepaCAM) in PCa was identified by immunohistochemistry, immunofluorescence, plasmid transfection, quantitative real-time PCR and immunoblotting. The regulatory effects of HOTAIR on hepaCAM and MAPK signalling and their key roles in PCa metastasis were investigated in vitro. Results The expression of HOTAIR was inversely correlated with hepaCAM in the blood and tissue of PCa patients. Here, hepaCAM was identified as a novel target gene of HOTAIR and was critical for the invasiveness of PCa. HOTAIR recruited PRC2 to the hepaCAM promoter, resulting in high levels of H3K27me3 and the absence of hepaCAM with an abnormally activated MAPK pathway. Both HOTAIR depletion and EZH2 inhibition could induce hepaCAM re-expression with inhibitory MAPK signalling and decrease the invasive and metastatic capabilities of PCa cells. Conclusions This study demonstrates that HOTAIR promotes invasion and metastasis of PCa by decreasing the inhibitory effect of hepaCAM on MAPK signalling. Therefore, the HOTAIR/hepaCAM/MAPK axis may provide a new avenue towards therapeutic strategies and prognostic indicators for advanced prostate cancer.
Collapse
Affiliation(s)
- Ting Li
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing Medical University, 400016, Chongqing, China
| | - Nanjing Liu
- Center for Clinical Molecular Medicine; Chongqing Key Laboratory of Pediatrics; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, 400016, Chongqing, China
| | - Yingying Gao
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing Medical University, 400016, Chongqing, China
| | - Zhen Quan
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, 400016, Chongqing, China
| | - Yanni Hao
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing Medical University, 400016, Chongqing, China
| | - Chaowen Yu
- Center for Clinical Molecular Medicine; Chongqing Key Laboratory of Pediatrics; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, 400016, Chongqing, China
| | - Luo Li
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing Medical University, 400016, Chongqing, China
| | - Mengjuan Yuan
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, 400016, Chongqing, China
| | - Lingfang Niu
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing Medical University, 400016, Chongqing, China
| | - Chunli Luo
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing Medical University, 400016, Chongqing, China.
| | - Xiaohou Wu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, 400016, Chongqing, China.
| |
Collapse
|
13
|
Fernández-Vega I, Santos-Juanes J, Camacho-Urkaray E, Lorente-Gea L, García B, Gutiérrez-Corres FB, Quirós LM, Guerra-Merino I, Aguirre JJ. Miki (Mitotic Kinetics Regulator) Immunoexpression in Normal Liver, Cirrhotic Areas and Hepatocellular Carcinomas: a Preliminary Study with Clinical Relevance. Pathol Oncol Res 2020; 26:167-173. [PMID: 29435733 DOI: 10.1007/s12253-018-0387-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 02/05/2018] [Indexed: 10/18/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary malignant tumor in the liver. One of the main features of cancer survival is the generalized loss of growth control exhibited by cancer cells, and Miki is a protein related to the immunoglobulin superfamily that plays an important role in mitosis. We aim to study protein expression levels of Miki in non-tumoral liver and 20 HCCs recruited from a Pathology Department. Clinical information was also obtained. A tissue microarray was performed, and immunohistochemical techniques applied to study protein expression levels of Miki. In normal liver, Miki was weakly expressed, showing nuclear staining in the hepatocytes. Cirrhotic areas and HCCs showed a variety of staining patterns. Most HCC samples showed positive expression, with three different staining patterns being discernible: nuclear, cytoplasmic and mixed. Statistical analysis showed a significant association between grade of differentiation, Ki-67 proliferative index, survival rates and staining patterns. This study has revealed the positive expression of Miki in normal liver, cirrhotic areas and HCCs. Three different staining patterns of Miki expression with clinical relevance were noted in HCCs.
Collapse
Affiliation(s)
- Iván Fernández-Vega
- Department of Pathology, Hospital Universitario de Araba-Txagorritxu, Vitoria-Gasteiz, Spain.
- Department of Pathology, Hospital Universitario Central de Asturias, Oviedo, Spain.
- Instituto Universitario Fernández-Vega, Oviedo, Spain.
- Service of Anatomic Pathology, Hospital Universitario de Araba-Txagorritxu, C/Jose Atxotegui s/n, E-01009, Vitoria-Gasteiz, Alava, Spain.
| | - Jorge Santos-Juanes
- Department of Pathology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Emma Camacho-Urkaray
- Department of Pathology, Hospital Universitario de Araba-Txagorritxu, Vitoria-Gasteiz, Spain
| | - Laura Lorente-Gea
- Department of Pathology, Hospital Universitario de Araba-Txagorritxu, Vitoria-Gasteiz, Spain
| | | | | | - Luis M Quirós
- Instituto Universitario Fernández-Vega, Oviedo, Spain
- Department of Functional Biology, University of Oviedo, Oviedo, Spain
| | - Isabel Guerra-Merino
- Department of Pathology, Hospital Universitario de Araba-Txagorritxu, Vitoria-Gasteiz, Spain
| | - José Javier Aguirre
- Department of Pathology, Hospital Universitario de Araba-Txagorritxu, Vitoria-Gasteiz, Spain
| |
Collapse
|
14
|
Haworth AS, Brackenbury WJ. Emerging roles for multifunctional ion channel auxiliary subunits in cancer. Cell Calcium 2019; 80:125-140. [PMID: 31071485 PMCID: PMC6553682 DOI: 10.1016/j.ceca.2019.04.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 02/07/2023]
Abstract
Several superfamilies of plasma membrane channels which regulate transmembrane ion flux have also been shown to regulate a multitude of cellular processes, including proliferation and migration. Ion channels are typically multimeric complexes consisting of conducting subunits and auxiliary, non-conducting subunits. Auxiliary subunits modulate the function of conducting subunits and have putative non-conducting roles, further expanding the repertoire of cellular processes governed by ion channel complexes to processes such as transcellular adhesion and gene transcription. Given this expansive influence of ion channels on cellular behaviour it is perhaps no surprise that aberrant ion channel expression is a common occurrence in cancer. This review will focus on the conducting and non-conducting roles of the auxiliary subunits of various Ca2+, K+, Na+ and Cl- channels and the burgeoning evidence linking such auxiliary subunits to cancer. Several subunits are upregulated (e.g. Cavβ, Cavγ) and downregulated (e.g. Kvβ) in cancer, while other subunits have been functionally implicated as oncogenes (e.g. Navβ1, Cavα2δ1) and tumour suppressor genes (e.g. CLCA2, KCNE2, BKγ1) based on in vivo studies. The strengthening link between ion channel auxiliary subunits and cancer has exposed these subunits as potential biomarkers and therapeutic targets. However further mechanistic understanding is required into how these subunits contribute to tumour progression before their therapeutic potential can be fully realised.
Collapse
Affiliation(s)
- Alexander S Haworth
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK
| | - William J Brackenbury
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
15
|
Gilbert A, Vidal XE, Estevez R, Cohen-Salmon M, Boulay AC. Postnatal development of the astrocyte perivascular MLC1/GlialCAM complex defines a temporal window for the gliovascular unit maturation. Brain Struct Funct 2019; 224:1267-1278. [PMID: 30684007 DOI: 10.1007/s00429-019-01832-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 01/08/2019] [Indexed: 12/14/2022]
Abstract
Astrocytes, the most abundant glial cells of the central nervous system are morphologically complex. They display numerous processes interacting with synapses and blood vessels. At the vascular interface, astrocyte endfeet-terminated processes almost entirely cover the blood vessel surface and participate to the gliovascular unit where important vascular properties of the brain are set such as the blood-brain barrier (BBB) integrity. How specific morphological and functional interactions between astrocytes and the vascular compartment develop has not been fully investigated. Here, we elaborated an original experimental strategy to study the postnatal development of astrocyte perivascular endfeet. Using purified gliovascular units, we focused on the postnatal expression of MLC1 and GlialCAM, two transmembrane proteins forming a complex enriched at the junction between mature astrocyte perivascular endfeet. We showed that MLC1 and GlialCAM were enriched and assembled into mature complexes in astrocyte perivascular endfeet between postnatal days 10 and 15, after the formation of astrocyte perivascular Aquaporin 4 water channels. These events correlated with the increased expression of Claudin-5 and P-gP, two endothelial-specific BBB components. These results illustrate for the first time that astrocyte perivascular endfeet differentiation is a complex and progressive process which correlates with BBB maturation. Moreover, our results suggest that maturation of the astrocyte endfeet MLC1/GlialCAM complex between postnatal days 10 and 15 might be a key event in the gliovascular unit maturation.
Collapse
Affiliation(s)
- Alice Gilbert
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique CNRS, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale INSERM, U1050, 11 place Marcelin Berthelot Paris, Paris Cedex 05, 75005, France
- Paris Science Lettre Research University, Paris, 75005, France
| | - Xabier Elorza Vidal
- Unitat de Fisiología, Departament de Ciències Fisiològiques, IDIBELL-Institute of Neurosciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain
- Centro de Investigación en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Raul Estevez
- Unitat de Fisiología, Departament de Ciències Fisiològiques, IDIBELL-Institute of Neurosciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain
- Centro de Investigación en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Martine Cohen-Salmon
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique CNRS, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale INSERM, U1050, 11 place Marcelin Berthelot Paris, Paris Cedex 05, 75005, France.
- Paris Science Lettre Research University, Paris, 75005, France.
| | - Anne-Cécile Boulay
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique CNRS, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale INSERM, U1050, 11 place Marcelin Berthelot Paris, Paris Cedex 05, 75005, France
- Paris Science Lettre Research University, Paris, 75005, France
| |
Collapse
|
16
|
Deng Q, Luo L, Quan Z, Liu N, Du Z, Sun W, Luo C, Wu X. HepaCAM inhibits cell proliferation and invasion in prostate cancer by suppressing nuclear translocation of the androgen receptor via its cytoplasmic domain. Mol Med Rep 2019; 19:2115-2124. [PMID: 30664187 PMCID: PMC6390061 DOI: 10.3892/mmr.2019.9841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 12/12/2018] [Indexed: 12/04/2022] Open
Abstract
Hepatocyte cell adhesion molecule (HepaCAM) is a tumour suppressor. However, the mechanism of HepaCAM function in prostate cancer (PCa) remains unknown. In the present study, HepaCAM, androgen receptor (AR) and Ran were analysed in 46 PCa tissue samples using immunohistochemistry. Subsequently, the influence of HepaCAM and its cytoplasmic domain on cell proliferation, migration, and invasion, and associated proteins was examined using MTT, wound healing, Transwell and western blotting assays, respectively. Furthermore, nuclear translocation of AR and Ran was analysed using immunofluorescence and Western blot assays. The results demonstrated that HepaCAM expression was reduced in PCa, and there was an association between downregulation of HepaCAM and changes in the distribution of AR and Ran. Furthermore, HepaCAM, specifically the cytoplasmic domain, was involved in cell proliferation, migration and invasion. Nuclear translocation of AR was dependent on HepaCAM and its cytoplasmic domain. Additionally, HepaCAM suppression of the nuclear translocation of AR occurred via Ran. The results suggest that HepaCAM and its cytoplasmic domain suppress the nuclear translocation of AR via Ran in PCa. The cytoplasmic domain of HepaCAM may serve as a novel target for therapy in PCa.
Collapse
Affiliation(s)
- Qingfu Deng
- Department of Urology, First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, P.R. China
| | - Li Luo
- Key Laboratory of Diagnostics Medicine Designated by The Ministry of Education, Chongqing Medical University, Chongqing 400042, P.R. China
| | - Zhen Quan
- Department of Urology, First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, P.R. China
| | - Nanjing Liu
- Key Laboratory of Diagnostics Medicine Designated by The Ministry of Education, Chongqing Medical University, Chongqing 400042, P.R. China
| | - Zhongbo Du
- Department of Urology, First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, P.R. China
| | - Wei Sun
- Department of Urology, First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, P.R. China
| | - Chunli Luo
- Key Laboratory of Diagnostics Medicine Designated by The Ministry of Education, Chongqing Medical University, Chongqing 400042, P.R. China
| | - Xiaohou Wu
- Department of Urology, First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, P.R. China
| |
Collapse
|
17
|
Fan Y, Ou L, Fan J, Li L, Wu X, Luo C, Gao Y, Niu L. HepaCAM Regulates Warburg Effect of Renal Cell Carcinoma via HIF-1α/NF-κB Signaling Pathway. Urology 2018; 127:61-67. [PMID: 30528714 DOI: 10.1016/j.urology.2018.11.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/19/2018] [Accepted: 11/27/2018] [Indexed: 01/12/2023]
Abstract
OBJECTIVE To investigate how hepatocyte cell adhesion molecule (hepaCAM) regulates cancer energy metabolism through hypoxia-inducible factor (HIF-1α) in renal cell carcinoma (RCC). MATERIALS AND METHODS The expression of hepaCAM and HIF-1α in RCC tissue samples was examined by immunohistochemistry. Glucose consumption and lactate production assays were used to detect metabolic activity in RCC cell lines. P65 and IκB kinase (IKKβ) mRNA and protein expression were detected using quantitative real-time polymerase chain reaction and western blotting, respectively. Nuclear translocation of P65 was observed by immunofluorescence staining after re-expressing hepaCAM. The luciferase reporter assay was applied to validate the transcriptional activity of HIF-1α. RESULTS HIF-1α expression was elevated and hepaCAM suppressed in RCC compared with adjacent normal tissues. Furthermore, hepaCAM re-expression significantly decreased glycolytic metabolism in RCC cell lines, and reduced HIF-1α, IKKβ, and P65 expression. The expression of HIF-1α, GLUT1, LDHA, and PKM2 were further reduced with combined hepaCAM overexpression and treatment with the NF-κB inhibitor BAY11-7082, compared to hepaCAM overexpression alone. Additionally, hepaCAM decreased the transcriptional activity of HIF-1α and blocked P65 nuclear translocation by the NF-κB pathway. CONCLUSION Our data suggest that hepaCAM suppresses the Warburg effect via the HIF-1α/NF-κB pathway in RCC, which is a facilitating factor in hepaCAM-reduced tumorigenesis.
Collapse
Affiliation(s)
- Yanru Fan
- Chongqing Medical University, Chongqing, China
| | - Liping Ou
- Chongqing Medical University, Chongqing, China
| | - Jiaxin Fan
- Chongqing Medical University, Chongqing, China
| | - Luo Li
- Chongqing Medical University, Chongqing, China
| | - Xiaohou Wu
- First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chunli Luo
- Chongqing Medical University, Chongqing, China.
| | | | | |
Collapse
|
18
|
Jentsch TJ, Pusch M. CLC Chloride Channels and Transporters: Structure, Function, Physiology, and Disease. Physiol Rev 2018; 98:1493-1590. [DOI: 10.1152/physrev.00047.2017] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
CLC anion transporters are found in all phyla and form a gene family of eight members in mammals. Two CLC proteins, each of which completely contains an ion translocation parthway, assemble to homo- or heteromeric dimers that sometimes require accessory β-subunits for function. CLC proteins come in two flavors: anion channels and anion/proton exchangers. Structures of these two CLC protein classes are surprisingly similar. Extensive structure-function analysis identified residues involved in ion permeation, anion-proton coupling and gating and led to attractive biophysical models. In mammals, ClC-1, -2, -Ka/-Kb are plasma membrane Cl−channels, whereas ClC-3 through ClC-7 are 2Cl−/H+-exchangers in endolysosomal membranes. Biological roles of CLCs were mostly studied in mammals, but also in plants and model organisms like yeast and Caenorhabditis elegans. CLC Cl−channels have roles in the control of electrical excitability, extra- and intracellular ion homeostasis, and transepithelial transport, whereas anion/proton exchangers influence vesicular ion composition and impinge on endocytosis and lysosomal function. The surprisingly diverse roles of CLCs are highlighted by human and mouse disorders elicited by mutations in their genes. These pathologies include neurodegeneration, leukodystrophy, mental retardation, deafness, blindness, myotonia, hyperaldosteronism, renal salt loss, proteinuria, kidney stones, male infertility, and osteopetrosis. In this review, emphasis is laid on biophysical structure-function analysis and on the cell biological and organismal roles of mammalian CLCs and their role in disease.
Collapse
Affiliation(s)
- Thomas J. Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany; and Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy
| | - Michael Pusch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany; and Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy
| |
Collapse
|
19
|
Du Z, Li L, Sun W, Wang X, Zhang Y, Chen Z, Yuan M, Quan Z, Liu N, Hao Y, Li T, Wang J, Luo C, Wu X. HepaCAM inhibits the malignant behavior of castration-resistant prostate cancer cells by downregulating Notch signaling and PF-3084014 (a γ-secretase inhibitor) partly reverses the resistance of refractory prostate cancer to docetaxel and enzalutamide in vitro. Int J Oncol 2018; 53:99-112. [PMID: 29658567 PMCID: PMC5958706 DOI: 10.3892/ijo.2018.4370] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 04/04/2018] [Indexed: 01/25/2023] Open
Abstract
Castration-resistant prostate cancer (CRPC) continues to be a major challenge in the treatment of prostate cancer (PCa). The expression of hepatocyte cell adhesion molecule (HepaCAM), a novel tumor suppressor, is frequently downregulated or lost in PCa. Overactivated Notch signaling is involved in the development and progression of PCa, including CRPC. In this study, we found that the activities of Notch signaling were elevated, while HepaCAM expression was decreased in CRPC tissues compared with matched primary prostate cancer (PPC) tissues. In addition, HepaCAM negativity was found to be associated with a worse progression-free survival (PFS). Furthermore, the overexpression of HepaCAM induced by transfection with a HepaCAM overexpression vector (Ad-HepaCAM) exerted antitumor effects by decreasing the proliferation, and suppressing the invasion and migration of bicalutamide-resistant (Bica-R) cells and enzalutamide-resistant (Enza-R) cells. Importantly, we found that the antitumor effects of HepaCAM on the resistant cells were associated with the downregulation of Notch signaling. Moreover, we revealed that PF-3084014 (a γ-secretase inhibitor) re-sensitized Enza-R cells to enzalutamide, and sequential dual-resistant (E+D-R) cells to docetaxel. Additionally, the findings of this study demonstrated that the use of PF-3084014 alone exerted potent antitumor effect on the resistant cells in vitro. On the whole, this study indicates that HepaCAM potentially represents a therapeutic target and PF-3084014 may prove to a promising agent for use in the treatment of refractory PCa.
Collapse
Affiliation(s)
- Zhongbo Du
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Luo Li
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Wei Sun
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xiao Wang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yao Zhang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Zhixiong Chen
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Mengjuan Yuan
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Zhen Quan
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Nanjing Liu
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yanni Hao
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ting Li
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jinhua Wang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Chunli Luo
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xiaohou Wu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
20
|
Kentala H, Koponen A, Kivelä AM, Andrews R, Li C, Zhou Y, Olkkonen VM. Analysis of ORP2-knockout hepatocytes uncovers a novel function in actin cytoskeletal regulation. FASEB J 2018; 32:1281-1295. [PMID: 29092904 DOI: 10.1096/fj.201700604r] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
ORP2 is implicated in cholesterol transport, triglyceride metabolism, and adrenocortical steroid hormone production. We addressed ORP2 function in hepatocytes by generating ORP2-knockout (KO) HuH7 cells by CRISPR-Cas9 gene editing, followed by analyses of transcriptome, F-actin morphology, migration, adhesion, and proliferation. RNA sequencing of ORP2-KO cells revealed >2-fold changes in 579 mRNAs. The Ingenuity Pathway Analysis (IPA) uncovered alterations in the following functional categories: cellular movement, cell-cell signaling and interaction, cellular development, cellular function and maintenance, cellular growth and proliferation, and cell morphology. Many pathways in these categories involved actin cytoskeleton, cell migration, adhesion, or proliferation. Analysis of the ORP2 interactome uncovered 109 putative new partners. Their IPA analysis revealed Ras homolog A (RhoA) signaling as the most significant pathway. Interactions of ORP2 with SEPT9, MLC12, and ARHGAP12 were validated by independent assays. ORP2-KO resulted in abnormal F-actin morphology characterized by impaired capacity to form lamellipodia, migration defect, and impaired adhesion and proliferation. Rescue of the migration phenotype and generation of typical cell surface morphology required an intact ORP2 phosphoinositide binding site, suggesting that ORP2 function involves phosphoinositide binding and transport. The results point at a novel function of ORP2 as a lipid-sensing regulator of the actin cytoskeleton, with impacts on hepatocellular migration, adhesion, and proliferation.-Kentala, H., Koponen, A., Kivelä, A. M., Andrews, R., Li, C., Zhou, Y., Olkkonen, V. M. Analysis of ORP2-knockout hepatocytes uncovers a novel function in actin cytoskeletal regulation.
Collapse
Affiliation(s)
- Henriikka Kentala
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Annika Koponen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Annukka M Kivelä
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Robert Andrews
- Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - ChunHei Li
- Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff University, Cardiff, United Kingdom.,Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - You Zhou
- Minerva Foundation Institute for Medical Research, Helsinki, Finland.,Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff University, Cardiff, United Kingdom.,Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland.,Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland
| |
Collapse
|
21
|
Estévez R, Elorza-Vidal X, Gaitán-Peñas H, Pérez-Rius C, Armand-Ugón M, Alonso-Gardón M, Xicoy-Espaulella E, Sirisi S, Arnedo T, Capdevila-Nortes X, López-Hernández T, Montolio M, Duarri A, Teijido O, Barrallo-Gimeno A, Palacín M, Nunes V. Megalencephalic leukoencephalopathy with subcortical cysts: A personal biochemical retrospective. Eur J Med Genet 2018; 61:50-60. [DOI: 10.1016/j.ejmg.2017.10.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/14/2017] [Accepted: 10/22/2017] [Indexed: 12/22/2022]
|
22
|
Geng HT, Cao RJ, Cheng L, Liu CY. Overexpression of Hepatocyte Cell Adhesion Molecule (hepaCAM) Inhibits the Proliferation, Migration, and Invasion in Colorectal Cancer Cells. Oncol Res 2017; 25:1039-1046. [PMID: 28244854 PMCID: PMC7841000 DOI: 10.3727/096504016x14813914187138] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Hepatocyte cell adhesion molecule (hepaCAM), a new type of CAM, belongs to the immunoglobulin superfamily. Recently, hepaCAM was reported to be implicated in cancer development, and many researchers investigated its biological function in the tumorigenesis of various cancers. However, what kind of role hepaCAM plays in colorectal cancer (CRC) remains unknown. In this study, we found that hepaCAM was downregulated in CRC tissues and cell lines. Overexpression of hepaCAM inhibited CRC cell proliferation, migration, and invasion in vitro. Furthermore, the tumorigenesis assay showed that increased expression of hepaCAM suppressed CRC tumor growth and metastasis in vivo. We also demonstrated that overexpression of hepaCAM reduced the protein expression levels of β-catenin, cyclin D1, and c-Myc, indicating its inhibitory effect on the Wnt/β-catenin signaling pathway. In conclusion, our study results suggest hepaCAM as a promising therapeutic target for CRC and provide a better understanding for the molecular basis of CRC progression.
Collapse
Affiliation(s)
- Hai-tao Geng
- *Department of Oncology, Binzhou Medical University Hospital, Binzhou, Shandong, P.R. China
| | - Rui-juan Cao
- *Department of Oncology, Binzhou Medical University Hospital, Binzhou, Shandong, P.R. China
| | - Lei Cheng
- †Department of General Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, P.R. China
| | - Chun-yuan Liu
- †Department of General Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, P.R. China
| |
Collapse
|
23
|
Tang M, Zhao Y, Liu N, Chen E, Quan Z, Wu X, Luo C. Overexpression of HepaCAM inhibits bladder cancer cell proliferation and viability through the AKT/FoxO pathway. J Cancer Res Clin Oncol 2017; 143:793-805. [PMID: 28229220 DOI: 10.1007/s00432-016-2333-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 12/23/2016] [Indexed: 12/19/2022]
Abstract
PURPOSE HepaCAM, an N-linked glycoprotein that encodes a member of the immunoglobulin superfamily, has been reported to be a tumor suppressor gene that mediates diverse cellular bio-functions. Recent studies have shown that the FoxO transcription factors play a pivotal role during cancer progression. Here, we explored the correlation between HepaCAM and the FoxO family via regulation of the PI3K/AKT pathway. METHODS HepaCAM and FoxO3 expression were detected by immunohistochemistry staining. We detected the effect of HepaCAM on the proliferation and viability of bladder cancer through AKT signaling by colony formation, the MTT assay and Western blotting. We observed the nuclear translocation of FoxO3 by immunofluorescence staining after expressing HepaCAM. RESULTS HepaCAM depletion was discovered in bladder cancer tissues compared with adjacent normal tissues, and the decreased level was associated with the degradation of FoxO3. Furthermore, re-expression of HepaCAM significantly disrupted T24 and BIU-87 cell colony formation, as well as reduced p-AKT and p-FoxO protein expression. We found that the combined treatment of HepaCAM-overexpressing adenovirus with the PI3K inhibitor LY294002 enhanced the inhibitory effects on cell proliferation, viability and protein expression. Additionally, overexpressed HepaCAM decreased the activated effect on cell proliferation, viability and protein expression of the AKT activator SC79. Moreover, we observed that HepaCAM induced nuclear translocation of FoxO3. CONCLUSIONS Our research implicated that HepaCAM may function as a novel therapeutic target that inhibits the proliferation of bladder cancer via the AKT/FoxO pathway.
Collapse
Affiliation(s)
- Min Tang
- The Key Laboratory of Diagnostics Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yan Zhao
- The Key Laboratory of Diagnostics Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Nanjing Liu
- The Key Laboratory of Diagnostics Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - E Chen
- The Key Laboratory of Diagnostics Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Zhen Quan
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xiaohou Wu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Chunli Luo
- The Key Laboratory of Diagnostics Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
24
|
Maschietto M, Rodrigues TC, Kashiwabara AY, de Araujo ÉSS, Marques Aguiar TF, da Costa CML, da Cunha IW, Dos Reis Vasques L, Cypriano M, Brentani H, de Toledo SRC, Pearson PL, Carraro DM, Rosenberg C, Krepischi ACV. DNA methylation landscape of hepatoblastomas reveals arrest at early stages of liver differentiation and cancer-related alterations. Oncotarget 2016; 8:97871-97889. [PMID: 29228658 PMCID: PMC5716698 DOI: 10.18632/oncotarget.14208] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 12/05/2016] [Indexed: 12/18/2022] Open
Abstract
Hepatoblastomas are uncommon embryonal liver tumors accounting for approximately 80% of childhood hepatic cancer. We hypothesized that epigenetic changes, including DNA methylation, could be relevant to hepatoblastoma onset. The methylomes of eight matched hepatoblastomas and non-tumoral liver tissues were characterized, and data were validated in an independent group (11 hepatoblastomas). In comparison to differentiated livers, hepatoblastomas exhibited a widespread and non-stochastic pattern of global low-level hypomethylation. The analysis revealed 1,359 differentially methylated CpG sites (DMSs) between hepatoblastomas and control livers, which are associated with 765 genes. Hypomethylation was detected in hepatoblastomas for ~58% of the DMSs with enrichment at intergenic sites, and most of the hypermethylated CpGs were located in CpG islands. Functional analyses revealed enrichment in signaling pathways involved in metabolism, negative regulation of cell differentiation, liver development, cancer, and Wnt signaling pathway. Strikingly, an important overlap was observed between the 1,359 DMSs and the CpG sites reported to exhibit methylation changes through liver development (p<0.0001), with similar patterns of methylation in both hepatoblastomas and fetal livers compared to adult livers. Overall, our results suggest an arrest at early stages of liver cell differentiation, in line with the hypothesis that hepatoblastoma ontogeny involves the disruption of liver development. This genome-wide methylation dysfunction, taken together with a relatively small number of driver genetic mutations reported for both adult and pediatric liver cancers, shed light on the relevance of epigenetic mechanisms for hepatic tumorigenesis.
Collapse
Affiliation(s)
- Mariana Maschietto
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Tatiane Cristina Rodrigues
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | - Luciana Dos Reis Vasques
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Monica Cypriano
- Department of Pediatrics, Pediatric Oncology Institute (GRAACC), Federal University of São Paulo, São Paulo, Brazil
| | - Helena Brentani
- Department of Psychiatry, School of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Peter Lees Pearson
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Dirce Maria Carraro
- International Research Center, A. C. Camargo Cancer Center, São Paulo, Brazil
| | - Carla Rosenberg
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Ana C V Krepischi
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
25
|
Wu M, Moh MC, Schwarz H. HepaCAM associates with connexin 43 and enhances its localization in cellular junctions. Sci Rep 2016; 6:36218. [PMID: 27819278 PMCID: PMC5098153 DOI: 10.1038/srep36218] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/12/2016] [Indexed: 12/30/2022] Open
Abstract
HepaCAM (GlialCAM) is frequently deleted in carcinomas, and reintroduction of hepaCAM into transformed cell lines reduces cellular growth and induces senescence. Mutations in HEPACAM give rise to the neurodegenerative disease megalencephalic leukoencephalopathy with subcortical cysts (MLC) since mutated hepaCAM prevents shuttling of MLC1 protein to astrocytic junctions in the plasma membrane. Here we identify that hepaCAM associates with connexin 43, a main component of gap junctions, and enhances connexin 43 localization to the plasma membrane at cellular junctions. HepaCAM also increases the levels of connexin 43, not by enhancing its transcription but by stabilizing connexin 43 protein. In the absence of hepaCAM, connexin 43 undergoes a faster degradation via the lysosomal pathway while proteasomal degradation seems not to be involved. Mutations in hepaCAM that cause MLC, or neutralization of hepaCAM by antibodies disrupt its association with connexin 43 at cellular junctions. By discovering the requirement of hepaCAM for localizing connexin 43, a well-established tumor suppressor, to cellular junctions and stabilizing it there, this study suggests a mechanism by which deletion of hepaCAM may support tumor progression.
Collapse
Affiliation(s)
- Meihui Wu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117456
| | - Mei Chung Moh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117456
| | - Herbert Schwarz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117456
| |
Collapse
|
26
|
Wang X, Chen E, Tang M, Yang X, Wang Y, Quan Z, Wu X, Luo C. The SMAD2/3 pathway is involved in hepaCAM-induced apoptosis by inhibiting the nuclear translocation of SMAD2/3 in bladder cancer cells. Tumour Biol 2016; 37:10731-43. [DOI: 10.1007/s13277-016-4821-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 01/08/2016] [Indexed: 11/25/2022] Open
|
27
|
Kim MH, Kumar SK, Shirahama H, Seo J, Lee JH, Cho NJ. Phenotypic regulation of liver cells in a biofunctionalized three-dimensional hydrogel platform. Integr Biol (Camb) 2016; 8:156-66. [PMID: 26792030 DOI: 10.1039/c5ib00269a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Loss of function is a major challenge for hepatocytes that are cultured on two-dimensional (2D) cell culture platforms. Biofunctionalized three-dimensional (3D) scaffolds produced by microfabrication strategies can overcome these limitations by presenting vital environmental cues, strong mechanical properties, and three-dimensional geometry to enable high-fidelity liver tissue engineering. Herein, we report the detailed investigation of hepatocarcinoma (Huh 7.5) cellular behavior in a collagen-functionalized microsphere-templated poly(ethylene glycol) (PEG) hydrogel scaffold which promotes 3D hepatic sheet morphology. Collagen conjugation led to improved liver-specific functions, including albumin production and cytochrome P450 (CYP450) activity. Importantly, the gene expression of numerous cell-adhesion markers was enhanced along with stimulated innate hepatocyte fibronectin production. Taken together, the findings reveal a close connection between hepatic cell morphology and gene expression, offering evidence that surface-coated collagen in the 3D hydrogel platform triggers the upregulation of hepatocyte-specific transcription factors and the secretion of liver metabolic markers.
Collapse
Affiliation(s)
- Myung Hee Kim
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore.
| | | | | | | | | | | |
Collapse
|
28
|
Wang X, Chen E, Yang X, Wang Y, Quan Z, Wu X, Luo C. 5-azacytidine inhibits the proliferation of bladder cancer cells via reversal of the aberrant hypermethylation of the hepaCAM gene. Oncol Rep 2015; 35:1375-84. [PMID: 26677113 DOI: 10.3892/or.2015.4492] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 07/24/2015] [Indexed: 11/06/2022] Open
Abstract
Hepatocyte cell adhesion molecule (hepaCAM), a tumor-suppressor gene, is rarely expressed in bladder carcinoma. However, little is known concerning the mechanisms of low hepaCAM expression in bladder cancer. Abnormal hypermethylation in the promoter plays a crucial role in cancer by silencing tumor-suppressor genes, which is catalyzed by DNA methyltransferases (DNMTs). In the present study, a total of 31 bladder cancer and 22 adjacent tissues were assessed by immunohistochemistry to detect DNMT3A/3B and hepaCAM expression. Methylation of hepaCAM was determined by methylation‑specific polymerase chain reaction (MSP). The mRNA and protein levels of DNMT3A/3B and hepaCAM were determined by RT-PCR and western blot analysis after treatment with 5-azacytidine (AZAC). Following AZAC treatment, the proliferation of bladder cancer cells was detected by CCK-8 and colony formation assays. Cell cycle distribution was examined by flow cytometry. To further evaluate the tumor‑suppressive roles of AZAC and the involved mechanisms, the anti-tumorigenicity of AZAC was tested in vivo. The expression of DNMT3A/3B protein was markedly increased in the bladder carcinoma tissues (P<0.05), and had a negative linear correlation with hepaCAM expression in the same patients according to Pearson's analysis (r=-0.7176/-0.7127, P<0.05). The MSP results indicated that the hepaCAM gene was hypermethylated in three bladder cancer cell lines. Furthermore, we found that downregulation of DNMT3A/3B expression, after treatment with AZAC, reversed the hypermethylation and expression of hepaCAM in bladder cancer cells. In addition, AZAC inhibited the proliferation of bladder cancer cells and arrested cells at the G0/G1 phase. The in vivo results showed that expression of DNMT3A/3B and hepaCAM as well as tumor growth of nude mice were markedly altered which corresponded with the in vitro results. Due to the ability to reactivate expression of hepaCAM and inhibit growth of bladder cancer cells, AZAC may represent an effective treatment for bladder cancer.
Collapse
Affiliation(s)
- Xiaorong Wang
- Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, P.R. China
| | - E Chen
- Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, P.R. China
| | - Xue Yang
- Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, P.R. China
| | - Yin Wang
- Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, P.R. China
| | - Zhen Quan
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Xiaohou Wu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Chunli Luo
- Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, P.R. China
| |
Collapse
|
29
|
Shao H, Gu Y, Ding J, Lu P, Ruan T, Lu W. HEPACAM inhibited the growth and migration of cancer cells in the progression of non-small cell lung cancer. Tumour Biol 2015; 37:2621-7. [PMID: 26392113 DOI: 10.1007/s13277-015-4084-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 09/13/2015] [Indexed: 12/17/2022] Open
Abstract
Hepatocyte cell adhesion molecule (HEPACAM), a member of immunoglobulin superfamily, is an adhesion molecule. Although dysregulation of several adhesion molecules has been implicated in the progression of non-small cell lung cancer (NSCLC), the expression profile and functions of HEPACAM in NSCLC remains unknown. In this study, it was found that the expression of HEPACAM was downregulated in NSCLC tissues. Forced expression of HEPACAM in NSCLC cells inhibited the growth and migration of the cancer cells, while knocking down the expression of HEPACAM promoted cell growth, migration, and metastasis. In the molecular mechanism study, HEPACAM was found to be a negative regulator of beta-catenin/TCF signaling. Taken together, this study revealed the suppressive roles of HEPACAM in NSCLC and restoring the function of HEPACAM in NSCLC might be a promising strategy for the therapy.
Collapse
Affiliation(s)
- Huanzhang Shao
- Department of Critical Care Medicine, Henan Provincial People's Hospital, Affiliated of Zhengzhou University, Zhengzhou, 450003, China
| | - Yinjie Gu
- Department of Critical Care Medicine, Affiliated Yixing People's Hospital, Jiangsu University, Yixing, 214200, Jiangsu Province, China
| | - Junli Ding
- Department of Medical Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, Jiangsu Province, China
| | - Peihua Lu
- Department of Medical Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, Jiangsu Province, China
| | - Tingyan Ruan
- Department of Medical Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, Jiangsu Province, China
| | - Wenbin Lu
- Department of Medical Oncology, Wujin People's Hospital Affiliated to Jiangsu University, 2 North Yongning Rd, Changzhou, 213002, Jiangsu Province, China.
| |
Collapse
|
30
|
Du HF, Ou LP, Lv CK, Yang X, Song XD, Fan YR, Wu XH, Luo CL. Expression of hepaCAM inhibits bladder cancer cell proliferation via a Wnt/β-catenin-dependent pathway in vitro and in vivo. Cancer Biol Ther 2015; 16:1502-13. [PMID: 26192362 DOI: 10.1080/15384047.2015.1071732] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We previously established that hepatocyte cell adhesion molecule (hepaCAM), a typical structure of immunoglobulin (Ig)-like adhesion molecules, inhibited the proliferation and the progression of cultured human bladder cancer cells. As increasing evidence reveals that aberrant activation of canonical Wnt pathway is involved in the pathogenesis of bladder cancer, and β-catenin serves as a pivotal molecule of Wnt pathway. Then, we explored whether the anti-proliferation effect of hepaCAM was associated with Wnt/β-catenin pathway in human bladder cancer cells. The negative correlation between hepaCAM and β-catenin in transitional cell carcinoma of bladder (TCCB) was found. Follow by, studied the effect of hepaCAM on the key elements of Wnt pathway. Here, Our researches showed that hepaCAM played a central role in modulating the Wnt/β-catenin signaling pathway by interfering nuclear protein levels of β-catenin, leading to down-regulate transcriptional activity of LEF/TCF and its target genes c-Myc and cyclinD1. Mechanistically, we demonstrated that hepaCAM-activated GSK3β led to elevate the phosphorylation of β-catenin, contributing to the aberrant translocation of β-catenin. In addition, Anti-proliferation and associated molecular mechanisms of hepaCAM were demonstrated by using vivo experiment. In conclusion, our reports uncover that expression of hepaCAM suppresses the proliferation of bladder cancer cells through a Wnt/β-catenin-dependent signaling pathway in vitro and in vivo.
Collapse
Affiliation(s)
- Hong-Fei Du
- a Department of Clinical Laboratory ; The First Affiliated Hospital of Chengdu Medical College ; Chengdu , PR China
| | - Li-Ping Ou
- b The Key Laboratory of Diagnostics Medicine designated by the Ministry of Education ; Chongqing Medical University ; Chongqing , PR China
| | - Chang-Kun Lv
- c Department of Laboratory Medicine ; Shang qiu Medical College ; Shang qiu , PR China
| | - Xue Yang
- b The Key Laboratory of Diagnostics Medicine designated by the Ministry of Education ; Chongqing Medical University ; Chongqing , PR China
| | - Xue-Dong Song
- b The Key Laboratory of Diagnostics Medicine designated by the Ministry of Education ; Chongqing Medical University ; Chongqing , PR China
| | - Yan-Ru Fan
- b The Key Laboratory of Diagnostics Medicine designated by the Ministry of Education ; Chongqing Medical University ; Chongqing , PR China
| | - Xiao-Hou Wu
- d Department of Urology , The First Affiliated Hospital of Chongqing Medical University ; Chongqing , PR China
| | - Chun-Li Luo
- b The Key Laboratory of Diagnostics Medicine designated by the Ministry of Education ; Chongqing Medical University ; Chongqing , PR China
| |
Collapse
|
31
|
MicroRNA-21 promotes cell proliferation in human hepatocellular carcinoma partly by targeting HEPN1. Tumour Biol 2015; 36:5467-72. [DOI: 10.1007/s13277-015-3213-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/03/2015] [Indexed: 01/03/2023] Open
|
32
|
Obacz J, Takacova M, Brychtova V, Dobes P, Pastorekova S, Vojtesek B, Hrstka R. The role of AGR2 and AGR3 in cancer: similar but not identical. Eur J Cell Biol 2015; 94:139-47. [PMID: 25666661 DOI: 10.1016/j.ejcb.2015.01.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/08/2015] [Accepted: 01/09/2015] [Indexed: 12/21/2022] Open
Abstract
In the past decades, highly related members of the protein disulphide isomerase family, anterior gradient protein AGR2 and AGR3, attracted researchers' attention due to their putative involvement in developmental processes and carcinogenesis. While AGR2 has been widely demonstrated as a metastasis-related protein whose elevated expression predicts worse patient outcome, little is known about AGR3's role in tumour biology. Thus, we aim to confront the issue of AGR3 function in physiology and pathology in the following review by comparing this protein with the better-described homologue AGR2. Relying on available data and in silico analyses, we show that AGR proteins are co-expressed or uncoupled in context-dependent manners in diverse carcinomas and healthy tissues. Further, we discuss plausible roles of both proteins in tumour-associated processes such as differentiation, proliferation, migration, invasion and metastasis. This work brings new hints and stimulates further thoughts on hitherto unresolved conundrum of anterior gradient protein function.
Collapse
Affiliation(s)
- Joanna Obacz
- Masaryk Memorial Cancer Institute, RECAMO, Zluty kopec 7, 65653 Brno, Czech Republic; Department of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovak Republic.
| | - Martina Takacova
- Masaryk Memorial Cancer Institute, RECAMO, Zluty kopec 7, 65653 Brno, Czech Republic; Department of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovak Republic.
| | - Veronika Brychtova
- Masaryk Memorial Cancer Institute, RECAMO, Zluty kopec 7, 65653 Brno, Czech Republic.
| | - Petr Dobes
- Masaryk Memorial Cancer Institute, RECAMO, Zluty kopec 7, 65653 Brno, Czech Republic.
| | - Silvia Pastorekova
- Masaryk Memorial Cancer Institute, RECAMO, Zluty kopec 7, 65653 Brno, Czech Republic; Department of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovak Republic.
| | - Borivoj Vojtesek
- Masaryk Memorial Cancer Institute, RECAMO, Zluty kopec 7, 65653 Brno, Czech Republic.
| | - Roman Hrstka
- Masaryk Memorial Cancer Institute, RECAMO, Zluty kopec 7, 65653 Brno, Czech Republic.
| |
Collapse
|
33
|
Kim HS, Jung G. Reactive oxygen species increase HEPN1 expression via activation of the XBP1 transcription factor. FEBS Lett 2014; 588:4413-21. [DOI: 10.1016/j.febslet.2014.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 10/06/2014] [Accepted: 10/09/2014] [Indexed: 12/16/2022]
|
34
|
Song X, Wang Y, Du H, Fan Y, Yang X, Wang X, Wu X, Luo C. Overexpression of HepaCAM inhibits cell viability and motility through suppressing nucleus translocation of androgen receptor and ERK signaling in prostate cancer. Prostate 2014; 74:1023-33. [PMID: 24811146 DOI: 10.1002/pros.22817] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 04/04/2014] [Indexed: 01/10/2023]
Abstract
BACKGROUND HepaCAM is suppressed in a variety of human cancers, and involved in cell adhesion, growth, migration, invasion, and survival. However, the expression and function of HepaCAM in prostate cancer are still unknown. METHODS HepaCAM expression has been detected by RT-PCR, Western blotting and immunohistochemistry staining in prostate cell lines RWPE-1, LNCap, DU145, PC3, and in 75 human prostate tissue specimens, respectively. Meanwhile, the cell proliferation ability was detected by WST-8 assay. The role of HepaCAM in prostate cancer cell migration and invasion was examined by wound healing and transwell assay. And flow cytometry was used to observe the apoptosis of prostate cancer cells. Then we detected changes of Androgen Receptor translocation and ERK signaling using immunofluorescence staining and western blot after overexpression of HepaCAM. RESULTS The HepaCAM expression was significantly down-regulated in prostate cancer tissues and undetected in prostate cancer cells. However, the low HepaCAM expression was not statistically associated with clinicopathological characteristics of prostate cancer. Overexpression of HepaCAM in prostate cancer cells decreased the cell proliferation, migration and invasion, and induced the cell apoptosis. Meanwhile, HepaCAM prevented the androgen receptor translocation from the cytoplasm to the nucleus and down-regulated the MAPK/ERK signaling. CONCLUSION Our results suggested that HepaCAM acted as a tumor suppressor in prostate cancer. HepaCAM inhibited cell viability and motility which might be through suppressing the nuclear translocation of Androgen Receptor and down-regulating the ERK signaling. Therefore, it was indicated that HepaCAM may be a potential therapeutic target for prostate cancer.
Collapse
Affiliation(s)
- Xuedong Song
- Key Laboratory of Diagnostics Medicine designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Smith SH, Wilson AD, Van Ettinger I, MacIntyre N, Archibald AL, Ait-Ali T. Down-regulation of mechanisms involved in cell transport and maintenance of mucosal integrity in pigs infected with Lawsonia intracellularis. Vet Res 2014; 45:55. [PMID: 24885874 PMCID: PMC4031155 DOI: 10.1186/1297-9716-45-55] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 04/22/2014] [Indexed: 11/10/2022] Open
Abstract
Lawsonia intracellularis is an obligate intracellular bacterium, responsible for the disease complex known as proliferative enteropathy (PE). L. intracellularis is associated with intestinal crypt epithelial cell proliferation but the mechanisms responsible are yet to be defined. Microarray analysis was used to investigate the host-pathogen interaction in experimentally infected pigs to identify pathways that may be involved. Ileal samples originating from twenty-eight weaner pigs experimentally challenged with a pure culture of L. intracellularis (strain LR189/5/83) were subjected to microarray analysis. Microarray transcriptional signatures were validated using immunohistochemistry and quantitative real time PCR of selected genes at various time points post challenge. At peak of infection (14 days post challenge) 86% of altered transcripts were down regulated, particularly those involved in maintenance of mucosal integrity and regulation of cell transport. Among the up-regulated transcripts, CD163 and CDK1 were novel findings and considered to be important, due to their respective roles in innate immunity and cellular proliferation. Overall, targeted cellular mechanisms included those that are important in epithelial restitution, migration and protection; maintenance of stable inter-epithelial cell relationships; cell transport of nutrients and electrolytes; innate immunity; and cell cycle.
Collapse
Affiliation(s)
| | | | | | | | | | - Tahar Ait-Ali
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK.
| |
Collapse
|
36
|
Sirisi S, Folgueira M, López-Hernández T, Minieri L, Pérez-Rius C, Gaitán-Peñas H, Zang J, Martínez A, Capdevila-Nortes X, De La Villa P, Roy U, Alia A, Neuhauss S, Ferroni S, Nunes V, Estévez R, Barrallo-Gimeno A. Megalencephalic leukoencephalopathy with subcortical cysts protein 1 regulates glial surface localization of GLIALCAM from fish to humans. Hum Mol Genet 2014; 23:5069-86. [DOI: 10.1093/hmg/ddu231] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
37
|
Disrupting MLC1 and GlialCAM and ClC-2 interactions in leukodystrophy entails glial chloride channel dysfunction. Nat Commun 2014; 5:3475. [PMID: 24647135 DOI: 10.1038/ncomms4475] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 02/18/2014] [Indexed: 11/08/2022] Open
Abstract
Defects in the astrocytic membrane protein MLC1, the adhesion molecule GlialCAM or the chloride channel ClC-2 underlie human leukoencephalopathies. Whereas GlialCAM binds ClC-2 and MLC1, and modifies ClC-2 currents in vitro, no functional connections between MLC1 and ClC-2 are known. Here we investigate this by generating loss-of-function Glialcam and Mlc1 mouse models manifesting myelin vacuolization. We find that ClC-2 is unnecessary for MLC1 and GlialCAM localization in brain, whereas GlialCAM is important for targeting MLC1 and ClC-2 to specialized glial domains in vivo and for modifying ClC-2's biophysical properties specifically in oligodendrocytes (OLs), the cells chiefly affected by vacuolization. Unexpectedly, MLC1 is crucial for proper localization of GlialCAM and ClC-2, and for changing ClC-2 currents. Our data unmask an unforeseen functional relationship between MLC1 and ClC-2 in vivo, which is probably mediated by GlialCAM, and suggest that ClC-2 participates in the pathogenesis of megalencephalic leukoencephalopathy with subcortical cysts.
Collapse
|
38
|
Tan B, Tan J, Du H, Quan Z, Xu X, Jiang X, Luo C, Wu X. HepaCAM inhibits clear cell renal carcinoma 786-0 cell proliferation via blocking PKCε translocation from cytoplasm to plasma membrane. Mol Cell Biochem 2014; 391:95-102. [PMID: 24515280 DOI: 10.1007/s11010-014-1991-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 01/29/2014] [Indexed: 01/01/2023]
Abstract
Hepatocyte cell adhesion molecule (HepaCAM) plays a crucial role in tumor progression and has been recognized as a novel tumor suppressor gene. The high protein expression level of protein kinase Cε (PKCε) has been discovered in many tumor types. In the present study, we determined HepaCAM and PKCε protein levels in human clear cell renal cell carcinoma (ccRCC) tissues and analyzed the correlation between them. We observed an inverse relationship in the expression of HepaCAM and PKCε in ccRCC and adjacent normal tissues. In ccRCC tissue, HepaCAM expression was undetectable while PKCε expression was high; the opposite was found in the adjacent normal tissue. Western blot analysis demonstrated that PKCε cytosolic protein levels increased while plasma membrane protein levels decreased without any change in total protein following infection of the ccRCC cell line 786-0 with adenovirus-GFP-HepaCAM (Ad-GFP-HepaCAM). Moreover, the application of Ad-GFP-HepaCAM combined with a PKCε-specific translocation inhibitor (εV1-2) effectively inhibited 786-0 cell growth. Ad-mediated expression of HepaCAM in 786-0 cells reduced the levels of phosphorylated AKT and cyclin D1 and inhibited cell proliferation. In summary, our studies point to interesting connections between HepaCAM and PKCε in tissues and in vitro. HepaCAM may prevent the translocation of PKCε from cytosolic to particulate fractions, resulting in the inhibition of 786-0 cell proliferation. Therapeutic manipulation of these novel protein targets may provide new ways of treating ccRCC.
Collapse
Affiliation(s)
- Bing Tan
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Barrallo-Gimeno A, Estévez R. GlialCAM, a glial cell adhesion molecule implicated in neurological disease. ADVANCES IN NEUROBIOLOGY 2014; 8:47-59. [PMID: 25300132 DOI: 10.1007/978-1-4614-8090-7_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
GlialCAM (also named HepaCAM) is a cell adhesion molecule expressed mainly in glial cells from the central nervous system and the liver. GlialCAM plays different roles according to its cellular context. In epithelial cell lines, overexpression of GlialCAM increases cell adhesion and motility but also inhibits cell growth in tumor cell lines, leading to senescence. In glial cells, however, its function is quite different. GlialCAM acts a regulator of subcellular traffic of MLC1, a protein with unknown function involved in the pathogenesis of megalencephalic leukoencephalopathy with subcortical cysts (MLC), a rare neurological condition. Moreover, GlialCAM itself has been found to be responsible for some of the cases of this disease. Additionally, GlialCAM also works as an auxiliary subunit of the chloride channel ClC-2, regulating its targeting to cell-cell junctions and modifying its functional properties. In summary, GlialCAM has different functions not only related to its adhesive nature, and defects in these functions lead to neurological disease.
Collapse
|
40
|
Tao J, Liu Q, Wu X, Xu X, Zhang Y, Wang Q, Luo C. Identification of hypermethylation in hepatocyte cell adhesion molecule gene promoter region in bladder carcinoma. Int J Med Sci 2013; 10:1860-7. [PMID: 24324362 PMCID: PMC3856376 DOI: 10.7150/ijms.6460] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 06/18/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Epigenetic regulation such as aberrant hypermethylation of CpG islands in promoter plays a key role in tumorigenesis. 5-Aza-2'-deoxycytidine (5-aza-CdR) which is a potent inhibitor of DNA methylation can reverse the abnormal hypermethylation of the silenced tumor suppressor genes (TSGs). It has been reported that hepatocyte cell adhesion molecule (hepaCAM) acts as a tumor suppressor gene and expression of its mRNA and protein were down-regulated in bladder cancer. Over-expression of hepaCAM can inhibit cancer growth and arrest renal cancer cells at G0/G1 phase. In this study, we investigated the methylation status of hepaCAM gene, as well as the influence of 5-aza-CdR on expression of hepaCAM gene in bladder cancer cells. METHODS CpG islands in hepaCAM promoter and methprimers were predicted and designed using bioinformatics program. Methylation status of hepaCAM promoter was evaluated in bladder cancer tissues and two cell lines (T24 and BIU-87) by Methylation-specific PCR; Western blot and Immunofluorescence were used to detect expression of hepaCAM protein after 5-aza-CdR treatment; Flow cytometry assay was performed to determine effectiveness of 5-aza-CdR on cell cycle profile. RESULTS CpG island in promoter of hepaCAM gene was hyper-methylated both in bladder carcinoma tissues and cell lines (T24 and BIU-87). Otherwise, aberrant methylation of its promoter was associated with its decreased expression. Hypermethylation of hepaCAM gene was reversed and expression of its mRNA and protein were re-activated in two cell lines by DNA methyltransferases inhibitor 5-aza-CdR. Flow cytometry assay demonstrated that 5-aza-CdR can inhibit growth of cancer cells by arresting cancer cells at G0/G1 phase. CONCLUSION Abnormal hypermethylation in CpG island of hepaCAM promoter is involved in absence of hepaCAM gene expression when bladder cancer occurs. Re-activation of hepaCAM gene by 5-aza-CdR can inhibit growth of cancer cells and arrest cells at G0/G1 phase.
Collapse
Affiliation(s)
- Jia Tao
- 1. Department of Laboratory Diagnosis, Chongqing Medical University, Chongqing, 400016 China
| | - Qi Liu
- 1. Department of Laboratory Diagnosis, Chongqing Medical University, Chongqing, 400016 China
| | - Xiaohou Wu
- 2. Department of Urinary Surgery, First Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Xin Xu
- 1. Department of Laboratory Diagnosis, Chongqing Medical University, Chongqing, 400016 China
| | - Yanyi Zhang
- 1. Department of Laboratory Diagnosis, Chongqing Medical University, Chongqing, 400016 China
| | - Qiuju Wang
- 1. Department of Laboratory Diagnosis, Chongqing Medical University, Chongqing, 400016 China
| | - Chunli Luo
- 1. Department of Laboratory Diagnosis, Chongqing Medical University, Chongqing, 400016 China
| |
Collapse
|
41
|
Wang Q, Luo C, Wu X, Du H, Song X, Fan Y. hepaCAM and p-mTOR Closely Correlate in Bladder Transitional Cell Carcinoma and hepaCAM Expression Inhibits Proliferation via an AMPK/mTOR Dependent Pathway in Human Bladder Cancer Cells. J Urol 2013; 190:1912-8. [DOI: 10.1016/j.juro.2013.05.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2013] [Indexed: 11/24/2022]
Affiliation(s)
- Qiuju Wang
- Key Laboratory of Diagnostics Medicine designated by the Ministry of Education, Chongqing Medical University and Department of Urology, First Affiliated Hospital of Chongqing Medical University (XW), Chongqing, People's Republic of China
| | - Chunli Luo
- Key Laboratory of Diagnostics Medicine designated by the Ministry of Education, Chongqing Medical University and Department of Urology, First Affiliated Hospital of Chongqing Medical University (XW), Chongqing, People's Republic of China
| | - Xiaohou Wu
- Key Laboratory of Diagnostics Medicine designated by the Ministry of Education, Chongqing Medical University and Department of Urology, First Affiliated Hospital of Chongqing Medical University (XW), Chongqing, People's Republic of China
| | - Hongfei Du
- Key Laboratory of Diagnostics Medicine designated by the Ministry of Education, Chongqing Medical University and Department of Urology, First Affiliated Hospital of Chongqing Medical University (XW), Chongqing, People's Republic of China
| | - Xuedong Song
- Key Laboratory of Diagnostics Medicine designated by the Ministry of Education, Chongqing Medical University and Department of Urology, First Affiliated Hospital of Chongqing Medical University (XW), Chongqing, People's Republic of China
| | - Yanru Fan
- Key Laboratory of Diagnostics Medicine designated by the Ministry of Education, Chongqing Medical University and Department of Urology, First Affiliated Hospital of Chongqing Medical University (XW), Chongqing, People's Republic of China
| |
Collapse
|
42
|
Torres-Martin M, Lassaletta L, San-Roman-Montero J, De Campos JM, Isla A, Gavilan J, Melendez B, Pinto GR, Burbano RR, Castresana JS, Rey JA. Microarray analysis of gene expression in vestibular schwannomas reveals SPP1/MET signaling pathway and androgen receptor deregulation. Int J Oncol 2013; 42:848-62. [PMID: 23354516 PMCID: PMC3597452 DOI: 10.3892/ijo.2013.1798] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 01/04/2013] [Indexed: 11/06/2022] Open
Abstract
Vestibular schwannomas are benign neoplasms that arise from the vestibular nerve. The hallmark of these tumors is the biallelic inactivation of neurofibromin 2 (NF2). Transcriptomic alterations, such as the neuregulin 1 (NRG1)/ErbB2 pathway, have been described in schwannomas. In this study, we performed a whole transcriptome analysis in 31 vestibular schwannomas and 9 control nerves in the Affymetrix Gene 1.0 ST platform, validated by quantitative real-time PCR (qRT-PCR) using TaqMan Low Density arrays. We performed a mutational analysis of NF2 by PCR/denaturing high-performance liquid chromatography (dHPLC) and multiplex ligation-dependent probe amplification (MLPA), as well as a microsatellite marker analysis of the loss of heterozygosity (LOH) of chromosome 22q. The microarray analysis demonstrated that 1,516 genes were deregulated and 48 of the genes were validated by qRT-PCR. At least 2 genetic hits (allelic loss and/or gene mutation) in NF2 were found in 16 tumors, seven cases showed 1 hit and 8 tumors showed no NF2 alteration. MET and associated genes, such as integrin, alpha 4 (ITGA4)/B6, PLEXNB3/SEMA5 and caveolin-1 (CAV1) showed a clear deregulation in vestibular schwannomas. In addition, androgen receptor (AR) downregulation may denote a hormonal effect or cause in this tumor. Furthermore, the osteopontin gene (SPP1), which is involved in merlin protein degradation, was upregulated, which suggests that this mechanism may also exert a pivotal role in schwannoma merlin depletion. Finally, no major differences were observed among tumors of different size, histological type or NF2 status, which suggests that, at the mRNA level, all schwannomas, regardless of their molecular and clinical characteristics, may share common features that can be used in their treatment.
Collapse
Affiliation(s)
- Miguel Torres-Martin
- Research Unit, La Paz University Hospital, Hospital La Paz Institute for Health Research (IdiPAZ), 28046 Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
van der Knaap MS, Boor I, Estévez R. Megalencephalic leukoencephalopathy with subcortical cysts: chronic white matter oedema due to a defect in brain ion and water homoeostasis. Lancet Neurol 2012; 11:973-85. [PMID: 23079554 DOI: 10.1016/s1474-4422(12)70192-8] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is characterised by chronic white matter oedema. The disease has an infantile onset and leads to slow neurological deterioration in most cases, but, surprisingly, some patients recover. The first disease gene, MLC1, identified in 2001, is mutated in 75% of patients. At that time, nothing was known about MLC1 protein function and the pathophysiology of MLC. More recently, HEPACAM (also called GLIALCAM) has been identified as a second disease gene. GlialCAM serves as an escort for MLC1 and the chloride channel CLC2. The defect in MLC1 has been shown to hamper the cell volume regulation of astrocytes. One of the most important consequences involves the potassium siphoning process, which is essential in brain ion and water homoeostasis. An understanding of the mechanisms of white matter oedema in MLC is emerging. Further insight into the specific function of MLC1 is necessary to find treatment targets.
Collapse
Affiliation(s)
- Marjo S van der Knaap
- Department of Pediatrics/Child Neurology, VU University Medical Centre, Amsterdam, Netherlands.
| | | | | |
Collapse
|
44
|
Spiegel I, Adamsky K, Eisenbach M, Eshed Y, Spiegel A, Mirsky R, Scherer SS, Peles E. Identification of novel cell-adhesion molecules in peripheral nerves using a signal-sequence trap. ACTA ACUST UNITED AC 2012; 2:27-38. [PMID: 16721426 PMCID: PMC1464832 DOI: 10.1017/s1740925x0600007x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The development and maintenance of myelinated nerves in the PNS requires constant and reciprocal communication between Schwann cells and their associated axons. However, little is known about the nature of the cell-surface molecules that mediate axon-glial interactions at the onset of myelination and during maintenance of the myelin sheath in the adult. Based on the rationale that such molecules contain a signal sequence in order to be presented on the cell surface, we have employed a eukaryotic-based, signal-sequence-trap approach to identify novel secreted and membrane-bound molecules that are expressed in myelinating and non-myelinating Schwann cells. Using cDNA libraries derived from dbcAMP-stimulated primary Schwann cells and 3-day-old rat sciatic nerve mRNAs, we generated an extensive list of novel molecules expressed in myelinating nerves in the PNS. Many of the identified proteins are cell-adhesion molecules (CAMs) and extracellular matrix (ECM) components, most of which have not been described previously in Schwann cells. In addition, we have identified several signaling receptors, growth and differentiation factors, ecto-enzymes and proteins that are associated with the endoplasmic reticulum and the Golgi network. We further examined the expression of several of the novel molecules in Schwann cells in culture and in rat sciatic nerve by primer-specific, real-time PCR and in situ hybridization. Our results indicate that myelinating Schwann cells express a battery of novel CAMs that might mediate their interactions with the underlying axons.
Collapse
Affiliation(s)
- Ivo Spiegel
- Department of Molecular Cell Biology The Weizmann Institute of Science Rehovot Israel
| | - Konstantin Adamsky
- Department of Molecular Cell Biology The Weizmann Institute of Science Rehovot Israel
| | - Menahem Eisenbach
- Department of Molecular Cell Biology The Weizmann Institute of Science Rehovot Israel
| | - Yael Eshed
- Department of Molecular Cell Biology The Weizmann Institute of Science Rehovot Israel
| | - Adrian Spiegel
- Swiss Federal Institute of Technology (EPFL) Department of Materials Science CH-1015 Lausanne Switzerland
| | - Rhona Mirsky
- Department of Anatomy and Developmental Biology University College London UK
| | - Steven S. Scherer
- Department of Neurology The University of Pennsylvania Medical Center Philadelphia USA
| | - Elior Peles
- Department of Molecular Cell Biology The Weizmann Institute of Science Rehovot Israel
| |
Collapse
|
45
|
Zhang QL, Luo CL, Wu XH, Wang CY, Xu X, Zhang YY, Liu Q, Shen SL. HepaCAM induces G1 phase arrest and promotes c-Myc degradation in human renal cell carcinoma. J Cell Biochem 2012; 112:2910-9. [PMID: 21618595 DOI: 10.1002/jcb.23207] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hepatocyte cell adhesion molecule (hepaCAM) encodes a generally inactive phosphorylated glycoprotein which mediates cancer cell proliferation, migration, and differentiation. We have reported that hepaCAM is down-regulated in renal cell carcinoma (RCC) and takes responsibility of cell growth inhibition. However, the precise mechanisms of hepaCAM inhibits cell growth is still unknown. In this study, we demonstrated that re-expression of hepaCAM can cause an accumulation in G0/G1 phase in 786-0 cells. This reaction was accompanied by a substantial reduction of c-Myc expression through using an ectopic hepaCAM expression system. Furthermore, we found a comparable decrease in proliferation and G0/G1 accumulation of 786-0 and RC-2 cells after treatment with a small molecule c-Myc inhibitor, 10058-F4. This indicated that the down regulation of c-Myc was an essential process in controlling growth inhibitory actions of hepaCAM. Nevertheless, re-expression of hepaCAM results in apparent reduction of c-Myc protein with no corresponding reduction of c-Myc mRNA. This suggests that this reaction might take place at a post-transcriptional level rather than transcriptional one. Consistent with these findings, hepaCAM decreased c-Myc stability by increasing the proportion of c-Myc phosphorylation on T58 which can be abrogated by a proteasomal inhibitor (MG132). Thus, our research implies that the decrease in c-Myc protein expression, resulting from ectopic expression of hepaCAM, may contribute to the inhibition of proliferation in these cells.
Collapse
Affiliation(s)
- Qiao-Lin Zhang
- Department of Laboratory Diagnosis, Chongqing Medical University, Chongqing 400016, China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Sinha S, Singh RK, Bhattacharya N, Mukherjee N, Ghosh S, Alam N, Roy A, Roychoudhury S, Panda CK. Frequent alterations of LOH11CR2A, PIG8 and CHEK1 genes at chromosomal 11q24.1-24.2 region in breast carcinoma: clinical and prognostic implications. Mol Oncol 2011; 5:454-64. [PMID: 21803008 PMCID: PMC5528301 DOI: 10.1016/j.molonc.2011.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 06/28/2011] [Indexed: 11/24/2022] Open
Abstract
To understand the importance of frequent deletions at chromosome 11q24.1-24.2 region in breast carcinoma, alterations (deletion/methylation) of the candidate genes LOH11CR2A, ROBO3, ROBO4, HEPACAM, PIG8 and CHEK1 located in this region were analyzed in 106 breast carcinoma samples. Among these genes, LOH11CR2A showed highest frequency of deletion (56%), followed by PIG8 (35%), CHEK1 (31%) and ROBO3/ROBO4/HEPACAM loci (28%). Comparable frequency of promoter methylation (26-35%) was observed for LOH11CR2A, CHEK1 and PIG8. Overall alterations (deletion/methylation) of these genes were in the following order: LOH11CR2A (60%) > PIG8 (46%) > CHEK1 (41%) and showed significant association with each other. Breast carcinoma samples that were estrogen/progesterone receptor negative showed significantly high deletion and overall alterations than estrogen/progesterone receptor positive samples for LOH11CR2A, CHEK1 and PIG8. The methylation and overall alteration of LOH11CR2A were significantly associated with tumor stages in breast carcinoma. However, in early/late onset and estrogen/progesterone receptor positive/negative breast carcinoma, the overall alterations of LOH11CR2A, PIG8 and CHEK1 were differentially associated with advanced stages, tumor grade and lymph node metastasis. Alterations of PIG8 and CHEK1 were significantly associated with poor prognosis in patients with early age of onset of the disease indicating significant prognostic importance. Quantitative mRNA expression analysis detected reduced expression of the genes in the order LOH11CR2A > CHEK1 > PIG8. Immunohistochemical analysis showed reduced protein expression of PIG8 and CHEK1 that was concordant with their molecular alterations. Thus, our study suggests that LOH11CR2A, PIG8 and CHEK1 are candidate tumor suppressor genes associated with breast carcinoma and have significant clinical as well as prognostic importance.
Collapse
MESH Headings
- Adult
- Aged
- Apoptosis Regulatory Proteins/genetics
- Apoptosis Regulatory Proteins/metabolism
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Breast Neoplasms, Male/genetics
- Breast Neoplasms, Male/pathology
- Cell Line, Tumor
- Checkpoint Kinase 1
- Chromosome Deletion
- Chromosomes, Human, Pair 11/genetics
- DNA Methylation/genetics
- Female
- Genes, Neoplasm/genetics
- Humans
- Immunohistochemistry
- Kaplan-Meier Estimate
- Male
- Middle Aged
- Mutation/genetics
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Polymorphism, Single Nucleotide/genetics
- Prognosis
- Promoter Regions, Genetic
- Protein Kinases/genetics
- Protein Kinases/metabolism
- Receptors, Estrogen/metabolism
- Receptors, Progesterone/metabolism
- Young Adult
Collapse
Affiliation(s)
- Satyabrata Sinha
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, India
| | - Ratnesh K. Singh
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, India
| | - Nilanjana Bhattacharya
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, India
| | - Nupur Mukherjee
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, India
| | - Susmita Ghosh
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, India
| | - Neyaz Alam
- Department of Surgical Oncology, Chittaranjan National Cancer Institute, Kolkata, India
| | - Anup Roy
- Department of Pathology, Midnapur Medical College and Hospital, Midnapur, India
| | - Susanta Roychoudhury
- Molecular and Human Genetics Division, Indian Institute of Chemical Biology, Kolkata, India
| | - Chinmay Kumar Panda
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, India
| |
Collapse
|
47
|
López-Hernández T, Sirisi S, Capdevila-Nortes X, Montolio M, Fernández-Dueñas V, Scheper GC, van der Knaap MS, Casquero P, Ciruela F, Ferrer I, Nunes V, Estévez R. Molecular mechanisms of MLC1 and GLIALCAM mutations in megalencephalic leukoencephalopathy with subcortical cysts. Hum Mol Genet 2011; 20:3266-77. [DOI: 10.1093/hmg/ddr238] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
48
|
Mutant GlialCAM causes megalencephalic leukoencephalopathy with subcortical cysts, benign familial macrocephaly, and macrocephaly with retardation and autism. Am J Hum Genet 2011; 88:422-32. [PMID: 21419380 DOI: 10.1016/j.ajhg.2011.02.009] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/12/2011] [Accepted: 02/21/2011] [Indexed: 11/23/2022] Open
Abstract
Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a leukodystrophy characterized by early-onset macrocephaly and delayed-onset neurological deterioration. Recessive MLC1 mutations are observed in 75% of patients with MLC. Genetic-linkage studies failed to identify another gene. We recently showed that some patients without MLC1 mutations display the classical phenotype; others improve or become normal but retain macrocephaly. To find another MLC-related gene, we used quantitative proteomic analysis of affinity-purified MLC1 as an alternative approach and found that GlialCAM, an IgG-like cell adhesion molecule that is also called HepaCAM and is encoded by HEPACAM, is a direct MLC1-binding partner. Analysis of 40 MLC patients without MLC1 mutations revealed multiple different HEPACAM mutations. Ten patients with the classical, deteriorating phenotype had two mutations, and 18 patients with the improving phenotype had one mutation. Most parents with a single mutation had macrocephaly, indicating dominant inheritance. In some families with dominant HEPACAM mutations, the clinical picture and magnetic resonance imaging normalized, indicating that HEPACAM mutations can cause benign familial macrocephaly. In other families with dominant HEPACAM mutations, patients had macrocephaly and mental retardation with or without autism. Further experiments demonstrated that GlialCAM and MLC1 both localize in axons and colocalize in junctions between astrocytes. GlialCAM is additionally located in myelin. Mutant GlialCAM disrupts the localization of MLC1-GlialCAM complexes in astrocytic junctions in a manner reflecting the mode of inheritance. In conclusion, GlialCAM is required for proper localization of MLC1. HEPACAM is the second gene found to be mutated in MLC. Dominant HEPACAM mutations can cause either macrocephaly and mental retardation with or without autism or benign familial macrocephaly.
Collapse
|
49
|
Yang S, Wu X, Luo C, Pan C, Pu J. Expression and clinical significance of hepaCAM and VEGF in urothelial carcinoma. World J Urol 2010; 28:473-8. [PMID: 20593288 DOI: 10.1007/s00345-010-0573-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 05/28/2010] [Indexed: 11/28/2022] Open
Abstract
PURPOSE Investigate the expression of hepatocyte cell adhesion molecule (hepaCAM) and vascular endothelial growth factor (VEGF) mRNA in 55 cases of urothelial carcinoma to examine the potential relationship between hepaCAM and VEGF in urothelial carcinoma. METHODS Expression of hepaCAM and VEGF gene was determined by semiquantitative reverse transcriptase polymerase chain reaction (RT-PCR) in 55 paired urothelial carcinoma specimens. T24 cells stably expressing hepaCAM gene were established by Lipofectamine 2000. RT-PCR and western blot analysis were used to detect gene and protein expression of hepaCAM and VEGF before and after transfection. MTT test was used to detect the effect of hepaCAM gene on the cell proliferation. RESULTS RT-PCR showed that hepaCAM expression level was significantly lower, and VEGF was significantly higher in urothelial carcinoma tissues than in adjacent tissues (P < 0.05, P < 0.05). hepaCAM and VEGF were strongly correlated with tumor stage (P < 0.05, P < 0.05). Spearman correlation analysis showed lower hepaCAM level was associated with higher VEGF level (r = -0.277 P = 0.041). Experiments with T24 cells in vitro demonstrated the expression of VEGF mRNA and protein were significantly decreased after transfection of hepaCAM gene (P < 0.05, P < 0.05). Expression of hepaCAM resulted in a significant inhibition of T24 cells proliferation (P < 0.05). CONCLUSION There is a close relationship between hepaCAM and VEGF in urothelial carcinoma. hepaCAM may be defined as a new target for diagnosis and anticancer therapy.
Collapse
Affiliation(s)
- Shuzhe Yang
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | | | | | | | | |
Collapse
|
50
|
Xun C, Luo C, Wu X, Zhang Q, Yan L, Shen S. Expression of hepaCAM and Its Effect on Proliferation of Tumor Cells in Renal Cell Carcinoma. Urology 2010; 75:828-34. [DOI: 10.1016/j.urology.2009.11.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 10/09/2009] [Accepted: 11/11/2009] [Indexed: 01/13/2023]
|