1
|
Hemat Jouy S, Mohan S, Scichilone G, Mostafa A, Mahmoud AM. Adipokines in the Crosstalk between Adipose Tissues and Other Organs: Implications in Cardiometabolic Diseases. Biomedicines 2024; 12:2129. [PMID: 39335642 PMCID: PMC11428859 DOI: 10.3390/biomedicines12092129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Adipose tissue was previously regarded as a dormant organ for lipid storage until the identification of adiponectin and leptin in the early 1990s. This revelation unveiled the dynamic endocrine function of adipose tissue, which has expanded further. Adipose tissue has emerged in recent decades as a multifunctional organ that plays a significant role in energy metabolism and homeostasis. Currently, it is evident that adipose tissue primarily performs its function by secreting a diverse array of signaling molecules known as adipokines. Apart from their pivotal function in energy expenditure and metabolism regulation, these adipokines exert significant influence over a multitude of biological processes, including but not limited to inflammation, thermoregulation, immune response, vascular function, and insulin sensitivity. Adipokines are pivotal in regulating numerous biological processes within adipose tissue and facilitating communication between adipose tissue and various organs, including the brain, gut, pancreas, endothelial cells, liver, muscle, and more. Dysregulated adipokines have been implicated in several metabolic diseases, like obesity and diabetes, as well as cardiovascular diseases. In this article, we attempted to describe the significance of adipokines in developing metabolic and cardiovascular diseases and highlight their role in the crosstalk between adipose tissues and other tissues and organs.
Collapse
Affiliation(s)
- Shaghayegh Hemat Jouy
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Central Tehran Branch, Islamic Azad University, Tehran 14778-93855, Iran;
| | - Sukrutha Mohan
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (S.M.); (G.S.)
| | - Giorgia Scichilone
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (S.M.); (G.S.)
| | - Amro Mostafa
- Department of Pharmacology, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA;
| | - Abeer M. Mahmoud
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (S.M.); (G.S.)
- Department of Kinesiology and Nutrition, College of Applied Health Sciences, University of Illinois Chicago, Chicago, IL 60612, USA
| |
Collapse
|
2
|
Anwar C, Lin JR, Tsai ML, Ho CT, Lai CS. Calebin A attenuated inflammation in RAW264.7 macrophages and adipose tissue to improve hepatic glucose metabolism and hyperglycemia in high-fat diet-fed obese mice. Eur J Pharmacol 2024; 978:176789. [PMID: 38945287 DOI: 10.1016/j.ejphar.2024.176789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
The increased incidence of obesity, which become a global health problem, requires more functional food products with minor side and excellent effects. Calebin A (CbA) is a non-curcuminoid compound, which is reported to be an effective treatment for lipid metabolism and thermogenesis. However, its ability and mechanism of action in improving obesity-associated hyperglycemia remain unclear. This study was designed to explore the effect and mechanism of CbA in hyperglycemia via improvement of inflammation and glucose metabolism in the adipose tissue and liver in high-fat diet (HFD)-fed mice. After 10 weeks fed HFD, obese mice supplemented with CbA (25 and 100 mg/kg) for another 10 weeks showed a remarkable reducing adiposity and blood glucose. CbA modulated M1/M2 macrophage polarization, ameliorated inflammatory cytokines, and restored adiponectin as well as Glut 4 expression in the adipose tissue. In the in vitro study, CbA attenuated pro-inflammatory markers while upregulated anti-inflammatory IL-10 in LPS + IFNγ-generated M1 phenotype macrophages. In the liver, CbA attenuated steatosis, inflammatory infiltration, and protein levels of inflammatory TNF-α and IL-6. Moreover, CbA markedly upregulated Adiponectin receptor 1, AMPK, and insulin downstream Akt signaling to improve glycogen content and increase Glut2 protein. These findings indicated that CbA may be a novel therapeutic approach to treat obesity and hyperglycemia phenotype targeting on adipose inflammation and hepatic insulin signaling.
Collapse
Affiliation(s)
- Choirul Anwar
- Institute of Aquatic Science and Technology, Collage of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Jing-Ru Lin
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Mei-Ling Tsai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, 08901, USA.
| | - Ching-Shu Lai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan.
| |
Collapse
|
3
|
Choubey M, Tirumalasetty MB, Bora NS, Bora PS. Linking Adiponectin and Its Receptors to Age-Related Macular Degeneration (AMD). Biomedicines 2023; 11:3044. [PMID: 38002042 PMCID: PMC10668948 DOI: 10.3390/biomedicines11113044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/26/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
In recent years, there has been a captivating focus of interest in elucidating the intricate crosstalk between adiponectin (APN), a versatile fat-associated adipokine and ocular pathologies. Unveiling the intricate relationship between adipocytokine APN and its receptors (AdipoRs) with aging eye disorders has emerged as a fascinating frontier in medical research. This review article delves into this connection, illuminating the hidden influence of APN on retinal health. This comprehensive review critically examines the latest findings and breakthroughs that underscore the pivotal roles of APN/AdipoRs signaling in maintaining ocular homeostasis and protecting against eye ailments. Here, we meticulously explore the intriguing mechanisms by which APN protein influences retinal function and overall visual acuity. Drawing from an extensive array of cutting-edge studies, the article highlights APN's multifaceted functions, ranging from anti-inflammatory properties and oxidative stress reduction to angiogenic regulation within retinal and macula tissues. The involvement of APN/AdipoRs in mediating these effects opens up novel avenues for potential therapeutic interventions targeting prevalent aging eye conditions. Moreover, this review unravels the interplay between APN signaling pathways and age-related macular degeneration (AMD). The single-cell RNA-seq results validate the expression of both the receptor isoforms (AdipoR1/R2) in retinal cells. The transcriptomic analysis showed lower expression of AdipoR1/2 in dry AMD pathogenesis compared to healthy subjects. The inhibitory adiponectin peptide (APN1) demonstrated over 75% suppression of CNV, whereas the control peptide did not exert any inhibitory effect on choroidal neovascularization (CNV). The elucidation of these relationships fosters a deeper understanding of adipose tissue's profound influence on ocular health, presenting new prospects for personalized treatments and preventative measures. Because APN1 inhibits CNV and leakage, it can be used to treat human AMD, although the possibility to treat human AMD is in the early stage and more clinical research is needed. In conclusion, this review provides a captivating journey into the enthralling world of APN, intertwining the realms of adipose biology and ophthalmology in aging.
Collapse
Affiliation(s)
- Mayank Choubey
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (M.C.); (M.B.T.)
| | - Munichandra B. Tirumalasetty
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (M.C.); (M.B.T.)
| | - Nalini S. Bora
- Department of Ophthalmology, Jones Eye Institute, Pat & Willard Walker Eye Research Center, University of Arkansas for Medical Sciences, 4301 West Markham, Little Rock, AR 72205, USA;
| | - Puran S. Bora
- Department of Ophthalmology, Jones Eye Institute, Pat & Willard Walker Eye Research Center, University of Arkansas for Medical Sciences, 4301 West Markham, Little Rock, AR 72205, USA;
| |
Collapse
|
4
|
Choubey M, Bora P. Emerging Role of Adiponectin/AdipoRs Signaling in Choroidal Neovascularization, Age-Related Macular Degeneration, and Diabetic Retinopathy. Biomolecules 2023; 13:982. [PMID: 37371562 DOI: 10.3390/biom13060982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/15/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Age-related macular degeneration (AMD), a leading cause of irreversible blindness in adults, may result in poor central vision, making it difficult to see, read, and drive. AMD is generally classified in either dry or wet types. Milder cases of dry AMD may progress to geographic atrophy (GA), leading to significant visual disability; wet, or neovascular AMD, which involves choroidal neovascularization (CNV), can lead to complete loss of central vision. Adiponectin (APN) discovery in the mid-1990's and, subsequently, its two cognate receptors (AdipoRs) in the early 2000s have led to a remarkable progress in better understanding metabolic disorders, as well as metabolism-associated ocular pathology. APN/AdipoRs signaling plays a central role in a variety of molecular and cellular physiological events, including glucose and lipid metabolism, whole-body energy regulation, immune and inflammation responses, insulin sensitivity and retinal cell biological functions. This review is an amalgamation of recent information related to APN/AdipoRs in the pathophysiology of retinal diseases and furthers its association with AMD and diabetic retinopathy. Additionally, we present our original research, where we designed control peptide and CNV inhibitory peptide from the globular region of APN to see the effect of these peptides on the mouse model of laser-induced CNV. The inhibitory peptide (APN1) inhibited CNV by more than 75% while the control peptide did not inhibit CNV.
Collapse
Affiliation(s)
- Mayank Choubey
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, NY 11501, USA
| | - Puran Bora
- Pat & Willard Walker Eye Research Center, Department of Ophthalmology, Jones Eye Institute, University of Arkansas for Medical Sciences, 4301 West Markham, Little Rock, AR 72205, USA
| |
Collapse
|
5
|
Lei S, Chen J, Song C, Li J, Zuo A, Xu D, Li T, Guo Y. CTRP9 alleviates foam cells apoptosis by enhancing cholesterol efflux. Mol Cell Endocrinol 2021; 522:111138. [PMID: 33352225 DOI: 10.1016/j.mce.2020.111138] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 12/27/2022]
Abstract
The apoptosis of foam cells leads to instability of atherosclerotic plaques. This study was designed to explore the protective role of CTRP9 in foam cell apoptosis. In our experiment, CTRP9 alleviated foam cell apoptosis. Meanwhile, CTRP9 upregulated the expression of proteins important for cholesterol efflux, such as LXRα, CYP27A1, ABCG1 and ABCA1, and improved cholesterol efflux in foam cells. Moreover, CTRP9 inhibited Wnt3a and β-catenin expression and β-catenin nuclear translocation in foam cells. In addition, adenovirus overexpression of Wnt3a abolished the effect of CTRP9 on macrophage apoptosis. Mechanistically, the AMPK inhibitor abolished the effect of CTRP9 on foam cell apoptosis, and downregulation of AdipoR1 by siRNA abrogated the activation of AMPK and the effect of CTRP9 on foam cell apoptosis. We concluded that CTRP9 achieved these protective effects on foam cells through the AdipoR1/AMPK pathway.
Collapse
Affiliation(s)
- Shengyun Lei
- Department of General Medicine, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, 250012, Jinan, Shandong, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, 250012, Jinan, China
| | - Jiying Chen
- Department of General Medicine, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, 250012, Jinan, Shandong, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, 250012, Jinan, China
| | - Chengxiang Song
- Department of Cardiology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, 250012, Jinan, Shandong, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, 250012, Jinan, China
| | - Jun Li
- Department of General Medicine, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, 250012, Jinan, Shandong, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, 250012, Jinan, China
| | - Anju Zuo
- Department of General Medicine, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, 250012, Jinan, Shandong, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, 250012, Jinan, China
| | - Dan Xu
- Department of General Medicine, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, 250012, Jinan, Shandong, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, 250012, Jinan, China
| | - Tingting Li
- Department of General Medicine, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, 250012, Jinan, Shandong, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, 250012, Jinan, China.
| | - Yuan Guo
- Department of General Medicine, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, 250012, Jinan, Shandong, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, 250012, Jinan, China.
| |
Collapse
|
6
|
Adiponectin/AdipoRs signaling as a key player in testicular aging and associated metabolic disorders. VITAMINS AND HORMONES 2021; 115:611-634. [PMID: 33706964 DOI: 10.1016/bs.vh.2020.12.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Aging undergoes serious worsening of peripheral organs and vital physiological processes including reproductive performances. Altered white adipose tissue and adipocyte functioning during aging results in ectopic lipid storage/obesity or metabolic derangements, leading to insulin resistance state. Eventually, accelerating cellular senescence thereby enhancing the high risk of age-associated metabolic alterations. Such alterations may cause derangement of numerous physiologically active obesity hormones, known as "adipokines." Specifically, adiponectin exhibits insulin sensitizing action causing anti-aging and anti-obesity effects via activation of adiponectin receptors (AdipoRs). The male reproductive physiology from reproductive mature stage to advanced senescent stage undergoes insidious detrimental changes. The mechanisms by which testicular functions decline with aging remain largely speculative. Adiponectin has also recently been shown to regulate metabolism and longevity signaling thus prolonging lifespan. Therefore, the strategy for activating adiponectin/AdipoRs signaling pathways are expected to provide a solid basis for the prevention and treatment of aging and obesity-associated reproductive dysfunctions, as well as for ensuring healthy reproductive longevity in humans.
Collapse
|
7
|
Zhang P, Huang C, Li J, Li T, Guo H, Liu T, Li N, Zhu Q, Guo Y. Globular CTRP9 inhibits oxLDL-induced inflammatory response in RAW 264.7 macrophages via AMPK activation. Mol Cell Biochem 2016; 417:67-74. [PMID: 27188183 DOI: 10.1007/s11010-016-2714-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/27/2016] [Indexed: 12/18/2022]
Abstract
C1q-TNF-related protein-9 (CTRP9) is increasingly recognized as a promising cardioprotective adipocytokine, which regulates biological processes like vascular relaxation, proliferation, apoptosis, and inflammation. We recently showed that CTRP9 enhanced carotid plaque stability by reducing pro-inflammatory cytokines in macrophages. However, the underlying molecular mechanism of CTRP9 on anti-inflammatory response in macrophages still remains unclear. We demonstrated that globular CTRP9 (gCTRP9) significantly reduced oxidized low-density lipoprotein (oxLDL)-induced tumor necrosis factor alpha and monocyte chemoattractant protein 1 expression by suppressing nuclear factor-κB phosphorylation and nuclear translocation in RAW 264.7 macrophages. Treatment with gCTRP9 strikingly increased the level of phosphorylated adenosine monophosphate-activated protein kinase (AMPK). AMPK inhibitor abolished the anti-inflammatory effects of gCTRP9. Moreover, gCTRP9 increased the expression of adiponectin receptor 1 (AdipoR1). Downregulation of AdipoR1 by siRNA could abrogate the activation of AMPK and the anti-inflammatory effects of gCTRP9. These results suggested that gCTRP9 protected RAW 264.7 macrophages from oxLDL via AMPK activation in an AdipoR1 dependent fashion.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Cardiology, Qilu Hospital of Shandong University, 107 Wen Hua Xi Road, Jinan, 250012, Shandong Province, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Chengmin Huang
- Department of Cardiology, Qilu Hospital of Shandong University, 107 Wen Hua Xi Road, Jinan, 250012, Shandong Province, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Jun Li
- Department of Cardiology, Qilu Hospital of Shandong University, 107 Wen Hua Xi Road, Jinan, 250012, Shandong Province, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Tingting Li
- Department of Cardiology, Qilu Hospital of Shandong University, 107 Wen Hua Xi Road, Jinan, 250012, Shandong Province, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Haipeng Guo
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China.,Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Tianjiao Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Na Li
- Department of Cardiology, Qilu Hospital of Shandong University, 107 Wen Hua Xi Road, Jinan, 250012, Shandong Province, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Qing Zhu
- Department of Cardiology, Qilu Hospital of Shandong University, 107 Wen Hua Xi Road, Jinan, 250012, Shandong Province, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Yuan Guo
- Department of Cardiology, Qilu Hospital of Shandong University, 107 Wen Hua Xi Road, Jinan, 250012, Shandong Province, China. .,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
8
|
Ma Y, Liu D. Hydrodynamic delivery of adiponectin and adiponectin receptor 2 gene blocks high-fat diet-induced obesity and insulin resistance. Gene Ther 2013; 20:846-52. [PMID: 23425917 PMCID: PMC3740076 DOI: 10.1038/gt.2013.8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 01/21/2013] [Accepted: 01/24/2013] [Indexed: 01/14/2023]
Abstract
Adiponectin and its receptors are inversely related to the degree of obesity and have been identified as potential therapeutic targets for the treatment of obesity. In this study, we evaluated the effect of hydrodynamic delivery of adiponectin and/or its receptor 2 (adipoR2) genes on controlling the development of obesity and insulin resistance in AKR/J mice fed a high-fat diet. An increase in adiponectin and adipoR2 gene expression by hydrodynamic gene delivery prevented diet-induced weight gain, reduced fat accumulation in liver and adipose tissue, and improved insulin sensitivity. Beneficial effects were seen with reduced gluconeogenesis in the liver and lipogenesis in the liver, white adipose tissue and skeletal muscle. Real-time PCR analysis demonstrated overexpression of adiponectin and adipoR2 significantly suppressed transcription of phosphoenolpyruvate carboxykinase (pepck), glucose-6-phosphatase (g6pase), stearoyl CoA desaturase 1 (scd-1), and fatty acid synthase (fas) gene. Inhibition effects were mediated by activating the AMP-activated protein kinase (AMPK). These results prove that elevation of adiponectin and/or adipoR2 expression via gene transfer is an effective approach in managing obesity epidemics.
Collapse
Affiliation(s)
- Y Ma
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
9
|
Fonseca VU, Papa PC, Campos DB. Potencial envolvimento da adiponectina e seus receptores na modulação da esteroidogênese em corpo lúteo de cadelas ao longo do diestro. PESQUISA VETERINARIA BRASILEIRA 2012. [DOI: 10.1590/s0100-736x2012001000020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
No ciclo estral de cadelas a fase luteínica, denominada diestro, compreende um período que varia de 60 a 100 dias em animais não-prenhes, caracterizado pela elevação plasmática de progesterona nos primeiros 20 dias pós ovulação (p.o). A adiponectina é a mais abundante proteína secretada pelo tecido adiposo, porém sua concentração plasmática diminui significativamente em alterações metabólicas como resistência insulínica e Diabetes mellitus tipo2, alterações descritas como relacionadas em algumas cadelas com o período de diestro. O objetivo do estudo foi determinar a expressão e imunolocalização do sistema adiponectina (adiponectina e seus receptores, adipoR1 e adipoR2) no corpo lúteo de cadelas ao longo do diestro, correlacionando-o ao perfil hormonal de 17β-estradiol e progesterona, assim como à expressão de um dos genes alvo do sistema, o PPAR-γ. Para realização do estudo foram coletados corpos lúteos de 28 cadelas durante ovariosalpingohisterectomia de eleição nos dias 10, 20, 30, 40, 50, 60 e 70 pós ovulação (o dia zero da ovulação foi considerado aquele no qual a concentração plasmática de progesterona atingiu 5ng/mL). Os corpos lúteos foram avaliados por imunohistoquímica para adiponectina e seus receptores e a expressão do RNAm do PPAR-γ por PCR em tempo real. A análise estatística da avaliação gênica foi realizada com o teste ANOVA, seguido por comparação múltipla Newman-Keuls. O sinal da adiponectina apresentou-se mais intenso até os primeiros 20 dias p.o, momento de regência da progesterona; houve queda gradativa após este período, coincidindo com a ascensão do 17β-estradiol, cujo pico foi notado próximo do dia 40 p.o. A queda marcante da adiponectina ocorreu após 50 dias p.o. O sinal do adipoR1 mostrou-se bem evidente até os 40 dias p.o e o do adipoR2 até os 50 dias p. o, decaindo posteriormente. Foi observada maior expressão do gene PPAR-γ aos 10, 30 e 70 dias p.o. Estes resultados mostram que a expressão protéica da adiponectina e de seus receptores se altera ao longo do diestro e que estas alterações podem estar relacionados às alterações hormonais e expressão do PPAR- γ, participando do mecanismo fisiológico de desenvolvimento, manutenção, atividade e regressão luteínica em cadelas.
Collapse
|
10
|
Inflammation, a link between obesity and cardiovascular disease. Mediators Inflamm 2010; 2010:535918. [PMID: 20847813 PMCID: PMC2929614 DOI: 10.1155/2010/535918] [Citation(s) in RCA: 257] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 03/10/2010] [Accepted: 06/17/2010] [Indexed: 02/08/2023] Open
Abstract
Obesity, the most common nutritional disorder in industrialized countries, is associated with an increased mortality and morbidity of cardiovascular disease (CVD). Obesity is primarily considered to be a disorder of energy balance, and it has recently been suggested that some forms of obesity are associated with chronic low-grade inflammation. The present paper focuses on the current status of our knowledge regarding chronic inflammation, a link between obesity and CVDs, including heart diseases, vascular disease and atherosclerosis. The paper discusses the methods of body fat evaluation in humans, the endocrinology and distribution of adipose tissue in the genders, the pathophysiology of obesity, the relationship among obesity, inflammation, and CVD, and the adipose tissue-derived cytokines known to affect inflammation. Due to space limitations, this paper focuses on C-reactive protein, serum amyloid A, leptin, adiponectin, resistin, visfatin, chemerin, omentin, vaspin, apelin, and retinol binding protein 4 as adipokines.
Collapse
|
11
|
Rahman SM, Qadri I, Janssen RC, Friedman JE. Fenofibrate and PBA prevent fatty acid-induced loss of adiponectin receptor and pAMPK in human hepatoma cells and in hepatitis C virus-induced steatosis. J Lipid Res 2009; 50:2193-2202. [PMID: 19502591 PMCID: PMC2759825 DOI: 10.1194/jlr.m800633-jlr200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 04/29/2009] [Indexed: 12/24/2022] Open
Abstract
Adiponectin receptors play a key role in steatosis and inflammation; however, very little is known about regulation of adiponectin receptors in liver. Here, we examined the effects of palmitate loading, endoplasmic reticulum (ER) stress, and the hypolipidemic agent fenofibrate on adiponectin receptor R2 (AdipoR2) levels and AMP-activated protein kinase (AMPK) in human hepatoma Huh7 cells and in Huh.8 cells, a model of hepatitis C-induced steatosis. Palmitate treatment reduced AdipoR2 protein and basal AMPK phosphorylation in Huh7 cells. Fenofibrate treatment preserved AdipoR2 and phosphorylated AMPK (pAMPK) levels in palmitate-treated cells accompanied by reduced triglyceride (TG) accumulation and less activation of ER stress markers CCAAT/enhancer binding (C/EBPbeta) and eukaryotic translation initiation factor 2 alpha. ER stress agents thapsigargin and tunicamycin suppressed AdipoR2 and pAMPK levels in Huh7 cells, while fenofibrate and the chemical chaperone 4-phenylbutyrate (PBA) prevented these changes. AdipoR2 levels were lower in Huh.8 cells and fenofibrate treatment increased AdipoR2 while reducing activation of c-Jun N-terminal kinase and C/EBPbeta expression without changing TG levels. Taken together, these results suggest that fatty acids and ER stress reduce AdipoR2 protein and pAMPK levels, while fenofibrate and PBA might be important therapeutic agents to correct lipid- and ER stress-mediated loss of AdipoR2 and pAMPK associated with nonalcoholic steatohepatitis.
Collapse
|
12
|
Mohler ML, He Y, Wu Z, Hwang DJ, Miller DD. Recent and emerging anti-diabetes targets. Med Res Rev 2009; 29:125-95. [DOI: 10.1002/med.20142] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
13
|
Yamaguchi N, Kukita T, Li YJ, Kamio N, Fukumoto S, Nonaka K, Ninomiya Y, Hanazawa S, Yamashita Y. Adiponectin inhibits induction of TNF-alpha/RANKL-stimulated NFATc1 via the AMPK signaling. FEBS Lett 2008; 582:451-6. [PMID: 18201570 DOI: 10.1016/j.febslet.2007.12.037] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 12/19/2007] [Accepted: 12/22/2007] [Indexed: 12/13/2022]
Abstract
We investigated here whether adiponectin can exhibit an inhibitory effect on tumor necrosis factor-alpha (TNF-alpha)- and receptor activator of nuclear factor-kappaB ligand (RANKL)-induced osteoclastogenesis by using RAW264 cell D clone with a high efficiency to form osteoclasts. Globular adiponectin (gAd) strongly inhibited TNF-alpha/RANKL-induced differentiation of osteoclasts by interfering with TNF receptor-associated factor 6 production and calcium signaling; consequently, the induction of nuclear factor of activated T cells c1 (NFATc1) was strongly inhibited. Moreover, we observed that inhibition of AMP-activated protein kinase abrogated gAd inhibition for TNF-alpha/RANKL-induced NFATc1 expression. Our data suggest that adiponectin acts as a potent regulator of bone resorption observed in diseases associated with cytokine activation.
Collapse
Affiliation(s)
- Noboru Yamaguchi
- Section of Pediatric Dentistry, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|