1
|
Leber B, Stimmeder S, Briendl K, Weber J, Rohrhofer L, Aigelsreiter A, Niedrist T, Sucher R, Stiegler P. Equal performance of HTK-based and UW-based perfusion solutions in sub-normothermic liver machine perfusion. Sci Rep 2025; 15:7601. [PMID: 40038333 PMCID: PMC11880568 DOI: 10.1038/s41598-025-90799-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 02/17/2025] [Indexed: 03/06/2025] Open
Abstract
Machine perfusion (MP) is gaining importance in liver transplantation, the only cure for many end-stage liver diseases. Varieties of different MP protocols are available. Currently, various MP protocols are available, differing not only in perfusion temperature but also in the specific perfusion solution required. We aimed to investigate the performance of an HTK-based perfusate during sub-normothermic MP (SNMP) of discarded human liver grafts compared to that of a UW-based solution. Twenty discarded livers (rejected for transplantation by all centers) were subjected to ex-vivo SNMP at 21°C with either HTK- or UW-based solution for 12 h. Perfusate and tissue samples collected before the start, after 6 h, and at the end of SNMP were analyzed for liver enzymes, along with mRNA expression of perfusate and tissue markers associated with organ damage. Hepatocellular viability was assessed by measuring bile production, monitoring pH stability, and analyzing histological changes in HE stained tissue sections. After propensity score matching 16 livers were analyzed. Overall, no differences between HTK- and UW-based solution were detected, except for an increased MLKL mRNA expression and impaired pH stability during SNMP with HTK-based perfusate. No other investigated parameters of cell injury, inflammation or hepatocellular viability supported this finding. Bile production was higher in the 6 HTK-perfused livers compared to the three UW-perfused livers that produced bile. Overall, these findings suggest that HTK performs comparably to a UW-based solution during 12 h of liver SNMP.
Collapse
Affiliation(s)
- Bettina Leber
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria.
| | - Sabrina Stimmeder
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Kathrin Briendl
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Jennifer Weber
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Lisa Rohrhofer
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Ariane Aigelsreiter
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Tobias Niedrist
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Robert Sucher
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Philipp Stiegler
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| |
Collapse
|
2
|
Wen L, Liu Z, Zhou L, Liu Z, Li Q, Geng B, Xia Y. Bone and Extracellular Signal-Related Kinase 5 (ERK5). Biomolecules 2024; 14:556. [PMID: 38785963 PMCID: PMC11117709 DOI: 10.3390/biom14050556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/17/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Bones are vital for anchoring muscles, tendons, and ligaments, serving as a fundamental element of the human skeletal structure. However, our understanding of bone development mechanisms and the maintenance of bone homeostasis is still limited. Extracellular signal-related kinase 5 (ERK5), a recently identified member of the mitogen-activated protein kinase (MAPK) family, plays a critical role in the pathogenesis and progression of various diseases, especially neoplasms. Recent studies have highlighted ERK5's significant role in both bone development and bone-associated pathologies. This review offers a detailed examination of the latest research on ERK5 in different tissues and diseases, with a particular focus on its implications for bone health. It also examines therapeutic strategies and future research avenues targeting ERK5.
Collapse
Affiliation(s)
- Lei Wen
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- Department of Orthopedics and Trauma Surgery, Affiliated Hospital of Yunnan University, Kunming 650032, China
| | - Zirui Liu
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| | - Libo Zhou
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| | - Zhongcheng Liu
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| | - Qingda Li
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| | - Bin Geng
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| | - Yayi Xia
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| |
Collapse
|
3
|
Skorup I, Valentino G, Aleandri S, Gelli R, Ganguin AA, Felli E, Selicean SE, Marxer RA, Teworte S, Lucić A, Gracia-Sancho J, Berzigotti A, Ridi F, Luciani P. Polyenylphosphatidylcholine as bioactive excipient in tablets for the treatment of liver fibrosis. Int J Pharm 2023; 646:123473. [PMID: 37788730 DOI: 10.1016/j.ijpharm.2023.123473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/24/2023] [Accepted: 09/30/2023] [Indexed: 10/05/2023]
Abstract
Liver fibrosis is a condition characterized by the accumulation of extracellular matrix (ECM) arising from the myofibroblastic transdifferentiation of hepatic stellate cells (HSCs) occurring as the natural response to liver damage. To date, no pharmacological treatments have been specifically approved for liver fibrosis. We recently reported a beneficial effect of polyenylphosphatidylcholines (PPCs)-rich formulations in reverting fibrogenic features of HSCs. However, unsaturated phospholipids' properties pose a constant challenge to the development of tablets as preferred patient-centric dosage form. Profiting from the advantageous physical properties of the PPCs-rich Soluthin® S 80 M, we developed a tablet formulation incorporating 70% w/w of this bioactive lipid. Tablets were characterized via X-ray powder diffraction, thermogravimetry, and Raman confocal imaging, and passed the major compendial requirements. To mimic physiological absorption after oral intake, phospholipids extracted from tablets were reconstituted as protein-free chylomicron (PFC)-like emulsions and tested on the fibrogenic human HSC line LX-2 and on primary cirrhotic rat hepatic stellate cells (PRHSC). Lipids extracted from tablets and reconstituted in buffer or as PFC-like emulsions exerted the same antifibrotic effect on both activated LX-2 and PRHSCs as observed with plain S 80 M liposomes, showing that the manufacturing process did not interfere with the bioactivity of PPCs.
Collapse
Affiliation(s)
- Ivo Skorup
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Gina Valentino
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Simone Aleandri
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Rita Gelli
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Aymar Abel Ganguin
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Eric Felli
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, Hepatology, University of Bern, Bern, Switzerland
| | - Sonia Emilia Selicean
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, Hepatology, University of Bern, Bern, Switzerland
| | - Rosanne Angela Marxer
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Sarah Teworte
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Ana Lucić
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Jordi Gracia-Sancho
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, Hepatology, University of Bern, Bern, Switzerland; Liver Vascular Biology Research Group, CIBEREHD, IDIBAPS Research Institute, Barcelona, Spain
| | - Annalisa Berzigotti
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, Hepatology, University of Bern, Bern, Switzerland
| | - Francesca Ridi
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Paola Luciani
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
| |
Collapse
|
4
|
Le NT. The significance of ERK5 catalytic-independent functions in disease pathways. Front Cell Dev Biol 2023; 11:1235217. [PMID: 37601096 PMCID: PMC10436230 DOI: 10.3389/fcell.2023.1235217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/26/2023] [Indexed: 08/22/2023] Open
Abstract
Extracellular signal-regulated kinase 5 (ERK5), also known as BMK1 or MAPK7, represents a recent addition to the classical mitogen-activated protein kinase (MAPK) family. This family includes well-known members such as ERK1/2, c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK), as well as atypical MAPKs such as ERK3, ERK4, ERK7 (ERK8), and Nemo-like kinase (NLK). Comprehensive reviews available elsewhere provide detailed insights into ERK5, which interested readers can refer to for in-depth knowledge (Nithianandarajah-Jones et al., 2012; Monti et al., Cancers (Basel), 2022, 14). The primary aim of this review is to emphasize the essential characteristics of ERK5 and shed light on the intricate nature of its activation, with particular attention to the catalytic-independent functions in disease pathways.
Collapse
Affiliation(s)
- Nhat-Tu Le
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
5
|
Tajbakhsh A, Gheibihayat SM, Askari H, Savardashtaki A, Pirro M, Johnston TP, Sahebkar A. Statin-regulated phagocytosis and efferocytosis in physiological and pathological conditions. Pharmacol Ther 2022; 238:108282. [DOI: 10.1016/j.pharmthera.2022.108282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022]
|
6
|
Gentilini A, Lori G, Caligiuri A, Raggi C, Di Maira G, Pastore M, Piombanti B, Lottini T, Arcangeli A, Madiai S, Navari N, Banales JM, Di Matteo S, Alvaro D, Duwe L, Andersen JB, Tubita A, Tusa I, Di Tommaso L, Campani C, Rovida E, Marra F. Extracellular Signal-Regulated Kinase 5 Regulates the Malignant Phenotype of Cholangiocarcinoma Cells. Hepatology 2021; 74:2007-2020. [PMID: 33959996 PMCID: PMC8518067 DOI: 10.1002/hep.31888] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 04/21/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Cholangiocarcinoma (CCA) is characterized by high resistance to chemotherapy and poor prognosis. Several oncogenic pathways converge on activation of extracellular signal-regulated kinase 5 (ERK5), whose role in CCA has not been explored. The aim of this study was to investigate the role of ERK5 in the biology of CCA. APPROACH AND RESULTS ERK5 expression was detected in two established (HuCCT-1 and CCLP-1) and two primary human intrahepatic CCA cell lines (iCCA58 and iCCA60). ERK5 phosphorylation was increased in CCA cells exposed to soluble mediators. In both HuCCT-1 and CCLP-1 cells, ERK5 was localized in the nucleus, and exposure to fetal bovine serum (FBS) further increased the amount of nuclear ERK5. In human CCA specimens, ERK5 mRNA expression was increased in tumor cells and positively correlated with portal invasion. ERK5 protein levels were significantly associated with tumor grade. Growth, migration, and invasion of CCA cells were decreased when ERK5 was silenced using specific short hairpin RNA (shRNA). The inhibitory effects on CCA cell proliferation, migration and invasion were recapitulated by treatment with small molecule inhibitors targeting ERK5. In addition, expression of the angiogenic factors VEGF and angiopoietin 1 was reduced after ERK5 silencing. Conditioned medium from ERK5-silenced cells had a lower ability to induce tube formation by human umbilical vein endothelial cells and to induce migration of myofibroblasts and monocytes/macrophages. In mice, subcutaneous injection of CCLP-1 cells silenced for ERK5 resulted in less frequent tumor development and smaller size of xenografts compared with cells transfected with nontargeting shRNA. CONCLUSIONS ERK5 is a key mediator of growth and migration of CCA cells and supports a protumorigenic crosstalk between the tumor and the microenvironment.
Collapse
Affiliation(s)
- Alessandra Gentilini
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Giulia Lori
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Alessandra Caligiuri
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Chiara Raggi
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Giovanni Di Maira
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Mirella Pastore
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Benedetta Piombanti
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Tiziano Lottini
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Annarosa Arcangeli
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Stefania Madiai
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Nadia Navari
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Jesus M. Banales
- Department of Liver and Gastrointestinal DiseasesBiodonostia Health Research InstituteCIBERehdIkerbasqueSan SebastianSpain
| | - Sabina Di Matteo
- Department of ImmunologyBambino Gesù Children’s HospitalIRCCSRomeItaly
| | - Domenico Alvaro
- Department of Internal Medicine and Medical SpecialtiesSapienza University of RomeRomeItaly
| | - Lea Duwe
- Biotech Research and Innovation Centre (BRIC)Dept. of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Jesper B. Andersen
- Biotech Research and Innovation Centre (BRIC)Dept. of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Alessandro Tubita
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”University of FlorenceItaly
| | - Ignazia Tusa
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”University of FlorenceItaly
| | - Luca Di Tommaso
- Pathology UnitHumanitas Clinical and Research Center IRCCSRozzanoItaly
| | - Claudia Campani
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Elisabetta Rovida
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”University of FlorenceItaly
| | - Fabio Marra
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| |
Collapse
|
7
|
Kim S, Lim JH, Woo CH. Therapeutic potential of targeting kinase inhibition in patients with idiopathic pulmonary fibrosis. Yeungnam Univ J Med 2020; 37:269-276. [PMID: 32693446 PMCID: PMC7606966 DOI: 10.12701/yujm.2020.00458] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022] Open
Abstract
Fibrosis is characterized by excessive accumulation of extracellular matrix components. The fibrotic process ultimately leads to organ dysfunction and failure in chronic inflammatory and metabolic diseases such as pulmonary fibrosis, advanced kidney disease, and liver cirrhosis. Idiopathic pulmonary fibrosis (IPF) is a common form of progressive and chronic interstitial lung disease of unknown etiology. Pathophysiologically, the parenchyma of the lung alveoli, interstitium, and capillary endothelium becomes scarred and stiff, which makes breathing difficult because the lungs have to work harder to transfer oxygen and carbon dioxide between the alveolar space and bloodstream. The transforming growth factor beta (TGF-β) signaling pathway plays an important role in the pathogenesis of pulmonary fibrosis and scarring of the lung tissue. Recent clinical trials focused on the development of pharmacological agents that either directly or indirectly target kinases for the treatment of IPF. Therefore, to develop therapeutic targets for pulmonary fibrosis, it is essential to understand the key factors involved in the pathogenesis of pulmonary fibrosis and the underlying signaling pathway. The objective of this review is to discuss the role of kinase signaling cascades in the regulation of either TGF-β-dependent or other signaling pathways, including Rho-associated coiled-coil kinase, c-jun N-terminal kinase, extracellular signal-regulated kinase 5, and p90 ribosomal S6 kinase pathways, and potential therapeutic targets in IPF.
Collapse
Affiliation(s)
- Suji Kim
- Smart-Ageing Convergence Research Center, Yeungnam University College of Medicine, Daegu, Korea.,Department of Pharmacology, Yeungnam University College of Medicine, Daegu, Korea
| | - Jae Hyang Lim
- Department of Microbiology, Ewha Womans University College of Medicine, Seoul, Korea
| | - Chang-Hoon Woo
- Smart-Ageing Convergence Research Center, Yeungnam University College of Medicine, Daegu, Korea.,Department of Pharmacology, Yeungnam University College of Medicine, Daegu, Korea
| |
Collapse
|
8
|
Efficient Suppression of NRAS-Driven Melanoma by Co-Inhibition of ERK1/2 and ERK5 MAPK Pathways. J Invest Dermatol 2020; 140:2455-2465.e10. [PMID: 32376279 DOI: 10.1016/j.jid.2020.03.972] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/24/2020] [Accepted: 03/18/2020] [Indexed: 12/19/2022]
Abstract
Cutaneous melanoma is a highly malignant tumor typically driven by somatic mutation in the oncogenes BRAF or NRAS, leading to uncontrolled activation of the MEK/ERK MAPK pathway. Despite the availability of immunotherapy, MAPK pathway‒targeting regimens are still a valuable treatment option for BRAF-mutant melanoma. Unfortunately, patients with NRAS mutation do not benefit from such therapies owing to the lack of targetable BRAF mutations and a high degree of intrinsic and acquired resistance toward MEK inhibition. Here, we demonstrate that concomitant inhibition of ERK5 removes this constraint and effectively sensitizes NRAS-mutant melanoma cells for MAPK pathway‒targeting therapy. Using approved MEK inhibitors or a pharmacologic ERK inhibitor, we demonstrate that MAPK inhibition triggers a delayed activation of ERK5 through a PDGFR inhibitor-sensitive pathway in NRAS-mutant melanoma cells, resulting in sustained proliferation and survival. ERK5 phosphorylation also occurred naturally in NRAS-mutant melanoma cells and correlated with nuclear localization of its stem cell-associated effector KLF2. Importantly, MEK/ERK5 co-inhibition prevented long-term growth of human NRAS-mutant melanoma cells in vitro and effectively repressed tumor progression in a xenotransplant mouse model. Our findings suggest MEK/ERK5 cotargeting as a potential treatment option for NRAS-mutant melanoma, which currently is not amenable for targeted therapies.
Collapse
|
9
|
Erazo T, Espinosa-Gil S, Diéguez-Martínez N, Gómez N, Lizcano JM. SUMOylation Is Required for ERK5 Nuclear Translocation and ERK5-Mediated Cancer Cell Proliferation. Int J Mol Sci 2020; 21:ijms21062203. [PMID: 32209980 PMCID: PMC7139592 DOI: 10.3390/ijms21062203] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/16/2020] [Accepted: 03/21/2020] [Indexed: 01/09/2023] Open
Abstract
The MAP kinase ERK5 contains an N-terminal kinase domain and a unique C-terminal tail including a nuclear localization signal and a transcriptional activation domain. ERK5 is activated in response to growth factors and stresses and regulates transcription at the nucleus by either phosphorylation or interaction with transcription factors. MEK5-ERK5 pathway plays an important role regulating cancer cell proliferation and survival. Therefore, it is important to define the precise molecular mechanisms implicated in ERK5 nucleo-cytoplasmic shuttling. We previously described that the molecular chaperone Hsp90 stabilizes and anchors ERK5 at the cytosol and that ERK5 nuclear shuttling requires Hsp90 dissociation. Here, we show that MEK5 or overexpression of Cdc37—mechanisms that increase nuclear ERK5—induced ERK5 Small Ubiquitin-related Modifier (SUMO)-2 modification at residues Lys6/Lys22 in cancer cells. Furthermore, mutation of these SUMO sites abolished the ability of ERK5 to translocate to the nucleus and to promote prostatic cancer PC-3 cell proliferation. We also show that overexpression of the SUMO protease SENP2 completely abolished endogenous ERK5 nuclear localization in response to epidermal growth factor (EGF) stimulation. These results allow us to propose a more precise mechanism: in response to MEK5 activation, ERK5 SUMOylation favors the dissociation of Hsp90 from the complex, allowing ERK5 nuclear shuttling and activation of the transcription.
Collapse
|
10
|
Raggi C, Fiaccadori K, Pastore M, Correnti M, Piombanti B, Forti E, Navari N, Abbadessa G, Hall T, Destro A, Di Tommaso L, Roncalli M, Meng F, Glaser S, Rovida E, Peraldo-Neia C, Olaizola P, Banales JM, Gerussi A, Elvevi A, Droz Dit Busset M, Bhoori S, Mazzaferro V, Alpini G, Marra F, Invernizzi P. Antitumor Activity of a Novel Fibroblast Growth Factor Receptor Inhibitor for Intrahepatic Cholangiocarcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:2090-2101. [PMID: 31351075 DOI: 10.1016/j.ajpath.2019.06.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 06/05/2019] [Accepted: 06/18/2019] [Indexed: 12/31/2022]
Abstract
Fibroblast growth factor receptor 2 (FGFR2) might have an important role in the pathogenesis and biology of cholangiocarcinoma (CCA). We examined FGFR expression in CCA tumor specimens obtained from patients and CCA cell lines, and then determined the effects of the novel FGFR inhibitor, derazantinib (DZB; formally, ARQ 087), which is currently in clinical phase 2 trials for intrahepatic CCA. DZB inhibited the growth of CCA cell lines in a dose-dependent manner, and extracellular signal-regulated kinase 1/2 and AKT. It also activated apoptotic and cell growth arrest signaling. DZB reduced the in vitro invasiveness and the expression of key epithelial-mesenchymal transition genes. The in vitro data correlated with the expression of FGFRs in human CCA specimens by immunohistochemistry (FGFR1, 30% positive; and FGFR2, 65% positive) and the CCA cell lines assayed by Western blot analysis. These correlated in vitro studies suggest that FGFR may play an important role in the pathogenesis and biology of CCA. Our findings support the notion that FGFR inhibitors, like DZB, should be further evaluated at the clinical stage as targeted therapy for CCA treatment.
Collapse
Affiliation(s)
- Chiara Raggi
- Humanitas Clinical and Research Center, Rozzano, Italy; Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
| | | | - Mirella Pastore
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Benedetta Piombanti
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Elisa Forti
- Humanitas Clinical and Research Center, Rozzano, Italy
| | - Nadia Navari
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giovanni Abbadessa
- Clinical Development Department, ArQule, Inc., Burlington, Massachusetts
| | - Terence Hall
- Clinical Development Department, ArQule, Inc., Burlington, Massachusetts
| | | | - Luca Di Tommaso
- Pathology Unit, Humanitas Research Hospital, Rozzano, Italy; University of Milan Medical School, Milan, Italy
| | - Massimo Roncalli
- Pathology Unit, Humanitas Research Hospital, Rozzano, Italy; University of Milan Medical School, Milan, Italy
| | - Fanyin Meng
- Department of Research, Central Texas Veterans Health Care System, Baylor Scott & White Digestive Disease Research Center, Scott & White Health, Department of Medical Physiology, Texas A&M University, College of Medicine, Temple, Texas
| | - Shannon Glaser
- Department of Research, Central Texas Veterans Health Care System, Baylor Scott & White Digestive Disease Research Center, Scott & White Health, Department of Medical Physiology, Texas A&M University, College of Medicine, Temple, Texas
| | - Elisabetta Rovida
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | | | - Paula Olaizola
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (Universidad del País Vasco/Euskal Herriko Unibertsitatea), Networked Biomedical Research Center for Hepatic and Digestive Diseases, Ikerbasque, San Sebastián, Spain
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (Universidad del País Vasco/Euskal Herriko Unibertsitatea), Networked Biomedical Research Center for Hepatic and Digestive Diseases, Ikerbasque, San Sebastián, Spain
| | - Alessio Gerussi
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, San Gerardo Hospital, Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Alessandra Elvevi
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, San Gerardo Hospital, Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Michele Droz Dit Busset
- Hepato-Pancreato-Biliary Surgery and Liver Transplantation, IRCCS Foundation National Cancer Institute, Milan, Italy
| | - Sherrie Bhoori
- Gastroenterology and Liver Transplant Hepatology, IRCCS Foundation National Cancer Institute, Milan, Italy
| | - Vincenzo Mazzaferro
- Hepato-Pancreato-Biliary Surgery and Liver Transplantation, IRCCS Foundation National Cancer Institute, Milan, Italy; Department of Surgery, University of Milan, Milan, Italy
| | - Gianfranco Alpini
- Department of Research, Central Texas Veterans Health Care System, Baylor Scott & White Digestive Disease Research Center, Scott & White Health, Department of Medical Physiology, Texas A&M University, College of Medicine, Temple, Texas
| | - Fabio Marra
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Pietro Invernizzi
- Humanitas Clinical and Research Center, Rozzano, Italy; Division of Gastroenterology and Center for Autoimmune Liver Diseases, San Gerardo Hospital, Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy.
| |
Collapse
|
11
|
Impact of ERK5 on the Hallmarks of Cancer. Int J Mol Sci 2019; 20:ijms20061426. [PMID: 30901834 PMCID: PMC6471124 DOI: 10.3390/ijms20061426] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 12/15/2022] Open
Abstract
Extracellular signal-regulated kinase 5 (ERK5) belongs to the mitogen-activated protein kinase (MAPK) family that consists of highly conserved enzymes expressed in all eukaryotic cells and elicits several biological responses, including cell survival, proliferation, migration, and differentiation. In recent years, accumulating lines of evidence point to a relevant role of ERK5 in the onset and progression of several types of cancer. In particular, it has been reported that ERK5 is a key signaling molecule involved in almost all the biological features of cancer cells so that its targeting is emerging as a promising strategy to suppress tumor growth and spreading. Based on that, in this review, we pinpoint the hallmark-specific role of ERK5 in cancer in order to identify biological features that will potentially benefit from ERK5 targeting.
Collapse
|
12
|
Ding H, Wen Z. Overexpression of C‑sis inhibits H2O2‑induced Buffalo rat liver cell apoptosis in vitro and alleviates liver injury in a rat model of fulminant hepatic failure. Int J Mol Med 2018; 42:873-882. [PMID: 29786113 PMCID: PMC6034937 DOI: 10.3892/ijmm.2018.3684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 05/04/2018] [Indexed: 01/17/2023] Open
Abstract
The present study aimed to investigate the role of the C‑sis gene in the apoptosis of hepatocytes in vitro and in the liver function of a rat model of fulminant hepatic failure (FHF). Buffalo rat liver (BRL) cells were treated with hydrogen peroxide (H2O2) to induce apoptosis and then transfected with a C‑sis overexpression vector. A rat model of FHF was established, and C‑sis was overexpressed. The mRNA and protein expression of C‑sis were examined using reverse transcription‑polymerase chain reaction and western blot analyses, respectively. Cell viability was assessed by CCK8, and a TUNEL assay was used to examine cell apoptosis. Flow cytometry was used for cell cycle detection. Hematoxylin and eosin staining was used for histological examination. The levels of alanine transaminase (ALT) and aspartate transaminase (AST) were also examined in the rats. The results showed that C‑sis was successfully overexpressed in the cells and rat model. Compared with H2O2‑treated BRL cells, the overexpression of C‑sis significantly inhibited cell apoptosis, promoted cell viability, and decreased the expression of cleaved caspase-3. Similar results were observed in the FHF rats treated with the C‑sis overexpression plasmid, compared with those treated with empty plasmids. In addition, in the FHF rats overexpressing C‑sis, histological examination showed that liver injury was alleviated, the levels of ALT and AST were significantly decreased, and mortality rate was significantly decreased, compared with those observed in the rats treated with empty plasmids. In conclusion, the overexpression of C‑sis inhibited the H2O2‑induced apoptosis of BRL cells in vitro, and alleviated liver injury, improved liver function, and decreased mortality rates in rat models of FHF.
Collapse
Affiliation(s)
- Hao Ding
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhili Wen
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
13
|
Ikedo T, Minami M, Kataoka H, Hayashi K, Nagata M, Fujikawa R, Higuchi S, Yasui M, Aoki T, Fukuda M, Yokode M, Miyamoto S. Dipeptidyl Peptidase-4 Inhibitor Anagliptin Prevents Intracranial Aneurysm Growth by Suppressing Macrophage Infiltration and Activation. J Am Heart Assoc 2017. [PMID: 28630262 PMCID: PMC5669147 DOI: 10.1161/jaha.116.004777] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Chronic inflammation plays a key role in the pathogenesis of intracranial aneurysms (IAs). DPP‐4 (dipeptidyl peptidase‐4) inhibitors have anti‐inflammatory effects, including suppressing macrophage infiltration, in various inflammatory models. We examined whether a DPP‐4 inhibitor, anagliptin, could suppress the growth of IAs in a rodent aneurysm model. Methods and Results IAs were surgically induced in 7‐week‐old male Sprague Dawley rats, followed by oral administration of 300 mg/kg anagliptin. We measured the morphologic parameters of aneurysms over time and their local inflammatory responses. To investigate the molecular mechanisms, we used lipopolysaccharide‐treated RAW264.7 macrophages. In the anagliptin‐treated group, aneurysms were significantly smaller 2 to 4 weeks after IA induction. Anagliptin inhibited the accumulation of macrophages in IAs, reduced the expression of MCP‐1 (monocyte chemotactic protein 1), and suppressed the phosphorylation of p65. In lipopolysaccharide‐stimulated RAW264.7 cells, anagliptin treatment significantly reduced the production of tumor necrosis factor α, MCP‐1, and IL‐6 (interleukin 6) independent of GLP‐1 (glucagon‐like peptide 1), the key mediator in the antidiabetic effects of DPP‐4 inhibitors. Notably, anagliptin activated ERK5 (extracellular signal–regulated kinase 5), which mediates the anti‐inflammatory effects of statins, in RAW264.7 macrophages. Preadministration with an ERK5 inhibitor blocked the inhibitory effect of anagliptin on MCP‐1 and IL‐6 expression. Accordingly, the ERK5 inhibitor also counteracted the suppression of p65 phosphorylation in vitro. Conclusions A DPP‐4 inhibitor, anagliptin, prevents the growth of IAs via its anti‐inflammatory effects on macrophages.
Collapse
Affiliation(s)
- Taichi Ikedo
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Manabu Minami
- Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroharu Kataoka
- Department of Neurosurgery, National Cerebral and Cardiovascular Center, Suita Osaka, Japan
| | - Kosuke Hayashi
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Manabu Nagata
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Risako Fujikawa
- Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Sei Higuchi
- Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Mika Yasui
- Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomohiro Aoki
- Center for Innovation in Immunoregulation Technology and Therapeutics, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Core Research for Evolutional Science and Technology, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Miyuki Fukuda
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Center for Innovation in Immunoregulation Technology and Therapeutics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masayuki Yokode
- Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
14
|
Gomez N, Erazo T, Lizcano JM. ERK5 and Cell Proliferation: Nuclear Localization Is What Matters. Front Cell Dev Biol 2016; 4:105. [PMID: 27713878 PMCID: PMC5031611 DOI: 10.3389/fcell.2016.00105] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/06/2016] [Indexed: 12/31/2022] Open
Abstract
ERK5, the last MAP kinase family member discovered, is activated by the upstream kinase MEK5 in response to growth factors and stress stimulation. MEK5-ERK5 pathway has been associated to different cellular processes, playing a crucial role in cell proliferation in normal and cancer cells by mechanisms that are both dependent and independent of its kinase activity. Thus, nuclear ERK5 activates transcription factors by either direct phosphorylation or acting as co-activator thanks to a unique transcriptional activation TAD domain located at its C-terminal tail. Consequently, ERK5 has been proposed as an interesting target to tackle different cancers, and either inhibitors of ERK5 activity or silencing the protein have shown antiproliferative activity in cancer cells and to block tumor growth in animal models. Here, we review the different mechanisms involved in ERK5 nuclear translocation and their consequences. Inactive ERK5 resides in the cytosol, forming a complex with Hsp90-Cdc37 superchaperone. In a canonical mechanism, MEK5-dependent activation results in ERK5 C-terminal autophosphorylation, Hsp90 dissociation, and nuclear translocation. This mechanism integrates signals such as growth factors and stresses that activate the MEK5-ERK5 pathway. Importantly, two other mechanisms, MEK5-independent, have been recently described. These mechanisms allow nuclear shuttling of kinase-inactive forms of ERK5. Although lacking kinase activity, these forms activate transcription by interacting with transcription factors through the TAD domain. Both mechanisms also require Hsp90 dissociation previous to nuclear translocation. One mechanism involves phosphorylation of the C-terminal tail of ERK5 by kinases that are activated during mitosis, such as Cyclin-dependent kinase-1. The second mechanism involves overexpression of chaperone Cdc37, an oncogene that is overexpressed in cancers such as prostate adenocarcinoma, where it collaborates with ERK5 to promote cell proliferation. Although some ERK5 kinase inhibitors have shown antiproliferative activity it is likely that those tumors expressing kinase-inactive nuclear ERK5 will not respond to these inhibitors.
Collapse
Affiliation(s)
| | | | - Jose M. Lizcano
- Protein Kinases and Signal Transduction Laboratory, Institut de Neurociencies and Departament de Bioquimica i Biologia Molecular, Facultat de Medicina, Universitat Autonoma de BarcelonaBarcelona, Spain
| |
Collapse
|
15
|
PAK proteins and YAP-1 signalling downstream of integrin beta-1 in myofibroblasts promote liver fibrosis. Nat Commun 2016; 7:12502. [PMID: 27535340 DOI: 10.1038/ncomms12502] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/06/2016] [Indexed: 12/14/2022] Open
Abstract
Fibrosis due to extracellular matrix (ECM) secretion from myofibroblasts complicates many chronic liver diseases causing scarring and organ failure. Integrin-dependent interaction with scar ECM promotes pro-fibrotic features. However, the pathological intracellular mechanism in liver myofibroblasts is not completely understood, and further insight could enable therapeutic efforts to reverse fibrosis. Here, we show that integrin beta-1, capable of binding integrin alpha-11, regulates the pro-fibrotic phenotype of myofibroblasts. Integrin beta-1 expression is upregulated in pro-fibrotic myofibroblasts in vivo and is required in vitro for production of fibrotic ECM components, myofibroblast proliferation, migration and contraction. Serine/threonine-protein kinase proteins, also known as P21-activated kinase (PAK), and the mechanosensitive factor, Yes-associated protein 1 (YAP-1) are core mediators of pro-fibrotic integrin beta-1 signalling, with YAP-1 capable of perpetuating integrin beta-1 expression. Pharmacological inhibition of either pathway in vivo attenuates liver fibrosis. PAK protein inhibition, in particular, markedly inactivates the pro-fibrotic myofibroblast phenotype, limits scarring from different hepatic insults and represents a new tractable therapeutic target for treating liver fibrosis.
Collapse
|
16
|
Lu L, Chen J, Tang H, Bai L, Lu C, Wang K, Li M, Yan Y, Tang L, Wu R, Ye Y, Jin L, Liang Z. EGCG Suppresses ERK5 Activation to Reverse Tobacco Smoke-Triggered Gastric Epithelial-Mesenchymal Transition in BALB/c Mice. Nutrients 2016; 8:380. [PMID: 27447666 PMCID: PMC4963860 DOI: 10.3390/nu8070380] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/28/2016] [Accepted: 06/14/2016] [Indexed: 12/14/2022] Open
Abstract
Tobacco smoke is an important risk factor of gastric cancer. Epithelial-mesenchymal transition is a crucial pathophysiological process in cancer development. ERK5 regulation of epithelial-mesenchymal transition may be sensitive to cell types and/or the cellular microenvironment and its role in the epithelial-mesenchymal transition process remain elusive. Epigallocatechin-3-gallate (EGCG) is a promising chemopreventive agent for several types of cancers. In the present study we investigated the regulatory role of ERK5 in tobacco smoke-induced epithelial-mesenchymal transition in the stomach of mice and the preventive effect of EGCG. Exposure of mice to tobacco smoke for 12 weeks reduced expression of epithelial markers E-cadherin, ZO-1, and CK5, while the expression of mesenchymal markers Snail-1, Vimentin, and N-cadherin were increased. Importantly, we demonstrated that ERK5 modulated tobacco smoke-mediated epithelial-mesenchymal transition in mice stomach, as evidenced by the findings that tobacco smoke elevated ERK5 activation, and that tobacco smoke-triggered epithelial-mesenchymal transition was reversed by ERK5 inhibition. Treatment of EGCG (100 mg/kg BW) effectively attenuated tobacco smoke-triggered activation of ERK5 and epithelial-mesenchymal transition alterations in mice stomach. Collectively, these data suggested that ERK5 was required for tobacco smoke-triggered gastric epithelial-mesenchymal transition and that EGCG suppressed ERK5 activation to reverse tobacco smoke-triggered gastric epithelial-mesenchymal transition in BALB/c mice. These findings provide new insights into the mechanism of tobacco smoke-associated gastric tumorigenesis and the chemoprevention of tobacco smoke-associated gastric cancer.
Collapse
Affiliation(s)
- Ling Lu
- Zhenjiang Matemity and Child Health Care Hospital, Zhenjiang 212001, China.
| | - Jia Chen
- Zhenjiang Matemity and Child Health Care Hospital, Zhenjiang 212001, China.
| | - Hua Tang
- Zhenjiang Matemity and Child Health Care Hospital, Zhenjiang 212001, China.
| | - Ling Bai
- Zhenjiang Matemity and Child Health Care Hospital, Zhenjiang 212001, China.
| | - Chun Lu
- Zhenjiang Matemity and Child Health Care Hospital, Zhenjiang 212001, China.
| | - Kehuan Wang
- Zhenjiang Matemity and Child Health Care Hospital, Zhenjiang 212001, China.
| | - Manli Li
- Zhenjiang Matemity and Child Health Care Hospital, Zhenjiang 212001, China.
| | - Yinmei Yan
- Zhenjiang Matemity and Child Health Care Hospital, Zhenjiang 212001, China.
| | - Ling Tang
- Zhenjiang Matemity and Child Health Care Hospital, Zhenjiang 212001, China.
| | - Rui Wu
- Zhenjiang Matemity and Child Health Care Hospital, Zhenjiang 212001, China.
| | - Yang Ye
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang 212013, China.
| | - Longtao Jin
- Zhenjiang Matemity and Child Health Care Hospital, Zhenjiang 212001, China.
| | - Zhaofeng Liang
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang 212013, China.
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
17
|
Tsioumpekou M, Papadopoulos N, Burovic F, Heldin CH, Lennartsson J. Platelet-derived growth factor (PDGF)-induced activation of Erk5 MAP-kinase is dependent on Mekk2, Mek1/2, PKC and PI3-kinase, and affects BMP signaling. Cell Signal 2016; 28:1422-1431. [PMID: 27339033 DOI: 10.1016/j.cellsig.2016.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 06/16/2016] [Accepted: 06/16/2016] [Indexed: 02/09/2023]
Abstract
Platelet-derived growth factor-BB (PDGF-BB) binds to its tyrosine kinase receptors (PDGFRs) and stimulates mitogenicity and survival of cells of mesenchymal origin. Activation of PDGFRs initiates a number of downstream signaling pathways, including phosphatidyl 3'-inositol kinase (PI3-kinase), phospholipase Cγ and MAP kinase pathways. In this report, we show that Erk5 MAP kinase is activated in response to PDGF-BB in the smooth muscle cell line MOVAS in a manner dependent on Mekk2, Mek1/2, Mek5, PI3-kinase and protein kinase C (PKC). The co-operation of Mek1/2 and Mekk2 in the activation of Erk5, suggests a close co-regulation between the Erk1/2 and Erk5 MAP kinase pathways. Furthermore, we found that classical PKCs are important for Erk5 activation. In addition, we found that PKCζ interacts with Erk5 and may exert a negative feed-back effect. We observed no nuclear accumulation of Erk5 in response to PDGF-BB stimulation, however, we identified a mechanism by which cytoplasmic Erk5 influences gene expression; Erk5 was essential for PDGF-BB-mediated Smad1/5/8 signaling by stimulating release and/or activation of bone morphogenetic protein(s) (BMPs). Thus, PDGF-BB-induced Erk5 activation involves parallel stimulatory and inhibitory pathways and promotes Smad1/5/8 signaling.
Collapse
Affiliation(s)
- Maria Tsioumpekou
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Box 595, SE-751 24 Uppsala, Sweden
| | - Natalia Papadopoulos
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Box 595, SE-751 24 Uppsala, Sweden
| | - Fatima Burovic
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Box 595, SE-751 24 Uppsala, Sweden
| | - Carl-Henrik Heldin
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Box 595, SE-751 24 Uppsala, Sweden
| | - Johan Lennartsson
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Box 595, SE-751 24 Uppsala, Sweden.
| |
Collapse
|
18
|
Petta S, Valenti L, Marra F, Grimaudo S, Tripodo C, Bugianesi E, Cammà C, Cappon A, Di Marco V, Di Maira G, Dongiovanni P, Rametta R, Gulino A, Mozzi E, Orlando E, Maggioni M, Pipitone RM, Fargion S, Craxì A. MERTK rs4374383 polymorphism affects the severity of fibrosis in non-alcoholic fatty liver disease. J Hepatol 2016; 64:682-90. [PMID: 26596542 DOI: 10.1016/j.jhep.2015.10.016] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 09/16/2015] [Accepted: 10/12/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIM Homozygosity for a common non-coding rs4374383 G>A polymorphism in MERTK (myeloid-epithelial-reproductive tyrosine kinase) has been associated with the protection against fibrosis progression in chronic hepatitis C. The main study objective was to assess whether MERTK AA genotype influences liver fibrosis, and secondarily MERTK expression in patients with non-alcoholic fatty liver disease (NAFLD). We also investigated whether MERTK is expressed in human hepatic stellate cells (HSC) and in murine models of fibrogenesis. METHODS We considered 533 consecutive patients who underwent liver biopsy for suspected non-alcoholic steatohepatitis (NASH) without severe obesity from two Italian cohorts. As controls, we evaluated 158 patients with normal liver enzymes and without metabolic disturbances. MERTK rs4374383 genotype was assessed by 5'-nuclease assays. MERTK expression was analysed in mouse models of fibrosis, and the effect of the MERTK ligand GAS6 were investigated in human HSC. RESULTS Clinically significant fibrosis (stage F2-F4) was observed in 19% of patients with MERTK AA compared to 30% in those with MERTK GG/GA (OR 0.43, CI 0.21-0.88, p=0.02; adjusted for centre, and genetic, clinical-metabolic and histological variables). The protective rs4374383 AA genotype was associated with lower MERTK hepatic expression. MERTK was overexpressed in the liver of NAFLD patients with F2-F4 fibrosis and in in vivo models of fibrogenesis. Furthermore, exposure of cultured human HSC to the MERTK ligand GAS6, increased cell migration and induced procollagen expression. These effects were counteracted by inhibition of MERTK activity, which also resulted in apoptotic death of HSC. CONCLUSIONS The rs4374383 AA genotype, associated with lower intrahepatic expression of MERTK, is protective against F2-F4 fibrosis in patients with NAFLD. The mechanism may involve modulation of HSC activation.
Collapse
Affiliation(s)
- Salvatore Petta
- Sezione di Gastroenterologia, DiBiMIS, University of Palermo, Italy.
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi, Internal Medicine, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, Milano, Italy
| | - Fabio Marra
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi di Firenze, Italy
| | | | - Claudio Tripodo
- Cattedra di Anatomia Patologica, University of Palermo, Italy
| | - Elisabetta Bugianesi
- Division of Gastro-Hepatology, Department of Medical Sciences, San Giovanni Battista Hospital, University of Torino, Torino, Italy
| | - Calogero Cammà
- Sezione di Gastroenterologia, DiBiMIS, University of Palermo, Italy
| | - Andrea Cappon
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi di Firenze, Italy
| | - Vito Di Marco
- Sezione di Gastroenterologia, DiBiMIS, University of Palermo, Italy
| | - Giovanni Di Maira
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi di Firenze, Italy
| | - Paola Dongiovanni
- Department of Pathophysiology and Transplantation, Università degli Studi, Internal Medicine, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, Milano, Italy
| | - Raffaela Rametta
- Department of Pathophysiology and Transplantation, Università degli Studi, Internal Medicine, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, Milano, Italy
| | | | - Enrico Mozzi
- Department of Pathophysiology and Transplantation, Università degli Studi, Internal Medicine, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, Milano, Italy
| | - Emanuele Orlando
- Sezione di Gastroenterologia, DiBiMIS, University of Palermo, Italy
| | - Marco Maggioni
- Pathology, Fondazione IRCCS Ca' Granda Policlinico, Milano, Italy
| | | | - Silvia Fargion
- Department of Pathophysiology and Transplantation, Università degli Studi, Internal Medicine, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, Milano, Italy
| | - Antonio Craxì
- Sezione di Gastroenterologia, DiBiMIS, University of Palermo, Italy
| |
Collapse
|
19
|
Zuo Y, Wu Y, Wehrli B, Chakrabarti S, Chakraborty C. Modulation of ERK5 is a novel mechanism by which Cdc42 regulates migration of breast cancer cells. J Cell Biochem 2016; 116:124-32. [PMID: 25160664 DOI: 10.1002/jcb.24950] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 08/22/2014] [Indexed: 11/09/2022]
Abstract
Members of Rho family GTPases including Cdc42 are known to play pivotal roles in cell migration. Cell migration is also known to be regulated by many protein kinases. Kinetworks KPSS 11.0 phospho-site screening of Cdc42-silenced Hs578T breast cancer cells revealed most dramatic change in ERK5 MAP kinase. In the present study, we set out to determine the relationship between Cdc42 and ERK5 and its significance in breast cancer cell migration and invasion. Specific siRNAs were used for knocking down Cdc42 or ERK5 in breast cancer cells. Increased ERK5 phosphorylation in breast cancer cells was achieved by infection of constitutively active MEK5 adenovirus. The cells were then subjected to cell migration or invasion assay without the presence of serum or any growth factor. We found that Cdc42 negatively regulated phosphorylation of ERK5, which in turn exhibited an inverse relationship with migration and invasiveness of breast cancer cells. To find out some in vivo relevance of the results of our in vitro experiments we also examined the expression of ERK5 in the breast cancer tissues and their adjacent normal control tissues by real-time RT-PCR and immunocytochemistry. ERK5 expression was found to be reduced in breast cancer tissues as compared with their adjacent uninvolved mammary tissues. Therefore, Cdc42 may promote breast cancer cell migration and invasion by inhibiting ERK5 phosphorylation and ERK5 expression may be inversely correlated with the progression of some breast tumors.
Collapse
Affiliation(s)
- Yufeng Zuo
- Department of Pathology, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | |
Collapse
|
20
|
p21-Activated Kinase 2 Regulates Endothelial Development and Function through the Bmk1/Erk5 Pathway. Mol Cell Biol 2015; 35:3990-4005. [PMID: 26391956 DOI: 10.1128/mcb.00630-15] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/08/2015] [Indexed: 02/03/2023] Open
Abstract
p21-activated kinases (Paks) have been shown to regulate cytoskeleton rearrangements, cell proliferation, attachment, and migration in a variety of cellular contexts, including endothelial cells. However, the role of endothelial Pak in embryo development has not been reported, and currently, there is no consensus on the endothelial function of individual Pak isoforms, in particular p21-activated kinase 2 (Pak2), the main Pak isoform expressed in endothelial cells. In this work, we employ genetic and molecular studies that show that Pak2, but not Pak1, is a critical mediator of development and maintenance of endothelial cell function. Endothelial depletion of Pak2 leads to early embryo lethality due to flawed blood vessel formation in the embryo body and yolk sac. In adult endothelial cells, Pak2 depletion leads to severe apoptosis and acute angiogenesis defects, and in adult mice, endothelial Pak2 deletion leads to increased vascular permeability. Furthermore, ubiquitous Pak2 deletion is lethal in adult mice. We show that many of these defects are mediated through a newly unveiled Pak2/Bmk1 pathway. Our results demonstrate that endothelial Pak2 is essential during embryogenesis and also for adult blood vessel maintenance, and they also pinpoint the Bmk1/Erk5 pathway as a critical mediator of endothelial Pak2 signaling.
Collapse
|
21
|
Mitogen-activated protein kinase 7 promotes cell proliferation, migration and invasion in SOSP-M human osteosarcoma cell line. TUMORI JOURNAL 2015; 103:483-488. [PMID: 26350187 DOI: 10.5301/tj.5000399] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2015] [Indexed: 01/20/2023]
Abstract
PURPOSE Osteosarcoma (OS) is the most common primary bone tumor and has low cure rates. Our study aimed to evaluate the roles of mitogen-activated protein kinase 7 (MAPK7) in cell proliferation, migration and invasion using the SOSP-M human OS cell line as an in vitro model. METHODS SOSP-M cells were transfected with PCDNA3.1-MAPK7 and siRNA-MAPK7 plasmids using Lipofectamine 2000. Quantitative real-time polymerase chain reaction (RT-PCR) was performed to determine the relative expression level of MAPK7 and Western blot analysis was carried out to determine the expression level of ERK5 protein. Then MTT, scratch wound healing and Matrigel transwell assays were used to investigate the roles of MAPK7 expression in the proliferation, migration and invasion, respectively, of SOSP-M cells in vitro. RESULTS RT-PCR analysis showed that the expression level of MAPK7 increased significantly after transfection with PCDNA3.1-MAPK7 plasmid compared with the blank group, while it decreased significantly after transfection with siRNA-MAPK7 plasmid. Similar results for ERK5 expression were obtained by Western blot analysis. In addition, the cell proliferation rate, cell migration rate and invasive cell number in the PCDNA3.1-MAPK7 transfection group increased significantly compared with the blank group, while they decreased significantly in the siRNA-MAPK7 transfection group. CONCLUSIONS Our results indicate that overexpression of MAPK7 in human OS cells could promote cell proliferation, migration and invasion, whereas knockdown of MAPK7 expression had the opposite effect. All the results suggest that MAPK7 may serve as a potent target for drug development.
Collapse
|
22
|
Rovida E, Di Maira G, Tusa I, Cannito S, Paternostro C, Navari N, Vivoli E, Deng X, Gray NS, Esparís-Ogando A, David E, Pandiella A, Dello Sbarba P, Parola M, Marra F. The mitogen-activated protein kinase ERK5 regulates the development and growth of hepatocellular carcinoma. Gut 2015; 64:1454-65. [PMID: 25183205 DOI: 10.1136/gutjnl-2014-306761] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 08/04/2014] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The extracellular signal-regulated kinase 5 (ERK5 or BMK1) is involved in tumour development. The ERK5 gene may be amplified in hepatocellular carcinoma (HCC), but its biological role has not been clarified. In this study, we explored the role of ERK5 expression and activity in HCC in vitro and in vivo. DESIGN ERK5 expression was evaluated in human liver tissue. Cultured HepG2 and Huh-7 were studied after ERK5 knockdown by siRNA or in the presence of the specific pharmacological inhibitor, XMD8-92. The role of ERK5 in vivo was assessed using mouse Huh-7 xenografts. RESULTS In tissue specimens from patients with HCC, a higher percentage of cells with nuclear ERK5 expression was found both in HCC and in the surrounding cirrhotic tissue compared with normal liver tissue. Inhibition of ERK5 decreased HCC cell proliferation and increased the proportion of cells in G0/G1 phase. These effects were associated with increased expression of p27 and p15 and decreased CCND1. Treatment with XMD8-92 or ERK5 silencing prevented cell migration induced by epidermal growth factor or hypoxia and caused cytoskeletal remodelling. In mouse xenografts, the rate of tumour appearance and the size of tumours were significantly lower when Huh-7 was silenced for ERK5. Moreover, systemic treatment with XMD8-92 of mice with established HCC xenografts markedly reduced tumour growth and decreased the expression of the proto-oncogene c-Rel. CONCLUSIONS ERK5 regulates the biology of HCC cells and modulates tumour development and growth in vivo. This pathway should be investigated as a possible therapeutic target in HCC.
Collapse
Affiliation(s)
- Elisabetta Rovida
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Università di Firenze, Italy
| | - Giovanni Di Maira
- Dipartimento di Medicina Sperimentale e Clinica Università di Firenze, Italy
| | - Ignazia Tusa
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Università di Firenze, Italy
| | - Stefania Cannito
- Dipartimento di Medicina e Oncologia Sperimentali, Università di Torino, Italy
| | - Claudia Paternostro
- Dipartimento di Medicina e Oncologia Sperimentali, Università di Torino, Italy
| | - Nadia Navari
- Dipartimento di Medicina Sperimentale e Clinica Università di Firenze, Italy
| | - Elisa Vivoli
- Dipartimento di Medicina Sperimentale e Clinica Università di Firenze, Italy
| | - Xianming Deng
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Nathanael S Gray
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - Azucena Esparís-Ogando
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Spain
| | - Ezio David
- Pathology Unit, Ospedale S. Giovanni Battista, Torino, Italy
| | - Atanasio Pandiella
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Spain
| | - Persio Dello Sbarba
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Università di Firenze, Italy
| | - Maurizio Parola
- Dipartimento di Medicina e Oncologia Sperimentali, Università di Torino, Italy
| | - Fabio Marra
- Dipartimento di Medicina Sperimentale e Clinica Università di Firenze, Italy
| |
Collapse
|
23
|
Liang Z, Xie W, Wu R, Geng H, Zhao L, Xie C, Li X, Huang C, Zhu J, Zhu M, Zhu W, Wu J, Geng S, Zhong C. ERK5 negatively regulates tobacco smoke-induced pulmonary epithelial-mesenchymal transition. Oncotarget 2015; 6:19605-19618. [PMID: 25965818 PMCID: PMC4637308 DOI: 10.18632/oncotarget.3747] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/06/2015] [Indexed: 12/21/2022] Open
Abstract
As the primary cause of lung cancer, tobacco smoke (TS) promotes the initiation and progression of lung tumorigenesis. Epithelial-mesenchymal transition (EMT) is a crucial process involved in cell malignant transformation. The role of ERK5, the lesser studied member of MAPKs family, in regulating TS-triggered pulmonary EMT has not been investigated. Normal human bronchial epithelial cells and BALB/c mice were used as in vitro and in vivo TS exposure models. Exposure of normal human bronchial epithelial cells to TS for 7 days induced morphological change, enhanced migratory and invasive capacities, reduced epithelial marker expression and increased mesenchymal marker expression. Importantly, we demonstrated for the first time that ERK5 negatively regulated TS-mediated lung epithelial EMT, as evidenced by the findings that TS suppressed ERK5 activation, and that TS-triggered EMT was mimicked with ERK5 inhibition and reversed by ERK5 overexpression. The negative regulation of ERK5 on pulmonary EMT was further confirmed in mice exposed to TS for 12 weeks. Taken together, our data suggest that ERK5 negatively regulates TS-mediated pulmonary EMT. These findings provide new insight into the molecular mechanisms of TS-associated lung tumorigenesis and may open up new avenues in the search for potential target of lung cancer intervention.
Collapse
Affiliation(s)
- Zhaofeng Liang
- Department of Toxicology and Nutritional Science, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wei Xie
- Department of Toxicology and Nutritional Science, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Rui Wu
- Department of Toxicology and Nutritional Science, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hao Geng
- Department of Surgery, The Second Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Li Zhao
- Department of Surgery, The Second Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Chunfeng Xie
- Department of Toxicology and Nutritional Science, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xiaoting Li
- Department of Toxicology and Nutritional Science, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Cong Huang
- Department of Toxicology and Nutritional Science, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jianyun Zhu
- Department of Toxicology and Nutritional Science, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Mingming Zhu
- Department of Toxicology and Nutritional Science, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Weiwei Zhu
- Department of Toxicology and Nutritional Science, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jieshu Wu
- Department of Toxicology and Nutritional Science, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shanshan Geng
- Department of Toxicology and Nutritional Science, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Caiyun Zhong
- Department of Toxicology and Nutritional Science, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
24
|
YANG CHENGHSUN, TING WEIJEN, SHEN CHIAYAO, HSU HISHSIEN, LIN YUEHMIN, CHANG SHENGHUANG, TSAI FUUJEN, PADMA VISWANADHAVIJAYA, HUANG CHIHYANG, TSAI YUHSIN. SHSST-cyclodextrin complex inhibits TGF-β/Smad3/CTGF to a greater extent than silymarin in a rat model of carbon tetrachloride-induced liver injury. Mol Med Rep 2015; 12:6053-9. [DOI: 10.3892/mmr.2015.4190] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 12/12/2014] [Indexed: 11/06/2022] Open
|
25
|
ERK5 regulates basic fibroblast growth factor-induced type 1 plasminogen activator inhibitor expression and cell proliferation in lung fibroblasts. Life Sci 2015; 135:1-8. [DOI: 10.1016/j.lfs.2015.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 05/06/2015] [Accepted: 05/13/2015] [Indexed: 10/23/2022]
|
26
|
Kumar P, Smith T, Rahman K, Mells JE, Thorn NE, Saxena NK, Anania FA. Adiponectin modulates focal adhesion disassembly in activated hepatic stellate cells: implication for reversing hepatic fibrosis. FASEB J 2014; 28:5172-83. [PMID: 25154876 DOI: 10.1096/fj.14-253229] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Previous evidence indicates that adiponectin possesses antifibrogenic activity in inhibiting liver fibrosis. Therapeutic strategies, however, are limited by adiponectin quaternary structure and effective concentrations in circulation. Here we postulate a novel molecular mechanism, whereby adiponectin targets focal adhesion kinase (FAK) activity and disrupts key features of the fibrogenic response. Adiponectin-null (Ad(-/-)) mice and wild-type littermates were exposed to either saline or carbon tetrachloride (CCl4) for 6 wk. CCl4-gavaged mice were also injected with attenuated adenoviral adiponectin (Ad-Adn) or Ad-LacZ for 2 wk. Hepatic stellate cells (HSCs) were treated with or without adiponectin to elucidate signal transduction mechanisms. In vivo delivery of Ad-Adn markedly attenuates CCl4-induced expression of key integrin proteins and markers of HSC activation: αv, β3, β1, α2(I) collagen, and α-smooth muscle actin. Confocal experiments of liver tissues demonstrated that adiponectin delivery also suppressed vinculin and p-FAK activity in activated HSCs. In vitro, adiponectin induced dephosphorylation of FAK, mediated by a physical association with activated tyrosine phosphatase, Shp2. Conversely, Shp2 knockdown by siRNA significantly attenuated adiponectin-induced FAK deactivation, and expression of TIMP1 and α2(I) collagen was abolished in the presence of adiponectin and si-FAK. Finally, we documented that either adiponectin or the synthetic peptide with adiponectin properties, ADP355, suppressed p-FAK in synthetic matrices with stiffness measurements of 9 and 15 kPa, assessed by immunofluorescent imaging and quantitation. The in vivo and in vitro data presented indicate that disassembly of focal adhesion complexes in HSCs is pivotal for hepatic fibrosis therapy, now that small adiponectin-like peptides are available.
Collapse
Affiliation(s)
- Pradeep Kumar
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA; and
| | - Tekla Smith
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA; and
| | - Khalidur Rahman
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA; and
| | - Jamie E Mells
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA; and
| | - Natalie E Thorn
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA; and
| | - Neeraj K Saxena
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Frank A Anania
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA; and
| |
Collapse
|
27
|
You T, Fan Y, Li Q, Gao Y, Yang Y, Zhao Z, Wang C. Increased SSeCKS expression in rat hepatic stellate cells upon activation in vitro and in vivo. Inflammation 2014; 36:1415-23. [PMID: 23925424 DOI: 10.1007/s10753-013-9681-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recent reports suggest that src suppressed c kinase substrates (SSeCKS) are early inflammatory response protein. However, there is only scarce knowledge on the functional role of SSeCKS in liver under conditions of acute inflammation. In the present study, we investigated SSeCKS expression in liver after administration of carbon tetrachloride (CCl4) in rats and in isolated primary hepatic stellate cells (HSCs) upon activation on a plastic dish. We found that SSeCKS mRNA was hardly detectable in healthy liver tissue and further increased in carbon tetrachloride-mediated acute liver failure. SSeCKS protein expression was mainly found in hepatic stellate cells. In vitro, SSeCKS expression in activated rat HSCs was dramatically increased. The upregulation of SSeCKS protein expression in rat HSCs during activation in vitro and in vivo suggested the possibility of SSeCKS, an important part of function of the activated HSCs, perhaps through modulation of liver regeneration or formation of liver fibrosis after various injuries.
Collapse
Affiliation(s)
- Tiangeng You
- Department of General Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
28
|
Demoulin JB, Essaghir A. PDGF receptor signaling networks in normal and cancer cells. Cytokine Growth Factor Rev 2014; 25:273-83. [DOI: 10.1016/j.cytogfr.2014.03.003] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 03/10/2014] [Indexed: 01/05/2023]
|
29
|
Dore-Duffy P. Pericytes and adaptive angioplasticity: the role of tumor necrosis factor-like weak inducer of apoptosis (TWEAK). Methods Mol Biol 2014; 1135:35-52. [PMID: 24510853 DOI: 10.1007/978-1-4939-0320-7_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The TNF superfamily member TWEAK has emerged as a pleiotropic cytokine that regulates many cellular functions that include immune/inflammatory activity, angiogenesis, cell proliferation, and fate. TWEAK through its inducible receptor, FGF-inducible molecule 14 (Fn14), can induce both beneficial and deleterious activity that has a profound effect on cell survival. Thus it is highly likely that TWEAK and Fn14 expressed by cells of the neurovascular unit help regulate and maintain vascular and tissue homeostasis. In this chapter we discuss the expression of TWEAK and Fn14 signaling in the cerebral microvascular pericyte. Pericytes are a highly enigmatic population of microvascular cells that are important in regulatory pathways that modulate physiological angiogenesis in response to chronic mild hypoxic stress. A brief introduction will identify the microvascular pericyte. A more detailed discussion of pericyte TWEAK signaling during adaptive angioplasticity will follow.
Collapse
Affiliation(s)
- Paula Dore-Duffy
- Division of Neuroimmunology, Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
30
|
Zhu J, Lin F, Brown DA, Clark RAF. A fibronectin peptide redirects PDGF-BB/PDGFR complexes to macropinocytosis-like internalization and augments PDGF-BB survival signals. J Invest Dermatol 2013; 134:921-929. [PMID: 24304816 PMCID: PMC3961502 DOI: 10.1038/jid.2013.463] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 09/14/2013] [Accepted: 09/26/2013] [Indexed: 12/25/2022]
Abstract
Growth factor-binding domains identified in various extracellular matrix (ECM) proteins have been shown to regulate growth factor activity in many ways. Recently we identified a fibronectin peptide (P12) that can bind platelet-derived growth factor BB (PDGF-BB) and promote adult human dermal fibroblast (AHDF) survival under stress. In vivo experiments in a porcine burn injury model showed that P12 limited burn injury progression, suggesting an active role in tissue survival. In this report, we explored the molecular mechanism of this peptide in ADHF under nutrient deprivation. Our results showed that P12 acted like some cell penetrating peptides (CPPs) in that it redirected ligand-bound PDGFR from the clathrin-dependent endocytic pathway to a slower, macropinocytosis-like pathway. P12 slowed internalization and degradation of PDGF-BB, augmented its survival signals, and promoted cell survival after nutrient-removal. Our findings demonstrate a mechanism for a potential therapeutic peptide that increases cell and tissue survival by acting as a cofactor to PDGF-BB.
Collapse
Affiliation(s)
- Jia Zhu
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA
| | - Fubao Lin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| | - Deborah A Brown
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA
| | - Richard A F Clark
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA; Department of Dermatology, Stony Brook University, Stony Brook, New York, USA.
| |
Collapse
|
31
|
Dong H, Liu Y, Zou Y, Li C, Li L, Li X, Zhao X, Zhou L, Liu J, Niu Y. Alteration of the ERK5 pathway by hydroxysafflor yellow A blocks expression of MEF2C in activated hepatic stellate cells in vitro: Potential treatment for hepatic fibrogenesis. PHARMACEUTICAL BIOLOGY 2013; 52:435-443. [PMID: 24192313 DOI: 10.3109/13880209.2013.840850] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Abstract Context: Hepatic fibrosis ultimately leads to cirrhosis if not treated effectively. Hepatic stellate cells (HSC) are a main mediator of hepatic fibrosis through the accumulation of extracellular matrix proteins. Suppression activation of passaged HSC has been proposed as therapeutic strategies for the treatment and prevention of hepatic fibrosis. Objective: To evaluate the effect of hydroxysafflor yellow A (HSYA), an active chemical compound derived from the flowers of Carthamus tinctorius L. (Compositae), on HSC inhibition, and to begin elucidating underlying mechanisms. Materials and methods: Primary HSCs were isolated from rats by in situ pronase/collagenase perfusion. Culture-activated HSCs were treated with or without HSYA at 30 μM in the presence or absence of PD98059 for 48 h, and then cell proliferation was measured by MTS assays. Messenger RNA (mRNA) expression was quantified by polymerase chain reaction, and protein was quantified by Western blots or enzyme-linked immunosorbent assays. Results: HSYA significantly inhibits culture-activated HSC proliferation in a dose-dependent and time-dependent manner with an IC50 value of 112.79 μM. HSYA (30 μM) induce the suppression of HSC activation, as indicated by decreases in contents of type I alpha collagen in HSC-cultured media and expression of α-smooth muscle actin protein in culture-activated HSC by 55 and 71%, respectively. HSYA (30 μM) also caused significant decreases in mRNA expression of type III alpha collagen in HSC by 28%. HSYA (30 μM) suppresses myocyte enhancer factor 2 C (MEF2C) expression both at its mRNA and protein levels by 60 and 61%, respectively. Further study demonstrated that HSYA (30 μM) caused significant decreases in p-ERK5 by 49%. Blocking extracellular signal-regulated protein kinase 5 (ERK5) activity by XMD 8--92, an ERK5 inhibitor, markedly abrogated the inhibitive effects of HSYA on HSC activation, and blocked the HSYA-mediated MEF2C down-regulation. Conclusions: HSYA suppress HSC activation by ERK5-mediated MEF2C down-regulation and makes it a potential candidate for prevention and treatment of hepatic fibrogenesis.
Collapse
Affiliation(s)
- Haiying Dong
- The Institute of Medicine, Qiqihar Medical University , Qiqihar , China and
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Reichenbach V, Fernández-Varo G, Casals G, Oró D, Ros J, Melgar-Lesmes P, Weiskirchen R, Morales-Ruiz M, Jiménez W. Adenoviral dominant-negative soluble PDGFRβ improves hepatic collagen, systemic hemodynamics, and portal pressure in fibrotic rats. J Hepatol 2012; 57:967-73. [PMID: 22820479 DOI: 10.1016/j.jhep.2012.07.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/04/2012] [Accepted: 07/08/2012] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Platelet-derived growth factor (PDGF) is the most potent stimulus for proliferation and migration of stellate cells. PDGF receptor β (PDGFRβ) expression is an important phenotypic change in myofibroblastic cells that mediates proliferation and chemotaxis. Here we analyzed the relationship between PDGFRβ expression, hemodynamic deterioration, and fibrosis in CCl(4)-treated rats. Thereafter, we investigated the effects produced by an adenovirus encoding a dominant-negative soluble PDGFRβ (sPDGFRβ) on hemodynamic parameters, PDGFRβ signaling pathway, and fibrosis. METHODS Mean arterial pressure, portal pressure, PDGFRβ mRNA expression, and hepatic collagen were assessed in 6 controls and 21 rats induced to hepatic fibrosis/cirrhosis. Next, 30 fibrotic rats were randomized into three groups receiving iv saline and an adenovirus encoding for sPDGFRβ or β-galactosidase. After 7days, mean arterial pressure, portal pressure, serum sPDGFRβ, and hepatic collagen were measured. RESULTS CCl(4)-treated animals for 18weeks showed a significantly higher increase in PDGFRβ mRNA compared to those treated for 13weeks and control rats. In CCl(4)-treated rats, the fibrous tissue area ranged from moderate to severe fibrosis. A direct relationship between the degree of fibrosis, hemodynamic changes, and PDGFRβ expression was observed. Fibrotic rats transduced with the adenovirus encoding sPDGFRβ showed increased mean arterial pressure, decreased portal pressure, lower activation of the PDGFRβ signaling pathway, and reduced hepatic collagen than fibrotic rats receiving β-galactosidase or saline. CONCLUSIONS PDGFRβ activation closely correlates with hemodynamic disorders and increased fibrosis in CCl(4)-treated rats. Adenoviral dominant negative soluble PDGFRβ improved fibrosis. As a result, the hemodynamic abnormalities were ameliorated.
Collapse
Affiliation(s)
- V Reichenbach
- Biochemistry and Molecular Genetics Service, Hospital Clínic Provincial de Barcelona, IDIBAPS, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Koyama N, Hayashi T, Mizukoshi K, Matsumoto T, Gresik EW, Kashimata M. Extracellular regulated kinase5 is expressed in fetal mouse submandibular glands and is phosphorylated in response to epidermal growth factor and other ligands of the ErbB family of receptors. Dev Growth Differ 2012; 54:801-8. [PMID: 23078124 DOI: 10.1111/dgd.12008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 09/09/2012] [Accepted: 09/10/2012] [Indexed: 12/28/2022]
Abstract
Growth factors and their receptors regulate development of many organs through activation of multiple intracellular signaling cascades including a mitogen-activated protein kinase (MAPK). Extracellular regulated kinases (ERK)1/2, classic MAPK family members, are expressed in fetal mouse submandibular glands (SMG), and stimulate branching morphogenesis. ERK5, also called big mitogen-activated protein kinase 1, was recently found as a new member of MAPK super family, and its biological roles are still largely unknown. In this study, we investigated the expression and function of ERK5 in developing fetal mouse SMGs. Western blotting analysis showed that the expression pattern of ERK5 was different from the pattern of ERK1/2 in developing fetal SMGs. Both ERK1/2 and ERK5 were phosphorylated after exposure to ligands of the ErbB family of receptor tyrosine kinases (RTKs). Phosphorylation of ERK1/2 was strongly induced by epidermal growth factor (EGF) in SMG rudiments at embryonic day 14 (E14), E16 and E18. However, ERK5 phosphorylation induced by EGF was clearly observed at E14 and E16, but not at E18. Branching morphogenesis of cultured E13 SMG rudiments was strongly suppressed by administration of U0126, an inhibitor for ERK1/2 activation, whereas the phosphorylation of ERK5 was not inhibited by U0126. BIX02188, a specific inhibitor for ERK5 activation, also inhibited branching morphogenesis in cultured SMG rudiments. These results show that EGF-responsive ERK5 is expressed in developing fetal mouse SMG, and suggest that both ERK1/2 and ERK5 signaling cascades might play an important role in the regulation of branching morphogenesis.
Collapse
Affiliation(s)
- Noriko Koyama
- Department of Pharmacology, Asahi University School of Dentistry, Hozumi, Mizuho, Gifu, 501-0296, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Cytoskeletal reorganization mediates fluid shear stress-induced ERK5 activation in osteoblastic cells. Cell Biol Int 2012; 36:229-36. [PMID: 21954859 DOI: 10.1042/cbi20110113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mechanotransduction is a complicated process, of which mechanosensation is the first step. Previous studies have shown that the cytoskeleton plays a crucial role in mechanosensation and the mediation of intracellular signal transduction. However, the mechanism of mechanotransduction in the bone remains elusive. Here, we investigated the potential involvement of a novel MAPK (mitogen-activated protein kinase) member, ERK5 (extracellular-signal-regulated kinase 5), in the response of osteoblastic cells to FSS (fluid shear stress). Our results demonstrated that ERK5 was rapidly phosphorylated in pre-osteoblastic MC3T3-E1 cells upon FSS, and the integrity and reorganization of the cytoskeleton were critical in this process, in which the cytoskeleton-dependent activation of FAK (focal adhesion kinase) may be involved in the activation of ERK5 induced by FSS. Moreover, we found that cytoskeletal disruption led to significant down-regulation of ERK5 phosphorylation, but had no effect on ERK5 nuclear localization. Furthermore, the cytoskeleton rapidly reorganized in response to FSS, but long-time fluid load, even at a physiological level, led to cytoskeletal disruption, suggesting that other pathways may be involved in long-term mechanotransduction. Taken together, our data provide new insight into the mechanisms of mechanosensation by highlighting the link between ERK5 activation and cytoskeletal reorganization in osteoblasts undergoing FSS.
Collapse
|
35
|
Qiu P, Song W, Niu Z, Bai Y, Li W, Pan S, Peng S, Hua J. Platelet-derived growth factor promotes the proliferation of human umbilical cord-derived mesenchymal stem cells. Cell Biochem Funct 2012; 31:159-65. [PMID: 22961649 DOI: 10.1002/cbf.2870] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/06/2012] [Accepted: 08/08/2012] [Indexed: 01/01/2023]
Abstract
This study was designed to investigate the effect of platelet-derived growth factor (PDGF) on the proliferation of human umbilical cord mesenchymal stem cells (UC-MSCs) and further explore the mechanism of PDGF in promoting the proliferation of UC-MSCs. The human UC-MSCs were treated with different concentrations of PDGF, and the effects were evaluated by counting the cell number, the cell viability, the expression of PDGF receptors analyzed by RT-PCR, and the detection of the gene expression of cell proliferation, cell cycle and pluripotency, and Brdu assay by immunofluorescent staining and Quantitative real-time (QRT-PCR). The results showed that PDGF could promote the proliferation of UC-MSCs in vitro in a dose-dependent way, and 10 to 50 ng/ml PDGF had a significant proliferation effect on UC-MSCs; the most obvious concentration was 50 ng/ml. Significant inhibition on the proliferation of UC-MSCs was observed when the concentration of PDGF was higher than 100 ng/ml, and all cells died when the concentration reached 200 ng/ml PDGF. The PDGF-treated cells had stronger proliferation and antiapoptotic capacity than the control group by Brdu staining. The expression of the proliferation-related genes C-MYC, PCNA and TERT and cell cycle-related genes cyclin A, cyclin 1 and CDK2 were up-regulated in PDGF medium compared with control. However, pluripotent gene OCT4 was not significantly different between cells cultured in PDGF and cells analyzed by immunofluorescence and QRT-PCR. The PDGF could promote the proliferation of human UC-MSCs in vitro.
Collapse
Affiliation(s)
- Pubin Qiu
- College of Veterinary Medicine, Shaanxi Stem Cell Engineering and Technology Research Center, Key Laboratory of Animal Biotechnology of Agriculture Ministry of China, Northwest A&F University, Yangling 712100, China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
The MEK5 [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase 5]/ERK5 pathway is the least well studied MAPK signalling module. It has been proposed to play a role in the pathology of cancer. In the present paper, we review the role of the MEK5/ERK5 pathway using the 'hallmarks of cancer' as a framework and consider how this pathway is deregulated. As well as playing a key role in endothelial cell survival and tubular morphogenesis during tumour neovascularization, ERK5 is also emerging as a regulator of tumour cell invasion and migration. Several oncogenes can stimulate ERK5 activity, and protein levels are increased by a novel amplification at chromosome locus 17p11 and by down-regulation of the microRNAs miR-143 and miR-145. Together, these finding underscore the case for further investigation into understanding the role of ERK5 in cancer.
Collapse
|
37
|
Razmara M, Eger G, Rorsman C, Heldin CH, Lennartsson J. MKP3 negatively modulates PDGF-induced Akt and Erk5 phosphorylation as well as chemotaxis. Cell Signal 2012; 24:635-40. [DOI: 10.1016/j.cellsig.2011.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 11/01/2011] [Accepted: 11/02/2011] [Indexed: 12/17/2022]
|
38
|
Bandapalli OR, Macher-Goeppinger S, Schirmacher P, Brand K. Paracrine signalling in colorectal liver metastases involving tumor cell-derived PDGF-C and hepatic stellate cell-derived PAK-2. Clin Exp Metastasis 2012; 29:409-17. [PMID: 22362252 DOI: 10.1007/s10585-012-9459-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 02/07/2012] [Indexed: 02/07/2023]
Abstract
In a nude mouse model of colorectal liver metastases, we have identified a paracrine tumor cell/host cell signalling pathway that is apparently required for successful tumor growth. Whereas recombinant platelet derived growth factor-C (PDGF-C) and supernatants from PDGF-C secreting wild type LS174T colon carcinoma cells could rescue tumor promoting hepatic stellate cells (HSC) from growth inhibition by serum starvation, supernatants from LS174T colon carcinoma cells with reduced secretion of PDGF-C had much less effect on serum starved HSC. Autocrine growth inhibition of LS174T cells by PDGF-C knock-down was only marginal. In vivo, a prominent inhibition of liver metastasis was observed if PDGF-C was knocked-down in LS174T cells. By whole genome array analysis of host cells of the invasion front and subsequent immunohistochemical staining we identified p21 activated kinase-2 (PAK-2) as being strongly and specifically expressed by HSC. The above described effect of PDGF-C on HSC was found to be dependent on PAK-2 because in contrast to wild type HSC, silencing of PAK-2 in HSC only allowed for a partial PDGF-C-mediated rescue from serum starvation leading to only a slight increase of proliferation. These data indicate that PDGF-C promotes tumor growth via a growth promoting effect on HSC that is at least in part dependent on the presence of functional PAK-2.
Collapse
Affiliation(s)
- Obul R Bandapalli
- Department of General Pathology, Institute of Pathology, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 220/221, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
39
|
Zuo Y, Wu Y, Chakraborty C. Cdc42 negatively regulates intrinsic migration of highly aggressive breast cancer cells. J Cell Physiol 2012; 227:1399-407. [DOI: 10.1002/jcp.22853] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
40
|
Kastanis GJ, Hernandez-Nazara Z, Nieto N, Rincón-Sanchez AR, Popratiloff A, Dominguez-Rosales JA, Lechuga CG, Rojkind M. The role of dystroglycan in PDGF-BB-dependent migration of activated hepatic stellate cells/myofibroblasts. Am J Physiol Gastrointest Liver Physiol 2011; 301:G464-74. [PMID: 21659621 PMCID: PMC3174534 DOI: 10.1152/ajpgi.00078.2011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hepatic stellate cells are embedded in the loose connective tissue matrix within the space of Disse. This extracellular matrix contains several basement membrane components including laminin, but its composition changes during liver injury because of the production of extracellular matrix components found in scar tissue. These changes in extracellular matrix composition and in cell-extracellular matrix interactions may play a key role in hepatic stellate cell transdifferentiation. In this communication we used early passages of mouse hepatic stellate cells (activated HSC/myofibroblasts) to study the platelet-derived growth factor BB (PDGF-BB)-dependent expression and regulation of β-dystroglycan and its role in activated HSC/myofibroblast migration. We used Northern and Western analysis to study dystroglycan expression and confocal microscopy to investigate changes in subcellular distribution of the protein. Activated HSC migration was investigated using an in vitro wound-healing assay. PDGF-BB induced significant changes in dystroglycan regulation and subcellular distribution of the protein. Whereas steady-state levels of dystroglycan mRNA remained constant, PDGF-BB increased dystroglycan transcription but shortened the t(1/2) by 50%. Moreover, PDGF-BB changed dystroglycan and α5-integrin cellular distribution. Cell migration experiments revealed that PDGF-BB-dependent migration of activated HSC/myofibroblasts was completely blocked by neutralizing antibodies to fibronectin, α5-integrin, laminin, and β-dystroglycan. Overall, these findings suggest that both laminin and fibronectin and their receptors play a key role in PDGF-BB-induced activated HSC migration.
Collapse
Affiliation(s)
| | - Zamira Hernandez-Nazara
- 2Department of Molecular Biology and Genomics, Universidad de Guadalajara, Guadalajara, Jalisco, México;
| | - Natalia Nieto
- 3Division of Liver Diseases, Mount Sinai School of Medicine, New York, New York;
| | - Ana Rosa Rincón-Sanchez
- 2Department of Molecular Biology and Genomics, Universidad de Guadalajara, Guadalajara, Jalisco, México;
| | - Anastas Popratiloff
- 4Center for Microscopy and Image Analysis, The George Washington University Medical Center, Washington, DC;
| | | | - Carmen G. Lechuga
- 5Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), Melchor Fernández Almagro 3, Madrid, Spain
| | | |
Collapse
|
41
|
Razumovskaya E, Sun J, Rönnstrand L. Inhibition of MEK5 by BIX02188 induces apoptosis in cells expressing the oncogenic mutant FLT3-ITD. Biochem Biophys Res Commun 2011; 412:307-12. [DOI: 10.1016/j.bbrc.2011.07.089] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 07/21/2011] [Indexed: 01/24/2023]
|
42
|
Katsarou K, Tsitoura P, Georgopoulou U. MEK5/ERK5/mef2: a novel signaling pathway affected by hepatitis C virus non-enveloped capsid-like particles. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1854-62. [PMID: 21767578 DOI: 10.1016/j.bbamcr.2011.06.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 06/24/2011] [Accepted: 06/27/2011] [Indexed: 11/17/2022]
Abstract
Hepatitis C virus (HCV) is an RNA positive strand virus, member of the Flaviviridae family. The viral particle is composed of a capsid containing the genome, surrounded by E1 and E2 proteins, however different forms of viral particles have been observed including non-enveloped particles. Previous reports have proposed that hepatitis C non-enveloped capsid-like particles (HCVne) enter cells of hepatic origin via clathrin-mediated endocytosis, during which different signaling events occur. In this report we show that HCVne particles are capable of inducing the recently discovered ERK5 pathway, in a dose dependent way. The ERK5 pathway can be activated by growth factors and other extracellular signals. This specific activation occurs through a well characterized upstream kinase, MEK5, and is capable of inducing gene regulation of mef2. In contrast, when HCV core structural and NS5A non-structural proteins were expressed endogenously no activation of this pathway was detected. These cell signaling events could be of critical importance and might give clues for the elucidation of cellular manifestations associated with HCV infection.
Collapse
|
43
|
Fowell AJ, Collins JE, Duncombe DR, Pickering JA, Rosenberg WMC, Benyon RC. Silencing tissue inhibitors of metalloproteinases (TIMPs) with short interfering RNA reveals a role for TIMP-1 in hepatic stellate cell proliferation. Biochem Biophys Res Commun 2011; 407:277-82. [PMID: 21300026 DOI: 10.1016/j.bbrc.2011.02.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 02/02/2011] [Indexed: 12/13/2022]
Abstract
Myofibroblastic, activated hepatic stellate cells (HSC) play a pivotal role in the development of liver fibrosis through the secretion of fibrillar collagens and the tissue inhibitors of metalloproteinase (TIMP)-1 and -2. TIMPs are believed to promote hepatic fibrosis by inhibiting both matrix degradation and apoptosis of HSC. In other cell types, there is evidence that TIMP-1 has effects on proliferation, however the role of TIMPs in the regulation of HSC proliferation remains unexplored. Therefore, we have used short interfering RNA (siRNA) to investigate the effects of autocrine TIMP-1 and -2 on HSC proliferation. TIMP-1 and -2 siRNA were highly effective, producing peak target protein knockdown compared to negative control siRNA of 92% and 63%, respectively. Specific silencing of TIMP-1, using siRNA, significantly reduced HSC proliferation. TIMP-1 was localised in part to the HSC nucleus and TIMP-1 siRNA resulted in loss of both cytoplasmic and nuclear TIMP-1. Attenuated proliferation was associated with reduced Akt phosphorylation and was partially rescued by addition of recombinant TIMP-1. We have revealed a novel autocrine mitogenic effect of TIMP-1 on HSC, which may involve Akt-dependent and specific nuclear mechanisms of action. We suggest that TIMP-1 might promote liver fibrosis by means other than its previously described anti-apoptotic effect on HSC. Moreover, these findings, together with our previous reports and the emerging data from in vivo studies of TIMP inhibition, provide strong evidence that TIMP-1 is mechanistically central to liver fibrosis and an important potential therapeutic target.
Collapse
Affiliation(s)
- Andrew J Fowell
- Liver and Pancreas Group, University of Southampton, Division of Infection, Inflammation and Immunity, Southampton General Hospital, Southampton, UK.
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
In most cholangiopathies, liver diseases of different etiologies in which the biliary epithelium is the primary target in the pathogenic sequence, the central mechanism involves inflammation. Inflammation, characterized by pleomorphic peribiliary infiltrate containing fibroblasts, macrophages, lymphocytes, as well as endothelial cells and pericytes, is associated to the emergence of "reactive cholangiocytes." These biliary cells do not possess bile secretory functions, are in contiguity with terminal cholangioles, and are of a less-differentiated phenotype. They have acquired several mesenchymal properties, including motility and ability to secrete a vast number of proinflammatory chemo/cytokines and growth factors along with de novo expression of a rich receptor machinery. These functional properties enable reactive cholangiocytes to establish intimate contacts and to mutually exchange a variety of paracrine signals with the different mesenchymal cell types populating the portal infiltrate. The extensive crosstalk between the epithelial and mesenchymal compartments is the driver of liver repair mechanisms in cholangiopathies, ultimately evolving toward portal fibrosis. Herein, the authors first review the properties of the different cell types involved in their interaction, and then analyze the underlying molecular mechanisms as they relate to liver repair in cholangiopathies.
Collapse
Affiliation(s)
- Luca Fabris
- Department of Surgical and Gastroenterological Sciences, University of Padua, Padova, Italy
- Center for Liver Research (CeLiveR), Bergamo, Italy
| | - Mario Strazzabosco
- Center for Liver Research (CeLiveR), Bergamo, Italy
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut
- Department of Clinical Medicine, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
45
|
Yan XF, Liu P, Sun MY, Wang XL. Mechanisms underlying the therapeutic effect of Huangqi Decoction against dimethylnitrosamine-induced liver fibrosis in rats. Shijie Huaren Xiaohua Zazhi 2010; 18:2410-2415. [DOI: 10.11569/wcjd.v18.i23.2410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the mechanisms underlying the therapeutic effect of Huangqi Decoction against dimethylnitrosamine (DMN)-induced liver fibrosis in rats.
METHODS: Liver fibrosis was induced in rats by intraperitoneal injection of DMN for 4 wk. Rats were randomly divided into two groups: normal group and model group. Fibrotic rats in the model group were further randomly divided into two subgroups: model control subgroup and Huangqi Decoction subgroup. The Huangqi Decoction subgroup was intragastrically administered Huangqi Decoction for 2 wk, while the model control subgroup was administered equal volume of saline. At the end of 2, 4 and 6 wk, hepatic tissue samples were collected to detect the protein expression of Fas, caspase-8, caspase-3, matrix metallopeptidase-9 (MMP-9), tissue inhibitor of metalloproteinase 1 (TIMP-1) and TIMP-2 by Western blot, mRNA expression of α-SMA by real time-PCR, and MMP-2 and MMP-9 activity by gelatin enzymography.
RESULTS: Compared with the normal group, the expression levels of Fas, caspase-8, caspase-3, TIMP-1 and TIMP-2 proteins and α-SMA mRNA as well as MMP-2 and MMP-9 activity in liver tissue increased gradually in the model group and peaked at 4 wk. Compared with the model control subgroup, the expression levels of Fas, caspase-8, caspase-3, TIMP-1 and TIMP-2 proteins and α-SMA mRNA as well as MMP-2 activity at 6 wk were significantly reduced (1.05 ± 0.02 vs 1.17 ± 0.04, 1.41 ± 0.04 vs 1.98 ± 0.06, 0.86 ± 0.01 vs 1.19±0.04, 1.03 ± 0.03 vs 1.58 ± 0.06, 1.16 ± 0.04 vs 1.53 ± 0.01, 3.12 ± 0.47 vs 8.48 ± 0.45 and 2.15 ± 0.03 vs 2.33 ± 0.05, respectively; all P < 0.05 or 0.01), and MMP-9 protein expression and activity were significantly increased (1.21 ± 0.00 vs 1.12 ± 0.01 and 1.25 ± 0.07 vs 1.10 ± 0.04, respectively; both P < 0.05 or 0.01) in liver tissue in the Huangqi Decoction subgroup.
CONCLUSION: Huangqi Decoction exerts significant anti-fibrotic effects perhaps by inhibiting hepatic cell apoptosis and hepatic stellate cell (HSC) activation, modulating the MMPs/TIMPs system, and promoting extracellular matrix (ECM) degradation.
Collapse
|
46
|
Pereira TN, Walsh MJ, Lewindon PJ, Ramm GA. Paediatric cholestatic liver disease: Diagnosis, assessment of disease progression and mechanisms of fibrogenesis. World J Gastrointest Pathophysiol 2010; 1:69-84. [PMID: 21607144 PMCID: PMC3097948 DOI: 10.4291/wjgp.v1.i2.69] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 03/26/2010] [Accepted: 04/02/2010] [Indexed: 02/06/2023] Open
Abstract
Cholestatic liver disease causes significant morbidity and mortality in children. The diagnosis and management of these diseases can be complicated by an inability to detect early stages of fibrosis and a lack of adequate interventional therapy. There is no single gold standard test that accurately reflects the presence of liver disease, or that can be used to monitor fibrosis progression, particularly in conditions such as cystic fibrosis. This has lead to controversy over how suspected liver disease in children is detected and diagnosed. This review discusses the challenges in using commonly available methods to diagnose hepatic fibrosis and monitor disease progression in children with cholestatic liver disease. In addition, the review examines the mechanisms hypothesised to be involved in the development of hepatic fibrogenesis in paediatric cholestatic liver injury which may ultimately aid in identifying new modalities to assist in both disease detection and therapeutic intervention.
Collapse
|
47
|
Lennartsson J, Burovic F, Witek B, Jurek A, Heldin CH. Erk 5 is necessary for sustained PDGF-induced Akt phosphorylation and inhibition of apoptosis. Cell Signal 2010; 22:955-60. [DOI: 10.1016/j.cellsig.2010.01.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 01/30/2010] [Indexed: 10/19/2022]
|
48
|
Fang ZX, Li XB, Liu JJ, Geng Z, Tian Q. Therapeutic effects of Lanyuzan granules on hepatic fibrosis in rats. Shijie Huaren Xiaohua Zazhi 2009; 17:11-16. [DOI: 10.11569/wcjd.v17.i1.11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the curative effects of Lanyuzan granules on hepatic fibrosis in dimethylnitrosamine (DMN)-induced SD rat model and its mechanism.
METHODS: Forty-five female SD rats were randomly divided into six groups: a control group (n = 5), a model group (n = 8), three treatment groups with different dosage of Lanyuzan granules (n = 8), and a positive control group (n = 8). In the following 30 days, an intraperitoneal injection of dimethylnitrosamine (DMN) 10 mg/kg was performed in five groups every three days, except in the control group. On the thirty-first day, the five indexes of hepatic function, serum concentrations of ALT, AST and ALB, the expressions of a-smooth muscle actin (a-SMA) and matrix metalloproteinase-2 (MMP-2) were measured. Moreover, pathological changes were observed on liver tissue with HE staining.
RESULTS: In liver fibrosis model group, serum concentrations of ALT and AST were significantly higher and concentration of ALB was significantly lower (P < 0.05), while significant increase in a-SMA expression and significant decrease in MMP-2 expression were observed compared with the normal group (182.042 ± 0.658 vs 60.879 ± 0.987; 145.612 ± 4.66 vs 74.824 ± 9.004; 16.078 ± 0.633 vs 28.971 ± 0.443; 161.667 ± 26.766 vs 80.167 ± 10.135; 5.994 ± 1.360 vs 8.270 ± 0.289, all P < 0.05). Decreased ALT and AST serum concentrations, significantly increased ALB concentration, lowered a-SMA expression and elevated MMP-2 expression in liver tissue, were observed in Lanyuzan granules treatment group compared with model control group (87.856 ± 8.526, 106.69 ± 0.987, 136.11 ± 0.329 vs 182.042 ± 0.658; 94.208 ± 2.017, 107.602 ± 20.014, 118.847 ± 5.486 vs 145.612 ± 4.66; 23.412 ± 0.775, 19.653 ± 0.775, 18.635 ± 0.221 vs 16.078 ± 0.633; 109.958 ± 3.607, 117.833 ± 6.600, 119.833 ± 6.167 vs 161.667 ± 26.766; 11.610 ± 0.523, 10.367 ± 0.714 vs 5.994 ± 1.360, all P < 0.05). No notable difference was observed between low dosage group and model control group. The pathological observation showed hepatic fibrosis was alleviated markedly.
CONCLUSION: Lanyuzan granules may play a part in the alleviation of inflammation and the protection of liver by markedly relieving and inhibiting the formation of hepatic fibrosis induced by dimethylnitrosamine.
Collapse
|
49
|
Duarte MIS, de Andrade HF, Takamura CFH, Sesso A, Tuon FF. TGF-beta and mesenchymal hepatic involvement after visceral leishmaniasis. Parasitol Res 2008; 104:1129-36. [PMID: 19057926 DOI: 10.1007/s00436-008-1298-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Accepted: 11/21/2008] [Indexed: 12/15/2022]
Abstract
The liver involvement in the human visceral leishmaniasis (VL) has been related to parasitism and activated Kupffer cells with further occasional fibrotic alterations, especially after long-term disease without treatment. However, fibrotic alterations have been reported after therapy, whose clinical finding is the persistence of hepatomegaly. Fibrotic involvement of the liver after therapy was never well understood, and the aim of this study was to evaluate this finding through ultrastructural and morphometric analysis. A case-control study was performed with 20 patients (15 cases and five controls). Cases included patients with persistent hepatomegaly (residual) after treatment of VL submitted to liver biopsy to exclude other causes of liver enlargement, including serum tests of viral hepatitis. The material was evaluated by electron microscopy allowing ultrastructural with morphometric analysis of medium portion of hepatic lobule. Narrow sinusoidal lumen and prominent Kupffer cells were found with insignificant alterations of hepatocytes, pit, and endothelial cells. On ultrastructural analysis, the enlargement of the space of Disse was due to fibrous collagen, increase of number of Ito cells, and nonfibrous extracellular matrix that were associated with Kupffer cells enlargement. Immunohistochemistry showed an intense expression of TGF-beta in patients with VL. These findings suggest a production of TGF-beta by Kupffer cells that resulted in the characteristic fibrotic involvement of the liver. Residual hepatomegaly in visceral leishmaniasis could result from sustained Kupffer cell activation with perihepatocytic fibrosis.
Collapse
Affiliation(s)
- Maria Irma Seixas Duarte
- Laboratory of the Discipline of Pathology of Transmissible Disease, University of Sao Paulo, Faculty of Medical Sciences, Av. Dr.Arnaldo, 455-Cerqueira César, 01246-903, São Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|
50
|
Activation of ERK5 in angiotensin II-induced hypertrophy of human aortic smooth muscle cells. Mol Cell Biochem 2008; 322:171-8. [PMID: 19011954 DOI: 10.1007/s11010-008-9954-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2008] [Accepted: 10/28/2008] [Indexed: 12/17/2022]
Abstract
Extracellular signal-regulated kinase 5 (ERK5), a recently discovered mitogen-activated protein kinase (MAPK), plays a key role in the development and pathogenesis of cardiovascular disease. In order to clarify the pathophysiological significance of ERK5 in vascular remodeling, we investigated ERK5 phosphorylation in hypertrophy of human aortic smooth muscle cells (HASMCs) induced by angiotensin II (Ang II). The AT1 receptor was involved in Ang II-induced ERK5 activity. Hypertrophy was detected by the measurement of protein synthesis with [(3)H]-Leu incorporation in cultured HASMCs. Ang II rapidly induced phosphorylation of ERK5 at Thr218/Tyr220 residues in a time- and dose-dependent manner. Activation of myocyte enhancer factor-2C (MEF2C) by ERK5 was inhibited by PD98059. Transfecting HASMCs with small interfering RNA (siRNA) to silence ERK5 inhibited Ang II-induced cell hypertrophy. Thus, ERK5 phosphorylation contributes to MEF2C activation and subsequent HASMC hypertrophy induced by Ang II, for a novel molecular mechanism in cardiovascular diseases induced by Ang II.
Collapse
|