1
|
Li K, Mathew B, Saldanha E, Ghosh P, Krainer AR, Dasarathy S, Huang H, Xiang X, Mishra L. New insights into biomarkers and risk stratification to predict hepatocellular cancer. Mol Med 2025; 31:152. [PMID: 40269686 PMCID: PMC12020275 DOI: 10.1186/s10020-025-01194-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 04/01/2025] [Indexed: 04/25/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is the third major cause of cancer death worldwide, with more than a doubling of incidence over the past two decades in the United States. Yet, the survival rate remains less than 20%, often due to late diagnosis at advanced stages. Current HCC screening approaches are serum alpha-fetoprotein (AFP) testing and ultrasound (US) of cirrhotic patients. However, these remain suboptimal, particularly in the setting of underlying obesity and metabolic dysfunction-associated steatotic liver disease/steatohepatitis (MASLD/MASH), which are also rising in incidence. Therefore, there is an urgent need for novel biomarkers that can stratify risk and predict early diagnosis of HCC, which is curable. Advances in liver cancer biology, multi-omics technologies, artificial intelligence, and precision algorithms have facilitated the development of promising candidates, with several emerging from completed phase 2 and 3 clinical trials. This review highlights the performance of these novel biomarkers and algorithms from a mechanistic perspective and provides new insight into how pathological processes can be detected through blood-based biomarkers. Through human studies compiled with animal models and mechanistic insight in pathways such as the TGF-β pathway, the biological progression from chronic liver disease to cirrhosis and HCC can be delineated. This integrated approach with new biomarkers merit further validation to refine HCC screening and improve early detection and risk stratification.
Collapse
Affiliation(s)
- Katrina Li
- The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research & Cold Spring Harbor Laboratory, Department of Medicine, Division of Gastroenterology and Hepatology, Northwell Health, NY, 11030, USA
| | - Brandon Mathew
- The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research & Cold Spring Harbor Laboratory, Department of Medicine, Division of Gastroenterology and Hepatology, Northwell Health, NY, 11030, USA
| | - Ethan Saldanha
- The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research & Cold Spring Harbor Laboratory, Department of Medicine, Division of Gastroenterology and Hepatology, Northwell Health, NY, 11030, USA
| | - Puja Ghosh
- The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research & Cold Spring Harbor Laboratory, Department of Medicine, Division of Gastroenterology and Hepatology, Northwell Health, NY, 11030, USA
| | - Adrian R Krainer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Srinivasan Dasarathy
- Division of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH, 44106, USA
| | - Hai Huang
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Donald and Barbara Zucker School of Medicine at Hofstra, Northwell Health, Manhasset, NY, 11030, USA
| | - Xiyan Xiang
- The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research & Cold Spring Harbor Laboratory, Department of Medicine, Division of Gastroenterology and Hepatology, Northwell Health, NY, 11030, USA.
| | - Lopa Mishra
- The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research & Cold Spring Harbor Laboratory, Department of Medicine, Division of Gastroenterology and Hepatology, Northwell Health, NY, 11030, USA.
- Department of Surgery, George Washington University, Washington, DC, 20037, USA.
| |
Collapse
|
2
|
Zheng J, Wang S, Xia L, Sun Z, Chan KM, Bernards R, Qin W, Chen J, Xia Q, Jin H. Hepatocellular carcinoma: signaling pathways and therapeutic advances. Signal Transduct Target Ther 2025; 10:35. [PMID: 39915447 PMCID: PMC11802921 DOI: 10.1038/s41392-024-02075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/18/2024] [Accepted: 11/14/2024] [Indexed: 02/09/2025] Open
Abstract
Liver cancer represents a major global health concern, with projections indicating that the number of new cases could surpass 1 million annually by 2025. Hepatocellular carcinoma (HCC) constitutes around 90% of liver cancer cases and is primarily linked to factors incluidng aflatoxin, hepatitis B (HBV) and C (HCV), and metabolic disorders. There are no obvious symptoms in the early stage of HCC, which often leads to delays in diagnosis. Therefore, HCC patients usually present with tumors in advanced and incurable stages. Several signaling pathways are dis-regulated in HCC and cause uncontrolled cell propagation, metastasis, and recurrence of HCC. Beyond the frequently altered and therapeutically targeted receptor tyrosine kinase (RTK) pathways in HCC, pathways involved in cell differentiation, telomere regulation, epigenetic modification and stress response also provide therapeutic potential. Investigating the key signaling pathways and their inhibitors is pivotal for achieving therapeutic advancements in the management of HCC. At present, the primary therapeutic approaches for advanced HCC are tyrosine kinase inhibitors (TKI), immune checkpoint inhibitors (ICI), and combination regimens. New trials are investigating combination therapies involving ICIs and TKIs or anti-VEGF (endothelial growth factor) therapies, as well as combinations of two immunotherapy regimens. The outcomes of these trials are expected to revolutionize HCC management across all stages. Here, we provide here a comprehensive review of cellular signaling pathways, their therapeutic potential, evidence derived from late-stage clinical trials in HCC and discuss the concepts underlying earlier clinical trials, biomarker identification, and the development of more effective therapeutics for HCC.
Collapse
Affiliation(s)
- Jiaojiao Zheng
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Siying Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Lei Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Zhen Sun
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Kui Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, PR China
| | - René Bernards
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wenxin Qin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Jinhong Chen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, PR China.
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Haojie Jin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
3
|
Despotidis M, Lyros O, Driva TS, Sarantis P, Kapetanakis EI, Mylonakis A, Mamilos A, Sakellariou S, Schizas D. DKK1 and Its Receptors in Esophageal Adenocarcinoma: A Promising Molecular Target. Diagnostics (Basel) 2025; 15:85. [PMID: 39795613 PMCID: PMC11720708 DOI: 10.3390/diagnostics15010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/26/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025] Open
Abstract
Esophageal adenocarcinoma (EAC) is an aggressive gastrointestinal (GI) malignancy with increasing incidence. Despite the recent progress in targeted therapies and surgical approaches, the survival rates of esophageal adenocarcinoma patients remain poor. The Dickkopf (DKK) proteins are secretory proteins known mainly as antagonists of the Wnt/β-catenin signaling pathway, which is considered an oncogene. However, it has been shown that in several GI cancers, including esophageal cancer, DKK1 may act as an oncogene itself through Wnt-independent signaling pathways. LRP5\6 and Kremen1/2 (Krm1/2) are transmembrane receptors to which the DKK proteins are mainly known to bind. CKAP4 (cytoskeleton-associated protein 4) is a novel receptor of DKK1, and the DKK1-CKAP4 pathway seems to be crucial in the role of DKK1 as an oncogene. The aim of this review is to feature the essential role of DKK1 and its receptors in carcinogenesis with a focus on EAC in an era of urgent need for specific biomarkers along with improved targeted therapies.
Collapse
Affiliation(s)
- Markos Despotidis
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, 11527 Athens, Greece; (A.M.); (D.S.)
| | - Orestis Lyros
- Fourth Department of Surgery, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Tatiana S. Driva
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (T.S.D.); (S.S.)
| | - Panagiotis Sarantis
- Department of Biological Chemistry, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Emmanouil I. Kapetanakis
- Department of Thoracic Surgery, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Adam Mylonakis
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, 11527 Athens, Greece; (A.M.); (D.S.)
| | - Andreas Mamilos
- Institute of Pathology, University of Regensburg, 93053 Bavaria, Germany;
- Department of Pathology, German Oncology Center, Limassol 4108, Cyprus
| | - Stratigoula Sakellariou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (T.S.D.); (S.S.)
| | - Dimitrios Schizas
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, 11527 Athens, Greece; (A.M.); (D.S.)
| |
Collapse
|
4
|
Ma E, Wo D, Chen J, Yan H, Zhou X, He J, Wu C, Wang Q, Zuo C, Li X, Li L, Meng Q, Zheng L, Peng L, Chen L, Peng J, Ren DN, Zhu W. Inhibition of a novel Dickkopf-1-LDL receptor-related proteins 5 and 6 axis prevents diabetic cardiomyopathy in mice. Eur Heart J 2024; 45:688-703. [PMID: 38152853 PMCID: PMC10906985 DOI: 10.1093/eurheartj/ehad842] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/12/2023] [Accepted: 12/06/2023] [Indexed: 12/29/2023] Open
Abstract
BACKGROUND AND AIMS Anti-hypertensive agents are one of the most frequently used drugs worldwide. However, no blood pressure-lowering strategy is superior to placebo with respect to survival in diabetic hypertensive patients. Previous findings show that Wnt co-receptors LDL receptor-related proteins 5 and 6 (LRP5/6) can directly bind to several G protein-coupled receptors (GPCRs). Because angiotensin II type 1 receptor (AT1R) is the most important GPCR in regulating hypertension, this study examines the possible mechanistic association between LRP5/6 and their binding protein Dickkopf-1 (DKK1) and activation of the AT1R and further hypothesizes that the LRP5/6-GPCR interaction may affect hypertension and potentiate cardiac impairment in the setting of diabetes. METHODS The roles of serum DKK1 and DKK1-LRP5/6 signalling in diabetic injuries were investigated in human and diabetic mice. RESULTS Blood pressure up-regulation positively correlated with serum DKK1 elevations in humans. Notably, LRP5/6 physically and functionally interacted with AT1R. The loss of membrane LRP5/6 caused by injection of a recombinant DKK1 protein or conditional LRP5/6 deletions resulted in AT1R activation and hypertension, as well as β-arrestin1 activation and cardiac impairment, possibly because of multiple GPCR alterations. Importantly, unlike commonly used anti-hypertensive agents, administration of the anti-DKK1 neutralizing antibody effectively prevented diabetic cardiac impairment in mice. CONCLUSIONS These findings establish a novel DKK1-LRP5/6-GPCR pathway in inducing diabetic injuries and may resolve the long-standing conundrum as to why elevated blood DKK1 has deleterious effects. Thus, monitoring and therapeutic elimination of blood DKK1 may be a promising strategy to attenuate diabetic injuries.
Collapse
Affiliation(s)
- En Ma
- Innovation and Transformation Center, Collaborative Innovation Center for Rehabilitation Technology, Fujian Key Laboratory of Integrative Medicine on Geriatrics, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou, Fuzhou 350122, China
- Clinical and Translational Research Center, Research Institute of Heart Failure Shanghai East Hospital, Key Laboratory of Arrhythmias of Ministry of Education, Tongji University School of Medicine, 1239 Siping Road, Yangpu, Shanghai, China
| | - Da Wo
- Innovation and Transformation Center, Collaborative Innovation Center for Rehabilitation Technology, Fujian Key Laboratory of Integrative Medicine on Geriatrics, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou, Fuzhou 350122, China
| | - Jinxiao Chen
- Innovation and Transformation Center, Collaborative Innovation Center for Rehabilitation Technology, Fujian Key Laboratory of Integrative Medicine on Geriatrics, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou, Fuzhou 350122, China
| | - Hongwei Yan
- Clinical and Translational Research Center, Research Institute of Heart Failure Shanghai East Hospital, Key Laboratory of Arrhythmias of Ministry of Education, Tongji University School of Medicine, 1239 Siping Road, Yangpu, Shanghai, China
| | - Xiaohui Zhou
- Clinical and Translational Research Center, Research Institute of Heart Failure Shanghai East Hospital, Key Laboratory of Arrhythmias of Ministry of Education, Tongji University School of Medicine, 1239 Siping Road, Yangpu, Shanghai, China
| | - Jia He
- Innovation and Transformation Center, Collaborative Innovation Center for Rehabilitation Technology, Fujian Key Laboratory of Integrative Medicine on Geriatrics, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou, Fuzhou 350122, China
| | - Celiang Wu
- Innovation and Transformation Center, Collaborative Innovation Center for Rehabilitation Technology, Fujian Key Laboratory of Integrative Medicine on Geriatrics, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou, Fuzhou 350122, China
| | - Qing Wang
- Innovation and Transformation Center, Collaborative Innovation Center for Rehabilitation Technology, Fujian Key Laboratory of Integrative Medicine on Geriatrics, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou, Fuzhou 350122, China
| | - Changjing Zuo
- Department of Nuclear Medicine, Changhai Hospital, Shanghai, China
| | - Xiao Li
- Department of Nuclear Medicine, Changhai Hospital, Shanghai, China
| | - Li Li
- Department of Health Management, Shengli Clinical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Qingshu Meng
- Clinical and Translational Research Center, Research Institute of Heart Failure Shanghai East Hospital, Key Laboratory of Arrhythmias of Ministry of Education, Tongji University School of Medicine, 1239 Siping Road, Yangpu, Shanghai, China
| | - Liang Zheng
- Clinical and Translational Research Center, Research Institute of Heart Failure Shanghai East Hospital, Key Laboratory of Arrhythmias of Ministry of Education, Tongji University School of Medicine, 1239 Siping Road, Yangpu, Shanghai, China
| | - Luying Peng
- Clinical and Translational Research Center, Research Institute of Heart Failure Shanghai East Hospital, Key Laboratory of Arrhythmias of Ministry of Education, Tongji University School of Medicine, 1239 Siping Road, Yangpu, Shanghai, China
| | - Lidian Chen
- Innovation and Transformation Center, Collaborative Innovation Center for Rehabilitation Technology, Fujian Key Laboratory of Integrative Medicine on Geriatrics, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou, Fuzhou 350122, China
| | - Jun Peng
- Innovation and Transformation Center, Collaborative Innovation Center for Rehabilitation Technology, Fujian Key Laboratory of Integrative Medicine on Geriatrics, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou, Fuzhou 350122, China
| | - Dan-ni Ren
- Innovation and Transformation Center, Collaborative Innovation Center for Rehabilitation Technology, Fujian Key Laboratory of Integrative Medicine on Geriatrics, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou, Fuzhou 350122, China
| | - Weidong Zhu
- Innovation and Transformation Center, Collaborative Innovation Center for Rehabilitation Technology, Fujian Key Laboratory of Integrative Medicine on Geriatrics, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou, Fuzhou 350122, China
- Clinical and Translational Research Center, Research Institute of Heart Failure Shanghai East Hospital, Key Laboratory of Arrhythmias of Ministry of Education, Tongji University School of Medicine, 1239 Siping Road, Yangpu, Shanghai, China
| |
Collapse
|
5
|
Hao L, Li S, Deng J, Li N, Yu F, Jiang Z, Zhang J, Shi X, Hu X. The current status and future of PD-L1 in liver cancer. Front Immunol 2023; 14:1323581. [PMID: 38155974 PMCID: PMC10754529 DOI: 10.3389/fimmu.2023.1323581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023] Open
Abstract
The application of immunotherapy in tumor, especially immune checkpoint inhibitors (ICIs), has played an important role in the treatment of advanced unresectable liver cancer. However, the efficacy of ICIs varies greatly among different patients, which has aroused people's attention to the regulatory mechanism of programmed death ligand-1 (PD-L1) in the immune escape of liver cancer. PD-L1 is regulated by multiple levels and signaling pathways in hepatocellular carcinoma (HCC), including gene variation, epigenetic inheritance, transcriptional regulation, post-transcriptional regulation, and post-translational modification. More studies have also found that the high expression of PD-L1 may be the main factor affecting the immunotherapy of liver cancer. However, what is the difference of PD-L1 expressed by different types of cells in the microenvironment of HCC, and which type of cells expressed PD-L1 determines the effect of tumor immunotherapy remains unclear. Therefore, clarifying the regulatory mechanism of PD-L1 in liver cancer can provide more basis for liver cancer immunotherapy and combined immune treatment strategy. In addition to its well-known role in immune regulation, PD-L1 also plays a role in regulating cancer cell proliferation and promoting drug resistance of tumor cells, which will be reviewed in this paper. In addition, we also summarized the natural products and drugs that regulated the expression of PD-L1 in HCC.
Collapse
Affiliation(s)
- Liyuan Hao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shenghao Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Clinical Research Center, Shijiazhuang Fifth Hospital, Shijiazhuang, Hebei, China
| | - Jiali Deng
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Na Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fei Yu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhi Jiang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Junli Zhang
- Department of Infectious Diseases, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xinli Shi
- Center of Experimental Management, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Seo SH, Cho KJ, Park HJ, Lee HW, Kim BK, Park JY, Kim DY, Ahn SH, Cheon JH, Yook JI, Kim MD, Joo DJ, Kim SU. Inhibition of Dickkopf-1 enhances the anti-tumor efficacy of sorafenib via inhibition of the PI3K/Akt and Wnt/β-catenin pathways in hepatocellular carcinoma. Cell Commun Signal 2023; 21:339. [PMID: 38012711 PMCID: PMC10680194 DOI: 10.1186/s12964-023-01355-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/14/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Sorafenib improves the overall survival in patients with advanced hepatocellular carcinoma (HCC). Dickkopf-1 (DKK1) is commonly overexpressed in HCC. In this study, we investigated whether the inhibition of DKK1 enhances the anti-tumor efficacy of sorafenib in HCC. METHODS HCC cells were treated with sorafenib and WAY-262611, which is an inhibitor of DKK1. Transgenic mouse models were also developed using hydrodynamic tail vein injection. Mice were orally administered with sorafenib (32 mg/kg), WAY-262611 (16 mg/kg), or sorafenib + WAY-262611 for 10 days. Mechanisms of sorafenib and WAY-262611 were explored via western blotting, immunostaining, and RNA sequencing. RESULTS DKK1 was significantly overexpressed in patients with HCC than in the healthy controls and patients with liver diseases except HCC (all P < 0.05). Compared with sorafenib alone, sorafenib + WAY-262611 significantly inhibited the cell viability, invasion, migration, and colony formation by promoting apoptosis and altering the cell cycles in HCC cells (all P < 0.05). Moreover, sorafenib + WAY-262611 decreased the p110α, phospho-Akt (all P < 0.05), active β-catenin (all P < 0.05) and phospho-GSK-3β (Ser9) expression levels, while increasing the phospho-GSK-3β (Tyr216) expression levels compared with those in the sorafenib alone in vitro and in vivo. In addition, sorafenib + WAY-262611 inhibited tumor progression by regulating cell proliferation and apoptosis, significantly better than sorafenib alone in mouse models. CONCLUSIONS Our results indicate that DKK1 inhibition significantly enhances the anti-tumor efficacy of sorafenib by inhibiting the PI3K/Akt and Wnt/β-catenin pathways via regulation of GSK3β activity, suggesting a novel therapeutic strategy for HCC. Video Abstract.
Collapse
Affiliation(s)
- Sang Hyun Seo
- Department of Internal Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
- Yonsei Liver Center, Severance Hospital, Seoul, Korea
| | - Kyung Joo Cho
- Yonsei Liver Center, Severance Hospital, Seoul, Korea
| | - Hye Jung Park
- Yonsei Liver Center, Severance Hospital, Seoul, Korea
| | - Hye Won Lee
- Yonsei Liver Center, Severance Hospital, Seoul, Korea
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea
| | - Beom Kyung Kim
- Yonsei Liver Center, Severance Hospital, Seoul, Korea
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea
| | - Jun Yong Park
- Yonsei Liver Center, Severance Hospital, Seoul, Korea
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea
| | - Do Young Kim
- Yonsei Liver Center, Severance Hospital, Seoul, Korea
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea
| | - Sang Hoon Ahn
- Yonsei Liver Center, Severance Hospital, Seoul, Korea
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea
| | - Jae Hee Cheon
- Department of Internal Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jong In Yook
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, Korea
| | - Man-Deuk Kim
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Dong Jin Joo
- Department of Surgery, Yonsei University of College of Medicine, Seoul, Korea
| | - Seung Up Kim
- Yonsei Liver Center, Severance Hospital, Seoul, Korea.
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea.
| |
Collapse
|
7
|
Mei Y, Li M, Wen J, Kong X, Li J. Single-cell characteristics and malignancy regulation of alpha-fetoprotein-producing gastric cancer. Cancer Med 2023; 12:12018-12033. [PMID: 37017469 PMCID: PMC10242870 DOI: 10.1002/cam4.5883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 04/06/2023] Open
Abstract
OBJECTIVE To characterize alpha-fetoprotein (AFP)-producing gastric cancer (AFPGC) at the single-cell level and to identify regulatory factors for AFP expression and malignancy. METHODS ScRNA-seq was performed on two tumors collected from patients with AFPGC. InferCNV and sub-clustering were applied to identify typical AFPGC cells, followed by AddModuleScore, pathway enrichment, Pseudo-time, and Scenic analyses. Data from a gastric cancer (GC) cohort were collected for conjoint analysis. The analytical results were verified by cell experiments and immunohistochemistry. RESULTS AFPGC cells are similar to hepatocytes in transcriptome and transcriptional regulation, with kinetic malignancy-related pathways, compared to the common malignant epithelium. In addition, compared to common GC cells, malignancy-related pathways, such as epithelial-mesenchymal transition (EMT) and angiogenesis, were upregulated in AFPGC. Mechanistically, Dickkopf-1 (DKK1) was found to be associated with AFP expression and malignant phenotype upon combining our scRNA-seq data with a public database, which was further verified by a series of in vitro experiments and immunohistochemistry. CONCLUSION We demonstrated the single-cell characteristics of AFPGC and that DKK1 facilitates AFP expression and malignancy.
Collapse
Affiliation(s)
- Yanxia Mei
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang University Cancer CenterHangzhouZhejiangChina
| | - Ming Li
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang University Cancer CenterHangzhouZhejiangChina
| | - Jihang Wen
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang University Cancer CenterHangzhouZhejiangChina
| | - Xiangxing Kong
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang University Cancer CenterHangzhouZhejiangChina
| | - Jun Li
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang University Cancer CenterHangzhouZhejiangChina
| |
Collapse
|
8
|
Hsu YC, Chang CC, Hsieh CC, Huang YT, Shih YH, Chang HC, Chang PJ, Lin CL. Dickkopf-1 Acts as a Profibrotic Mediator in Progressive Chronic Kidney Disease. Int J Mol Sci 2023; 24:ijms24087679. [PMID: 37108841 PMCID: PMC10143456 DOI: 10.3390/ijms24087679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Chronic kidney disease (CKD) is a serious public health problem. Due to a high variability in the speed of CKD progression to end-stage renal disease (ESRD) and the critical involvement of Wnt/β-catenin signaling in CKD, we investigated the role of the Wnt antagonist Dickkopf-1 (DKK1) in CKD progression. Our data revealed that patients with CKD stages 4-5 had higher DKK1 levels in their serum and renal tissues than the control subjects. In an 8-year follow-up, the serum DKK1-high group in the enrolled CKD patients showed a faster progression to ESRD than the serum DKK1-low group. Using a rat model of 5/6 nephrectomy (Nx)-induced CKD, we consistently detected elevated serum levels and renal production of DKK1 in 5/6 Nx rats compared to sham-operated rats. Importantly, the knockdown of the DKK1 levels in the 5/6 Nx rats markedly attenuated the CKD-associated phenotypes. Mechanistically, we demonstrated that the treatment of mouse mesangial cells with recombinant DKK1 protein induced not only the production of multiple fibrogenic proteins, but also the expression of endogenous DKK1. Collectively, our findings suggest that DKK1 acts as a profibrotic mediator in CKD, and elevated levels of serum DKK1 may be an independent predictor of faster disease progression to ESRD in patients with advanced CKD.
Collapse
Affiliation(s)
- Yung-Chien Hsu
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Cheng-Chih Chang
- Department of Surgery, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Ching-Chuan Hsieh
- Division of General Surgery, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Yu-Ting Huang
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Ya-Hsueh Shih
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Hsiu-Ching Chang
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Pey-Jium Chang
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chun-Liang Lin
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Kidney Research Center, Chang Gung Memorial Hospital, Taipei 105, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| |
Collapse
|
9
|
Park M, Cho JH, Moon B, Kim JH, Kim JA. CDK9 inhibitors downregulate DKK1 expression to suppress the metastatic potential of HCC cells. Genes Genomics 2023; 45:285-293. [PMID: 36662391 DOI: 10.1007/s13258-022-01351-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/26/2022] [Indexed: 01/21/2023]
Abstract
BACKGROUND Elevated expression of Dickkopf-1 (DKK1) is frequently observed in hepatocellular carcinoma (HCC) patients with poor clinical outcomes. Several reports indicating the functional involvement of DKK1 in HCC progression have suggested DKK1 as a promising therapeutic target for HCC. OBJECTIVE In this study, to develop an efficient way to target DKK1, we assessed the effect of CDK9 inhibitors on DKK1 expression linked to metastatic movement of HCC. METHODS The expression of DKK1 in CDK9 inhibitor-treated HCC cells was measured by western blot, ELISA and quantitative real-time reverse transcription PCR. Wound healing assay, migration assay, invasion assay and western blot were examined to evaluate the functional role of DKK1 in CDK9 inhibitors-treated HCC. RESULTS Inactivation of CDK9 either by a catalytic inhibitor being clinically evaluated or by a specific CDK9 protein degrader largely downregulated DKK1 expression at the transcript and protein levels. In addition, CDK9 inhibitors suppressed the migration and invasion of HCC cells. We observed that ectopic high expression of DKK1 at least partially reversed the defects in metastatic movement of HCC cells mediated by CDK9 inhibitors. We further discovered that the DKK1-nuclear β-catenin axis associated with the metastatic potential of HCC cells was impaired by CDK9 inhibitors. CONCLUSION Taken together, our findings suggest that CDK9 inhibitors are potent tools to target DKK1, which can suppress the metastatic progression of HCC.
Collapse
Affiliation(s)
- Mijin Park
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.,Department of Bioscience, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Jin Hwa Cho
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Byul Moon
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.,Department of Bioscience, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Jeong-Hoon Kim
- Department of Bioscience, University of Science and Technology, Daejeon, 34113, Republic of Korea. .,Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea. .,Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, Republic of Korea.
| | - Jung-Ae Kim
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea. .,Department of Bioscience, University of Science and Technology, Daejeon, 34113, Republic of Korea. .,Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
10
|
Shahini E, Pasculli G, Solimando AG, Tiribelli C, Cozzolongo R, Giannelli G. Updating the Clinical Application of Blood Biomarkers and Their Algorithms in the Diagnosis and Surveillance of Hepatocellular Carcinoma: A Critical Review. Int J Mol Sci 2023; 24:4286. [PMID: 36901717 PMCID: PMC10001986 DOI: 10.3390/ijms24054286] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
The most common primary liver cancer is hepatocellular carcinoma (HCC), and its mortality rate is increasing globally. The overall 5-year survival of patients with liver cancer is currently 10-20%. Moreover, because early diagnosis can significantly improve prognosis, which is highly correlated with tumor stage, early detection of HCC is critical. International guidelines advise using α-FP biomarker with/without ultrasonography for HCC surveillance in patients with advanced liver disease. However, traditional biomarkers are sub-optimal for risk stratification of HCC development in high-risk populations, early diagnosis, prognostication, and treatment response prediction. Since about 20% of HCCs do not produce α-FP due to its biological diversity, combining α-FP with novel biomarkers can enhance HCC detection sensitivity. There is a chance to offer promising cancer management methods in high-risk populations by utilizing HCC screening strategies derived from new tumor biomarkers and prognostic scores created by combining biomarkers with distinct clinical parameters. Despite numerous efforts to identify molecules as potential biomarkers, there is no single ideal marker in HCC. When combined with other clinical parameters, the detection of some biomarkers has higher sensitivity and specificity in comparison with a single biomarker. Therefore, newer biomarkers and models, such as the Lens culinaris agglutinin-reactive fraction of Alpha-fetoprotein (α-FP), α-FP-L3, Des-γ-carboxy-prothrombin (DCP or PIVKA-II), and the GALAD score, are being used more frequently in the diagnosis and prognosis of HCC. Notably, the GALAD algorithm was effective in HCC prevention, particularly for cirrhotic patients, regardless of the cause of their liver disease. Although the role of these biomarkers in surveillance is still being researched, they may provide a more practical alternative to traditional imaging-based surveillance. Finally, looking for new diagnostic/surveillance tools may help improve patients' survival. This review discusses the current roles of the most used biomarkers and prognostic scores that may aid in the clinical management of HCC patients.
Collapse
Affiliation(s)
- Endrit Shahini
- Gastroenterology Unit, National Institute of Gastroenterology-IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy
| | - Giuseppe Pasculli
- National Institute of Gastroenterology-IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy
| | - Antonio Giovanni Solimando
- Guido Baccelli Unit of Internal Medicine, Department of Precision and Regenerative Medicine and Ionian Area-(DiMePRe-J), University of Bari “A. Moro”, 70121 Bari, Italy
| | | | - Raffaele Cozzolongo
- Gastroenterology Unit, National Institute of Gastroenterology-IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy
| | - Gianluigi Giannelli
- Scientific Director, National Institute of Gastroenterology-IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy
| |
Collapse
|
11
|
Yao CY, Gao ZX, Hou LL, Fang D. DKK1 promotes NUAK1 transcriptional expression through the activation Akt in hepatocellular carcinoma. Cell Biol Int 2023; 47:383-393. [PMID: 36480792 DOI: 10.1002/cbin.11974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/21/2022] [Indexed: 12/13/2022]
Abstract
NUAK1 is a serine/threonine kinase that has been shown to be associated with poor prognosis in several cancers. Although NUAK1 is frequently overexpressed at the transcript level in hepatocellular carcinoma (HCC), the actual role of NUAK1 and the mechanism of its overexpression in HCC has yet to be reported. In the present study, we found that NUAK1 expression was significantly increased in human HCC tumor tissues. Overexpression of NUAK1 dramatically enhanced HCC cells proliferation and migration in vitro. Stable induction of NUAK1 expression promoted tumor growth and tumor metastases to the lungs in the subcutaneous xenograft models and intravenous metastasis models. At the cellular level, enforced expression of Dickkopf-1 (DKK1) activated the Akt signaling pathway, thereby promoting the mRNA and protein expression of NUAK1 in HCC cells. By contrast, depletion of DKK1 was found to attenuate the mRNA and protein expression of NUAK1. In the subcutaneous xenograft models, stable induction of DKK1 expression not only accelerated tumor growth but also increased p-Akt and NUAK1 expression; whereas knockdown of DKK1 inhibited tumor growth, p-Akt and NUAK1 expression. Furthermore, immunohistochemical analysis of 20 HCC clinical samples showed that the expression level of NUAK1 was positively correlated with DKK1 and p-Akt. Taken together, we provide the first evidence that DKK1 promotes NUAK1 transcriptional expression via the activation Akt in HCC.
Collapse
Affiliation(s)
- Chao-Yan Yao
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation, Henan University, Kaifeng, China
| | - Zi-Xuan Gao
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation, Henan University, Kaifeng, China
| | - Li-Li Hou
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation, Henan University, Kaifeng, China.,Quality and Technique Supervision, Inspection and Testing Center of Xuchang City, Xuchang, China
| | - Dong Fang
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation, Henan University, Kaifeng, China
| |
Collapse
|
12
|
Yang RH, Qin J, Cao JL, Zhang MZ, Li YY, Wang MQ, Fang D, Xie SQ. Dickkopf-1 drives tumor immune evasion by inducing PD-L1 expression in hepatocellular carcinoma. Biochem Pharmacol 2023; 208:115378. [PMID: 36513141 DOI: 10.1016/j.bcp.2022.115378] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Understanding the mechanisms regulating PD-L1 expression in hepatocellular carcinoma (HCC) is important to improve the response rate to PD-1/PD-L1 blockade therapy. Here, we show that DKK1 expression is positively associated with PD-L1 expression and inversely correlated with CD8+ T cell infiltration in human HCC tumor specimens. In a subcutaneous xenograft tumor model, overexpression of DKK1 significantly promotes tumor growth, tumoral PD-L1 expression, but reduces tumoral CD8+ T cell infiltration; whereas knockdown of DKK1 has opposite effects. Moreover, enforced expression of DKK1 dramatically promotes PD-L1 expression, Akt activation, β-catenin phosphorylation and total protein expression in HCC cells. By contrast, knockdown of DKK1 inhibits all, relative to controls. In addition, CKAP4 depletion, Akt inhibition, or β-catenin depletion remarkably abrogates DKK1 overexpression-induced transcriptional expression of PD-L1 in HCC cells. Reconstituted expression of the active Akt1 largely increased PD-L1 transcriptional expression in HCC cells. Similarly, expression of WT β-catenin, but not the phosphorylation-defective β-catenin S552A mutant, significantly promotes PD-L1 expression. Correlation analysis of human HCC tumor specimens further revealed that DKK1 and PD-L1 expression were positively correlated with p-β-catenin expression. Together, our findings revealed that DKK1 promotes PD-L1 expression through the activation of Akt/β-catenin signaling, providing a potential strategy to enhance the clinical efficacy of PD-1/PD-L1 blockade therapy in HCC patients.
Collapse
Affiliation(s)
- Ruo-Han Yang
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng 475004, China; The Academy for Advanced Interdisplinary Studies, Henan University, N. Jinming Ave, Kaifeng 475004, China
| | - Jia Qin
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng 475004, China
| | - Jin-Lan Cao
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng 475004, China
| | - Ming-Zhu Zhang
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng 475004, China
| | - Ying-Ying Li
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng 475004, China
| | - Meng-Qing Wang
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng 475004, China
| | - Dong Fang
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng 475004, China; The Academy for Advanced Interdisplinary Studies, Henan University, N. Jinming Ave, Kaifeng 475004, China; Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Kaifeng 475004, China.
| | - Song-Qiang Xie
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng 475004, China; The Academy for Advanced Interdisplinary Studies, Henan University, N. Jinming Ave, Kaifeng 475004, China.
| |
Collapse
|
13
|
Dickkopf-Related Protein 1 as Response Marker for Transarterial Chemoembolization of Hepatocellular Carcinomas. Cancers (Basel) 2022; 14:cancers14194807. [PMID: 36230730 PMCID: PMC9563450 DOI: 10.3390/cancers14194807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aims: In the treatment of hepatocellular carcinoma (HCC), response prediction to transarterial chemoembolization (TACE) based on serum biomarkers is not established. We have studied the association of circulating Dickkopf-related protein 1 (DKK-1) with baseline characteristics and response to TACE in European HCC patients. Methods: Patients with HCC treated with TACE from 2010 to 2018 at a tertiary referral hospital were retrospectively enrolled. Levels of DKK-1 were measured in serum samples collected before TACE. Response was assessed according to mRECIST criteria at week 12 after TACE. Results: Ninety-seven patients were enrolled, including seventy-nine responders and eighteen refractory. Before TACE, median DKK-1 serum levels were 922 [range, 199−4514] pg/mL. DKK-1 levels were lower in patients with liver cirrhosis (p = 0.002) and showed a strong correlation with total radiologic tumor size (r = 0.593; p < 0.001) and with Barcelona Clinic Liver Cancer stages (p = 0.032). Median DKK-1 levels were significantly higher in refractory patients as compared to responders (1471 pg/mL [range, 546−2492 pg/mL] versus 837 pg/mL [range, 199−4515 pg/mL]; p < 0.001), and DKK-1 could better identify responders than AFP (AUC = 0.798 vs. AUC = 0.679; p < 0.001). A DKK-1 cutoff of ≤1150 pg/mL was defined to identify responders to TACE with a sensitivity of 78% and specificity of 77%. DKK-1 levels were suitable to determine response to TACE in patients with low AFP serum levels (AFP levels < 20 ng/mL; AUC = 0.843; 95% CI [0.721−0.965]; p = 0.003). Conclusion: DKK-1 levels in serum are strongly associated tumor size and with response to TACE in European HCC patients, including those patients with low AFP levels.
Collapse
|
14
|
Saddozai UAK, Wang F, Khattak S, Akbar MU, Badar M, Khan NH, Zhang L, Zhu W, Xie L, Li Y, Ji X, Guo X. Define the Two Molecular Subtypes of Epithelioid Malignant Pleural Mesothelioma. Cells 2022; 11:cells11182924. [PMID: 36139498 PMCID: PMC9497219 DOI: 10.3390/cells11182924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/25/2022] [Accepted: 09/08/2022] [Indexed: 11/20/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a fatal disease of respiratory system. Despite the availability of invasive biomarkers with promising results, there are still significant diagnostic and therapeutic challenges in the treatment of MPM. One of three main mesothelioma cell types, epithelioid mesothelioma makes up approximately 70% of all mesothelioma cases. Different observational findings are under process, but the molecular heterogeneity and pathogenesis of epithelioid malignant pleural mesothelioma (eMPM) are still not well understood. Through molecular analysis, expression profiling data were used to determine the possibility and optimal number of eMPM molecular subtypes. Next, clinicopathological characteristics and different molecular pathways of each subtype were analyzed to prospect the clinical applications and advanced mechanisms of eMPM. In this study, we identified two distinct epithelioid malignant pleural mesothelioma subtypes with distinct gene expression patterns. Subtype I eMPMs were involved in steroid hormone biosynthesis, porphyrin and chlorophyll metabolism, and drug metabolism, while subtype II eMPMs were involved in rational metabolism, tyrosine metabolism, and chemical carcinogenesis pathways. Additionally, we identified potential subtype-specific therapeutic targets, including CCNE1, EPHA3, RNF43, ROS1, and RSPO2 for subtype I and CDKN2A and RET for subtype II. Considering the need for potent diagnostic and therapeutic biomarkers for eMPM, we are anticipating that our findings will help both in exploring underlying mechanisms in the development of eMPM and in designing targeted therapy for eMPM.
Collapse
Affiliation(s)
- Umair Ali Khan Saddozai
- Department of Preventive Medicine, Institute of Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Fengling Wang
- Department of Preventive Medicine, Institute of Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Saadullah Khattak
- Department of Preventive Medicine, Institute of Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Muhammad Usman Akbar
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Muhammad Badar
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Nazeer Hussain Khan
- Department of Preventive Medicine, Institute of Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Lu Zhang
- Department of Preventive Medicine, Institute of Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Wan Zhu
- Department of Anesthesia, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Longxiang Xie
- Department of Preventive Medicine, Institute of Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yongqiang Li
- Department of Preventive Medicine, Institute of Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Xinying Ji
- Department of Preventive Medicine, Institute of Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
- Correspondence: (X.J.); (X.G.)
| | - Xiangqian Guo
- Department of Preventive Medicine, Institute of Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
- Correspondence: (X.J.); (X.G.)
| |
Collapse
|
15
|
Aljabban J, Rohr M, Syed S, Cohen E, Hashi N, Syed S, Khorfan K, Aljabban H, Borkowski V, Segal M, Mukhtar M, Mohammed M, Boateng E, Nemer M, Panahiazar M, Hadley D, Jalil S, Mumtaz K. Dissecting novel mechanisms of hepatitis B virus related hepatocellular carcinoma using meta-analysis of public data. World J Gastrointest Oncol 2022; 14:1856-1873. [PMID: 36187396 PMCID: PMC9516659 DOI: 10.4251/wjgo.v14.i9.1856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/26/2022] [Accepted: 08/07/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) is a cause of hepatocellular carcinoma (HCC). Interestingly, this process is not necessarily mediated through cirrhosis and may in fact involve oncogenic processes. Prior studies have suggested specific oncogenic gene expression pathways were affected by viral regulatory proteins. Thus, identifying these genes and associated pathways could highlight predictive factors for HCC transformation and has implications in early diagnosis and treatment.
AIM To elucidate HBV oncogenesis in HCC and identify potential therapeutic targets.
METHODS We employed our Search, Tag, Analyze, Resource platform to conduct a meta-analysis of public data from National Center for Biotechnology Information’s Gene Expression Omnibus. We performed meta-analysis consisting of 155 tumor samples compared against 185 adjacent non-tumor samples and analyzed results with ingenuity pathway analysis.
RESULTS Our analysis revealed liver X receptors/retinoid X receptor (RXR) activation and farnesoid X receptor/RXR activation as top canonical pathways amongst others. Top upstream regulators identified included the Ras family gene rab-like protein 6 (RABL6). The role of RABL6 in oncogenesis is beginning to unfold but its specific role in HBV-related HCC remains undefined. Our causal analysis suggests RABL6 mediates pathogenesis of HBV-related HCC through promotion of genes related to cell division, epigenetic regulation, and Akt signaling. We conducted survival analysis that demonstrated increased mortality with higher RABL6 expression. Additionally, homeobox A10 (HOXA10) was a top upstream regulator and was strongly upregulated in our analysis. HOXA10 has recently been demonstrated to contribute to HCC pathogenesis in vitro. Our causal analysis suggests an in vivo role through downregulation of tumor suppressors and other mechanisms.
CONCLUSION This meta-analysis describes possible roles of RABL6 and HOXA10 in the pathogenesis of HBV-related HCC. RABL6 and HOXA10 represent potential therapeutic targets and warrant further investigation.
Collapse
Affiliation(s)
- Jihad Aljabban
- Department of Medicine, University of Wisconsin Hospital and Clinics, Madison, WI 53792, United States
| | - Michael Rohr
- Department of Medicine, University of Central Florida College of Medicine, Orlando, FL 32827, United States
| | - Saad Syed
- Department of Medicine, Northwestern Memorial Hospital, Chicago, IL 60611, United States
| | - Eli Cohen
- Department of Medicine, Vanderbilt Medical Center, Nashville, TN 37232, United States
| | - Naima Hashi
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, United States
| | - Sharjeel Syed
- Department of Medicine, University of Chicago Hospitals, Chicago, IL 60637, United States
| | - Kamal Khorfan
- Department of Gastroenterology and Hepatology, University of California San Francisco-Fresno, Fresno, CA 93701, United States
| | - Hisham Aljabban
- Department of Medicine, Barry University, Miami, FL 33161, United States
| | - Vincent Borkowski
- Department of Medicine, University of Wisconsin Hospital and Clinics, Madison, WI 53792, United States
| | - Michael Segal
- Department of Medicine, University of Wisconsin Hospital and Clinics, Madison, WI 53792, United States
| | - Mohamed Mukhtar
- Department of Medicine, Michigan State University College of Human Medicine, Lansing, MI 49503, United States
| | - Mohammed Mohammed
- Department of Medicine, Windsor University School of Medicine, Frankfort, IL 60423, United States
| | - Emmanuel Boateng
- Department of Medicine, Vanderbilt Medical Center, Nashville, TN 37232, United States
| | - Mary Nemer
- Department of Medicine, University of Wisconsin Hospital and Clinics, Madison, WI 53792, United States
| | - Maryam Panahiazar
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, United States
| | - Dexter Hadley
- Department of Pathology, University of Central Florida College of Medicine, Orlando, FL 32827, United States
| | - Sajid Jalil
- Department of Gastroenterology and Hepatology, Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
| | - Khalid Mumtaz
- Department of Gastroenterology and Hepatology, Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
| |
Collapse
|
16
|
Involvement of RUVBL1 in WNT/β-Catenin Signaling in Oral Squamous Cell Carcinoma. DISEASE MARKERS 2022; 2022:3398492. [PMID: 35493294 PMCID: PMC9054432 DOI: 10.1155/2022/3398492] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 01/10/2022] [Accepted: 03/14/2022] [Indexed: 12/24/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is the most common malignant tumor of head and neck squamous cell carcinoma (HNSCC), but the causes and molecular mechanisms remain unclear. The wingless-integrated/β-catenin (WNT/β-catenin) signaling pathway plays a vital role in cancer cell proliferation, differentiation, and metastasis, including OSCC. To screen potential β-catenin-associated genes involved in OSCC, the intersection of these genes in the STRING and IMEx databases was assessed using differential expression genes (DEG) from public microarrays, and 22 were further selected to construct a β-catenin-protein interaction network. The top 14 hub genes (node degree > 10) within the network were selected. Pearson's correlation analysis showed that β-catenin expression correlated positively with the expression of 11 genes, including AR, BIRC5, CDK6, DKK1, GSK3B, MET, MITF, PARD3, RUVBL1, SLC9A3R1, and SMAD7. A heat map of overall hub gene survival was created, and elevated expression of DKK1 and RUVBL1 was associated with poor survival using the Mantel-Cox test. To identify the function of RUVBL1, colony formation assay, transwell assay, and western blotting revealed that knock-down of RUVBL1 by siRNA decreased H157 and Cal-27 cell proliferation and metastasis by inhibiting β-catenin signaling. These findings suggest that RUVBL1 may serve as a diagnostic and prognostic biomarker for OSCC, as well as a therapeutic target, and may help to uncover additional molecular mechanisms of β-catenin-driven OSCC tumorigenesis.
Collapse
|
17
|
Li W, Pei S, Zhang X, Qi D, Zhang W, Dou Y, Yang R, Yao X, Zhang Z, Xie S, Fang D, Sun H. Cinobufotalin inhibits the epithelial-mesenchymal transition of hepatocellular carcinoma cells through down-regulate β-catenin in vitro and in vivo. Eur J Pharmacol 2022; 922:174886. [DOI: 10.1016/j.ejphar.2022.174886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 02/07/2023]
|
18
|
Hashemi R, Peymani M, Ghaedi K, Saffar H. In silico identification of the specific pathways in each stage of colorectal cancer and the association of their top genes with drug resistance and sensitivity. Med Oncol 2022; 39:57. [PMID: 35150347 DOI: 10.1007/s12032-022-01661-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/19/2022] [Indexed: 10/19/2022]
Abstract
Investigating the specific pathways and their relation with survival, mutation, sensitivity, and resistance to various drugs in different stages of colorectal cancer (CRC) could be effective in cancer treatment. In this study, identifying the specific pathways in each stage of CRC compared to other stages was considered via meta-analytic methodology. The Cancer Genome Atlas (TCGA) data with gene set enrichment analysis (GSEA) software, and CRC RNA-Seq data were used to enrich and determine specific pathways as well as to evaluate the expression level of TOP RANK genes. In addition, The Cancer Cell Line Encyclopedia (CCLE) data were used to correlate candidate genes with drug resistance. Finally, using Gene Expression Omnibus (GEO) data, drugs that could affect the expression level of these genes were identified. Three specific molecular pathways, including oxidative phosphorylation (OXPHOS), regulation of transporter activity (RTA), and negative regulation of transmembrane receptor protein serine threonine kinase (NRSTK) have been identified as hub pathways for stages II, III, and IV, respectively (P < 0.01). The expression level of TOP RANK genes in each stage increased on average twice compared to other stages (P < 0.01), and CCNB1, DKK1, NOG genes were associated with survival in stages II and IV, respectively (P < 0.01). The expression of some selected genes had a correlation with drug resistance and sensitivity (P < 0.05). GEO data revealed that gamma-tocotrienol (g-T3), NSC319726, and Casiopeina Cas-II-gly may reduce the expression of, NDUFAF1, CCNB1, DKK1 genes, respectively (P < 0.01). Specific pathways and TOP RANK genes could lead to cancer progression and malignancy, resistance to chemotherapy drugs, poor survival in patients, and metastasis. Therefore, identification and targeting these pathways at each stage could be crucial in inhibiting progression at different stages of CRC.
Collapse
Affiliation(s)
- Reza Hashemi
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Kamran Ghaedi
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.,Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Esfahän, Iran
| | - Hana Saffar
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.,Department of Pathology, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Zhang H, Xu K, Xiang Q, Zhao L, Tan B, Ju P, Lan X, Liu Y, Zhang J, Fu Z, Li C, Wang J, Song J, Xiao Y, Cheng Z, Wang Y, Zhang S, Xiang T. LPCAT1 functions as a novel prognostic molecular marker in hepatocellular carcinoma. Genes Dis 2022; 9:151-164. [PMID: 35005115 PMCID: PMC8720658 DOI: 10.1016/j.gendis.2020.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/11/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
This study aimed to investigate the relationships between LPCAT1 expression and clinicopathologic parameters of hepatocellular carcinoma (HCC), further, to explore the effect of LPCAT1 on overall survival (OS) in patients with HCC, and its possible mechanism. Bioinformatics analysis using high throughput RNA-sequencing data from TCGA was utilized to explore the differential expression of LPCAT1 between normal and tumor tissues, and the associations between LPCAT1 expression and clinicopathological parameters. Survival analyses and subgroup survival analyses were utilized to elucidate the effect of LPCAT1 on OS in patients with HCC. Univariate analysis and multivariate analysis were used to investigate the prognostic factors. Potential LPCAT1 related tumor genes were identified by the methodology of differentially expressed genes (DEGs) screening. GO term enrichment analysis, KEGG pathway analysis and the PPI network were used to explore the potential mechanism. LPCAT1 was significantly overexpressed in HCC tumor tissues compared with normal tissues. The LPCAT1 expression was related to tumor grade, ECOG score, AFP and TNM stage, with P values of 0.000, 0.000, 0.007 and 0.000, respectively. Multivariate analysis demonstrated that LPCAT1 expression was independently associated with OS, with an HR of 1.04 (CI: 1.01-1.06, P = 0.003). The KEGG pathway enrichment analyses showed that overlapped DEGs mainly participate in the cell cycle. Finally, we identified a hub gene, CDK1, which has been reported to act on the cell cycle, consistent with the result of KEGG enrichment analysis. Collectively, these data confirmed LPCAT1 was upregulated in HCC, and was an independent predictor of the prognosis.
Collapse
Affiliation(s)
- Hongbin Zhang
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, Shandong 250117, PR China
- Department of Oncology, People's Hospital of Juxian County, Rizhao, Shandong 276599, PR China
| | - Ke Xu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
- Department of Oncology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610599, PR China
| | - Qin Xiang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Lijuan Zhao
- Department of Oncology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402177, PR China
| | - Benxu Tan
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Ping Ju
- College of Science and Mathematics, West Chester University of Pennsylvania, West Chester, PA 19383, USA
| | - Xiufu Lan
- Department of Orthopedics, Daping Hospital, Army Medical University, Chongqing 400042, PR China
| | - Yi Liu
- Engineering Department, Women & Children's Health Care Hospital of Linyi, Linyi, Shandong 276016, PR China
| | - Jian Zhang
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, PR China
| | - Zheng Fu
- Department of Radiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, Shandong 250013, PR China
| | - Chao Li
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, Shandong 250117, PR China
| | - Jinzhi Wang
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, Shandong 250117, PR China
| | - Jixiang Song
- Medical Department, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, Shandong 250013, PR China
| | - Yun Xiao
- Department of Oncology, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400042, PR China
| | - Zhaobo Cheng
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Yan Wang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Shu Zhang
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, Shandong 250117, PR China
| | - Tingxiu Xiang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| |
Collapse
|
20
|
Gao S, Jin Y, Zhang H. Pan-Cancer Analyses Reveal Oncogenic and Immunological Role of Dickkopf-1 (DKK1). Front Genet 2021; 12:757897. [PMID: 34899842 PMCID: PMC8654726 DOI: 10.3389/fgene.2021.757897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/05/2021] [Indexed: 12/15/2022] Open
Abstract
WNT signaling pathway inhibitor Dickkopf-1 (DKK1) is related to cancer progression; however, its diagnostic and prognostic potential have not been investigated in a pan-cancer perspective. In this study, multiple bioinformatic analyses were conducted to evaluate therapeutic value of DKK1 in human cancers. The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) project served as data resources. The Wilcoxon rank test was performed to evaluate the expression difference of DKK1 between cancer tissues and normal tissues. A Kaplan-Meier curve and Cox regression were used for prognosis evaluation. Single-sample gene set enrichment analysis (ssGSEA) was used to evaluate the association of DKK1 expression with the immune cell infiltration. The potential function of DKK1 was explored by STRING and clusterProfiler. We found that the expression level of DKK1 is significantly different in different cancer types. Importantly, we demonstrated that DKK1 is an independent risk factor in ESCA, LUAD, MESO, and STAD. Further analysis revealed that DKK1 had a large effect on the immune cell infiltration and markers of certain immune cells, such as Th1 and Th2 cells. PPI network analysis and further pathway enrichment analysis indicated that DKK1 was mainly involved in the WNT signaling pathway. Our findings suggested that DKK1 might serve as a marker of prognosis for certain cancers by affecting the WNT signaling pathway and tumor immune microenvironment.
Collapse
Affiliation(s)
- Shuang Gao
- College of Life Science, North China University of Science and Technology, Tangshan, China
| | - Ye Jin
- College of Life Science, North China University of Science and Technology, Tangshan, China
| | - Hongmei Zhang
- School of Public Health, North China University of Science and Technology, Tangshan, China.,School of Clinical Medicine, North China University of Science and Technology, Tangshan, China.,Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
21
|
Ren W, Li Y, Chen X, Hu S, Cheng W, Cao Y, Gao J, Chen X, Xiong D, Li H, Wang P. RYR2 mutation in non-small cell lung cancer prolongs survival via down-regulation of DKK1 and up-regulation of GS1-115G20.1: A weighted gene Co-expression network analysis and risk prognostic models. IET Syst Biol 2021; 16:43-58. [PMID: 34877784 PMCID: PMC8965387 DOI: 10.1049/syb2.12038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/18/2021] [Accepted: 11/04/2021] [Indexed: 12/24/2022] Open
Abstract
RYR2 mutation is clinically frequent in non-small cell lung cancer (NSCLC) with its function being elusive. We downloaded lung squamous cell carcinoma and lung adenocarcinoma samples from the TCGA database, split the samples into RYR2 mutant group (n = 337) and RYR2 wild group (n = 634), and established Kaplan-Meier curves. The results showed that RYR2 mutant group lived longer than the wild group (p = 0.027). Weighted gene co-expression network analysis (WGCNA) of differentially expressed genes (DEGs) yielded prognosis-related genes. Five mRNAs and 10 lncRNAs were selected to build survival prognostic models with other clinical features. The AUCs of 2 models are 0.622 and 0.565 for predicting survival at 3 years. Among these genes, the AUCs of DKK1 and GS1-115G20.1 expression levels were 0.607 and 0.560, respectively, which predicted the 3-year survival rate of NSCLC sufferers. GSEA identified an association of high DKK1 expression with TP53, MTOR, and VEGF expression. Several target miRNAs interacting with GS1-115G20.1 were observed to show the relationship with the phenotype, treatment, and survival of NSCLC. NSCLC patients with RYR2 mutation may obtain better prognosis by down-regulating DKK1 and up-regulating GS1-115G20.1.
Collapse
Affiliation(s)
- Wenjun Ren
- Department of Thoracic Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China.,Kunming Medical University, Kunming, Yunnan, China.,Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, Kunming, China.,Department of Cardiovascular Surgery, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Yongwu Li
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, Kunming, China.,Department of Cardiovascular Surgery, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Xi Chen
- Kunming Medical University, Kunming, Yunnan, China.,First Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Sheng Hu
- Kunming Medical University, Kunming, Yunnan, China.,Second Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wanli Cheng
- Department of Thoracic Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China.,Kunming Medical University, Kunming, Yunnan, China
| | - Yu Cao
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, Kunming, China.,Department of Cardiovascular Surgery, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Jingcheng Gao
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, Kunming, China.,Department of Cardiovascular Surgery, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Xia Chen
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, Kunming, China.,Department of Cardiovascular Surgery, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Da Xiong
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, Kunming, China.,Department of Cardiovascular Surgery, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Hongrong Li
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, Kunming, China.,Department of Cardiovascular Surgery, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Ping Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China.,Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
22
|
Wu B, Hu C, Kong L. ASPM combined with KIF11 promotes the malignant progression of hepatocellular carcinoma via the Wnt/β-catenin signaling pathway. Exp Ther Med 2021; 22:1154. [PMID: 34504599 PMCID: PMC8393588 DOI: 10.3892/etm.2021.10588] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 06/14/2021] [Indexed: 01/07/2023] Open
Abstract
To investigate the molecular mechanism of assembly factor for spindle microtubules (ASPM) in the regulation of the malignant progression of hepatocellular carcinoma (HCC), bioinformatics analysis was utilized to analyze the role of ASPM in the malignant progression of HCC and its potential interaction with the kinesin family member 11 (KIF11) gene. The expression levels of ASPM and KIF11 were detected by reverse transcription-quantitative PCR and western blotting. Following knockdown of ASPM expression, Cell Counting Kit-8/colony formation assays were performed to detect cell viability and proliferation. Wound healing and Transwell assays were employed to detect cell migration and invasion. Additionally, a co-immunoprecipitation (CO-IP) assay was used to detect whether there was an interaction between ASPM and KIF11. KIF11 overexpression was performed to verify if ASPM exerted its effects via KIF11. ASPM was highly expressed in HCC tissues and cells, and was closely associated with a poor prognosis of patients with HCC. Interference with ASPM expression markedly inhibited the viability, proliferation, invasion and migration of HCC cells. Using a CO-IP assay, it was revealed that there was an interaction between ASPM and KIF11. Rescue experiments subsequently revealed the regulatory effects of ASPM on the activity, proliferation, invasion and migration of HCC cells via KIF11. Finally, western blot analysis demonstrated that ASPM in combination with KIF11 promoted the malignant progression of HCC by regulating the activity of the Wnt/β-catenin signaling pathway. Therefore, the present study demonstrated that ASPM may interact with KIF11 in HCC cells to promote the malignant progression of HCC via the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Bin Wu
- Department of General Surgery, Sir Run Run Hospital Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Chunyang Hu
- Department of Hepatological Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Lianbao Kong
- Department of Hepatological Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
23
|
Noe O, Filipiak L, Royfman R, Campbell A, Lin L, Hamouda D, Stanbery L, Nemunaitis J. Adenomatous polyposis coli in cancer and therapeutic implications. Oncol Rev 2021; 15:534. [PMID: 34267890 PMCID: PMC8256374 DOI: 10.4081/oncol.2021.534] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023] Open
Abstract
Inactivating mutations of the adenomatous polyposis coli (APC) gene and consequential upregulation of the Wnt signaling pathway are critical initiators in the development of colorectal cancer (CRC), the third most common cancer in the United States for both men and women. Emerging evidence suggests APCmutations are also found in gastric, breast and other cancers. The APC gene, located on chromosome 5q, is responsible for negatively regulating the b-catenin/Wnt pathway by creating a destruction complex with Axin/Axin2, GSK-3b, and CK1. In the event of an APC mutation, b-catenin accumulates, translocates to the cell nucleus and increases the transcription of Wnt target genes that have carcinogenic consequences in gastrointestinal epithelial stem cells. A literature review was conducted to highlight carcinogenesis related to APC mutations, as well as preclinical and clinical studies for potential therapies that target steps in inflammatory pathways, including IL-6 transduction, and Wnt pathway signaling regulation. Although a range of molecular targets have been explored in murine models, relatively few pharmacological agents have led to substantial increases in survival for patients with colorectal cancer clinically. This article reviews a range of molecular targets that may be efficacious targets for tumors with APC mutations.
Collapse
Affiliation(s)
- Olivia Noe
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Louis Filipiak
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Rachel Royfman
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Austin Campbell
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Leslie Lin
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Danae Hamouda
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Laura Stanbery
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | | |
Collapse
|
24
|
Ye J, Xin L, Liu J, Tang T, Bao X, Yan Y. Dkk1 inhibits malignant transformation induced by Bmi1 via the β-catenin signaling axis in WB-F344 oval cells. FEBS Open Bio 2021; 11:1854-1866. [PMID: 33639034 PMCID: PMC8255841 DOI: 10.1002/2211-5463.13132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 01/05/2021] [Accepted: 02/25/2021] [Indexed: 12/20/2022] Open
Abstract
Dickkopf-1 (Dkk1) is an inhibitor of Wnt signaling involved in cancer cell proliferation, apoptosis, and migration and angiogenesis. It was previously reported that B cell-specific Moloney mouse leukemia virus integration site 1 (Bmi1) activates the Wnt pathway by inhibiting the expression of DKK1 in breast cancer cell lines and 293T cells. Bmi1 and DKK1 are highly expressed in liver samples taken by biopsy from patients with hepatitis B virus-related hepatocellular carcinoma (HCC), but the effect of both Bmi1 and DKK1 on the carcinogenesis of adult hepatic stem cells (oval cells) has not previously been reported. In this study, we used WB-F344 cells to explore the function and regulation of Dkk1 upon Bmi1 treatment. Overexpression of Dkk1 repressed differentiation, proliferation, and migration induced by Bmi1 but promoted the apoptosis of hepatic WB-F344 oval cells. In addition, Dkk1 reduced the enhancement of β-catenin levels induced by Bmi1. Finally, we used transcriptome sequencing to perform a comprehensive evaluation of the transcriptome-related changes in WB-F344 oval cells induced by Dkk1 and Bmi1. These results may provide evidence for future studies of the pathogenesis of HCC and the design of possible therapies.
Collapse
Affiliation(s)
- Jinjun Ye
- Department of General Surgery, Longgang Central Hospital, Shenzhen, China
| | - Le Xin
- Department of General Surgery, Longgang Central Hospital, Shenzhen, China
| | - Jidong Liu
- Department of General Surgery, Longgang Central Hospital, Shenzhen, China
| | - Tao Tang
- Department of General Surgery, Longgang Central Hospital, Shenzhen, China
| | - Xing Bao
- Department of General Surgery, Longgang Central Hospital, Shenzhen, China
| | - Yukuang Yan
- Department of General Surgery, Longgang Central Hospital, Shenzhen, China
| |
Collapse
|
25
|
Chai ZT, Zhang XP, Ao JY, Zhu XD, Wu MC, Lau WY, Sun HC, Cheng SQ. AXL Overexpression in Tumor-Derived Endothelial Cells Promotes Vessel Metastasis in Patients With Hepatocellular Carcinoma. Front Oncol 2021; 11:650963. [PMID: 34123800 PMCID: PMC8191462 DOI: 10.3389/fonc.2021.650963] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/28/2021] [Indexed: 12/20/2022] Open
Abstract
Portal vein tumor thrombus (PVTT) is one of the most serious forms of hepatocellular carcinoma (HCC) vessel metastasis and has a poor survival rate. However, the molecular mechanism of PVTT has not yet been elucidated. In this study, the molecular mechanism of AXL expressed in tumor-derived endothelial cells (TECs) in vessel metastasis was investigated. High AXL expression was observed in TECs, but not in the tumor cells of HCC patients with PVTT and this was associated with poor overall survival (OS) and disease-free survival (DFS). AXL overexpression was positively associated with CD 31 expression both in vitro and in vivo. AXL promoted the cell proliferation, tube formation, and migration of both TECs and normal endothelial cells (NECs). High expression of AXL in TECs promoted the cell migration, but not the proliferation of HCC cells. Further studies demonstrated that AXL promoted cell migration and tube formation through activation of the PI3K/AKT/SOX2/DKK-1 axis. AXL overexpression in HUVECs promoted tumor growth and liver or vessel metastasis of HCC in xenograft nude mice, which could be counteracted by treatment with R428, an AXL inhibitor. R428 reduced tumor growth and CD 31 expression in HCC in PDX xenograft nude mice. Therefore, AXL over-expression in TECs promotes vessel metastasis of HCC, which indicates that AXL in TECs could be a potential therapeutic target in HCC patients with PVTT.
Collapse
Affiliation(s)
- Zong-Tao Chai
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Xiu-Ping Zhang
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Jian-Yang Ao
- Department of Biliary Surgery I, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Xiao-Dong Zhu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, China
| | - Meng-Chao Wu
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Wan Yee Lau
- Faculty of Medicine, The Chinese University of Hong Kong, Shatin, China
| | - Hui-Chuan Sun
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, China
| | - Shu-Qun Cheng
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
26
|
Chu HY, Chen Z, Wang L, Zhang ZK, Tan X, Liu S, Zhang BT, Lu A, Yu Y, Zhang G. Dickkopf-1: A Promising Target for Cancer Immunotherapy. Front Immunol 2021; 12:658097. [PMID: 34093545 PMCID: PMC8174842 DOI: 10.3389/fimmu.2021.658097] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/04/2021] [Indexed: 01/15/2023] Open
Abstract
Clinical studies in a range of cancers have detected elevated levels of the Wnt antagonist Dickkopf-1 (DKK1) in the serum or tumors of patients, and this was frequently associated with a poor prognosis. Our analysis of DKK1 gene profile using data from TCGA also proves the high expression of DKK1 in 14 types of cancers. Numerous preclinical studies have demonstrated the cancer-promoting effects of DKK1 in both in vitro cell models and in vivo animal models. Furthermore, DKK1 showed the ability to modulate immune cell activities as well as the immunosuppressive cancer microenvironment. Expression level of DKK1 is positively correlated with infiltrating levels of myeloid-derived suppressor cells (MDSCs) in 20 types of cancers, while negatively associated with CD8+ T cells in 4 of these 20 cancer types. Emerging experimental evidence indicates that DKK1 has been involved in T cell differentiation and induction of cancer evasion of immune surveillance by accumulating MDSCs. Consequently, DKK1 has become a promising target for cancer immunotherapy, and the mechanisms of DKK1 affecting cancers and immune cells have received great attention. This review introduces the rapidly growing body of literature revealing the cancer-promoting and immune regulatory activities of DKK1. In addition, this review also predicts that by understanding the interaction between different domains of DKK1 through computational modeling and functional studies, the underlying functional mechanism of DKK1 could be further elucidated, thus facilitating the development of anti-DKK1 drugs with more promising efficacy in cancer immunotherapy.
Collapse
Affiliation(s)
- Hang Yin Chu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Zihao Chen
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong, China.,School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Luyao Wang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Zong-Kang Zhang
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong, China.,School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xinhuan Tan
- Department of Microsurgery (II), Wendeng Hospital of Traditional Chinese Orthopedics and Traumatology of Shandong Province, Wendeng, China
| | - Shuangshuang Liu
- Department of Microsurgery (II), Wendeng Hospital of Traditional Chinese Orthopedics and Traumatology of Shandong Province, Wendeng, China
| | - Bao-Ting Zhang
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong, China.,School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Yuanyuan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong, China
| |
Collapse
|
27
|
El-Shayeb AF, El-Habachi NM, Mansour AR, Zaghloul MS. Serum midkine is a more sensitive predictor for hepatocellular carcinoma than Dickkopf-1 and alpha-L-fucosidase in cirrhotic HCV patients. Medicine (Baltimore) 2021; 100:e25112. [PMID: 33907088 PMCID: PMC8084028 DOI: 10.1097/md.0000000000025112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 02/05/2023] Open
Abstract
Alpha fetoprotein (AFP) level is the gold standard diagnostic tool for detection and monitoring hepatocellular carcinoma (HCC) but with low sensitivity. Thus, the identification of alternative or combined serum markers of HCC is highly needed. Therefore, the aim of this work was to verify the value of serum midkine (MDK), Dickkopf-related protein 1 (DKK1), and alpha-L-fucosidase (AFU) in detection of HCC.We recruited 244 subjects to the present study; 89 with liver cirrhosis, 86 cirrhotic hepatitis C virus (HCV) induced HCC, and 69 apparently healthy volunteers as controls. Serum AFP, MDK, DKK1, and AFU were measured by ELISA.Patients with HCC showed significantly higher serum MDK, DKK1, and AFU levels compared with those patients with liver cirrhosis and healthy controls (X2 = 179.56, 153.94, and 90.07 respectively) (P < .001 in all). In HCC cases, neither of MDK, DKK1, or AFU was correlated with tumor number. On the other hand, only serum DKK1 was significantly higher in lesions >5 cm, those with portal vein thrombosis and advanced HCC stage. Receiver operator characteristic (ROC) curve analysis showed that serum MDK levels discriminated between cirrhosis and HCC at a sensitivity of 100%, a specificity of 90% at cut-off value of >5.1 ng/mL.Although our results showed that serum MDK, DKK-1, and AFU are increased in HCC cases only MDK may be considered as the most promising serological marker for the prediction of the development of HCC in cirrhotic HCV patients.
Collapse
Affiliation(s)
| | | | - Amal R. Mansour
- Department of Physiology
- Department of Clinical Pathology, Faculty of Medicine, Alexandria University, Alexandria
| | - Mariam S. Zaghloul
- Hepatology, Gastroentrology and Infectious Diseases Department, Faculty of Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
28
|
Kim SY, Lee HS, Bang SM, Han DH, Hwang HK, Choi GH, Chung MJ, Kim SU. Serum Dickkopf-1 in Combined with CA 19-9 as a Biomarker of Intrahepatic Cholangiocarcinoma. Cancers (Basel) 2021; 13:1828. [PMID: 33921232 PMCID: PMC8069292 DOI: 10.3390/cancers13081828] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023] Open
Abstract
Dickkopf-related protein 1 (DKK-1) has a diagnostic and prognostic value in various malignant tumors. We investigated the diagnostic and prognostic performance of DKK-1 in combination with carbohydrate antigen 19-9 (CA 19-9) in cholangiocarcinoma (CCC) patients. Serum DKK-1 levels were measured using enzyme-linked immunosorbent assay. The receiver operating characteristic (ROC) curve, area under ROC (AUROC) analyses, Kaplan-Meier method, and Cox proportional hazard model were used to evaluate the diagnostic and prognostic performance of DKK-1 in combination with CA 19-9. We checked DKK-1 levels in 356 CCC patients and found that DKK-1 was significantly elevated only in 79 intrahepatic CCC (ICC) patients compared to controls (340.5 vs. 249.8 pg/mL, p = 0.002). The optimal cutoff level of DKK-1 used to identify ICC patients was 258.0 pg/mL (AUROC = 0.637, sensitivity = 59.5%, specificity = 56.9%, positive predictive value (PPV) = 40.5%, negative predictive value (NPV) = 74.0%, positive likelihood ratio (LR) = 1.38, and negative LR = 0.71). Using this cutoff, 47 (59.5%) patients were correctly diagnosed with ICC. DKK-1 in combination with CA 19-9 showed a better diagnostic performance (AUROC = 0.793, sensitivity = 74.7%, specificity = 56.3%, PPV = 45.7, NPV = 81.8, positive LR = 1.71, and negative LR = 0.45) than CA 19-9 alone. The low DKK-1 and CA 19-9 expression group had a significantly longer overall survival (OS) than the high expression group (p = 0.006). The higher level of DKK-1 and CA 19-9 was independently associated with shorter OS (hazard ratio = 3.077, 95% confidence interval 1.389-6.819, p = 0.006). The diagnostic and prognostic performance of DKK-1 in combination with CA 19-9 might be better than those of CA 19-9 alone in ICC patients.
Collapse
Affiliation(s)
- Si-Young Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 120-752, Korea; (S.-Y.K.); (H.-S.L.); (S.-M.B.)
| | - Hee-Seung Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 120-752, Korea; (S.-Y.K.); (H.-S.L.); (S.-M.B.)
| | - Seung-Min Bang
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 120-752, Korea; (S.-Y.K.); (H.-S.L.); (S.-M.B.)
| | - Dai-Hoon Han
- Department of Hepatobiliary and Pancreatic Surgery, Yonsei University College of Medicine, Seoul 120-752, Korea; (D.-H.H.); (H.-K.H.); (G.-H.C.)
| | - Ho-Kyoung Hwang
- Department of Hepatobiliary and Pancreatic Surgery, Yonsei University College of Medicine, Seoul 120-752, Korea; (D.-H.H.); (H.-K.H.); (G.-H.C.)
| | - Gi-Hong Choi
- Department of Hepatobiliary and Pancreatic Surgery, Yonsei University College of Medicine, Seoul 120-752, Korea; (D.-H.H.); (H.-K.H.); (G.-H.C.)
| | - Moon-Jae Chung
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 120-752, Korea; (S.-Y.K.); (H.-S.L.); (S.-M.B.)
| | - Seung-Up Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 120-752, Korea; (S.-Y.K.); (H.-S.L.); (S.-M.B.)
- Yonsei Liver Center, Severance Hospital, Seoul 120-752, Korea
| |
Collapse
|
29
|
Lou X, Meng Y, Hou Y. A literature review on function and regulation mechanism of DKK4. J Cell Mol Med 2021; 25:2786-2794. [PMID: 33586359 PMCID: PMC7957263 DOI: 10.1111/jcmm.16372] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 01/19/2021] [Accepted: 02/02/2021] [Indexed: 12/16/2022] Open
Abstract
Dickkopf-related protein 4 (DKK4) is a member of the dickkopf family and an inhibitor of the Wnt/β-catenin signalling pathway. This review surveyed the single nucleotide polymorphisms (SNPs), copy number variations (CNVs), hypermethylation, regulation mechanism, correlation with clinicopathological parameters and chemotherapeutic resistance of DKK4. The signal pathways involved in DKK4 mainly include Wnt/β-catenin pathway and Wnt-JNK pathway independent β-catenin. DKK4 expression was upregulated in Renal Cell Carcinoma (RCC), Colorectal Cancer, Gastric Cancer (GC), Non-small Cell Lung Cancer (NSCLC) and Epithelial Ovarian Cancer (EOC), while downregulated in Hepatocellular Carcinoma (HCC). DKK4 is not only involved in tumour growth, invasion, migration and chemotherapy resistance, but also in osteoblastogenesis and secondary hair or meibomian gland formation. DKK4 has also been linked to schizophrenia.
Collapse
Affiliation(s)
- Xiaoli Lou
- Department of Central Laboratory, Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuchen Meng
- Department of Central Laboratory, Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanqiang Hou
- Department of Central Laboratory, Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
30
|
Zhu G, Song J, Chen W, Yuan D, Wang W, Chen X, Liu H, Su H, Zhu J. Expression and Role of Dickkopf-1 (Dkk1) in Tumors: From the Cells to the Patients. Cancer Manag Res 2021; 13:659-675. [PMID: 33536782 PMCID: PMC7847771 DOI: 10.2147/cmar.s275172] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 09/26/2020] [Indexed: 12/14/2022] Open
Abstract
Dickkopf-1 (Dkk1) is a secretory antagonist of the classical Wnt signaling pathway. Many studies have reported that Dkk1 is abnormally expressed in tumor cells, and abnormal expression of Dkk1 can inhibit cell proliferation or induce apoptosis through pro-apoptotic factors, However, due to the differences in tumor environment and the complex regulatory mechanisms in different tumors, Dkk1 has different effects on the progression of different tumors. In many tumors, high expression of Dkk1 may promote tumor metastasis. However, Dkk1, which is highly expressed in other tumors, can inhibit tumor invasion and metastasis. More and more evidence shows that Dkk1 plays a complex and different role in tumor occurrence, development and metastasis in different tumor environments and through a variety of complex regulatory mechanisms. Therefore, Dkk1 may not only be a useful biomarker of metastasis, but also a target for studying the metabolic mechanism of tumor cells and treating tumors in many tumor types. Therefore, this article reviews the research progress on the expression, mechanism and function of Dkk1 in different tumors, and at the same time, based on the public database data, we made a further analysis of the expression of Dkk1 in different tumors.
Collapse
Affiliation(s)
- Guohua Zhu
- Guizhou Medical University, Guiyang, Guizhou Province 550002, People's Republic of China.,Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province 550002, People's Republic of China
| | - Jukun Song
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province 550002, People's Republic of China.,Guizhou University School of Medicine, Guiyang, Guizhou Province 550025, People's Republic of China
| | - Weimin Chen
- Guizhou University School of Medicine, Guiyang, Guizhou Province 550025, People's Republic of China
| | - Dongbo Yuan
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province 550002, People's Republic of China.,Guizhou University School of Medicine, Guiyang, Guizhou Province 550025, People's Republic of China
| | - Wei Wang
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province 550002, People's Republic of China
| | - Xiaoyue Chen
- Guizhou University School of Medicine, Guiyang, Guizhou Province 550025, People's Republic of China
| | - Hen Liu
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province 550002, People's Republic of China.,Zunyi Medical University, Zunyi, Guizhou Province 563000, People's Republic of China
| | - Hao Su
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province 550002, People's Republic of China.,Zunyi Medical University, Zunyi, Guizhou Province 563000, People's Republic of China
| | - Jianguo Zhu
- Guizhou Medical University, Guiyang, Guizhou Province 550002, People's Republic of China.,Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province 550002, People's Republic of China.,Guizhou University School of Medicine, Guiyang, Guizhou Province 550025, People's Republic of China.,Zunyi Medical University, Zunyi, Guizhou Province 563000, People's Republic of China
| |
Collapse
|
31
|
Kim MJ, Huang Y, Park JI. Targeting Wnt Signaling for Gastrointestinal Cancer Therapy: Present and Evolving Views. Cancers (Basel) 2020; 12:E3638. [PMID: 33291655 PMCID: PMC7761926 DOI: 10.3390/cancers12123638] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 12/19/2022] Open
Abstract
Wnt signaling governs tissue development, homeostasis, and regeneration. However, aberrant activation of Wnt promotes tumorigenesis. Despite the ongoing efforts to manipulate Wnt signaling, therapeutic targeting of Wnt signaling remains challenging. In this review, we provide an overview of current clinical trials to target Wnt signaling, with a major focus on gastrointestinal cancers. In addition, we discuss the caveats and alternative strategies for therapeutically targeting Wnt signaling for cancer treatment.
Collapse
Affiliation(s)
- Moon Jong Kim
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.J.K.); (Y.H.)
| | - Yuanjian Huang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.J.K.); (Y.H.)
| | - Jae-Il Park
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.J.K.); (Y.H.)
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center and Health Science Center, Houston, TX 77030, USA
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
32
|
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors with a low survival rate. The identification of mechanisms underlying the development of HCC helps uncover cellular and molecular targets for the diagnosis, prevention, and treatment of HCC. Golgi protein 73 (GP73) level is upregulated in HCC patients and potentially can be a therapeutic target. Despite many studies devoted to GP73 as a marker for HCC early diagnosis, there is little discussion about the function of GP73 in HCC tumorigenesis. Given the poor response to currently available HCC therapies, a better understanding of the role of GP73 in HCC may provide a new therapeutic target for HCC. The current paper summarizes the role of GP73 as a diagnostic marker as well as its roles in liver carcinogenesis. Its roles in other types of cancer are also discussed.
Collapse
Affiliation(s)
- Yanan Wang
- Department of Pathology and Laboratory Medicine, University of California Davis Health, Sacramento, CA, USA
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yu-Jui Yvonne Wan
- Department of Pathology and Laboratory Medicine, University of California Davis Health, Sacramento, CA, USA
| |
Collapse
|
33
|
Niu J, Li W, Liang C, Wang X, Yao X, Yang RH, Zhang ZS, Liu HF, Liu FY, Pei SH, Li WQ, Sun H, Fang D, Xie SQ. EGF promotes
DKK1
transcription in hepatocellular carcinoma by enhancing the phosphorylation and acetylation of histone H3. Sci Signal 2020; 13:13/657/eabb5727. [DOI: 10.1126/scisignal.abb5727] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jie Niu
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Wei Li
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Chao Liang
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Xiao Wang
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Xin Yao
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Ruo-Han Yang
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Zhan-Sheng Zhang
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Han-Fang Liu
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Fan-Ye Liu
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Shu-Hua Pei
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Wen-Qi Li
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Hua Sun
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Dong Fang
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Song-Qiang Xie
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| |
Collapse
|
34
|
Liu T, Wu H, Qi J, Qin C, Zhu Q. Seven immune-related genes prognostic power and correlation with tumor-infiltrating immune cells in hepatocellular carcinoma. Cancer Med 2020; 9:7440-7452. [PMID: 32815653 PMCID: PMC7571821 DOI: 10.1002/cam4.3406] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/24/2022] Open
Abstract
Background Given poor prognosis and the lack of efficient therapy for advanced hepatocellular carcinoma, immunotherapy has emerged as an increasingly important role. However, there were few reports on the correlation between immune‐related genes and HCC. The purpose of this study is to construct a novel immune‐related gene‐based prognostic signature for HCC and to explore the potential mechanisms. Methods We organized expression data of 374 HCC samples and 50 nontumor samples from TCGA database. A robust signature was constructed by Cox regression analysis based on the immune‐related genes, which were filtered by differential genes analysis and Cox regression analysis. Then, the correlation analysis between the signature and clinical characteristics was conducted. And the signature was validated in ICGC database. Furthermore, the relationships between immune cell infiltration and the signature were explored by bioinformatics analysis. Results Seven genes‐based model (Risk score = BIRC5 * 0.0238 + FOS * 0.0055 + DKK1 * 0.0085 + FGF13 * 0.3432 + IL11 * 0.0135 + IL17D * 0.0878 + SPP1 * 0.0003) was constructed eventually and it was proved to be an independent prognostic factor for HCC patients. The signature‐calculated risk scores were shown to be positively correlated with the infiltration of these five immune cells, including macrophages, neutrophils, CD8+T, dendritic, and B cells. And the results suggested that high amplication of BIRC5, FGF13, IL11, IL17D, and SPP1 were more likely correlated with immune cell infiltration. Finally, PPI network, TFs‐based regulatory network and gene enrichment plots were performed to show potential molecular mechanisms. Conclusion We construct a robust immune‐related gene‐based prognostic signature with seven genes and explore potential mechanisms about it, which may contribute to the immunotherapy research for HCC.
Collapse
Affiliation(s)
- Tiantian Liu
- Department of Gastroenterology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, Shandong, China
| | - Hao Wu
- Department of Gastroenterology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, Shandong, China
| | - Jianni Qi
- Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, Shandong, China.,Central Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Chengyong Qin
- Department of Gastroenterology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, Shandong, China.,Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Qiang Zhu
- Department of Gastroenterology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, Shandong, China.,Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
35
|
Betella I, Turbitt WJ, Szul T, Wu B, Martinez A, Katre A, Wall JA, Norian L, Birrer MJ, Arend R. Wnt signaling modulator DKK1 as an immunotherapeutic target in ovarian cancer. Gynecol Oncol 2020; 157:765-774. [PMID: 32192732 DOI: 10.1016/j.ygyno.2020.03.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/04/2020] [Indexed: 01/07/2023]
Abstract
OBJECTIVES Wnt pathway mutations are a hallmark of endometrioid and clear cell subtypes of epithelial ovarian carcinoma (EOC). However, no drugs targeting the Wnt pathway in EOC are FDA-approved. Dickkopf-related protein 1 (DKK1), a modulator of the Wnt pathway, has emerged as a promising therapeutic target. We aimed to examine the role of DKK1 and the effects of a monoclonal antibody against DKK1 (DKN-01) in vivo and in a murine model of ovarian cancer. METHODS We examined in vitro the role of DKK1 and the effects of DKK1 inhibition in EOC cell lines. We then studied in vivo the role of DKN-01 and DKK1 overexpression on tumor burden and anti-tumor immune cell populations using the ID8 syngeneic mouse model. RESULTS DKN-01 did not phenotypically alter ES2 cells in vitro; however, DKK1 inhibition promoted Wnt signaling. Tumor burden and immune populations were unchanged in ID8 challenged mice treated with mDKN01. Mice challenged with ID8 cells overexpressing DKK1 had tumor burden similar to controls (p = 0.175). However, the overexpression of DKK1 decreased CD45+ leukocyte infiltration into the peritoneum (p = 0.008) and omentum (p = 0.032), reducing both natural killer (NK) and CD8 T cells, and reducing interferon-gamma (IFNγ) expression on activated CD8 T cells. CONCLUSIONS Our results suggest that DKK1 inhibition does not affect tumor growth in the ID8 ovarian cancer model. DKK1 overexpression alters anti-tumor immune populations within the tumor microenvironment. Thus, our findings confirm DKK1 as a new therapeutic target in EOC and suggest that DKK1 inhibition may function best in a combinatorial, immune-modulatory therapy.
Collapse
Affiliation(s)
- Ilaria Betella
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, AL, United States of America; Department of Gynecologic Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - William J Turbitt
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Tomasz Szul
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Binghao Wu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States of America
| | - Alba Martinez
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Ashwini Katre
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Jaclyn A Wall
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Lyse Norian
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Michael J Birrer
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Arkansas Winthrop P. Rockefeller Cancer Institute, United States of America
| | - Rebecca Arend
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, AL, United States of America.
| |
Collapse
|
36
|
Study of Dickkopf-1 (DKK-1) in patients with chronic viral hepatitis C-related liver cirrhosis with and without hepatocellular carcinoma. Clin Exp Hepatol 2020; 6:85-91. [PMID: 32728624 PMCID: PMC7380466 DOI: 10.5114/ceh.2020.95831] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/31/2020] [Indexed: 01/23/2023] Open
Abstract
Aim of the study Dickkopf-1 (DKK-1) is a secreted protein which acts as an inhibitor of Wnt/β-catenin signaling. DKK-1 was found to be a helpful biomarker for many cancers including hepatocellular carcinoma (HCC). HCC is multifactorial in origin and its main etiology in Egypt is attributed to chronic hepatitis C virus (HCV) infection. Objectives: To assess the serum level and diagnostic performance of DKK-1 and α-fetoprotein (AFP) in Egyptian patients with chronic HCV-related liver cirrhosis with and without HCC. Material and methods 80 subjects were divided into: a control group (group I, 20 healthy volunteers) and two patient groups: group II (HCV with liver cirrhosis, 30 patients), and group III, (HCV-related liver cirrhosis with HCC, 30 patients). Thorough physical examination, triphasic computed tomography, calculation of Child-Pugh score, laboratory investigations (complete blood picture, liver profile, hepatitis B surface antigen, anti-HCV antibodies, AFP (chemiluminometry) and DKK-1 (ELISA) were performed. Results There was a significant decrease in DKK-1 level in HCV patients with liver cirrhosis (group II) and HCV patients with HCC (group III) compared to the control group (group I) (p < 0.001). However, there was a significant increase in DKK-1 level in HCV patients with HCC (group III) compared to HCV patients with liver cirrhosis (group II) (p < 0.033). The ROC curve showed that DKK-1 has less sensitivity but higher specificity in HCV patients with HCC (group III) compared with HCV patients with liver cirrhosis (group II). Conclusions The combination of DKK-1 and AFP could further improve the diagnostic accuracy of HCV-related cirrhosis with or without HCC.
Collapse
|
37
|
Younis YS, Alegaily HS, Elagawy W, Semeya AA, Abo-Amer YEE, El-Abgeegy M, Mostafa SM, Elsergany HF, Abd-Elsalam S. Serum Dickopff 1 as a Novel Biomarker in Hepatocellular Carcinoma Diagnosis and Follow Up After Ablative Therapy. Cancer Manag Res 2019; 11:10555-10562. [PMID: 31908527 PMCID: PMC6925553 DOI: 10.2147/cmar.s218532] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/30/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND This study aimed to evaluate the role of Dickopff 1 (DKK1) serum levels as a marker for early detection of hepatocellular carcinoma (HCC) and to compare it with alphafetoprotein (AFP) after non-surgical intervention (microwave ablation, radiofrequency ablation) in HCC. PATIENTS AND METHODS This prospective study was conducted in Al-Mahalla hepatology teaching hospital from June 2015 to June 2017. One hundred and twenty patients were included. They were classified into four groups: Group A: 40 patients with chronic liver disease; Group B: 40 patients with HCC which were divided into 2 main sub groups, group Ba which included HCC patients who were not eligible for ablative therapy and group Bb which included HCC patients who were eligible for ablative therapy; Group C: 20 healthy control subjects matched for age and sex; Group D: 20 HCC patients with negative AFP, DKK1 was done for them. RESULTS There was a highly significant difference (p < 0.001) between groups regarding serum level of Dickpoff 1 with mean of 1 ng/mL in group A (cirrhotic), 2.38 ng/mL in group B (HCC), and 1.83 ng/mL in group D (AFP negative HCC) in comparison to control group C with mean of 0.54 ng/mL. There was a highly statistically significant difference (p value less =0.01) in the studied groups regarding serum Dickpoff 1 before and after intervention with a mean of 2.38 ng/mL before intervention and mean of 1.37 ng/mL after 1 month of intervention. CONCLUSION Serum Dkk-1 has higher sensitivity, specificity, and accuracy in early diagnosis of HCC than AFP.
Collapse
Affiliation(s)
- Yehia Sadek Younis
- Hepatology, Gastroenterology and Infectious Diseases, Benha Faculty of Medicine, Qalybia, Egypt
| | - Hatem Samir Alegaily
- Hepatology, Gastroenterology and Infectious Diseases, Benha Faculty of Medicine, Qalybia, Egypt
| | - Waleed Elagawy
- Department of Tropical Medicine, Faculty of Medicine, Port Said University, Port Fouad, Egypt
| | - Atteyat Aboelmaged Semeya
- Hepatology, Gastroenterology and Infectious Diseases, Mahala Hepatology Teaching Hospital, Gharbia, Egypt
| | - Yousry Esam-Eldin Abo-Amer
- Hepatology, Gastroenterology and Infectious Diseases, Mahala Hepatology Teaching Hospital, Gharbia, Egypt
| | - Mohamed El-Abgeegy
- National Hepatology and Tropical Medicine Research Institute, Cairo, Egypt
| | | | | | - Sherief Abd-Elsalam
- Department of Tropical Medicine, Faculty of Medicine, Tanta University, Gharbia, Egypt
| |
Collapse
|
38
|
Zhang R, Lin HM, Broering R, Shi XD, Yu XH, Xu LB, Wu WR, Liu C. Dickkopf-1 contributes to hepatocellular carcinoma tumorigenesis by activating the Wnt/β-catenin signaling pathway. Signal Transduct Target Ther 2019; 4:54. [PMID: 31839998 PMCID: PMC6895114 DOI: 10.1038/s41392-019-0082-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 09/03/2019] [Accepted: 09/15/2019] [Indexed: 12/13/2022] Open
Abstract
Dysregulation of dickkopf-related protein 1 (DKK1) expression has been reported in a variety of human cancers. We previously reported that DKK1 was upregulated in hepatocellular carcinoma (HCC). However, the role of DKK1 in HCC remains unclear. This study aimed to investigate the clinical significance and biological functions of DKK1 in HCC. The expression of DKK1 was examined in cirrhotic and HCC tissues by immunohistochemistry and quantitative real-time polymerase chain reaction (qRT-PCR). DKK1 was silenced or overexpressed in HCC cell lines, and in vitro and in vivo studies were performed. Immunohistochemistry revealed that DKK1 was weakly expressed in cirrhotic tissues (8/22, 36.4%) but upregulated in HCC tissues (48/53, 90.6%, cohort 1). Significant upregulation of DKK1 was observed in 57.6% (19/33, cohort 2) of HCC tissues by qRT-PCR, and the expression of DKK1 was associated with tumor size (P = 0.024) and tumor number (P = 0.019). Genetic depletion of DKK1 impaired the proliferation, colony-forming ability, invasion, and tumor formation of HCC cells (HepG2 and HUH-7). Conversely, forced expression of DKK1 increased the proliferation, colony-forming ability, and invasion of HepG2 and HUH-7 cells in vitro and enhanced tumor formation in vivo. Subsequent investigation revealed that the DKK1-mediated proliferation and tumorigenicity of HepG2 and HUH-7 cells is dependent on the Wnt/β-catenin signaling pathway. These findings indicate that DKK1 plays an oncogenic role in HCC by activating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Rui Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Hepato-Pancreato-Biliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120 Guangzhou, China
- Faculty of Medicine, Department of Gastroenterology and Hepatology, University Duisburg-Essen, 45147 Essen, Germany
| | - Hao-Ming Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Hepato-Pancreato-Biliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120 Guangzhou, China
| | - Ruth Broering
- Faculty of Medicine, Department of Gastroenterology and Hepatology, University Duisburg-Essen, 45147 Essen, Germany
| | - Xiang-de Shi
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Hepato-Pancreato-Biliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120 Guangzhou, China
| | - Xian-huan Yu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Hepato-Pancreato-Biliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120 Guangzhou, China
| | - Lei-bo Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Hepato-Pancreato-Biliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120 Guangzhou, China
| | - Wen-rui Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Hepato-Pancreato-Biliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120 Guangzhou, China
| | - Chao Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Hepato-Pancreato-Biliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120 Guangzhou, China
| |
Collapse
|
39
|
Johansson M, Giger FA, Fielding T, Houart C. Dkk1 Controls Cell-Cell Interaction through Regulation of Non-nuclear β-Catenin Pools. Dev Cell 2019; 51:775-786.e3. [PMID: 31786070 PMCID: PMC6912161 DOI: 10.1016/j.devcel.2019.10.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/01/2019] [Accepted: 10/28/2019] [Indexed: 01/23/2023]
Abstract
Dickkopf-1 (Dkk1) is a secreted Wnt antagonist with a well-established role in head induction during development. Numerous studies have emerged implicating Dkk1 in various malignancies and neurodegenerative diseases through an unknown mechanism. Using zebrafish gastrulation as a model for collective cell migration, we unveil such a mechanism, identifying a role for Dkk1 in control of cell connectivity and polarity in vivo, independent of its known function. We find that Dkk1 localizes to adhesion complexes at the plasma membrane and regions of concentrated actomyosin, suggesting a direct involvement in regulation of local cell adhesion. Our results show that Dkk1 represses cell polarization and integrity of cell-cell adhesion, independently of its impact on β-catenin protein degradation. Concurrently, Dkk1 prevents nuclear localization of β-catenin by restricting its distribution to a discrete submembrane pool. We propose that redistribution of cytosolic β-catenin by Dkk1 concomitantly drives repression of cell adhesion and inhibits β-catenin-dependent transcriptional output.
Collapse
Affiliation(s)
- Marie Johansson
- Centre for Developmental Neurobiology and MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK.
| | - Florence A Giger
- Centre for Developmental Neurobiology and MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Triona Fielding
- Centre for Developmental Neurobiology and MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Corinne Houart
- Centre for Developmental Neurobiology and MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK.
| |
Collapse
|
40
|
Feng Y, Zhang Y, Wei X, Zhang Q. Correlations of DKK1 with pathogenesis and prognosis of human multiple myeloma. Cancer Biomark 2019; 24:195-201. [PMID: 30614800 DOI: 10.3233/cbm-181909] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Human multiple myeloma (MM) is a kind of common tumor in middle-aged and elderly people, in which the osteolytic lesion is formed mainly through inhibiting osteoblast (OB) differentiation and promoting osteoclast (OC) differentiation. Dickkopf-1 (DKK1) is a soluble Wnt inhibitor, which has an important correlation with the pathogenesis of human MM. Therefore, the correlations of DKK1 with pathogenesis and prognosis of human MM were investigated in this study. METHODS The DKK1 expression in tissues and serum of myeloma patients was detected via immunohistochemistry and enzyme-linked immunosorbent assay (ELISA). Correlation between DKK1 expression and survival time of patients was analyzed via Kaplan-Meier analysis. To further study the mechanism of DKK1 expression in pathogenesis and prognosis of human MM, MM cells were treated with DKK1 neutralizing antibody (BHQ880) or transfected with DKK1-small-interfering ribonucleic acid (siRNA) to study its effects on OB differentiation, osteocalcin level, β-catenin and interleukin-6 (IL-6) secretion. Moreover, the effect of DKK1-siRNA transfection on the activity of U266 cells was detected via methyl thiazolyl tetrazolium (MTT) assay. RESULTS The DKK1 expression in tissues and serum of myeloma patients was significantly higher than that in control group (p< 0.01). In terms of survival time, the median survival time (45 months) in patients with low DKK1 expression was significantly longer than that in patients with high DKK1 expression (only 22 months). The DKK1 neutralizing antibody (BHQ880) and DKK1-siRNA significantly reduced the DKK1 level in MM cells, promoted the OB differentiation, increased the osteocalcin deposition, promoted the β-catenin expression and decreased the IL-6 expression and β-catenin phosphorylation. DKK1-siRNA could also reduce the proliferative activity of MM cells. CONCLUSION DKK1 is closely related to the pathogenesis and prognosis of human MM, which might be a potential biomarker for the diagnosis of MM.
Collapse
Affiliation(s)
- Youfan Feng
- Department of Hematology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Yuxia Zhang
- Department of Hematology, Huining County People's Hospital, Baiyin, Gansu, China
| | - Xiaofang Wei
- Department of Hematology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Qike Zhang
- Department of Hematology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| |
Collapse
|
41
|
Wu X, Yang C, Yu H, Cao F, Shan Y, Zhao W. The predictive values of serum dickkopf-1 and circulating tumor cells in evaluating the efficacy of transcatheter arterial chemoembolization treatment on hepatocellular carcinoma. Medicine (Baltimore) 2019; 98:e16579. [PMID: 31348291 PMCID: PMC6709003 DOI: 10.1097/md.0000000000016579] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/10/2019] [Accepted: 07/01/2019] [Indexed: 12/12/2022] Open
Abstract
In this study, we aim to explore the values of serum dickkopf-1 (DKK1) and circulating tumor cells (CTCs) in predicting the efficacy and prognosis of transcatheter arterial chemoembolization (TACE) treatment on patients with hepatocellular carcinoma (HCC). We did a retrospective analysis on 155 HCC patients who underwent TACE treatment. The patients were divided into response group (complete response and partial response) and nonresponse group (stable disease and progressive disease), and their changes in serum DKK1 and CTCs after TACE were recorded. Receiver operating characteristic curve and survival analysis were used to assess the predictive values of DKK1 and CTCs for TACE efficacy and long-term prognosis of HCC. We found that the levels of preoperative DKK1 and CTCs in patients with HCC had a moderate positive correlation (r = 0.54). After TACE treatment, the serum DKK1 and CTCs in the response group were significantly decreased compared to pretreatment levels (P < .05), whereas the nonresponse group showed significantly increased serum DKK1 and CTCs levels (P < .05). The largest area under the curve (AUC) was achieved when using >0.02 μg/L reduction in DKK1 level after 4 weeks of TACE to predict the efficacy of TACE treatment (AUC = 0.913, 95% confidence interval: 0.856-0.952, P < .001), with the sensitivity of 78.26% and the specificity of 88.07%. The overall survival, disease-free survival, and 5-year survival rates were all significantly lower in the patients with positive preoperative levels of serum DKK1 and CTCs. COX multivariate regression analysis showed that Eastern Cooperative Oncology Group score, and preoperative levels of serum DKK1 and CTCs are independent influencing factors for the prognosis of patients with HCC. Overall, our results demonstrated that serum DKK1 and CTCs levels were good biomarkers for predicting the efficacy and prognosis of TACE treatment in patients with HCC. Moreover, these parameters exhibited different characteristics, and might have different potential applications.
Collapse
Affiliation(s)
- Xiaoxia Wu
- Department of Oncology, Wuxi Fifth People's Hospital, Wuxi
| | - Chao Yang
- Department of Interventional Radiology
| | - Hao Yu
- Department of Oncology, Wuxi Fifth People's Hospital, Wuxi
| | - Fei Cao
- Department of Oncology, Wuxi Fifth People's Hospital, Wuxi
| | - Yongfeng Shan
- Department of Oncology, Wuxi Fifth People's Hospital, Wuxi
| | - Weifeng Zhao
- Department of Infectious Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
42
|
Perugorria MJ, Olaizola P, Labiano I, Esparza-Baquer A, Marzioni M, Marin JJG, Bujanda L, Banales JM. Wnt-β-catenin signalling in liver development, health and disease. Nat Rev Gastroenterol Hepatol 2019; 16:121-136. [PMID: 30451972 DOI: 10.1038/s41575-018-0075-9] [Citation(s) in RCA: 388] [Impact Index Per Article: 64.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The canonical Wnt-β-catenin pathway is a complex, evolutionarily conserved signalling mechanism that regulates fundamental physiological and pathological processes. Wnt-β-catenin signalling tightly controls embryogenesis, including hepatobiliary development, maturation and zonation. In the mature healthy liver, the Wnt-β-catenin pathway is mostly inactive but can become re-activated during cell renewal and/or regenerative processes, as well as in certain pathological conditions, diseases, pre-malignant conditions and cancer. In hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), the two most prevalent primary liver tumours in adults, Wnt-β-catenin signalling is frequently hyperactivated and promotes tumour growth and dissemination. A substantial proportion of liver tumours (mainly HCC and, to a lesser extent, CCA) have mutations in genes encoding key components of the Wnt-β-catenin signalling pathway. Likewise, hepatoblastoma, the most common paediatric liver cancer, is characterized by Wnt-β-catenin activation, mostly as a result of β-catenin mutations. In this Review, we discuss the most relevant molecular mechanisms of action and regulation of Wnt-β-catenin signalling in liver development and pathophysiology. Moreover, we highlight important preclinical and clinical studies and future directions in basic and clinical research.
Collapse
Affiliation(s)
- Maria J Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital - University of the Basque Country (UPV/EHU), San Sebastian, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health (ISCIII), Madrid, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Paula Olaizola
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital - University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Ibone Labiano
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital - University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Aitor Esparza-Baquer
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital - University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Marco Marzioni
- Department of Gastroenterology, Università Politecnica delle Marche, Ancona, Italy
| | - Jose J G Marin
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health (ISCIII), Madrid, Spain
- Experimental Hepatology and Drug Targeting (HEVEFARM), Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Luis Bujanda
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital - University of the Basque Country (UPV/EHU), San Sebastian, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health (ISCIII), Madrid, Spain
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital - University of the Basque Country (UPV/EHU), San Sebastian, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health (ISCIII), Madrid, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
43
|
Amado V, Rodríguez-Perálvarez M, Ferrín G, De la Mata M. Selecting patients with hepatocellular carcinoma for liver transplantation: incorporating tumor biology criteria. J Hepatocell Carcinoma 2018; 6:1-10. [PMID: 30613572 PMCID: PMC6306074 DOI: 10.2147/jhc.s174549] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Liver transplantation (LT) is the optimal therapeutic option for patients with liver cirrhosis and hepatocellular carcinoma (HCC). Due to universal donor shortage, only the patients with limited tumor burden (under the so-called Milan criteria) are considered as potential candidates for LT in most institutions. It is expected that in the near future, more liver grafts will be available for patients with HCC due to the implementation of new direct antivirals against hepatitis C, leaving a prone scenario to consider expanding Milan criteria. A moderate expansion of Milan criteria could be implemented without increasing the risk of tumor recurrence if patients with favorable biological behavior are carefully selected. Incorporating information regarding tumor biology in the decision-making algorithm would result in a more rational use of LT in patients with HCC. In the present review, surrogate markers of tumor biology are critically evaluated as potential tools to be combined with existing radiological criteria. In addition, the current state of liquid biopsy is discussed, as this cutting-edge technology may reshape the management of HCC in the upcoming years.
Collapse
Affiliation(s)
- Víctor Amado
- Department of Hepatology and Liver Transplantation, Reina Sofía University Hospital, IMIBIC, CIBERehd, Córdoba, Spain,
| | - Manuel Rodríguez-Perálvarez
- Department of Hepatology and Liver Transplantation, Reina Sofía University Hospital, IMIBIC, CIBERehd, Córdoba, Spain,
| | - Gustavo Ferrín
- Department of Hepatology and Liver Transplantation, Reina Sofía University Hospital, IMIBIC, CIBERehd, Córdoba, Spain,
| | - Manuel De la Mata
- Department of Hepatology and Liver Transplantation, Reina Sofía University Hospital, IMIBIC, CIBERehd, Córdoba, Spain,
| |
Collapse
|
44
|
Byeon H, Lee SD, Hong EK, Lee DE, Kim BH, Seo Y, Joo J, Han SS, Kim SH, Park SJ. Long-term prognostic impact of osteopontin and Dickkopf-related protein 1 in patients with hepatocellular carcinoma after hepatectomy. Pathol Res Pract 2018; 214:814-820. [PMID: 29753515 DOI: 10.1016/j.prp.2018.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/22/2018] [Accepted: 05/01/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND New biomarkers are essential for improving the prediction of the survival and prognosis of patients with hepatocellular carcinoma (HCC). Alpha-fetoprotein (AFP) is the most widely used biomarker, but the low sensitivity and specificity limit its clinical applications. The diagnostic and prognostic capabilities of osteopontin (OPN), dickkopf-related protein 1 (DKK1), and a combination of these biomarkers are being studied. METHODS From January 2006 to December 2008, patients undergoing hepatectomy for HCC were screened and their serum stored in tumor banks was analyzed. The serum was used to investigate OPN and DKK1 levels by enzyme-linked immunosorbent assay(ELISA). In the paraffin block, the status of OPN and DKK1 positivity was assessed using immunohistochemistry(IHC). RESULTS A total of 60 patients were enrolled. The optimal cut-off level for survival was identified as 3.0 ng/mL and 5.2 ng/mL of OPN and DKK1, respectively. In multivariate analysis, a high OPN level was the only significant prognostic factor for overall survival [hazard ratio3.79, p = .017]. Considering a combination of AFP (cut-off level, 200 ng/mL) and OPN/DKK1, the patients with high AFP and OPN/DKK1 levels showed significantly lower overall survivals than those with low AFP, high AFP, and low OPN/DKK1 levels (p = .0091 for the AFP and OPN group, p = .0344 for the AFP and DKK1 group). Comparison between IHC and ELISA results for OPN and DKK1 levels did not reveal any significant correlation. CONCLUSIONS Serum OPN and DKK1 levels of HCC patients could be considered as novel biomarkers showing prognostic significance after hepatectomy based on long-term survival data.
Collapse
Affiliation(s)
- Hyerim Byeon
- Center for Liver Cancer, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Seung Duk Lee
- Center for Liver Cancer, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea.
| | - Eun-Kyung Hong
- Center for Liver Cancer, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Dong Eun Lee
- Biometric Research Branch, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Bo Hyun Kim
- Center for Liver Cancer, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Yunsung Seo
- Center for Liver Cancer, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Jungnam Joo
- Biometric Research Branch, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Sung-Sik Han
- Center for Liver Cancer, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Seong Hoon Kim
- Center for Liver Cancer, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Sang-Jae Park
- Center for Liver Cancer, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
45
|
Shi XD, Yu XH, Wu WR, Xu XL, Wang JY, Xu LB, Zhang R, Liu C. Dickkopf-1 expression is associated with tumorigenity and lymphatic metastasis in human hilar cholangiocarcinoma. Oncotarget 2018; 7:70378-70387. [PMID: 27608843 PMCID: PMC5342559 DOI: 10.18632/oncotarget.11859] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 08/24/2016] [Indexed: 12/12/2022] Open
Abstract
Dickkopf-1 (DKK1) is involved in tumorigenesis and the invasion of several tumors. However, its biological function in human hilar cholangiocarcinoma (HCCA) has not yet been documented. This study was designed to investigate the clinical significance and biological function of DKK1 in HCCA. The expression of DKK1 was investigated in thirty-seven human HCCA biopsy samples by immunohistochemistry. To further explore the biological effects of DKK1 in HCCA, transient and stable knockdown of DKK1 in two human HCCA cells (QBC939 and FRH0201) were established using small interfering or short hairpin RNA expression vector. In the present study, immunohistochemistry revealed that DKK1 was up-regulated in human HCCA tissues (24/37, 64.9%). High levels of DKK1 in human HCCA correlated with metastasis to the hilar lymph nodes (P=0.038). Genetic depletion of DKK1 in HCCA cells resulted in significantly inhibited proliferation, colony formation and migration compared with controls. Most importantly, DKK1 down-regulation impaired tumor formation capacity of HCCA cells in vivo. Subsequent investigations revealed that β-catenin is an important target of DKK1 and DKK1 exerts its pro-invasion function at least in part through the β-catenin/ matrix metalloproteinase-7 (MMP-7) signaling pathway. Consistently, in human HCCA tissues, DKK1 level was positively correlated with β-catenin and MMP-7 expression, as well as tumor hilar lymphatic metastasis. Taken together, our findings indicate that DKK1 may be a crucial regulator in the tumorigenicity and invasion of human HCCA, DKK1 exerts its pro-invasion function at least in part through the β-catenin/ MMP-7 signaling pathway, suggesting DKK1 as a potential therapeutic target for HCCA.
Collapse
Affiliation(s)
- Xiang-de Shi
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Xian-Huan Yu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Wen-Rui Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Xiao-Lin Xu
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Jie-Yu Wang
- Department of Hematology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Lei-Bo Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Rui Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.,Faculty of Medicine, Department of Gastroenterology and Hepatology, University Duisburg-Essen, Essen, 45147, Germany
| | - Chao Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| |
Collapse
|
46
|
Overexpression of MUC13, a Poor Prognostic Predictor, Promotes Cell Growth by Activating Wnt Signaling in Hepatocellular Carcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:378-391. [DOI: 10.1016/j.ajpath.2017.10.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 09/25/2017] [Accepted: 10/19/2017] [Indexed: 12/27/2022]
|
47
|
Dickkopf-1: As a Diagnostic and Prognostic Serum Marker for Early Hepatocellular Carcinoma. Int J Biol Markers 2018; 28:286-97. [PMID: 23568769 DOI: 10.5301/jbm.5000015] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2013] [Indexed: 01/15/2023]
Abstract
Background and aims The aim of the present study was to evaluate serum Dickkopf-1 (Dkk-1) as a marker for early detection of hepatocellular carcinoma (HCC), as well as for prognostic prediction of early HCC after hepatic resection. Methods One-hundred and four cases of matched fresh tissue specimens of early HCC and adjacent non-tumorous liver tissue (ANLT) were obtained for RT-PCR, qRT-PCR, western blot and immunohistochemistry assays. Sera were collected from patients with early HCC (n=184), benign liver tumors (n=29), cirrhosis (n=174), non-cirrhotic hepatitis B (n=193), and from healthy individuals (n=202). The levels of Dkk-1 and alpha fetoprotein (AFP) were measured. Results The Dkk-1 mRNA and protein levels were both upregulated in early HCC. Serum levels of Dkk-1 in patients with early HCC were significantly higher than in the other 4 groups (p<0.001). Dkk-1 had a better sensitivity and accuracy than AFP (p<0.05). More importantly, 73.1% of the patients negative for AFP could be diagnosed with early HCC using Dkk-1. A combination of Dkk-1 and AFP further improved the diagnostic efficacy. Patients with a high serum Dkk-1 level had poorer overall and relapse-free survivals than those with a low Dkk-1 level (p=0.028 and p=0.045, respectively). These results were shown in a testing cohort and confirmed in a validation cohort of patients. Univariable and multivariable Cox regression analyses showed serum Dkk-1 level to be an independent prognostic factor for overall survival. Conclusions Our data show that Dkk-1 is a diagnostic and prognostic serologic marker for early HCC.
Collapse
|
48
|
Grinchuk OV, Yenamandra SP, Iyer R, Singh M, Lee HK, Lim KH, Chow PK, Kuznetsov VA. Tumor-adjacent tissue co-expression profile analysis reveals pro-oncogenic ribosomal gene signature for prognosis of resectable hepatocellular carcinoma. Mol Oncol 2017; 12:89-113. [PMID: 29117471 PMCID: PMC5748488 DOI: 10.1002/1878-0261.12153] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/03/2017] [Accepted: 10/16/2017] [Indexed: 12/18/2022] Open
Abstract
Currently, molecular markers are not used when determining the prognosis and treatment strategy for patients with hepatocellular carcinoma (HCC). In the present study, we proposed that the identification of common pro‐oncogenic pathways in primary tumors (PT) and adjacent non‐malignant tissues (AT) typically used to predict HCC patient risks may result in HCC biomarker discovery. We examined the genome‐wide mRNA expression profiles of paired PT and AT samples from 321 HCC patients. The workflow integrated differentially expressed gene selection, gene ontology enrichment, computational classification, survival predictions, image analysis and experimental validation methods. We developed a 24‐ribosomal gene‐based HCC classifier (RGC), which is prognostically significant in both PT and AT. The RGC gene overexpression in PT was associated with a poor prognosis in the training (hazard ratio = 8.2, P = 9.4 × 10−6) and cross‐cohort validation (hazard ratio = 2.63, P = 0.004) datasets. The multivariate survival analysis demonstrated the significant and independent prognostic value of the RGC. The RGC displayed a significant prognostic value in AT of the training (hazard ratio = 5.0, P = 0.03) and cross‐validation (hazard ratio = 1.9, P = 0.03) HCC groups, confirming the accuracy and robustness of the RGC. Our experimental and bioinformatics analyses suggested a key role for c‐MYC in the pro‐oncogenic pattern of ribosomal biogenesis co‐regulation in PT and AT. Microarray, quantitative RT‐PCR and quantitative immunohistochemical studies of the PT showed that DKK1 in PT is the perspective biomarker for poor HCC outcomes. The common co‐transcriptional pattern of ribosome biogenesis genes in PT and AT from HCC patients suggests a new scalable prognostic system, as supported by the model of tumor‐like metabolic redirection/assimilation in non‐malignant AT. The RGC, comprising 24 ribosomal genes, is introduced as a robust and reproducible prognostic model for stratifying HCC patient risks. The adjacent non‐malignant liver tissue alone, or in combination with HCC tissue biopsy, could be an important target for developing predictive and monitoring strategies, as well as evidence‐based therapeutic interventions, that aim to reduce the risk of post‐surgery relapse in HCC patients.
Collapse
Affiliation(s)
| | | | | | - Malay Singh
- Bioinformatics InstituteSingapore
- Department of Computer ScienceSchool of ComputingNational University of SingaporeSingapore
| | - Hwee Kuan Lee
- Bioinformatics InstituteSingapore
- Department of Computer ScienceSchool of ComputingNational University of SingaporeSingapore
| | - Kiat Hon Lim
- Division of Surgical OncologyNational Cancer CentreSingaporeSingapore
| | - Pierce Kah‐Hoe Chow
- Division of Surgical OncologyNational Cancer CentreSingaporeSingapore
- Office of Clinical SciencesDuke‐NUS Graduate Medical SchoolSingaporeSingapore
- Department of HPB and Transplantation SurgerySingapore General HospitalSingapore
| | | |
Collapse
|
49
|
Kagey MH, He X. Rationale for targeting the Wnt signalling modulator Dickkopf-1 for oncology. Br J Pharmacol 2017; 174:4637-4650. [PMID: 28574171 PMCID: PMC5727329 DOI: 10.1111/bph.13894] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/12/2017] [Accepted: 05/19/2017] [Indexed: 12/15/2022] Open
Abstract
Wnt signalling is a fundamental pathway involved in embryonic development and adult tissue homeostasis. Mutations in the pathway frequently lead to developmental defects and cancer. As such, therapeutic intervention of this pathway has generated tremendous interest. Dickkopf-1 (DKK1) is a secreted inhibitor of β-catenin-dependent Wnt signalling and was originally characterized as a tumour suppressor based on the prevailing view that Wnt signalling promotes cancer pathogenesis. However, DKK1 appears to increase tumour growth and metastasis in preclinical models and its elevated expression correlates with a poor prognosis in a range of cancers, indicating that DKK1 has more complex cellular and biological functions than originally appreciated. Here, we review current evidence for the cancer-promoting activity of DKK1 and recent insights into the effects of DKK1 on signalling pathways in both cancer and immune cells. We discuss the rationale and promise of targeting DKK1 for oncology. LINKED ARTICLES This article is part of a themed section on WNT Signalling: Mechanisms and Therapeutic Opportunities. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.24/issuetoc.
Collapse
Affiliation(s)
| | - Xi He
- The F. M. Kirby Neurobiology Center, Boston Children's Hospital, Department of NeurologyHarvard Medical SchoolBostonMAUSA
| |
Collapse
|
50
|
Sklavos A, Poutahidis T, Giakoustidis A, Makedou K, Angelopoulou K, Hardas A, Andreani P, Zacharioudaki A, Saridis G, Goulopoulos T, Tsarea K, Karamperi M, Papadopoulos V, Papanikolaou V, Papalois A, Iliadis S, Mudan S, Azoulay D, Giakoustidis D. Effects of Wnt-1 blockade in DEN-induced hepatocellular adenomas of mice. Oncol Lett 2017; 15:1211-1219. [PMID: 29399175 DOI: 10.3892/ol.2017.7427] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 09/01/2017] [Indexed: 12/19/2022] Open
Abstract
Recent evidence has suggested that downregulation of the Wnt/β-catenin signaling pathway may contribute to the development and growth of HCC. Consequently, elements of this pathway have begun to emerge as potential targets for improving outcomes of anti-HCC. Thus, the present study sought to examine the effects of Wnt-1 blockade using the classical diethylnitrosamine (DEN)-induced chemical carcinogenesis mouse model of HCC. The depletion of Wnt-1 using neutralizing antisera was done for ten consecutive days at the age of 9 months and mice were examined for the following 20 days. At that time, DEN-treated mice had multiple variably-sized hepatic cell adenomas. Anti-Wnt-1 was particularly potent in suppressing the expression of critical elements of the Wnt/β-catenin signaling pathway, such as β-catenin and Frizzled-1 receptor, however, not Dickkopf-related protein 1. This effect co-existed with the suppression of Cyclin D1, FOXM1, NF-κΒ and c-Jun commensurate with proliferation and apoptosis blockade in hepatocellular adenomas, and reduced Bcl-2 and c-Met in the serum of mice. Nonetheless, tumor size and multiplicity were found to be unaffected, suggesting that apoptosis may be equally important to proliferation in the context of counteracting DEN induced hepatocellular adenomas of mice.
Collapse
Affiliation(s)
- Argyrios Sklavos
- Division of Transplant Surgery, Department of Surgery, School of Medicine, Faculty of Health Sciences, Aristotle University and Hippokration General Hospital, Thessaloniki 54642, Greece
| | - Theofilos Poutahidis
- Laboratory of Pathology, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | | | - Kali Makedou
- Laboratory of Biochemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Katerina Angelopoulou
- Laboratory of Biochemistry and Toxicology, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Alexander Hardas
- Laboratory of Pathology, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Paola Andreani
- Service de Chirurgie Digestive et Hépatobiliaire, Hôpital Henri Mondor, Assistance Publique-Hôpitaux de Paris-Université Paris-Est, Créteil 94000, France
| | | | - George Saridis
- Laboratory of Pathology, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Thomas Goulopoulos
- Division of Transplant Surgery, Department of Surgery, School of Medicine, Faculty of Health Sciences, Aristotle University and Hippokration General Hospital, Thessaloniki 54642, Greece
| | - Kalliopi Tsarea
- Experimental and Research Center ELPEN Pharmaceuticals, Athens 19009, Greece
| | - Maria Karamperi
- Experimental and Research Center ELPEN Pharmaceuticals, Athens 19009, Greece
| | - Vassilios Papadopoulos
- Propedeutic Division of Surgery, Department of Surgery School of Medicine, Faculty of Health Sciences, Aristotle University and AHEPA University Hospital, Thessaloniki 54124, Greece
| | - Vassilios Papanikolaou
- Division of Transplant Surgery, Department of Surgery, School of Medicine, Faculty of Health Sciences, Aristotle University and Hippokration General Hospital, Thessaloniki 54642, Greece
| | - Apostolos Papalois
- Experimental and Research Center ELPEN Pharmaceuticals, Athens 19009, Greece
| | - Stavros Iliadis
- Laboratory of Biochemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Satvinder Mudan
- Academic Department of Surgery, The Royal Marsden Hospital, London SW3 6JJ, UK
| | - Daniel Azoulay
- Service de Chirurgie Digestive et Hépatobiliaire, Hôpital Henri Mondor, Assistance Publique-Hôpitaux de Paris-Université Paris-Est, Créteil 94000, France
| | - Dimitrios Giakoustidis
- Division of Transplant Surgery, Department of Surgery, School of Medicine, Faculty of Health Sciences, Aristotle University and Hippokration General Hospital, Thessaloniki 54642, Greece
| |
Collapse
|