1
|
Li Q, Wang W, Yang T, Li D, Huang Y, Bai G, Li Q. LINC00520 up-regulates SOX5 to promote cell proliferation and invasion by miR-4516 in human hepatocellular carcinoma. Biol Chem 2022; 403:665-678. [PMID: 35089659 DOI: 10.1515/hsz-2021-0316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 01/05/2022] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common human cancers. Long non-coding RNA (lncRNA) has been demonstrated to play an important role in regulating tumor development. The current study aims to explore the specific role of LINC00520 during HCC progression. The present study identified that LINC00520 was upregulated in HCC tissues and indicated poor patient survival. Overexpression of LINC00520 promoted HCC cell proliferation, migration and invasion, while LINC00520 downregulation led to the opposite effects. Besides, LINC00520 knockdown was found to inhibit tumor growth in vivo. Furthermore, LINC00520 acted as a sponge of miR-4516 to regulate SRY-related high mobility group box 5 (SOX5). In addition, the inhibition of miR-4516 partly reversed the inhibitory effect of LINC00520 silencing on HCC cell proliferation, migration and invasion. In conclusion, the inhibition of LINC00520 suppressed HCC cell proliferation, migration and invasion through mediating miR-4516/SOX5 axis. Therefore, our study provides a basis for the development of treatment strategies for HCC.
Collapse
Affiliation(s)
- Qing Li
- Department of Internal Medicine, Third Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Wei Wang
- Department of General Surgery, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Tao Yang
- Department of General Surgery, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Dongsheng Li
- Department of General Surgery, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Yinpeng Huang
- Department of General Surgery, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Guang Bai
- Department of General Surgery, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Qiang Li
- Department of General Surgery, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| |
Collapse
|
2
|
Jacobs AH, Schelhaas S, Viel T, Waerzeggers Y, Winkeler A, Zinnhardt B, Gelovani J. Imaging of Gene and Cell-Based Therapies: Basis and Clinical Trials. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00060-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
3
|
Chen T, Dai X, Dai J, Ding C, Zhang Z, Lin Z, Hu J, Lu M, Wang Z, Qi Y, Zhang L, Pan R, Zhao Z, Lu L, Liao W, Lu X. AFP promotes HCC progression by suppressing the HuR-mediated Fas/FADD apoptotic pathway. Cell Death Dis 2020; 11:822. [PMID: 33009373 PMCID: PMC7532541 DOI: 10.1038/s41419-020-03030-7] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/13/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is a major leading cause of cancer-related death worldwide. Alpha fetoprotein (AFP) is reactivated in a majority of hepatocellular carcinoma (HCC) and associated with poor patient outcomes. Although increasing evidence has shown that AFP can regulate HCC cell growth, the precise functions of AFP in hepatocarcinogenesis and the associated underlying mechanism remain incompletely understood. In this study, we demostrated that depleting AFP significantly suppressed diethylnitrosamine (DEN)-induced liver tumor progression in an AFP gene-deficient mouse model. Similarly, knocking down AFP expression inhibited human HCC cell proliferation and tumor growth by inducing apoptosis. AFP expression level was inversely associated with the apoptotic rate in mouse and human HCC specimens. Investigation of potential cross-talk between AFP and apoptotic signaling revealed that AFP exerted its growth-promoting effect by suppressing the Fas/FADD-mediated extrinsic apoptotic pathway. Mechanistically, AFP bound to the RNA-binding protein HuR, increasing the accumulation of HuR in the cytoplasm and subsequent inhibition of Fas mRNA translation. In addition, we found that inhibiting AFP enhanced the cytotoxicity of therapeutics to AFP-positive HCC cells by activating HuR-mediated Fas/FADD apoptotic signaling. Conclusion: Our study defined the pro-oncogenic role of AFP in HCC progression and uncovered a novel antiapoptotic mechanism connecting AFP to HuR-mediated Fas translation. Our findings suggest that AFP is involved in the pathogenesis and chemosensitivity of HCC and that blockade of AFP may be a promising strategy to treat advanced HCC.
Collapse
Affiliation(s)
- Tianke Chen
- School of Basic Medical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Xiaowei Dai
- School of Basic Medical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Juji Dai
- School of Basic Medical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Chaodong Ding
- School of Basic Medical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Zheng Zhang
- School of Basic Medical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Ziqi Lin
- School of Basic Medical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Jin Hu
- School of Basic Medical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Mei Lu
- School of Basic Medical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Zhanyu Wang
- School of Basic Medical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Yalei Qi
- School of Basic Medical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Li Zhang
- School of Basic Medical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Rulu Pan
- School of Basic Medical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Zhu Zhao
- School of Basic Medical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Liting Lu
- School of Basic Medical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Wanqin Liao
- School of Basic Medical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Xincheng Lu
- School of Basic Medical Sciences, Wenzhou Medical University, 325035, Wenzhou, China.
| |
Collapse
|
4
|
Hosny S, Sahyon H, Youssef M, Negm A. Oleanolic Acid Suppressed DMBA-Induced Liver Carcinogenesis through Induction of Mitochondrial-Mediated Apoptosis and Autophagy. Nutr Cancer 2020; 73:968-982. [PMID: 32519911 DOI: 10.1080/01635581.2020.1776887] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Phytochemicals appeared as a rich source of efficient and safe agents against many diseases like cancer. Various herbal sources are rich in oleanolic acid (OA). The scope of this study was to assess the biochemical and molecular mechanisms implicated in the ameliorative potency of OA against DMBA-induced liver carcinogenesis. Forty-eight male albino mice were assigned randomly to five groups (eight mice each) as follows: control healthy group, olive oil group, OA group, DMBA group, and DMBA with OA. Apoptosis, autophagy, inflammation, proliferation, and angiogenesis were investigated in the tissue samples. Histopathological examination was carried out as well as liver enzymes activity and other hepatic antioxidant and inflammatory biomarkers. The treatment with OA effectively suppressed the DMBA-initiated liver carcinogenesis via modulation of antioxidant status, induction of apoptosis and autophagy through modulating the expression of Caspase-3, Bcl-2 and Beclin-1, inhibiting angiogenesis (VEGF), proliferation (PCNA), and improved liver function and histological picture with a reduction in AFP level. Additionally, OA applies its antitumor effects by inhibition of proinflammatory transcription factor NF-κB and inflammatory markers (TNF-α and Cox-2) associated with DMBA administration. The present study shows that OA treatment efficiently suppressed the DMBA-initiated liver carcinogenesis through induction of mitochondrial-mediated apoptosis and autophagy and modulating inflammation.
Collapse
Affiliation(s)
- Samar Hosny
- Chemistry Department, Biochemistry Division, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Heba Sahyon
- Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Magdy Youssef
- Chemistry Department, Biochemistry Division, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Amr Negm
- Chemistry Department, Biochemistry Division, Faculty of Science, Mansoura University, Mansoura, Egypt.,Department of Chemistry, College of Science, King Faisal University, Al-Ahasa, Saudi Arabia
| |
Collapse
|
5
|
Zhao Z, Dai J, Yu Y, Zhang Q, Liu S, Huang G, Zhang Z, Chen T, Pan R, Lu L, Zhang W, Liao W, Lu X. Non-invasive Bioluminescence Monitoring of Hepatocellular Carcinoma Therapy in an HCR Mouse Model. Front Oncol 2019; 9:864. [PMID: 31572672 PMCID: PMC6749040 DOI: 10.3389/fonc.2019.00864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 08/21/2019] [Indexed: 12/12/2022] Open
Abstract
Animal models play crucial roles in the development of anticancer therapeutics. The ability to quickly assess the localized primary hepatocellular carcinoma (HCC) status in a non-invasive manner would significantly improve the effectiveness of anti-HCC therapeutic studies. However, to date, animal models with this advantage are extremely scarce. In this study, we developed a novel animal model for the fast assessment of drug efficacy against primary HCC in vivo. HCC was induced in immunocompetent hepatocarcinogenesis reporter (HCR) mice by diethylnitrosamine (DEN) injection and confirmed by histopathological staining. Using the bioluminescence imaging (BLI) technique, HCC progression was longitudinally visualized and monitored in a non-invasive way. Tests of two clinical drugs showed that both sorafenib and oxaliplatin significantly inhibited the BLI signal in mouse liver in a dose-dependent manner. The in vivo intensity of BLI signals was highly consistent with the final tumor burden status in mouse liver after drug treatment. The inhibitory effect of anti-HCC drugs was accurately evaluated through in vivo BLI intensity detection. Our study successfully established a bioluminescence mouse model for non-invasive real-time monitoring of HCC therapy, and this HCR mouse model would be a useful tool for potential anti-HCC drug screening and new therapeutic strategy development.
Collapse
Affiliation(s)
- Zhu Zhao
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Juji Dai
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yan Yu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qian Zhang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Sai Liu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Guanmeng Huang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zheng Zhang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Tianke Chen
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Rulu Pan
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Liting Lu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wenyi Zhang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wanqin Liao
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xincheng Lu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
6
|
Manni I, de Latouliere L, Gurtner A, Piaggio G. Transgenic Animal Models to Visualize Cancer-Related Cellular Processes by Bioluminescence Imaging. Front Pharmacol 2019; 10:235. [PMID: 30930779 PMCID: PMC6428995 DOI: 10.3389/fphar.2019.00235] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/25/2019] [Indexed: 12/21/2022] Open
Abstract
Preclinical animal models are valuable tools to improve treatments of malignant diseases, being an intermediate step of experimentation between cell culture and human clinical trials. Among different animal models frequently used in cancer research are mouse and, more recently, zebrafish models. Indeed, most of the cellular pathways are highly conserved between human, mouse and zebrafish, thus rendering these models very attractive. Recently, several transgenic reporter mice and zebrafishes have been generated in which the luciferase reporter gene are placed under the control of a promoter whose activity is strictly related to specific cancer cellular processes. Other mouse models have been generated by the cDNA luciferase knockin in the locus of a gene whose expression/activity has increased in cancer. Using BioLuminescence Imaging (BLI), we have now the opportunity to spatiotemporal visualize cell behaviors, among which proliferation, apoptosis, migration and immune responses, in any body district in living animal in a time frame process. We provide here a review of the available models to visualized cancer and cancer-associated events in living animals by BLI and as they have been successful in identifying new stages of early tumor progression, new interactions between different tissues and new therapeutic responsiveness.
Collapse
Affiliation(s)
- Isabella Manni
- UOSD SAFU, Department of Research, Diagnosis and Innovative Technologies, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Luisa de Latouliere
- UOSD SAFU, Department of Research, Diagnosis and Innovative Technologies, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Aymone Gurtner
- UOSD SAFU, Department of Research, Diagnosis and Innovative Technologies, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Giulia Piaggio
- UOSD SAFU, Department of Research, Diagnosis and Innovative Technologies, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
7
|
Ferrara-Romeo I, Martínez P, Blasco MA. Mice lacking RAP1 show early onset and higher rates of DEN-induced hepatocellular carcinomas in female mice. PLoS One 2018; 13:e0204909. [PMID: 30307978 PMCID: PMC6187989 DOI: 10.1371/journal.pone.0204909] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/17/2018] [Indexed: 02/07/2023] Open
Abstract
RAP1, a component of the telomere-protective shelterin complex, has been shown to have both telomeric and non-telomeric roles. In the liver, RAP1 is involved in the regulation of metabolic transcriptional programs. RAP1-deficient mice develop obesity and hepatic steatosis, these phenotypes being more severe in females than in males. As hepatic steatosis and obesity have been related to increased liver cancer in mice and humans, we set out to address whether RAP1 deficiency resulted in increased liver cancer upon chemical liver carcinogenesis. We found that Rap1-/- females were more susceptible to DEN-induced liver damage and hepatocellular carcinoma (HCC). DEN-treated Rap1-/- female livers showed an earlier onset of both premalignant and malignant liver lesions, which were characterized by increased abundance of γH2AX-positive cells, increased proliferation and shorter telomeres. These findings highlight an important role for RAP1 in protection from liver damage and liver cancer.
Collapse
Affiliation(s)
- Iole Ferrara-Romeo
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, Spain
| | - Paula Martínez
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, Spain
| | - Maria A. Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, Spain
- * E-mail:
| |
Collapse
|
8
|
Ma Q, Shao H, Feng Y, Zhang L, Li P, Hu X, Ma Z, Lou H, Zeng X, Luo G. A new bioluminescent imaging technology for studying oxidative stress in the testis and its impacts on fertility. Free Radic Biol Med 2018; 124:51-60. [PMID: 29803806 DOI: 10.1016/j.freeradbiomed.2018.05.080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 05/05/2018] [Accepted: 05/22/2018] [Indexed: 12/11/2022]
Abstract
PURPOSE Excessive oxidative stress (OS) leads to cellular dysfunctions and cell death and constitutes a major cause of male infertility. However, the etiologies of increased reactive oxygen species (ROS) in male infertility is not fully understood. One major limitation is the lack of an in vivo imaging system that can be used to effectively study the impact of excessive ROS in the testis. Recently, we discovered that the hepatocellular carcinoma reporter (HCR) mice previously generated in our laboratory also expressed luciferase in the spermatids of the testis. The goal of the current study is to use the HCR mice to detect OS in the testis and to investigate the potential use of this new system in studying OS-induced male infertility. EXPERIMENTAL DESIGN Bioluminescence imaging (BLI) was performed in HCR mice that were treated with peroxy caged luciferin-1 (PCL-1), an OS reporter, to establish a new mouse model for in vivo monitoring of the OS status inside the male reproductive tract. Subsequently, the effect of acetaminophen (APAP) overdose on the OS inside the testis and male fertility were determined. Lastly, APAP was co-administered with glutathione, an antioxidant reagent, to test if the HCR mice can serve as a model for the effective and rapid assessment of the potency of individual agents in modifying the OS inside the mouse testis. RESULTS The OS level in the testis in the HCR mice was readily detected by BLI. The use of this new model led to the discovery that APAP caused a sudden rise of OS in the testis and was a potent toxicant for the male reproductive system. Moreover, administration of glutathione was effective in preventing the APAP-induced elevation of OS and in ameliorating all of the OS-induced anomalies in the testis. CONCLUSIONS The HCR mice represent an excellent model for monitoring OS change in the mouse testis by real time BLI. APAP is a potent male reproductive toxicant and APAP-treated mice represent a valid model for OS-induced male infertility. This model can be used to study OS-induced damage in male reproductive tract and in assessing the effects of therapeutic agents on the relative levels of OS and male fertility.
Collapse
Affiliation(s)
- Qixiang Ma
- School of Life Sciences, Centre for Translational Oncology, Beijing University of Chinese Medicine, Chaoyang, 100029 Beijing, China
| | - Haozhen Shao
- School of Life Sciences, Centre for Translational Oncology, Beijing University of Chinese Medicine, Chaoyang, 100029 Beijing, China
| | - Yanyan Feng
- School of Life Sciences, Centre for Translational Oncology, Beijing University of Chinese Medicine, Chaoyang, 100029 Beijing, China
| | - Linpeng Zhang
- Shandong Stroke Association, Affiliated Hospitals of Weifang Medical College, Shandong, China
| | - Pengshou Li
- School of Life Sciences, Centre for Translational Oncology, Beijing University of Chinese Medicine, Chaoyang, 100029 Beijing, China
| | - Xiaowei Hu
- School of Life Sciences, Centre for Translational Oncology, Beijing University of Chinese Medicine, Chaoyang, 100029 Beijing, China
| | - Zhitao Ma
- School of Life Sciences, Centre for Translational Oncology, Beijing University of Chinese Medicine, Chaoyang, 100029 Beijing, China
| | - Hua Lou
- Department of Genetics and Genome Sciences, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Xianwei Zeng
- Shandong Stroke Association, Affiliated Hospitals of Weifang Medical College, Shandong, China.
| | - Guangbin Luo
- School of Life Sciences, Centre for Translational Oncology, Beijing University of Chinese Medicine, Chaoyang, 100029 Beijing, China; Department of Genetics and Genome Sciences, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
9
|
Kim KI, Chung HK, Park JH, Lee YJ, Kang JH. Alpha-fetoprotein-targeted reporter gene expression imaging in hepatocellular carcinoma. World J Gastroenterol 2016; 22:6127-6134. [PMID: 27468205 PMCID: PMC4945974 DOI: 10.3748/wjg.v22.i27.6127] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 05/02/2016] [Accepted: 05/23/2016] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers in Eastern Asia, and its incidence is increasing globally. Numerous experimental models have been developed to better our understanding of the pathogenic mechanism of HCC and to evaluate novel therapeutic approaches. Molecular imaging is a convenient and up-to-date biomedical tool that enables the visualization, characterization and quantification of biologic processes in a living subject. Molecular imaging based on reporter gene expression, in particular, can elucidate tumor-specific events or processes by acquiring images of a reporter gene’s expression driven by tumor-specific enhancers/promoters. In this review, we discuss the advantages and disadvantages of various experimental HCC mouse models and we present in vivo images of tumor-specific reporter gene expression driven by an alpha-fetoprotein (AFP) enhancer/promoter system in a mouse model of HCC. The current mouse models of HCC development are established by xenograft, carcinogen induction and genetic engineering, representing the spectrum of tumor-inducing factors and tumor locations. The imaging analysis approach of reporter genes driven by AFP enhancer/promoter is presented for these different HCC mouse models. Such molecular imaging can provide longitudinal information about carcinogenesis and tumor progression. We expect that clinical application of AFP-targeted reporter gene expression imaging systems will be useful for the detection of AFP-expressing HCC tumors and screening of increased/decreased AFP levels due to disease or drug treatment.
Collapse
|
10
|
PET imaging of oncolytic VSV expressing the mutant HSV-1 thymidine kinase transgene in a preclinical HCC rat model. Mol Ther 2015; 23:728-36. [PMID: 25609160 DOI: 10.1038/mt.2015.12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 01/12/2015] [Indexed: 12/23/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most predominant form of liver cancer and the third leading cause of cancer-related death worldwide. Due to the relative ineffectiveness of conventional HCC therapies, oncolytic viruses have emerged as novel alternative treatment agents. Our previous studies have demonstrated significant prolongation of survival in advanced HCC in rats after oncolytic vesicular stomatitis virus (VSV) treatment. In this study, we aimed to establish a reporter system to reliably and sensitively image VSV in a clinically relevant model of HCC for clinical translation. To this end, an orthotopic, unifocal HCC model in immune-competent Buffalo rats was employed to test a recombinant VSV vector encoding for an enhanced version of the herpes simplex virus 1 (HSV-1) thymidine kinase (sr39tk) reporter, which would allow the indirect detection of VSV via positron emission tomography (PET). The resulting data revealed specific tracer uptake in VSV-HSV1-sr39tk-treated tumors. Further characterization of the VSV-HSV1-sr39tk vector demonstrated its optimal detection time-point after application and its detection limit via PET. In conclusion, oncolytic VSV expressing the HSV1-sr39tk reporter gene allows for highly sensitive in vivo imaging via PET. Therefore, this imaging system may be directly translatable and beneficial in further clinical applications.
Collapse
|
11
|
Mizejewski GJ. Cancer during Pregnancy: What is the Role of Maternal Serum and Placental Biomarkers? A Review and Commentary. TUMORI JOURNAL 2014. [DOI: 10.1177/1778.19254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Gerald J Mizejewski
- Wadsworth Center, Division of Translational Medicine, New York State Department of Health, Albany, NY, USA
| |
Collapse
|
12
|
PARK JUHUI, KANG JOOHYUN, LEE YONGJIN, KIM KWANGIL, LEE TAESUP, KIM KYEONGMIN, PARK JIAE, KO YINOHK, YU DAEYEUL, NAHM SANGSOEP, JEON TAEJOO, PARK YOUNGSEO, LIM SANGMOO. Evaluation of diethylnitrosamine- or hepatitis B virus X gene-induced hepatocellular carcinoma with 18F-FDG PET/CT: A preclinical study. Oncol Rep 2014; 33:347-53. [DOI: 10.3892/or.2014.3575] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 10/07/2014] [Indexed: 11/06/2022] Open
|
13
|
Wojtulewicz JP, Coakley JC. Alpha-fetoprotein-a potential biomarker of intestinal regeneration in the infant. Med Hypotheses 2013; 81:335-7. [PMID: 23692971 DOI: 10.1016/j.mehy.2013.03.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 03/11/2013] [Accepted: 03/29/2013] [Indexed: 11/25/2022]
Abstract
We hypothesise that the human infant, whether born prematurely or at term, may have special capacities when mounting a healing response to severe post-natal gastrointestinal injury consequent upon stem cells of endodermal origin, located in the infant gut, persisting beyond the intrauterine period. Should such endodermal stem cells persist beyond birth, and should they survive any gastro-intestinal injury, there would be a possibility for them to be re-activated, and then to differentiate into progeny cells appropriate to replacement of the destroyed intestinal cell type(s). We therefore postulate that in infants who survive significant intestinal necrosis requiring surgical excision in the perinatal period, a component of the recovery process may include some degree of intestinal regeneration. Evidence for the regeneration of intestine would be evinced by measurement of a biomarker in the plasma of recovering infants--alpha-fetoprotein (AFP)--as this protein would be produced by early generations of these putative replacement progeny intestinal cells. We would anticipate an initial significant rise in the plasma AFP, prior to a plateau in levels, and then a subsequent fall in plasma AFP values. This would indicate the activity, then subsequent cessation, of any intestinal cell regenerative process. We have recently published a previously undescribed pattern of anomalous serial plasma concentrations of AFP in several infants who survived following significant intestinal necrosis and subsequent surgical resection. We consider this novel hypothesis, and our associated observation of another cause of rising AFP in the post-natal period, to support our contention regarding the presence and potential of intestinal stem cells, and a regenerative process within the infant gastro-intestinal system. This hypothesis has important implications for the understanding of the physiologic responses following gut cell necrosis in the human newborn as well as future approaches to research directions, clinical support and potential treatment modalities, during their recovery phase. Further studies are needed to confirm our hypothesis.
Collapse
Affiliation(s)
- Julian P Wojtulewicz
- Department of Paediatrics and Clinical Biochemistry, Children's Hospital at Westmead, Sydney Children's Hospitals Network, Sydney, Australia.
| | | |
Collapse
|
14
|
Kocher B, Piwnica-Worms D. Illuminating cancer systems with genetically engineered mouse models and coupled luciferase reporters in vivo. Cancer Discov 2013; 3:616-29. [PMID: 23585416 DOI: 10.1158/2159-8290.cd-12-0503] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Bioluminescent imaging (BLI) is a powerful noninvasive tool that has dramatically accelerated the in vivo interrogation of cancer systems and longitudinal analysis of mouse models of cancer over the past decade. Various luciferase enzymes have been genetically engineered into mouse models (GEMM) of cancer, which permit investigation of cellular and molecular events associated with oncogenic transcription, posttranslational processing, protein-protein interactions, transformation, and oncogene addiction in live cells and animals. Luciferase-coupled GEMMs ultimately serve as a noninvasive, repetitive, longitudinal, and physiologic means by which cancer systems and therapeutic responses can be investigated accurately within the autochthonous context of a living animal.
Collapse
Affiliation(s)
- Brandon Kocher
- Washington University School of Medicine, Campus Box 8225, 510 S. Kingshighway Boulevard, Box 8225, St. Louis, MO 63110, USA
| | | |
Collapse
|
15
|
Thoolen B, ten Kate FJ, van Diest PJ, Malarkey DE, Elmore SA, Maronpot RR. Comparative histomorphological review of rat and human hepatocellular proliferative lesions. J Toxicol Pathol 2012; 25:189-99. [PMID: 22988337 PMCID: PMC3434334 DOI: 10.1293/tox.25.189] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 05/24/2012] [Indexed: 02/07/2023] Open
Abstract
In this comparative review, histomorphological features of common nonneoplastic and neoplastic hepatocyte lesions of rats and humans are examined using H&E-stained slides. The morphological similarities and differences of both neoplastic (hepatocellular carcinoma and hepatocellular adenoma) and presumptive preneoplastic lesions (large and small cell change in humans and foci of cellular alteration in rats) are presented and discussed. There are major similarities in the diagnostic features, growth patterns and behavior of both rat and human hepatocellular proliferative lesions and in the process of hepatocarcinogenesis. Further study of presumptive preneoplastic lesions in humans and rats should help to further define their role in progression to hepatocellular neoplasia in both species.
Collapse
Affiliation(s)
- Bob Thoolen
- Global Pathology Support, Benoordenhoutseweg 23, 2596 BA The
Hague, The Netherlands
- University Medical Center Utrecht, PO Box 85500, 3508 GA
Utrecht, The Netherlands
| | - Fiebo J.W. ten Kate
- University Medical Center Utrecht, PO Box 85500, 3508 GA
Utrecht, The Netherlands
| | - Paul J. van Diest
- University Medical Center Utrecht, PO Box 85500, 3508 GA
Utrecht, The Netherlands
| | - David E. Malarkey
- National Toxicology Program, National Institute of
Environmental Health Sciences, Cellular and Molecular Pathology Branch,111 T.W. Alexander
Drive, NC 27709, USA
| | - Susan A. Elmore
- National Toxicology Program, National Institute of
Environmental Health Sciences, Cellular and Molecular Pathology Branch,111 T.W. Alexander
Drive, NC 27709, USA
| | | |
Collapse
|
16
|
Liao W, Zhao R, Lu L, Zhang R, Zou J, Xu T, Wu C, Tang J, Deng Y, Lu X. Overexpression of a novel osteopetrosis-related gene CCDC154 suppresses cell proliferation by inducing G2/M arrest. Cell Cycle 2012; 11:3270-3279. [PMID: 22895184 PMCID: PMC3466526 DOI: 10.4161/cc.21642] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Osteopetrosis, a disorder of skeletal bone, can cause death during childhood. We previously described a new spontaneous autosomal recessive osteopetrosis mouse mutant, "new toothless" (ntl). In this study, we reported for the first time the identification, cloning and characterization of the coiled-coil domain-containing 154 (CCDC154), a novel gene whose deletion of ~5 kb sequence including exons 1-6 was completely linked to the ntl mutant. The CCDC154 was conserved between mouse and human and is wildly expressed in mouse tissues. The cellular localization of CCDC154 was in the early endosomes. Overexpression of CCDC154 inhibited cell proliferation of HEK293 cells by inducing G 2/M arrest. CCDC154 also inhibited tumor cell growth, and the soft agar assay revealed a significant decrease of the colony size of Hela cells upon transfection of CCDC154. Our results indicate that CCDC154 is a novel osteopetrosis-related gene involved in cell cycle regulation and tumor suppression growth.
Collapse
Affiliation(s)
- Wanqin Liao
- Institute of Genomic Medicine; Wenzhou Medical College; Wenzhou, China
| | - Rongsen Zhao
- Institute of Genomic Medicine; Wenzhou Medical College; Wenzhou, China
| | - Liting Lu
- Institute of Genomic Medicine; Wenzhou Medical College; Wenzhou, China
| | - Rongrong Zhang
- Institute of Genomic Medicine; Wenzhou Medical College; Wenzhou, China
| | - Jiawei Zou
- Institute of Genomic Medicine; Wenzhou Medical College; Wenzhou, China
| | - Tao Xu
- Institute of Genomic Medicine; Wenzhou Medical College; Wenzhou, China
| | - Changjie Wu
- Institute of Genomic Medicine; Wenzhou Medical College; Wenzhou, China
| | - Jiajia Tang
- Institute of Genomic Medicine; Wenzhou Medical College; Wenzhou, China
| | - Yuezhen Deng
- Institute for Nutritional Sciences; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; Shanghai, China
| | - Xincheng Lu
- Institute of Genomic Medicine; Wenzhou Medical College; Wenzhou, China
| |
Collapse
|
17
|
Tian H, Lu X, Guo H, Corn D, Molter J, Wang B, Luo G, Lee Z. Radio-deoxynucleoside Analogs used for Imaging tk Expression in a Transgenic Mouse Model of Induced Hepatocellular Carcinoma. Am J Cancer Res 2012; 2:597-606. [PMID: 22768027 PMCID: PMC3388592 DOI: 10.7150/thno.3371] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 05/24/2012] [Indexed: 01/26/2023] Open
Abstract
Purpose: A group of radiolabeled thymidine analogs were developed as radio-tracers for imaging herpes viral thymidine kinase (HSV1-tk) or its variants used as reporter gene. A transgenic mouse model was created to express tk upon liver injury or naturally occurring hepatocellular carcinoma (HCC). The purpose of this study was to use this unique animal model for initial testing with radio-labeled thymidine analogs, mainly a pair of newly emerging nucleoside analogs, D-FMAU and L-FMAU. Methods: A transgeneic mouse model was created by putting a fused reporter gene system, firefly luciferase (luc) and HSV1-tk, under the control of mouse alpha fetoprotein (Afp) promoter. Initial multimodal imaging, which was consisted of bioluminescent imaging (BLI) and planar gamma scintigraphy with [125I]-FIAU, was used for examining the model creation in the new born and liver injury in the adult mice. Carcinogen diethylnitrosamine (DEN) was then administrated to induce HCC in these knock-in mice such that microPET imaging could be used to track the activity of Afp promoter during tumor development and progression by imaging tk expression first with [18F]-FHBG. Dynamic PET scans with D-[18F]-FMAU and L-[18F]-FMAU were then performed to evaluate this pair of relatively new tracers. Cells were derived from these liver tumors for uptake assays using H-3 labeled version of PET tracers. Results: The mouse model with dual reporters: HSV1-tk and luc placed under the transcriptional control of an endogenous Afp promoter was used for imaging studies. The expression of the Afp gene was highly specific in proliferative hepatocytes, in regenerative liver, and in developing fetal liver, and thus provided an excellent indicator for liver injury and cancer development in adult mice. Both D-FMAU and L-FMAU showed stable liver tumor uptake where the tk gene was expressed under the Afp promoter. The performance of this pair of tracers was slightly different in terms of signal-to-background ratio as well as tracer clearance. Conclusion: The newly created knock-in mouse model was used to demonstrate the use of the dual-reporter genes driven by well-characterized cancer-specific transcriptional units in conjunction with in vivo imaging as a paradigm in studying naturally occurring cancer in live animals. While BLI is suitable for small animal imaging with luc expression, PET with L-FMAU seemed be the choice for liver injury or liver cancer imaging with this animal model for future investigations.
Collapse
|
18
|
Circulating tumor cells measurements in hepatocellular carcinoma. Int J Hepatol 2012; 2012:684802. [PMID: 22690340 PMCID: PMC3368319 DOI: 10.1155/2012/684802] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 03/24/2012] [Indexed: 02/06/2023] Open
Abstract
Liver cancer is the fifth most common cancer in men and the seventh in women. During the past 20 years, the incidence of HCC has tripled while the 5-year survival rate has remained below 12%. The presence of circulating tumor cells (CTC) reflects the aggressiveness nature of a tumor. Many attempts have been made to develop assays that reliably detect and enumerate the CTC during the development of the HCC. In this case, the challenges are (1) there are few markers specific to the HCC (tumor cells versus nontumor cells) and (2) they can be used to quantify the number of CTC in the bloodstream. Another technical challenge consists of finding few CTC mixed with million leukocytes and billion erythrocytes. CTC detection and identification can be used to estimate prognosis and may serve as an early marker to assess antitumor activity of treatment. CTC can also be used to predict progression-free survival and overall survival. CTC are an interesting source of biological information in order to understand dissemination, drug resistance, and treatment-induced cell death. Our aim is to review and analyze the different new methods existing to detect, enumerate, and characterize the CTC in the peripheral circulation of patients with HCC.
Collapse
|