1
|
Velimirović M, Avenhaus A, Lohrey C, Bulkescher J, Hoppe‐Seyler F, Hoppe‐Seyler K. Hypoxic HPV-Positive Cancer Cells Are Particularly Sensitive to the Pro-Senescent Effects of B-MYB Repression Due to the Lack of Compensatory A-MYB Induction. J Med Virol 2025; 97:e70422. [PMID: 40444458 PMCID: PMC12123558 DOI: 10.1002/jmv.70422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/11/2025] [Accepted: 05/01/2025] [Indexed: 06/02/2025]
Abstract
Tumor hypoxia is typically linked to increased therapy resistance and poor prognosis of many malignancies, including HPV-positive cancers. One possible resistance mechanism is the increased resistance of hypoxic tumor cells to cellular senescence. It is thus highly interesting to identify strategies which could increase their pro-senescent susceptibility. In comparative analyses of normoxic and hypoxic HPV-positive cancer cells, we here uncover that the interconnection between B-MYB and its paralog A-MYB plays a key role for their senescence response, but shows a differential regulation under normoxia and hypoxia. In specific, we demonstrate that the pro-senescent response to B-MYB loss is counteracted by a compensatory upregulation of A-MYB under normoxia. Therefore, efficient induction of senescence in normoxic cells requires the downregulation of both B-MYB and A-MYB. Interestingly, this compensatory A-MYB induction is absent under hypoxia, rendering hypoxic cancer cells particularly sensitive to the pro-senescent effect of B-MYB repression. We further show that these regulatory effects are not confined to HPV-positive cancer cells, indicating that they could be broadly conserved between different cancer types. Collectively, our findings reveal that hypoxic cancer cells are particularly sensitive to B-MYB inhibition, which could provide a new strategy to target this therapeutically challenging cancer cell population.
Collapse
Affiliation(s)
- Milica Velimirović
- German Cancer Research Center (DKFZ), Molecular Therapy of Virus‐Associated CancersHeidelbergGermany
- Faculty of BiosciencesHeidelberg UniversityHeidelbergGermany
| | - Alicia Avenhaus
- German Cancer Research Center (DKFZ), Molecular Therapy of Virus‐Associated CancersHeidelbergGermany
- Faculty of BiosciencesHeidelberg UniversityHeidelbergGermany
| | - Claudia Lohrey
- German Cancer Research Center (DKFZ), Molecular Therapy of Virus‐Associated CancersHeidelbergGermany
| | - Julia Bulkescher
- German Cancer Research Center (DKFZ), Molecular Therapy of Virus‐Associated CancersHeidelbergGermany
| | - Felix Hoppe‐Seyler
- German Cancer Research Center (DKFZ), Molecular Therapy of Virus‐Associated CancersHeidelbergGermany
| | - Karin Hoppe‐Seyler
- German Cancer Research Center (DKFZ), Molecular Therapy of Virus‐Associated CancersHeidelbergGermany
| |
Collapse
|
2
|
Lu J, Luo F. MYB Proto-Oncogene Like 2 identified as a biomarker for uterine corpus endometrial carcinoma: evidence from bioinformatics and clinical validation. Front Oncol 2025; 15:1595485. [PMID: 40432915 PMCID: PMC12106007 DOI: 10.3389/fonc.2025.1595485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Accepted: 04/23/2025] [Indexed: 05/29/2025] Open
Abstract
Background Endometrial carcinoma (EC) is the sixth most prevalent malignancy among women globally, posing a significant clinical challenge due to limited therapeutic options for advanced or recurrent cases. The identification of novel prognostic biomarkers and therapeutic targets is crucial for improving patient outcomes. This study aimed to investigate the multifaceted roles of MYB Proto-Oncogene Like 2 (MYBL2) in uterine corpus endometrial carcinoma (UCEC). Methods We employed multiple bioinformatics algorithms (GEPIA, TCGA, TIMER2.0) to analyze MYBL2 expression across different cancer types and in UCEC specifically. Expression patterns were validated using quantitative real-time PCR (qPCR) on clinical samples. Epigenetic analyses focused on promoter methylation status, and immune infiltration patterns were assessed using MethSurv, CIBERSORT and TIMER2.0. Drug sensitivity profiling was performed using the CPADS web platform. Results MYBL2 was found to be significantly upregulated in UCEC tumors compared to normal tissues. Elevated MYBL2 expression correlated with advanced histologic grade and clinical stage, indicating its potential as a biomarker for disease progression. Epigenetic analysis revealed promoter hypomethylation in tumors, suggesting a regulatory mechanism driving MYBL2 overexpression. MYBL2 demonstrated dynamic interactions with the tumor immune microenvironment, including associations with immune cell infiltration patterns and co-expression with immune checkpoint molecules and chemokines. Drug sensitivity profiling highlighted differential therapeutic responses linked to MYBL2 expression levels. Conclusion This study establishes MYBL2 as a critical regulator of UCEC progression, bridging epigenetic dysregulation, immune modulation, and clinical outcomes. The findings provide a foundation for exploring MYBL2-targeted strategies in precision immunotherapy and personalized therapeutic interventions.
Collapse
Affiliation(s)
- Jiaoyun Lu
- Department of Oncology, Xi’an NO.3 Hospital, The Affiliated Hospital of Northwest University, Xi’an, Shaanxi, China
| | - Furong Luo
- Department of Traditional Chinese Medicine, Xi’an NO.3 Hospital, The Affiliated Hospital of Northwest University, Xi’an, Shaanxi, China
| |
Collapse
|
3
|
Chen J, Ji Z, Wu D, Wei S, Zhu W, Peng G, Hu M, Zhao Y, Wu H. MYBL2 promotes cell proliferation and inhibits cell apoptosis via PI3K/AKT and BCL2/BAX/Cleaved-caspase-3 signaling pathway in gastric cancer cells. Sci Rep 2025; 15:9148. [PMID: 40097530 PMCID: PMC11914465 DOI: 10.1038/s41598-025-93022-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 03/04/2025] [Indexed: 03/19/2025] Open
Abstract
The transcription factor MYB proto-oncogene like 2 (MYBL2) has been reported to be involved in the occurrence and development of various tumors, however, its role in gastric cancer (GC) remains to be elucidated. In this study, the Kaplan-Meier plotter was used to evaluate the prognostic value of different MYBL2 expression levels in GC patients. The UALCAN database were applied to analyze the relationships between MYBL2 and clinicopathological characteristics of GC. GC cell proliferation, cell cycle and apoptosis were determined by CCK-8 and flow cytometry assays, and proteins were examined by Western blot analysis. Next, signaling pathway enrichment analysis of MYBL2-related genes and protein expression were analyzed by Gene Set Enrichment Analysis (GSEA) and Western blot assays. The results found that MYBL2 expression was significantly upregulated in GC compared with adjacent non-malignant tissues and associated with poor patient survival, tumor, stages and lymph node metastasis. Forced expression of MYBL2 could promote cell proliferation, resulting in an accelerated S phase progression and inhibiting cell apoptosis in GC cells. Conversely, MYBL2 silencing inhibited cell proliferation, induced G2/M phase arrest and promoted cell apoptosis in GC cells. Mechanistically, Western blot analysis showed that MYBL2 silencing decreased the expression of BCL2 and upregulated the expression of Cleaved-caspase-3 and BAX in HGC-27 cells. Conversely, MYBL2 overexpression in AGS cells resulted in the opposite effects. Furthermore, enforced expression of MYBL2 activated the PI3K/AKT signaling pathway, especially AKT phosphorylation. Additionally, the AKT inhibitor MK2206 significantly reversed the proliferation capacity of GC cells induced by MYBL2 overexpression. Therefore, these results suggest that upregulated expression of MYBL2 contributes to GC cell growth and inhibits cell apoptosis by regulating the PI3K/AKT and BCL2/BAX/Cleaved-caspase-3 signaling pathways in GC cells indicating that MYBL2 may be a new therapeutic target and prognostic marker for GC.
Collapse
Affiliation(s)
- Jingya Chen
- School of Public Health, Bengbu Medical University, Bengbu, China
| | - Zhenglei Ji
- School of Public Health, Bengbu Medical University, Bengbu, China
| | - Di Wu
- School of Life Science, Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, China
| | - Siyang Wei
- School of Public Health, Bengbu Medical University, Bengbu, China
| | - Wanjing Zhu
- School of Life Science, Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, China
| | - Guisen Peng
- School of Life Science, Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, China
| | - Mingjie Hu
- School of Life Science, Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, China.
| | - Yunli Zhao
- School of Public Health, Bengbu Medical University, Bengbu, China.
| | - Huazhang Wu
- School of Life Science, Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, China.
| |
Collapse
|
4
|
Alves A, Miranda A, Zanin I, Richter SN, Mergny JL, Cruz C. I-motif formation in the promoter region of the B-MYB proto-oncogene. Int J Biol Macromol 2025; 296:139582. [PMID: 39798757 DOI: 10.1016/j.ijbiomac.2025.139582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/26/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Understanding the mechanisms of carcinogenesis is essential to combat cancer. The search for alternative targets for anticancer therapy has gained interest, particularly when focused on upstream pathways. This strategy is particularly relevant when the encoded target proteins are known - or believed - to be "undruggable", as has been reported for the B-MYB oncogene. This gene, which regulates survival and cell cycle regulation, is overexpressed in cancer and correlates with an unfavorable prognosis. In this study, we focused on the identification of the i-motif (iM) structures in the promoter region of B-MYB as a possible anticancer target, with a complete biophysical characterization and in cell formation assessment using iM-CUT&Tag. Additionally, the interaction of the iM structures with a library of small molecules was investigated.
Collapse
Affiliation(s)
- André Alves
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - André Miranda
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal; RISE-Health, Departamento de Química, Faculdade de Ciências, Universidade da Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Irene Zanin
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy
| | - Sara N Richter
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; Microbiology and Virology Unit, Padua University Hospital, 35121 Padua, Italy
| | - Jean-Louis Mergny
- Laboratoire d'Optique et Biosciences, École Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Carla Cruz
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal; RISE-Health, Departamento de Química, Faculdade de Ciências, Universidade da Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001 Covilhã, Portugal; Departamento de Química, Universidade da Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal.
| |
Collapse
|
5
|
Wu D, Yang S, Yuan C, Zhang K, Tan J, Guan K, Zeng H, Huang C. Targeting purine metabolism-related enzymes for therapeutic intervention: A review from molecular mechanism to therapeutic breakthrough. Int J Biol Macromol 2024; 282:136828. [PMID: 39447802 DOI: 10.1016/j.ijbiomac.2024.136828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/02/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Purines are ancient metabolites with established and emerging metabolic and non-metabolic signaling attributes. The expression of purine metabolism-related genes is frequently activated in human malignancies, correlating with increased cancer aggressiveness and chemoresistance. Importantly, under certain stimulating conditions, the purine biosynthetic enzymes can assemble into a metabolon called "purinosomes" to enhance purine flux. Current evidence suggests that purine flux is regulated by a complex circuit that encompasses transcriptional, post-translational, metabolic, and association-dependent regulatory mechanisms. Furthermore, purines within the tumor microenvironment modulate cancer immunity through signaling mediated by purinergic receptors. The deregulation of purine metabolism has significant metabolic consequences, particularly hyperuricemia. Herbal-based therapeutics have emerged as valuable pharmacological interventions for the treatment of hyperuricemia by inhibiting the activity of hepatic XOD, modulating the expression of renal urate transporters, and suppressing inflammatory responses. This review summarizes recent advancements in the understanding of purine metabolism in clinically relevant malignancies and metabolic disorders. Additionally, we discuss the role of herbal interventions and the interaction between the host and gut microbiota in the regulation of purine homeostasis. This information will fuel the innovation of therapeutic strategies that target the disease-associated rewiring of purine metabolism for therapeutic applications.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Shengqiang Yang
- School of Basic Medicine, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Chenyang Yuan
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Kejia Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Jiachen Tan
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China.
| | - Hong Zeng
- School of Basic Medicine, Youjiang Medical University for Nationalities, Baise 533000, China.
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| |
Collapse
|
6
|
Han Y, Sun K, Yu S, Qin Y, Zhang Z, Luo J, Hu H, Dai L, Cui M, Jiang C, Liu F, Huang Y, Gao P, Chen X, Xin T, Ren X, Wu X, Song J, Wang Q, Tang Z, Chen J, Zhang H, Zhang X, Liu M, Luo D. A Mettl16/m 6A/mybl2b/Igf2bp1 axis ensures cell cycle progression of embryonic hematopoietic stem and progenitor cells. EMBO J 2024; 43:1990-2014. [PMID: 38605226 PMCID: PMC11099167 DOI: 10.1038/s44318-024-00082-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/13/2024] Open
Abstract
Prenatal lethality associated with mouse knockout of Mettl16, a recently identified RNA N6-methyladenosine (m6A) methyltransferase, has hampered characterization of the essential role of METTL16-mediated RNA m6A modification in early embryonic development. Here, using cross-species single-cell RNA sequencing analysis, we found that during early embryonic development, METTL16 is more highly expressed in vertebrate hematopoietic stem and progenitor cells (HSPCs) than other methyltransferases. In Mettl16-deficient zebrafish, proliferation capacity of embryonic HSPCs is compromised due to G1/S cell cycle arrest, an effect whose rescue requires Mettl16 with intact methyltransferase activity. We further identify the cell-cycle transcription factor mybl2b as a directly regulated by Mettl16-mediated m6A modification. Mettl16 deficiency resulted in the destabilization of mybl2b mRNA, likely due to lost binding by the m6A reader Igf2bp1 in vivo. Moreover, we found that the METTL16-m6A-MYBL2-IGF2BP1 axis controlling G1/S progression is conserved in humans. Collectively, our findings elucidate the critical function of METTL16-mediated m6A modification in HSPC cell cycle progression during early embryonic development.
Collapse
Affiliation(s)
- Yunqiao Han
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Kui Sun
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Shanshan Yu
- Institute of Visual Neuroscience and Stem Cell Engineering, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, China
| | - Yayun Qin
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei, 430070, China
| | - Zuxiao Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Jiong Luo
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Hualei Hu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Liyan Dai
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Manman Cui
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, Hubei, 430071, China
| | - Chaolin Jiang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Fei Liu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yuwen Huang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Pan Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xiang Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Tianqing Xin
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Xiang Ren
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xiaoyan Wu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Jieping Song
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei, 430070, China
| | - Qing Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Zhaohui Tang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Haojian Zhang
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, Hubei, 430071, China
| | - Xianqin Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
| | - Mugen Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
| | - Daji Luo
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
7
|
Lin S, Wei C, Wei Y, Fan J. Construction and verification of an endoplasmic reticulum stress-related prognostic model for endometrial cancer based on WGCNA and machine learning algorithms. Front Oncol 2024; 14:1362891. [PMID: 38725627 PMCID: PMC11079237 DOI: 10.3389/fonc.2024.1362891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/11/2024] [Indexed: 05/12/2024] Open
Abstract
Background Endoplasmic reticulum (ER) stress arises from the accumulation of misfolded or unfolded proteins within the cell and is intricately linked to the initiation and progression of various tumors and their therapeutic strategies. However, the precise role of ER stress in uterine corpus endometrial cancer (UCEC) remains unclear. Methods Data on patients with UCEC and control subjects were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Using differential expression analysis and Weighted Gene Co-expression Network Analysis (WGCNA), we identified pivotal differentially expressed ER stress-related genes (DEERGs). Further validation of the significance of these genes in UCEC was achieved through consensus clustering and bioinformatic analyses. Using Cox regression analysis and several machine learning algorithms (least absolute shrinkage and selection operator [LASSO], eXtreme Gradient Boosting [XGBoost], support vector machine recursive feature elimination [SVM-RFE], and Random Forest), hub DEERGs associated with patient prognosis were effectively identified. Based on the four identified hub genes, a prognostic model and nomogram were constructed. Additionally, a drug sensitivity analysis and in vitro validation experiments were performed. Results A total of 94 DEERGs were identified in patients with UCEC and healthy controls. Consensus clustering analysis revealed significant differences in prognosis, typical immune checkpoints, and tumor microenvironments between the subtypes. Using Cox regression analysis and machine learning, four hub DEERGs, MYBL2, RADX, RUSC2, and CYP46A1, were identified to construct a prognostic model. The reliability of the model was validated using receiver operating characteristic (ROC) curves. Decision curve analysis (DCA) demonstrated the superior predictive ability of the nomogram in terms of 3- and 5-year survival, compared with that of other clinical indicators. Drug sensitivity analysis revealed increased sensitivity to dactinomycin, docetaxel, selumetinib, and trametinib in the low-risk group. The expressions of RADX, RUSC2, and CYP46A1 were downregulated, whereas that of MYBL2 was upregulated in UCEC tissues, as demonstrated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunofluorescence assays. Conclusion This study developed a stable and accurate prognostic model based on multiple bioinformatics analyses, which can be used to assess the prognosis of UCEC. This model may contribute to future research on the risk stratification of patients with UCEC and the formulation of novel treatment strategies.
Collapse
Affiliation(s)
- Shanshan Lin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Changqiang Wei
- Department of Prenatal Diagnosis, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yiyun Wei
- Department of Prenatal Diagnosis, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jiangtao Fan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
8
|
Nakamura-García AK, Espinal-Enríquez J. The network structure of hematopoietic cancers. Sci Rep 2023; 13:19837. [PMID: 37963971 PMCID: PMC10645882 DOI: 10.1038/s41598-023-46655-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/03/2023] [Indexed: 11/16/2023] Open
Abstract
Hematopoietic cancers (HCs) are a heterogeneous group of malignancies that affect blood, bone marrow and lymphatic system. Here, by analyzing 1960 RNA-Seq samples from three independent datasets, we explored the co-expression landscape in HCs, by inferring gene co-expression networks (GCNs) with four cancer phenotypes (B and T-cell acute leukemia -BALL, TALL-, acute myeloid leukemia -AML-, and multiple myeloma -MM-) as well as non-cancer bone marrow. We characterized their structure (topological features) and function (enrichment analyses). We found that, as in other types of cancer, the highest co-expression interactions are intra-chromosomal, which is not the case for control GCNs. We also detected a highly co-expressed group of overexpressed pseudogenes in HC networks. The four GCNs present only a small fraction of common interactions, related to canonical functions, like immune response or erythrocyte differentiation. With this approach, we were able to reveal cancer-specific features useful for detection of disease manifestations.
Collapse
Affiliation(s)
| | - Jesús Espinal-Enríquez
- National Institute of Genomic Medicine, Computational Genomics, 14610, Mexico City, Mexico.
| |
Collapse
|
9
|
Song P, Chen X, Zhang P, Zhou Y, Zhou R. miR-200b/MYBL2/CDK1 suppresses proliferation and induces senescence through cell cycle arrest in ovine granulosa cells. Theriogenology 2023; 207:19-30. [PMID: 37257219 DOI: 10.1016/j.theriogenology.2023.05.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
Normal growth of granulosa cells (GCs) is essential for follicular development. miR-200b plays a vital role in litter size, estrous cycle, ovulation, and follicular development in sheep. However, it is unclear that the specific effect and regulatory mechanism of miR-200b on ovine GCs. miR-200b mimic inhibited GCs proliferation and induced cellular senescence through downregulating mitochondrial membrane potential (MMP), concentration of ATP and mitochondrial respiratory chain complex Ⅰ, and upregulating SA-β-gal positive rate and ROS production. A total of 597 differentially expressed genes were identified by RNA-Seq in GCs transfected with miR-200b mimic and mimic NC, and they were involved in cell cycle and cellular senescence. miR-200b directly targeted and downregulated MYBL2 and CDK1. Overexpression of MYBL2 promoted GCs proliferation and genes expression (CDK1, CDC20, MAD2L1 and FOXM1), which were suppressed by miR-200b mimic. Furthermore, MYBL2 negatively regulated miR-200b-induced GC senescence. In conclusion, miR-200b/MYBL2/CDK1 regulated proliferation and senescence through cell cycle pathway in ovine granulosa cells. Our study provides a novel insight that miR-200b regulates ovine follicular development.
Collapse
Affiliation(s)
- Pengyan Song
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei Province, 071001, China
| | - Xiaoyong Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei Province, 071001, China
| | - Peiying Zhang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei Province, 071001, China
| | - Ying Zhou
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei Province, 071001, China
| | - Rongyan Zhou
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei Province, 071001, China.
| |
Collapse
|
10
|
Wang S, Gao S, Shan L, Qian X, Luan J, Lv X. Comprehensive genomic signature of pyroptosis-related genes and relevant characterization in hepatocellular carcinoma. PeerJ 2023; 11:e14691. [PMID: 36650832 PMCID: PMC9840857 DOI: 10.7717/peerj.14691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/14/2022] [Indexed: 01/15/2023] Open
Abstract
Background Currently, the most predominant type of liver cancer is hepatocellular carcinoma (HCC), which is also the fourth leading cause of cancer-related death in the global population. Pyroptosis is an emerging form of cell death that affects the prognosis of cancer patients by modulating tumor cell migration, proliferation and invasion. However, the evaluation of pyroptosis in the prognosis of HCC is still insufficient. Methods A total of 365 HCC patients from the TCGA-LIHC cohort were classified into two distinct subtypes using consensus clustering of pyroptosis-related genes (PRGs). Following univariate Cox analysis of differentially expressed genes between subtypes, we established a prognostic model (PRGs-score, PRGS) by LASSO Cox analysis. We further tested the predictive power of the prognostic model in the ICGC (LIRI-JP) and GEO (GSE14520) cohorts. The tumor microenvironment (TME) was studied using the CIBERSORT. The enrichment scores for immune cells and immune functions in low- and high-PRGS groups were assessed using ssGSEA. The IMvigor210 cohort was used to investigate the immunotherapy efficacy. Furthermore, we validated the expression of prognostic genes in PRGS by RT-qPCR in vitro. Results The subtyping of HCC based on PRGs exhibited distinct clinical characteristics. We developed a prognostic model PRGS by differentially expressed genes between different subtypes. The results showed that PRGS could well forecast the survival of HCC patients in different cohorts and was associated with the immune microenvironment. Moreover, PRGS was considered to be an independent prognostic risk factor and superior to other pyroptosis-related signatures. Low-PRGS implied greater immune cell infiltration and better overall survival with immunotherapy. The results of RT-qPCR also showed that prognostic genes were significantly dysregulated in HCC. Conclusions PRGS has promising application in forecasting the prognosis of HCC patients, and its relationship with the immune microenvironment provides a basis for the subsequent treatment and research of HCC.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Institute for Liver Disease, Anhui Medical University, Hefei, Anhui, China
| | - Songsen Gao
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Liang Shan
- The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Institute for Liver Disease, Anhui Medical University, Hefei, Anhui, China
| | - Xueyi Qian
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Jiajie Luan
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Xiongwen Lv
- The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Institute for Liver Disease, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
11
|
Genetic Predisposition to Hepatocellular Carcinoma. Metabolites 2022; 13:metabo13010035. [PMID: 36676960 PMCID: PMC9864136 DOI: 10.3390/metabo13010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Liver preneoplastic and neoplastic lesions of the genetically susceptible F344 and resistant BN rats cluster, respectively, with human HCC with better (HCCB) and poorer prognosis (HCCP); therefore, they represent a valid model to study the molecular alterations determining the genetic predisposition to HCC and the response to therapy. The ubiquitin-mediated proteolysis of ERK-inhibitor DUSP1, which characterizes HCC progression, favors the unrestrained ERK activity. DUSP1 represents a valuable prognostic marker, and ERK, CKS1, or SKP2 are potential therapeutic targets for human HCC. In DN (dysplastic nodule) and HCC of F344 rats and human HCCP, DUSP1 downregulation and ERK1/2 overexpression sustain SKP2-CKS1 activity through FOXM1, the expression of which is associated with a susceptible phenotype. SAM-methyl-transferase reactions and SAM/SAH ratio are regulated by GNMT. In addition, GNMT binds to CYP1A, PARP1, and NFKB and PREX2 gene promoters. MYBL2 upregulation deregulates cell cycle and induces the progression of premalignant and malignant liver. During HCC progression, the MYBL2 transcription factor positively correlates with cells proliferation and microvessel density, while it is negatively correlated to apoptosis. Hierarchical supervised analysis, regarding 6132 genes common to human and rat liver, showed a gene expression pattern common to normal liver of both strains and BN nodules, and a second pattern is observed in F344 nodules and HCC of both strains. Comparative genetics studies showed that DNs of BN rats cluster with human HCCB, while F344 DNs and HCCs cluster with HCCP.
Collapse
|
12
|
Zhao JZ, Wang W, Liu T, Zhang L, Lin DZ, Yao JY, Peng X, Jin G, Ma TT, Gao JB, Huang F, Nie J, Lv Q. MYBL2 regulates de novo purine synthesis by transcriptionally activating IMPDH1 in hepatocellular carcinoma cells. BMC Cancer 2022; 22:1290. [PMID: 36494680 PMCID: PMC9733023 DOI: 10.1186/s12885-022-10354-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Metabolic reprogramming is a hallmark of cancer, alteration of nucleotide metabolism of hepatocellular carcinoma (HCC) is not well-understood. MYBL2 regulates cell cycle progression and hepatocarcinogenesis, its role in metabolic regulation remains elusive. PATIENTS AND METHODS Copy number, mRNA and protein level of MYBL2 and IMPDH1 were analyzed in HCC, and correlated with patient survival. Chromatin Immunoprecipitation sequencing (Chip-seq) and Chromatin Immunoprecipitation quantitative polymerase chain reaction (ChIP-qPCR) were used to explore the relationship between MYBL2 and IMPDH1. Metabolomics were used to analyze how MYBL2 affected purine metabolism. The regulating effect of MYBL2 in HCC was further validated in vivo using xenograft models. RESULTS The Results showed that copy-number alterations of MYBL2 occur in about 10% of human HCC. Expression of MYBL2, IMPDH1, or combination of both were significantly upregulated and associated with poor prognosis in HCC. Correlation, ChIP-seq and ChIP-qPCR analysis revealed that MYBL2 activates transcription of IMPDH1, while knock-out of MYBL2 retarded IMPDH1 expression and inhibited proliferation of HCC cells. Metabolomic analysis post knocking-out of MYBL2 demonstrated that it was essential in de novo purine synthesis, especially guanine nucleotides. In vivo analysis using xenograft tumors also revealed MYBL2 regulated purine synthesis by regulating IMPDH1, and thus, influencing tumor progression. CONCLUSION MYBL2 is a key regulator of purine synthesis and promotes HCC progression by transcriptionally activating IMPDH1, it could be a potential candidate for targeted therapy for HCC.
Collapse
Affiliation(s)
- Jun-Zhang Zhao
- grid.33199.310000 0004 0368 7223Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China ,grid.488525.6Department of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, 510655 Guangzhou, China
| | - Wei Wang
- grid.33199.310000 0004 0368 7223Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China ,grid.488525.6Department of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, 510655 Guangzhou, China
| | - Tao Liu
- grid.33199.310000 0004 0368 7223Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China ,grid.488525.6Department of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, 510655 Guangzhou, China
| | - Lei Zhang
- grid.488525.6Department of Pancreatic-hepatobiliary Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, 510655 Guangzhou, China
| | - De-Zheng Lin
- grid.484195.5Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Supported by National Key Clinical Discipline, Guangdong Institute of Gastroenterology, 510655 Guangzhou, China ,grid.488525.6Department of Endoscopic Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, 510655 Guangzhou, China
| | - Jia-Yin Yao
- grid.488525.6Department of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, 510655 Guangzhou, China ,grid.484195.5Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Supported by National Key Clinical Discipline, Guangdong Institute of Gastroenterology, 510655 Guangzhou, China
| | - Xiang Peng
- grid.488525.6Department of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, 510655 Guangzhou, China ,grid.484195.5Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Supported by National Key Clinical Discipline, Guangdong Institute of Gastroenterology, 510655 Guangzhou, China
| | - Gang Jin
- grid.33199.310000 0004 0368 7223Department of Thoracic Surgery, Union Jiangnan Hospital, Huazhong University of Science and Technology, Hubei 43022 Wuhan, China
| | - Tian-Tian Ma
- grid.33199.310000 0004 0368 7223Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Jin-Bo Gao
- grid.33199.310000 0004 0368 7223Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Fang Huang
- grid.33199.310000 0004 0368 7223Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China ,grid.33199.310000 0004 0368 7223Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei 43022 Wuhan, China
| | - Jun Nie
- grid.33199.310000 0004 0368 7223Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China ,grid.33199.310000 0004 0368 7223Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei 43022 Wuhan, China
| | - Qing Lv
- grid.33199.310000 0004 0368 7223Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| |
Collapse
|
13
|
Sagulkoo P, Chuntakaruk H, Rungrotmongkol T, Suratanee A, Plaimas K. Multi-Level Biological Network Analysis and Drug Repurposing Based on Leukocyte Transcriptomics in Severe COVID-19: In Silico Systems Biology to Precision Medicine. J Pers Med 2022; 12:jpm12071030. [PMID: 35887528 PMCID: PMC9319133 DOI: 10.3390/jpm12071030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 01/08/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic causes many morbidity and mortality cases. Despite several developed vaccines and antiviral therapies, some patients experience severe conditions that need intensive care units (ICU); therefore, precision medicine is necessary to predict and treat these patients using novel biomarkers and targeted drugs. In this study, we proposed a multi-level biological network analysis framework to identify key genes via protein–protein interaction (PPI) network analysis as well as survival analysis based on differentially expressed genes (DEGs) in leukocyte transcriptomic profiles, discover novel biomarkers using microRNAs (miRNA) from regulatory network analysis, and provide candidate drugs targeting the key genes using drug–gene interaction network and structural analysis. The results show that upregulated DEGs were mainly enriched in cell division, cell cycle, and innate immune signaling pathways. Downregulated DEGs were primarily concentrated in the cellular response to stress, lysosome, glycosaminoglycan catabolic process, and mature B cell differentiation. Regulatory network analysis revealed that hsa-miR-6792-5p, hsa-let-7b-5p, hsa-miR-34a-5p, hsa-miR-92a-3p, and hsa-miR-146a-5p were predicted biomarkers. CDC25A, GUSB, MYBL2, and SDAD1 were identified as key genes in severe COVID-19. In addition, drug repurposing from drug–gene and drug–protein database searching and molecular docking showed that camptothecin and doxorubicin were candidate drugs interacting with the key genes. In conclusion, multi-level systems biology analysis plays an important role in precision medicine by finding novel biomarkers and targeted drugs based on key gene identification.
Collapse
Affiliation(s)
- Pakorn Sagulkoo
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand; (P.S.); (H.C.); (T.R.)
- Center of Biomedical Informatics, Department of Family Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Hathaichanok Chuntakaruk
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand; (P.S.); (H.C.); (T.R.)
- Center of Excellence in Biocatalyst and Sustainable Biotechnology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thanyada Rungrotmongkol
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand; (P.S.); (H.C.); (T.R.)
- Center of Excellence in Biocatalyst and Sustainable Biotechnology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Apichat Suratanee
- Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand;
- Intelligent and Nonlinear Dynamics Innovations Research Center, Science and Technology Research Institute, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
| | - Kitiporn Plaimas
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand; (P.S.); (H.C.); (T.R.)
- Advance Virtual and Intelligent Computing (AVIC) Center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Omics Science and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence:
| |
Collapse
|
14
|
Liu M, Du Q, Mao G, Dai N, Zhang F. MYB proto-oncogene like 2 promotes hepatocellular carcinoma growth and glycolysis via binding to the Optic atrophy 3 promoter and activating its expression. Bioengineered 2022; 13:5344-5356. [PMID: 35176941 PMCID: PMC8973866 DOI: 10.1080/21655979.2021.2017630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Optic atrophy 3 (OPA3) is an integral protein of the mitochondrial outer membrane. The current study explored the expression of OPA3 in hepatocellular carcinoma (HCC), its association with the prognosis and its involvement in HCC cell proliferation and aerobic glycolysis. In addition, the transcription factors that activate its expression were screened and validated. Gene expression data in normal liver and liver cancer were acquired from the Genotype-Tissue Expression Project (GTEx) and The Cancer Genome Atlas (TCGA)-Liver Hepatocellular Carcinoma (TCGA-LIHC). Chromatin immunoprecipitation-seq data (GSM1010876) in Cistrome Data Browser was used for searching transcriptional factors binding to the OPA3 promoter. HCC cell lines HLF and JHH2 were used for in-vitro and in-vivo studies. Results showed that OPA3 is significantly upregulated in HCC and associated with unfavorable prognosis. OPA3 knockdown impaired HCC cell growth in vitro and in vivo. Besides, it decreased glucose uptake, lactate production, intracellular ATP levels, and extracellular acidification rate (ECAR) of HLF and JHH2 cells. MYB Proto-Oncogene Like 2 (MYBL2) can bind to the promoter of OPA3 and enhance its transcription. MYBL2 knockdown decreased aerobic glycolysis in HCC cells. OPA3 overexpression reversed these alterations. In conclusion, this study revealed a novel MYBL2-OPA3 axis that enhances HCC cell proliferation and aerobic glycolysis.
Collapse
Affiliation(s)
- Miao Liu
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiang Du
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gang Mao
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ning Dai
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fan Zhang
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
15
|
Han J, Xie R, Yang Y, Chen D, Liu L, Wu J, Li S. CENPA is one of the potential key genes associated with the proliferation and prognosis of ovarian cancer based on integrated bioinformatics analysis and regulated by MYBL2. Transl Cancer Res 2022; 10:4076-4086. [PMID: 35116705 PMCID: PMC8799161 DOI: 10.21037/tcr-21-175] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022]
Abstract
Background Ovarian cancer (OV) is a highly lethal disease, and the fifth leading cause of all cancer-related deaths in women. The study aimed to identify potential key genes associated with the proliferation and prognosis of OV. Methods Differentially expressed genes (DEGs) between ovarian cancer and normal tissues were screened by the robust rank aggregation (RRA) method. The expression of CENPA and MYBL2 were examined in SKOV3 and A2780 ovarian cancer cell lines and tumor tissues by qRT-PCR and western blot. Small RNA interference assays, plasmid overexpression assays and EdU assays were used to validate the proliferative effect of the MYBL2-CENPA axis in ovarian cancer cell lines. The ChIP assay was used to verify the direct regulation of MYBL2 on CENPA. Results 133 up-regulated genes and 158 down-regulated genes were identified, and the up-regulated genes mainly enrichment in cell cycle. The three up-regulated gene with DNA separation (CENPA, CENPF and CEP55) might be tightly correlated with proliferation and prognosis of OV. Knockdown CENPA expression inhibited the proliferation of A2780 and SKOV3 cells After the knockout of MYBL2, the expression of CENPA significantly decreased. MYBL2 directly binds to the promoter region of CENPA. Conclusions The MYBL2-CENPA pathway plays an important role in the proliferation of ovarian cancer cells, suggesting that this pathway may be a potential target for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Jing Han
- Department of Obstetrics and Gynecology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Rongkai Xie
- Department of Obstetrics and Gynecology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Ying Yang
- Department of Obstetrics and Gynecology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Diangang Chen
- Cancer Institute of PLA, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Li Liu
- Department of Orthopedics, Chengdu Seventh People's Hospital, Chengdu, China
| | - Jiayang Wu
- Department of Obstetrics and Gynecology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Sufen Li
- Department of Obstetrics and Gynecology, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
16
|
Guo Z, Liang E, Li W, Jiang L, Zhi F. Essential meiotic structure-specific endonuclease1 ( EME1) promotes malignant features in gastric cancer cells via the Akt/GSK3B/CCND1 pathway. Bioengineered 2021; 12:9869-9884. [PMID: 34719326 PMCID: PMC8810030 DOI: 10.1080/21655979.2021.1999371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
DNA damage plays a key role in various biological processes involved in malignant disease, the role of the DNA damage repair gene EME1 (essential meiotic structure-specific endonuclease 1) in gastric cancer (GC) development is unknown. This work aimed to investigate expression and role of EME1 in tumorigenesis. Quantitative real-time polymerase chain reaction (qRT-PCR), immunoblot, cell viability and dual-luciferase reporter assays, RNAi and gene transfection, and immunofluorescent staining were performed to assess EME1 regulation in GC tumorigenesis. Further, mouse xenografts were established for in vivo mechanistic studies. EME1 was found to be upregulated in both gastric cancer cells and clinically obtained tumors. Additionally, EME1 levels were strongly associated with the differentiation level of GC and lymph node metastasis. In vivo and in vitro knockdown of EME1 markedly suppressed the proliferative, migratory, and invasive abilities of GC cells and enhanced apoptotic cell death and cell cycle arrest rates. Mechanistically, EME1 modulated Akt/GSK3B/CCND1 signaling. MYB may also have contributed to EME1-dependent gastric carcinogenesis. Elevated EME1 expressions may enhance the proliferative and metastatic abilities of GC cells, thereby acting as a tumor-promoting factor via Akt. These findings reveal that EME1 is an important biomarker for GC prognosis and treatment in humans. Abbreviations: Essential meiotic structure-specific endonuclease 1 (EME1); MYB proto-oncogene (MYB); Cell counting kit-8 (CCK-8); 4,6-diamimo-2-phenyl indole (DAPI); Quantitative real-time PCR (qRT-PCR); Gastric cancer (GC); Immunofluorescence (IF); Small interfering RNA (siRNA); Small hairpin RNA (shRNA); Alpha serine threonine-protein kinase (Akt); Glycogen synthase kinase 3 beta (GSK3B); Cyclin D1 (CCND1); Glyceraldehyde-3-phosphate dehydrogenase (GAPDH); Disease-free survival (DFS); Overall survival (OS); Negative controls (NC); American Joint Committee on Cancer (AJCC); Coding sequence (CDS); Lymph node metastasis (LNM); Tris-Buffered Saline-Tween-20 (TBST); Horseradish Peroxidase (HRP); Electrochemiluminescence (ECL); Polyvinylidene Fluoride (PVDF); Excision repair cross complementation group 1 (ERCC1).
Collapse
Affiliation(s)
- Zhiguo Guo
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Erbo Liang
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Wei Li
- Department of Endocrinology, Suzhou Hospital of Anhui Medical University, Suzhou, Anhui 234000, China
| | - Leilei Jiang
- Department of Gastroenterology, Suzhou Hospital of Anhui Medical University, Suzhou, Anhui 234000, China
| | - Fachao Zhi
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
17
|
Xu L, Jian X, Liu Z, Zhao J, Zhang S, Lin Y, Xie L. Construction and Validation of an Immune Cell Signature Score to Evaluate Prognosis and Therapeutic Efficacy in Hepatocellular Carcinoma. Front Genet 2021; 12:741226. [PMID: 34646307 PMCID: PMC8503558 DOI: 10.3389/fgene.2021.741226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/30/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is the most common primary liver malignancy with high morbidity and mortality worldwide. Tumor immune microenvironment (TIME) plays a pivotal role in the outcome and treatment of HCC. However, the effect of immune cell signatures (ICSs) representing the characteristics of TIME on the prognosis and therapeutic benefit of HCC patients remains to be further studied. Materials and methods: In total, the gene expression profiles of 1,447 HCC patients from several databases, i.e., The Cancer Genome Atlas (TCGA), International Cancer Genome Consortium, and Gene Expression Omnibus, were obtained and applied. Based on a comprehensive collection of marker genes, 182 ICSs were evaluated by single sample gene set enrichment analysis. Then, by performing univariate and multivariate Cox analysis and random forest modeling, four significant signatures were selected to fit an immune cell signature score (ICSscore). Results: In this study, an ICSscore-based prognostic model was constructed to stratify HCC patients into high-risk and low-risk groups in the TCGA-LIHC cohort, which was successfully validated in two independent cohorts. Moreover, the ICSscore values were found to positively correlate with the current American Joint Committee on Cancer staging system, indicating that ICSscore could act as a comparable biomarker for HCC risk stratification. In addition, when setting the four ICSs and ICSscores as features, the classifiers can significantly distinguish treatment-responding and non-responding samples in HCC. Also, in melanoma and breast cancer, the unified ICSscore could verify samples with therapeutic benefits. Conclusion: Overall, we simplified the tedious ICS to develop the ICSscore, which can be applied successfully for prognostic stratification and therapeutic evaluation in HCC. This study provides an insight into the therapeutic predictive efficacy of prognostic ICS, and a novel ICSscore was constructed to allow future expanded application.
Collapse
Affiliation(s)
- Linfeng Xu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China.,Shanghai Center for Bioinformation Technology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Xingxing Jian
- Shanghai Center for Bioinformation Technology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China.,Bioinformatics Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenhao Liu
- Shanghai Center for Bioinformation Technology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China.,Bioinformatics Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jingjing Zhao
- Shanghai Center for Bioinformation Technology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China.,College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Siwen Zhang
- Shanghai Center for Bioinformation Technology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China.,College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yong Lin
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Lu Xie
- Shanghai Center for Bioinformation Technology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China.,Bioinformatics Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
18
|
Guo H, Li N, Sun Y, Wu C, Deng H, Xu L, Yang X. MYBL2 Gene Polymorphism Is Associated With Acute Lymphoblastic Leukemia Susceptibility in Children. Front Oncol 2021; 11:734588. [PMID: 34568071 PMCID: PMC8456030 DOI: 10.3389/fonc.2021.734588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/17/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose Although MYBL2 had been validated to participate in multiple cancers including leukemia, the role of MYBL2 polymorphisms in acute lymphoblastic leukemia (ALL) was still not clear. In this study, we aimed to evaluate the association between MYBL2 single nucleotide polymorphisms (SNPs) and ALL risk in children. Methods A total of 687 pediatric ALL cases and 971 cancer-free controls from two hospitals in South China were recruited. A case-control study by genotyping three SNPs in the MYBL2 gene (rs285162 C>T, rs285207 A>C, and rs2070235 A>G) was conducted. The associations were assessed by odds ratios (ORs) with corresponding 95% confidence intervals (CIs). Subgroup and stratification analyses were conducted to explore the association of rs285207 with ALL risk in terms of age, sex, immunophenotype, risk level, and other clinical characteristics. The false-positive report probability (FPRP) analysis was performed to verify each significant finding. Functional analysis in silico was used to evaluate the probability that rs285207 might influence the regulation of MYBL2 . Results Our study demonstrated that rs285207 was related to a decreased ALL risk (adjusted OR = 0.78; 95% CI = 0.63-0.97, P = 0.022) in the dominant model. The associations of rs285207 with ALL risk appeared stronger in patients with pre B ALL (adjusted OR=0.56; 95% CI=0.38-0.84, P=0.004), with normal diploid (adjusted OR=0.73; 95% CI=0.57-0.95, P=0.017), with low risk (adjusted OR=0.68; 95% CI=0.49-0.94, P=0.021), with lower WBC (adjusted OR=0.62; 95% CI=0.43-0.87, P=0.007) or lower platelet level (adjusted OR=0.76; 95% CI=0.59-0.96, P=0.023). With FPRP analysis, the significant association between the rs285207 polymorphism and decreased ALL risk was still noteworthy (FPRP=0.128). Functional analysis showed that IKZF1 bound to DNA motif overlapping rs285207 and had a higher preference for the risk allele A. As for rs285162 C>T and rs2070235 A>G, no significant was found between them and ALL risk. Conclusion In this study, we revealed that rs285207 polymorphism decreased the ALL risk in children, and rs285207 might alter the binding to IKZF1, which indicated that the MYBL2 gene polymorphism might be a potential biomarker of childhood ALL.
Collapse
Affiliation(s)
- Haixia Guo
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Na Li
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yaping Sun
- Institute of Systems Biology, Shenzhen Bay Laboratory, Shenzhen, China.,Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Cuiling Wu
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Huixia Deng
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ling Xu
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xu Yang
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
19
|
Fan X, Wang Y, Jiang T, Liu T, Jin Y, Du K, Niu Y, Zhang C, Liu Z, Lei Y, Bu Y. B-Myb accelerates colorectal cancer progression through reciprocal feed-forward transactivation of E2F2. Oncogene 2021; 40:5613-5625. [PMID: 34316028 PMCID: PMC8445821 DOI: 10.1038/s41388-021-01961-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 07/04/2021] [Accepted: 07/13/2021] [Indexed: 11/29/2022]
Abstract
B-Myb is an important transcription factor that plays a critical role in gene expression regulation and tumorigenesis. However, its functional implication in colorectal cancer remains elusive. In this study, we found that B-Myb was significantly upregulated at both mRNA and protein levels in colorectal cancer samples compared to non-tumor counterparts. B-Myb overexpression accelerated cell proliferation, cell cycle progression and cell motility in colorectal cancer cells, and promoted tumor growth in orthotopic nude mouse models in vivo. In contrast, B-Myb depletion inhibited these malignant phenotypes. Mechanistic investigations revealed that E2F2 was a novel transcriptional target of B-Myb and is essential to B-Myb-induced malignant phenotypes. Notably, B-Myb and E2F2 exhibited positive expression correlation, and interacted with each other in colorectal cancer cells. In addition to their autoregulatory mechanisms, B-Myb and E2F2 can also directly transactivate each other, thus constituting consolidated reciprocal feed-forward transactivation loops. Moreover, both B-Myb and E2F2 are required for the activation of ERK and AKT signaling pathways in colorectal cancer cells. Taken together, our data clarified a critical role for B-Myb in colorectal cancer and unraveled an exquisite mutual collaboration and reciprocal cross regulation between B-Myb and E2F2 that contribute to the malignant progression of human colorectal cancer.
Collapse
Affiliation(s)
- Xiaoyan Fan
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
- Dermopathic Research Institute, Taizhou University Hospital, Taizhou University, Taizhou, China
| | - Yitao Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China
| | - Tinghui Jiang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Tao Liu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Yuelei Jin
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Kailong Du
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Yulong Niu
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China
| | - Chunxue Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Zhongyu Liu
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China
| | - Yunlong Lei
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China.
| | - Youquan Bu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
20
|
Liu J, Zhang SQ, Chen J, Li ZB, Chen JX, Lu QQ, Han YS, Dai W, Xie C, Li JC. Identifying Prognostic Significance of RCL1 and Four-Gene Signature as Novel Potential Biomarkers in HCC Patients. JOURNAL OF ONCOLOGY 2021; 2021:5574150. [PMID: 34257652 PMCID: PMC8260302 DOI: 10.1155/2021/5574150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/05/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a highly malignant disease, and it is characterized by rapid progression and low five-year survival rate. At present, there are no effective methods for monitoring the treatment and prognosis of HCC. METHODS The transcriptome and gene expression profiles of HCC were obtained from the Cancer Genome Atlas (TCGA) program, International Cancer Genome Consortium (ICGC), and Gene Expression Omnibus (GEO) databases. The random forest method was applied to construct a four-gene prognostic model based on RNA terminal phosphate cyclase like 1 (RCL1) expression. The Kaplan-Meier method was performed to evaluate the prognostic value of RCL1, long noncoding RNAs (AC079061, AL354872, and LINC01093), and four-gene signature (SPP1, MYBL2, TRNP1, and FTCD). We examined the relationship between RCL1 expression and immune cells infiltration, tumor mutation burden (TMB), and microsatellite instability (MSI). RESULTS The results of multiple databases indicated that the aberrant expression of RCL1 was associated with clinical outcome, immune cells infiltration, TMB, and MSI in HCC patients. Meanwhile, we found that long noncoding RNAs (AC079061, AL354872, and LINC01093) and RCL1 were significantly coexpressed in HCC patients. We also confirmed that the four-gene signature was an independent prognostic factor for HCC patients. Ferroptosis potential index, immune checkpoint molecules, and clinical feature were found to have obvious correlations with risk score. The area under the receiver operating characteristic curve values for the model were 0.7-0.8 in the training set and the validation set, suggesting high robustness of the four-gene signature. We then built a nomogram for facilitating the use in clinical practice. CONCLUSION Our study demonstrated that RCL1 and a novel four-gene signature can be used as prognostic biomarkers for predicting clinical outcome in HCC patients; and this model may assist in individualized treatment monitoring of HCC patients in clinical practice.
Collapse
Affiliation(s)
- Jun Liu
- Medical Research Center, The Affiliated Yue Bei People's Hospital, Shantou University Medical College, Shaoguan 512025, China
| | - Shan-Qiang Zhang
- Medical Research Center, The Affiliated Yue Bei People's Hospital, Shantou University Medical College, Shaoguan 512025, China
| | - Jing Chen
- Institute of Cell Biology, Zhejiang University, Hangzhou 310058, China
| | - Zhi-Bin Li
- Institute of Cell Biology, Zhejiang University, Hangzhou 310058, China
| | - Jia-Xi Chen
- Institute of Cell Biology, Zhejiang University, Hangzhou 310058, China
| | - Qi-Qi Lu
- Medical Research Center, The Affiliated Yue Bei People's Hospital, Shantou University Medical College, Shaoguan 512025, China
| | - Yu-Shuai Han
- Institute of Cell Biology, Zhejiang University, Hangzhou 310058, China
| | - Wenjie Dai
- Medical Research Center, The Affiliated Yue Bei People's Hospital, Shantou University Medical College, Shaoguan 512025, China
| | - Chongwei Xie
- Medical Research Center, The Affiliated Yue Bei People's Hospital, Shantou University Medical College, Shaoguan 512025, China
| | - Ji-Cheng Li
- Medical Research Center, The Affiliated Yue Bei People's Hospital, Shantou University Medical College, Shaoguan 512025, China
- Institute of Cell Biology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
21
|
MYB oncoproteins: emerging players and potential therapeutic targets in human cancer. Oncogenesis 2021; 10:19. [PMID: 33637673 PMCID: PMC7910556 DOI: 10.1038/s41389-021-00309-y] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 01/31/2023] Open
Abstract
MYB transcription factors are highly conserved from plants to vertebrates, indicating that their functions embrace fundamental mechanisms in the biology of cells and organisms. In humans, the MYB gene family is composed of three members: MYB, MYBL1 and MYBL2, encoding the transcription factors MYB, MYBL1, and MYBL2 (also known as c-MYB, A-MYB, and B-MYB), respectively. A truncated version of MYB, the prototype member of the MYB family, was originally identified as the product of the retroviral oncogene v-myb, which causes leukaemia in birds. This led to the hypothesis that aberrant activation of vertebrate MYB could also cause cancer. Despite more than three decades have elapsed since the isolation of v-myb, only recently investigators were able to detect MYB genes rearrangements and mutations, smoking gun evidence of the involvement of MYB family members in human cancer. In this review, we will highlight studies linking the activity of MYB family members to human malignancies and experimental therapeutic interventions tailored for MYB-expressing cancers.
Collapse
|
22
|
Association between B- Myb proto-oncogene and the development of malignant tumors. Oncol Lett 2021; 21:166. [PMID: 33552284 PMCID: PMC7798104 DOI: 10.3892/ol.2021.12427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 12/01/2020] [Indexed: 12/26/2022] Open
Abstract
B-Myb is a critical transcription factor in regulating cell cycle. Dysregulated expression of B-Myb promotes tumor formation and development. B-Myb is a proto-oncogene ubiquitously expressed in proliferating cells, which maintains normal cell cycle progression. It participates in cell apoptosis, tumorigenesis and aging. In addition, B-Myb is overexpressed in several malignant tumors, including breast cancer, lung cancer and hepatocellular carcinoma, and is associated with tumor development. B-Myb expression is also associated with the prognosis of patients with malignant tumors. Both microRNAs and E2F family of transcription factors (E2Fs) contribute to the function of B-Myb. The present review highlights the association between B-Myb and malignant tumors, and offers a theoretical reference for the diagnosis and treatment of malignant tumors.
Collapse
|
23
|
Bojkova D, Westhaus S, Costa R, Timmer L, Funkenberg N, Korencak M, Streeck H, Vondran F, Broering R, Heinrichs S, Lang KS, Ciesek S. Sofosbuvir Activates EGFR-Dependent Pathways in Hepatoma Cells with Implications for Liver-Related Pathological Processes. Cells 2020; 9:cells9041003. [PMID: 32316635 PMCID: PMC7225999 DOI: 10.3390/cells9041003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 12/12/2022] Open
Abstract
Direct acting antivirals (DAAs) revolutionized the therapy of chronic hepatitis C infection. However, unexpected high recurrence rates of hepatocellular carcinoma (HCC) after DAA treatment became an issue in patients with advanced cirrhosis and fibrosis. In this study, we aimed to investigate an impact of DAA treatment on the molecular changes related to HCC development and progression in hepatoma cell lines and primary human hepatocytes. We found that treatment with sofosbuvir (SOF), a backbone of DAA therapy, caused an increase in EGFR expression and phosphorylation. As a result, enhanced translocation of EGFR into the nucleus and transactivation of factors associated with cell cycle progression, B-MYB and Cyclin D1, was detected. Serine/threonine kinase profiling identified additional pathways, especially the MAPK pathway, also activated during SOF treatment. Importantly, the blocking of EGFR kinase activity by erlotinib during SOF treatment prevented all downstream events. Altogether, our findings suggest that SOF may have an impact on pathological processes in the liver via the induction of EGFR signaling. Notably, zidovudine, another nucleoside analogue, exerted a similar cell phenotype, suggesting that the observed effects may be induced by additional members of this drug class.
Collapse
Affiliation(s)
- Denisa Bojkova
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (D.B.); (S.W.); (R.C.); (L.T.); (N.F.)
- Institute of Medical Virology, University Hospital, Goethe University Frankfurt am Main, 60590 Frankfurt, Germany
| | - Sandra Westhaus
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (D.B.); (S.W.); (R.C.); (L.T.); (N.F.)
- Institute of Medical Virology, University Hospital, Goethe University Frankfurt am Main, 60590 Frankfurt, Germany
| | - Rui Costa
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (D.B.); (S.W.); (R.C.); (L.T.); (N.F.)
| | - Lejla Timmer
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (D.B.); (S.W.); (R.C.); (L.T.); (N.F.)
| | - Nora Funkenberg
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (D.B.); (S.W.); (R.C.); (L.T.); (N.F.)
| | - Marek Korencak
- Institute for HIV research, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (M.K.); (H.S.)
| | - Hendrik Streeck
- Institute for HIV research, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (M.K.); (H.S.)
| | - Florian Vondran
- Clinic for General, Abdominal and Transplant Surgery, Hannover Medical School, 30625 Hannover, Germany;
- German Center for Infection Research (DZIF), 45147 Essen, Germany
| | - Ruth Broering
- Department of Gastroenterology and Hepatology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany;
| | - Stefan Heinrichs
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany;
| | - Karl S Lang
- Institute of Immunology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany;
| | - Sandra Ciesek
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (D.B.); (S.W.); (R.C.); (L.T.); (N.F.)
- Institute of Medical Virology, University Hospital, Goethe University Frankfurt am Main, 60590 Frankfurt, Germany
- German Center for Infection Research (DZIF), 45147 Essen, Germany
- Correspondence: ; Tel.: +49-69-63015219
| |
Collapse
|
24
|
Xiong YC, Wang J, Cheng Y, Zhang XY, Ye XQ. Overexpression of MYBL2 promotes proliferation and migration of non-small-cell lung cancer via upregulating NCAPH. Mol Cell Biochem 2020; 468:185-193. [PMID: 32200471 DOI: 10.1007/s11010-020-03721-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/13/2020] [Indexed: 12/30/2022]
Abstract
MYB Proto-Oncogene Like 2 (MYBL2) is a highly conserved member of the Myb family of transcription factors and plays a critical role in regulating cell proliferation and survival. Here we show that overexpression of MYBL2 is frequently observed in lung adenocarcinoma (LUAD) and significantly correlates with advanced stage and poor patient survival. Knockdown of MYBL2 induced apoptosis in lung cancer cells and resulted in significant inhibition of cell proliferation, migration, and invasion. Notably, we identified Non-SMC Condensin I Complex Subunit H (NCAPH) gene as a direct target of MYBL2. NCAPH expression is highly correlated with that of MYBL2 in LUAD cases and is tightly affected by MYBL2 knockdown or overexpression in vitro. Chromatin immunoprecipitation (ChIP) assays also showed that MYBL2 directly binds to the transcription start site (TSS) of NCAPH. Moreover, we provided evidence that NCAPH functions as an oncogene in lung cancer and overexpression of NCAPH could partially rescue cell death and migration blockage induced by MYBL2 knockdown. Together, these results suggest that overexpression of MYBL2 promotes proliferation and migration of lung cancer cells via upregulating NCAPH, establishing their roles as novel prognostic biomarkers as well as potential therapeutic targets for the disease.
Collapse
Affiliation(s)
- Yu-Chao Xiong
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.,Department of Respiratory Diseases, XinSteel Center Hospital, Jiangxi, Xinyu, 338000, China
| | - Jiao Wang
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Yong Cheng
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Xin-Yi Zhang
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Xiao-Qun Ye
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
25
|
Circ_0006332 promotes growth and progression of bladder cancer by modulating MYBL2 expression via miR-143. Aging (Albany NY) 2019; 11:10626-10643. [PMID: 31756170 PMCID: PMC6914401 DOI: 10.18632/aging.102481] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/08/2019] [Indexed: 12/24/2022]
Abstract
In this study, we analyzed the role of circular RNAs in the growth and progression of bladder cancer. Direct Sanger sequencing and quantitative RT-PCR analysis showed that circ_0006332 was significantly upregulated in bladder cancer tissues. Sequencing analysis showed that circ_0006332 is generated from splicing of exons 8 and 9 of the MYBL2 transcript. Fluorescence in situ hybridization analysis showed that circ_0006332 was localized to the cytoplasm of bladder cancer cells. Dual luciferase reporter assays showed that miR-143 specifically bound to circ_0006332 and the 3’UTR of MYBL2. High expression of circ_006332 correlated with tumor-node-metastasis stages and muscular invasion in bladder cancer patients. Knockdown of circ_0006332 in bladder cancer cells decreased proliferation, colony formation and invasiveness. Circ_0006332 knockdown increased E-cadherin levels and decreased Vimentin, CCNB1 and P21 protein expression. This suggests that circ_0006332 promotes epithelial–mesenchymal transition and cell cycle progression. In vivo experiments in nude mice showed that circ_0006332 knockdown bladder cancer cells form significantly smaller tumors than the controls. Our study demonstrates that circ_0006332 promotes the growth and progression of bladder cancer by modulating MYBL2 expression by acting as a sponge for miR-143. Circ_0006332 is thus a potential early diagnostic marker of bladder cancer.
Collapse
|
26
|
Pascale RM, Simile MM, Peitta G, Seddaiu MA, Feo F, Calvisi DF. Experimental Models to Define the Genetic Predisposition to Liver Cancer. Cancers (Basel) 2019; 11:cancers11101450. [PMID: 31569678 PMCID: PMC6826893 DOI: 10.3390/cancers11101450] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/24/2019] [Accepted: 09/23/2019] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a frequent human cancer and the most frequent liver tumor. The study of genetic mechanisms of the inherited predisposition to HCC, implicating gene-gene and gene-environment interaction, led to the discovery of multiple gene loci regulating the growth and multiplicity of liver preneoplastic and neoplastic lesions, thus uncovering the action of multiple genes and epistatic interactions in the regulation of the individual susceptibility to HCC. The comparative evaluation of the molecular pathways involved in HCC development in mouse and rat strains differently predisposed to HCC indicates that the genes responsible for HCC susceptibility control the amplification and/or overexpression of c-Myc, the expression of cell cycle regulatory genes, and the activity of Ras/Erk, AKT/mTOR, and of the pro-apoptotic Rassf1A/Nore1A and Dab2IP/Ask1 pathways, the methionine cycle, and DNA repair pathways in mice and rats. Comparative functional genetic studies, in rats and mice differently susceptible to HCC, showed that preneoplastic and neoplastic lesions of resistant mouse and rat strains cluster with human HCC with better prognosis, while the lesions of susceptible mouse and rats cluster with HCC with poorer prognosis, confirming the validity of the studies on the influence of the genetic predisposition to hepatocarinogenesis on HCC prognosis in mouse and rat models. Recently, the hydrodynamic gene transfection in mice provided new opportunities for the recognition of genes implicated in the molecular mechanisms involved in HCC pathogenesis and prognosis. This method appears to be highly promising to further study the genetic background of the predisposition to this cancer.
Collapse
Affiliation(s)
- Rosa M Pascale
- Department of Medical, Surgical and Experimental Sciences, Via P. Manzella 4, 07100 Sassari, Italy.
| | - Maria M Simile
- Department of Medical, Surgical and Experimental Sciences, Via P. Manzella 4, 07100 Sassari, Italy.
| | - Graziella Peitta
- Department of Medical, Surgical and Experimental Sciences, Via P. Manzella 4, 07100 Sassari, Italy.
| | - Maria A Seddaiu
- Department of Medical, Surgical and Experimental Sciences, Via P. Manzella 4, 07100 Sassari, Italy.
| | - Francesco Feo
- Department of Medical, Surgical and Experimental Sciences, Via P. Manzella 4, 07100 Sassari, Italy.
| | - Diego F Calvisi
- Department of Medical, Surgical and Experimental Sciences, Via P. Manzella 4, 07100 Sassari, Italy.
| |
Collapse
|
27
|
Pascale RM, Feo CF, Calvisi DF, Feo F. Deregulation of methionine metabolism as determinant of progression and prognosis of hepatocellular carcinoma. Transl Gastroenterol Hepatol 2018; 3:36. [PMID: 30050996 PMCID: PMC6044036 DOI: 10.21037/tgh.2018.06.04] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/15/2018] [Indexed: 12/11/2022] Open
Abstract
The under-regulation of liver-specific MAT1A gene codifying for S-adenosylmethionine (SAM) synthesizing isozymes MATI/III, and the up-regulation of widely expressed MAT2A, MATII isozyme occurs in hepatocellular carcinoma (HCC). MATα1:MATα2 switch strongly contributes to the fall in SAM liver content both in rodent and human liver carcinogenesis. SAM administration to carcinogen-treated animals inhibits hepatocarcinogenesis. The opposite occurs in Mat1a-KO mice, in which chronic SAM deficiency is followed by HCC development. This review focuses upon the changes, induced by the MATα1:MATα2 switch, involved in HCC development. In association with MATα1:MATα2 switch there occurs, in HCC, global DNA hypomethylation, decline of DNA repair, genomic instability, and deregulation of different signaling pathways such as overexpression of c-MYC (avian myelocytomatosis viral oncogene homolog), increase of polyamine (PA) synthesis and RAS/ERK (Harvey murine sarcoma virus oncogene homolog/extracellular signal-regulated kinase), IKK/NF-kB (I-k kinase beta/nuclear factor kB), PI3K/AKT, and LKB1/AMPK axes. Furthermore, a decrease in MATα1 expression and SAM level induces HCC cell proliferation and survival. SAM treatment in vivo and enforced MATα1 overexpression or MATα2 inhibition, in cultured HCC cells, prevent these changes. A negative correlation of MATα1:MATα2 and MATI/III:MATII ratios with cell proliferation and genomic instability and a positive correlation with apoptosis and global DNA methylation are present in human HCC. Altogether, these data suggest that the decrease of SAM level and the deregulation of MATs are potential therapeutic targets for HCC.
Collapse
Affiliation(s)
- Rosa M. Pascale
- Department of Medical, Surgery, and Experimental Medicine, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| | - Claudio F. Feo
- Department of Medical, Surgery, and Experimental Medicine, Division of Surgery, University of Sassari, Sassari, Italy
| | - Diego F. Calvisi
- Department of Medical, Surgery, and Experimental Medicine, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| | - Francesco Feo
- Department of Medical, Surgery, and Experimental Medicine, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| |
Collapse
|
28
|
Qin WS, Wu J, Chen Y, Cui FC, Zhang FM, Lyu GT, Zhang HM. The Short Isoform of Nuclear Mitotic Apparatus Protein 1 Functions as a Putative Tumor Suppressor. Chin Med J (Engl) 2018; 130:1824-1830. [PMID: 28748856 PMCID: PMC5547835 DOI: 10.4103/0366-6999.211535] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background: Nuclear mitotic apparatus protein 1 (NuMA1) had been reported to produce three groups of isoforms categorized as long, middle, and short groups, of which short NuMA displayed distinct localization patterns compared to long and middle isoforms. However, the function of short NuMA was not clear in the progress of cancer formation. This study aimed to unveil the role of short NuMA in cancer pathogenesis. Methods: The expression levels of short isoforms were explored in paired gastric carcinoma (GC) samples and different cell lines. Furthermore, the short isoform behaved as a putative tumor suppressor based on cell proliferation and cell colony formation assays. Pull-down assay and whole-genome gene expression analysis were carried out to search candidate interaction partners of short NuMA. Results: The expression of short NuMA was highly expressed in S and G2 phases of the cell cycle; compared with nontumor tissues, short NuMA downregulated in nine GCs (GC1 [0.131, P = 5 × 10−4]; GC2 [0.316, P = 3 × 10−5]; GC3 [0.111, P = 6 × 10−4]; GC4 [0.456, P = 0.011]; GC5 [0.474, P = 0.001]; GC6 [0.311, P = 0.004]; GC7 [0.28, P = 3 × 10−5]; GC8 [0.298, P = 0.007]; and GC9 [0.344, P = 0.002]). Besides, high expression of short NuMA significantly inhibits cell growth (2.43 × 105 vs. 2.97 × 105, P = 0.0029) and cell clone information in vitro (70 vs. 2, P = 1.67 × 10−45). Short NuMA could bind with alpha–actinin-4 (ACTN4), a putative tumor promoting gene. Overexpression of short NuMA could tremendously decrease the expression of MYB proto-oncogene like 2 (MYBL2) of about 92-fold, which played an important role in the cell cycles. Conclusions: Short isoform of NuMA might be functioned as a putative role of tumor suppressor. Further studies should be made to illuminate the relationship between ACTN4, MYBL2, and tumor progression.
Collapse
Affiliation(s)
- Wang-Sen Qin
- Department of Clinical Laboratory, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Jin Wu
- Department of Clinical Oncology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yang Chen
- Central Laboratory, Haikou People's Hospital, Haikou, Hainan 570208, China
| | - Fa-Cai Cui
- Department of Clinical Laboratory, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Fu-Ming Zhang
- Department of Clinical Laboratory, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Guan-Ting Lyu
- Department of Blood Transfusion, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Hong-Mei Zhang
- Department of Clinical Oncology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
29
|
High MYBL2 expression and transcription regulatory activity is associated with poor overall survival in patients with hepatocellular carcinoma. Curr Res Transl Med 2018; 66:27-32. [DOI: 10.1016/j.retram.2017.11.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/30/2017] [Accepted: 11/01/2017] [Indexed: 01/23/2023]
|
30
|
Shao M, Ren Z, Zhang R. MYBL2 protects against H9c2 injury induced by hypoxia via AKT and NF‑κB pathways. Mol Med Rep 2018; 17:4832-4838. [PMID: 29328450 DOI: 10.3892/mmr.2018.8387] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 05/25/2017] [Indexed: 11/06/2022] Open
Abstract
Cardiovascular diseases have become one of the major public health problems in many countries. The downregulation of MYBL2 was found in H9c2 and native cardiomyocytes cells after hypoxia treatment. The present study aimed to investigate the effects of MYB proto‑oncogene like 2 (MYBL2) on H9c2 injury induced by hypoxia. Reverse transcription‑quantitative polymerase chain reaction and western blot were performed on H9c2 cells to determine the mRNA and protein levels of MYBL2, respectively. Small interfering RNA (siRNA) was employed to downregulate MYBL2 expression in H9c2 cells to investigate changes in cell proliferation and apoptosis. Cell proliferation was assessed by a Cell Counting kit‑8 assay and the percentage of apoptotic cells was determined using an Annexin V‑fluorescein isothiocyanate/propidium iodide apoptosis detection kit. The nuclear factor‑κB (NF‑κB) and AKT signaling pathways in H9c2 cells were investigated by western blot analysis. The results demonstrated that the overexpression of MYBL2 promoted cell proliferation and suppressed apoptosis. Furthermore, overexpression of MYBL2 suppressed the expression of phosphorylated (p)‑AKT, p‑NF‑κB inhibitor α, p‑p65 and B‑cell CLL/lymphoma 3 (Bcl‑3). The results indicated that MYBL2 may improve cell viability and inhibit H9c2 apoptosis via the inhibition of AKT and NF‑κB pathways. Therefore, MYBL2 may be a potential therapeutic target for the treatment of myocardial infarction.
Collapse
Affiliation(s)
- Mingfeng Shao
- Department of Cardiology, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| | - Zexiang Ren
- Department of Internal Medicine, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| | - Rongjun Zhang
- Department of Cardiology, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| |
Collapse
|
31
|
Jin Y, Zhu H, Cai W, Fan X, Wang Y, Niu Y, Song F, Bu Y. B-Myb Is Up-Regulated and Promotes Cell Growth and Motility in Non-Small Cell Lung Cancer. Int J Mol Sci 2017; 18:ijms18060860. [PMID: 28555007 PMCID: PMC5485926 DOI: 10.3390/ijms18060860] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 03/26/2017] [Accepted: 04/05/2017] [Indexed: 12/17/2022] Open
Abstract
B-Myb is a transcription factor that is overexpressed and plays an oncogenic role in several types of human cancers. However, its potential implication in lung cancer remains elusive. In the present study, we have for the first time investigated the expression profile of B-Myb and its functional impact in lung cancer. Expression analysis by quantificational real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry demonstrated that B-Myb expression is aberrantly overexpressed in non-small cell lung cancer (NSCLC), and positively correlated with pathologic grade and clinical stage of NSCLC. A gain-of-function study revealed that overexpression of B-Myb significantly increases lung cancer cell growth, colony formation, migration, and invasion. Conversely, a loss-of-function study showed that knockdown of B-Myb decreases cell growth, migration, and invasion. B-Myb overexpression also promoted tumor growth in vivo in a NSCLC xenograft nude mouse model. A molecular mechanistic study by RNA-sequencing (RNA-seq) analysis showed that B-Myb overexpression causes up-regulation of various downstream genes (e.g., COL11A1, COL6A1, FN1, MMP2, NID1, FLT4, INSR, and CCNA1) and activation of multiple critical pathways (e.g., extracellular signal-regulated kinases (ERK) and phosphorylated-protein kinase B (Akt) signaling pathways) involved in cell proliferation, tumorigenesis, and metastasis. Collectively, our results indicate a tumor-promoting role for B-Myb in NSCLC and thus imply its potential as a target for the diagnosis and/or treatment of NSCLC.
Collapse
Affiliation(s)
- Yuelei Jin
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, 1# Yixueyuan Road, Yuzhong District, Chongqing 400016, China.
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China.
| | - Huifang Zhu
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, 1# Yixueyuan Road, Yuzhong District, Chongqing 400016, China.
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China.
| | - Wei Cai
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, 1# Yixueyuan Road, Yuzhong District, Chongqing 400016, China.
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China.
| | - Xiaoyan Fan
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, 1# Yixueyuan Road, Yuzhong District, Chongqing 400016, China.
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China.
| | - Yitao Wang
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, 1# Yixueyuan Road, Yuzhong District, Chongqing 400016, China.
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China.
| | - Yulong Niu
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China.
| | - Fangzhou Song
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, 1# Yixueyuan Road, Yuzhong District, Chongqing 400016, China.
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China.
| | - Youquan Bu
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, 1# Yixueyuan Road, Yuzhong District, Chongqing 400016, China.
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
32
|
Weng JTY, Wu LSH, Lee CS, Hsu PWC, Cheng ATA. Integrative epigenetic profiling analysis identifies DNA methylation changes associated with chronic alcohol consumption. Comput Biol Med 2014; 64:299-306. [PMID: 25555412 DOI: 10.1016/j.compbiomed.2014.12.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 10/27/2014] [Accepted: 12/01/2014] [Indexed: 01/07/2023]
Abstract
Alcoholism has always been a major public health concern in Taiwan, especially in the aboriginal communities. Emerging evidence supports the association between DNA methylation and alcoholism, though very few studies have examined the effect of chronic alcohol consumption on the epignome. Since 1986, we have been following up on the mental health conditions of four major aboriginal peoples of Taiwan. The 993 aboriginal people who underwent the phase 1 (1986) clinical interviews were followed up through phase 2 (1990-1992), and phase 3 (2003-2009). Selected individuals for the current study included 10 males from the phase 1 normal cohort who remained normal at phase 2 and became dependent on alcohol by phase 3 and 10 control subjects who have not had any drinking problems throughout the study. We profiled the DNA methylation changes in the blood samples collected at phases 2 and 3. Enrichment analyses have identified several biological processes related to immune system responses and aging in the control group. In contrast, differentially methylated genes in the case group were mostly associated with susceptibility to infections, as well as pathways related to muscular contraction and neural degeneration. The methylation levels of six genes were found to correlate with alcohol consumption. These include genes involved in neurogenesis (NPDC1) and inflammation (HERC5), as well as alcoholism-associated genes ADCY9, CKM, and PHOX2A. Given the limited sample size, our approach uncovered genes and disease pathways associated with chronic alcohol consumption at the epigenetic level. The results offer a preliminary methylome map that enhances our understanding of alcohol-induced damages and offers new targets for alcohol injury research.
Collapse
Affiliation(s)
- Julia Tzu-Ya Weng
- Department of Computer Science & Engineering, Yuan Ze University, Chung-Li, Taiwan; Innovation Center for Big Data and Digital Convergence, Yuan Ze University, Chung-Li, Taiwan.
| | | | - Chau-Shoun Lee
- Department of Psychiatry, Mackay Memorial Hospital, New Taipei City, Taiwan
| | - Paul Wei-Che Hsu
- Bioinformatics Core Laboratory, Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Andrew T A Cheng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
33
|
Zhang Y, Guo X, Xiong L, Yu L, Li Z, Guo Q, Li Z, Li B, Lin N. Comprehensive analysis of microRNA-regulated protein interaction network reveals the tumor suppressive role of microRNA-149 in human hepatocellular carcinoma via targeting AKT-mTOR pathway. Mol Cancer 2014; 13:253. [PMID: 25424347 PMCID: PMC4255446 DOI: 10.1186/1476-4598-13-253] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 11/19/2014] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Our previous study identified AKT1, AKT2 and AKT3 as unfavorable prognostic factors for patients with hepatocellular carcinoma (HCC). However, limited data are available on their exact mechanisms in HCC. Since microRNAs (miRNAs) are implicated in various human cancers including HCC, we aimed to screen miRNAs targeting AKTs and investigate their underlying mechanisms in HCC by integrating bioinformatics prediction, network analysis, functional assay and clinical validation. METHODS Five online programs of miRNA target prediction and RNAhybrid which calculate the minimum free energy (MFE) of the duplex miRNA:mRNA were used to screen optimized miRNA-AKT interactions. Then, miRNA-regulated protein interaction network was constructed and 5 topological features ('Degree', 'Node-betweenness', 'Edge-betweenness', 'Closeness' and 'Modularity') were analyzed to link candidate miRNA-AKT interactions to oncogenesis and cancer hallmarks. Further systematic experiments were performed to validate the prediction results. RESULTS Six optimized miRNA-AKT interactions (miR-149-AKT1, miR-302d-AKT1, miR-184-AKT2, miR-708-AKT2, miR-122-AKT3 and miR-124-AKT3) were obtained by combining the miRNA target prediction and MFE calculation. Then, 103 validated targets for the 6 candidate miRNAs were collected from miRTarBase. According to the enrichment analysis on GO items and KEGG pathways, these validated targets were significantly enriched in many known oncogenic pathways for HCC. In addition, miRNA-regulated protein interaction network were divided into 5 functional modules. Importantly, AKT1 and its interaction with mTOR respectively had the highest node-betweenness and edge-betweenness, implying their bottleneck roles in the network. Further experiments confirmed that miRNA-149 directly targeted AKT1 in HCC by a miRNA luciferase reporter approach. Then, re-expression of miR-149 significantly inhibited HCC cell proliferation and tumorigenicity by regulating AKT1/mTOR pathway. Notably, miR-149 down-regulation in clinical HCC tissues was correlated with tumor aggressiveness and poor prognosis of patients. CONCLUSION This comprehensive analysis identified a list of miRNAs targeting AKTs and revealed their critical roles in HCC malignant progression. Especially, miR-149 may function as a tumor suppressive miRNA and play an important role in inhibiting the HCC tumorigenesis by modulating the AKT/mTOR pathway. Our clinical evidence also highlight the prognostic potential of miR-149 in HCC. The newly identified miR-149/AKT/mTOR axis might be a promising therapeutic target in the prevention and treatment of HCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Boan Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | | |
Collapse
|
34
|
Evert M, Frau M, Tomasi ML, Latte G, Simile MM, Seddaiu MA, Zimmermann A, Ladu S, Staniscia T, Brozzetti S, Solinas G, Dombrowski F, Feo F, Pascale RM, Calvisi DF. Deregulation of DNA-dependent protein kinase catalytic subunit contributes to human hepatocarcinogenesis development and has a putative prognostic value. Br J Cancer 2013; 109:2654-64. [PMID: 24136149 PMCID: PMC3833205 DOI: 10.1038/bjc.2013.606] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 08/24/2013] [Accepted: 09/12/2013] [Indexed: 02/07/2023] Open
Abstract
Background: The DNA-repair gene DNA-dependent kinase catalytic subunit (DNA-PKcs) favours or inhibits carcinogenesis, depending on the cancer type. Its role in human hepatocellular carcinoma (HCC) is unknown. Methods: DNA-dependent protein kinase catalytic subuni, H2A histone family member X (H2AFX) and heat shock transcription factor-1 (HSF1) levels were assessed by immunohistochemistry and/or immunoblotting and qRT–PCR in a collection of human HCC. Rates of proliferation, apoptosis, microvessel density and genomic instability were also determined. Heat shock factor-1 cDNA or DNA-PKcs-specific siRNA were used to explore the role of both genes in HCC. Activator protein 1 (AP-1) binding to DNA-PKcs promoter was evaluated by chromatin immunoprecipitation. Kaplan–Meier curves and multivariate Cox model were used to study the impact on clinical outcome. Results: Total and phosphorylated DNA-PKcs and H2AFX were upregulated in HCC. Activated DNA-PKcs positively correlated with HCC proliferation, genomic instability and microvessel density, and negatively with apoptosis and patient's survival. Proliferation decline and massive apoptosis followed DNA-PKcs silencing in HCC cell lines. Total and phosphorylated HSF1 protein, mRNA and activity were upregulated in HCC. Mechanistically, we demonstrated that HSF1 induces DNA-PKcs upregulation through the activation of the MAPK/JNK/AP-1 axis. Conclusion: DNA-dependent protein kinase catalytic subunit transduces HSF1 effects in HCC cells, and might represent a novel target and prognostic factor in human HCC.
Collapse
Affiliation(s)
- M Evert
- Institut für Pathologie, Universitätsmedizin Greifswald, Greifswald, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Calvisi DF, Frau M, Tomasi ML, Feo F, Pascale RM. Deregulation of signalling pathways in prognostic subtypes of hepatocellular carcinoma: novel insights from interspecies comparison. Biochim Biophys Acta Rev Cancer 2013; 1826:215-37. [PMID: 23393659 DOI: 10.1016/j.bbcan.2012.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma is a frequent and fatal disease. Recent researches on rodent models and human hepatocarcinogenesis contributed to unravel the molecular mechanisms of hepatocellular carcinoma dedifferentiation and progression, and allowed the discovery of several alterations underlying the deregulation of cell cycle and signalling pathways. This review provides an interpretive analysis of the results of these studies. Mounting evidence emphasises the role of up-regulation of RAS/ERK, P13K/AKT, IKK/NF-kB, WNT, TGF-ß, NOTCH, Hedgehog, and Hippo signalling pathways as well as of aberrant proteasomal activity in hepatocarcinogenesis. Signalling deregulation often occurs in preneoplastic stages of rodent and human hepatocarcinogenesis and progressively increases in carcinomas, being most pronounced in more aggressive tumours. Numerous changes in signalling cascades are involved in the deregulation of carbohydrate, lipid, and methionine metabolism, which play a role in the maintenance of the transformed phenotype. Recent studies on the role of microRNAs in signalling deregulation, and on the interplay between signalling pathways led to crucial achievements in the knowledge of the network of signalling cascades, essential for the development of adjuvant therapies of liver cancer. Furthermore, the analysis of the mechanisms involved in signalling deregulation allowed the identification of numerous putative prognostic markers and novel therapeutic targets of specific hepatocellular carcinoma subtypes associated with different biologic and clinical features. This is of prime importance for the selection of patient subgroups that are most likely to obtain clinical benefit and, hence, for successful development of targeted therapies for liver cancer.
Collapse
Affiliation(s)
- Diego F Calvisi
- Department of Clinical and Experimental Medicine, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| | | | | | | | | |
Collapse
|
36
|
Transcriptional regulators in hepatocarcinogenesis--key integrators of malignant transformation. J Hepatol 2012; 57:186-95. [PMID: 22446689 DOI: 10.1016/j.jhep.2011.11.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 11/28/2011] [Accepted: 11/30/2011] [Indexed: 12/26/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most frequent human malignancies with poor prognosis and increasing incidence in the Western world. Only for a minority of HCC patients, surgical treatment options offer potential cure and therapeutic success of pharmacological approaches is limited. Highly specific approaches (e.g., kinase inhibitors) did not significantly improve the situation so far, possibly due to functional compensation, genetic heterogeneity of HCC, and development of resistance under selective pressure. In contrast, transcriptional regulators (especially transcription factors and co-factors) may integrate and process input signals of different (oncogenic) pathways and therefore represent cellular bottlenecks that regulate tumor cell biology. In this review, we want to summarize the current knowledge about central transcriptional regulators in human hepatocarcinogenesis and their potential as therapeutic target structures. Genomic and transcriptomic data of primary human HCC revealed that many of these factors showed up in subgroups of HCCs with a more aggressive phenotype, suggesting that aberrant activity of transcriptional regulators collect input information to promote tumor initiation and progression. Therefore, expression and dysfunction of transcription factors and co-factors may gain relevance for diagnostics and therapy of HCC.
Collapse
|
37
|
Frau M, Tomasi ML, Simile MM, Demartis MI, Salis F, Latte G, Calvisi DF, Seddaiu MA, Daino L, Feo CF, Brozzetti S, Solinas G, Yamashita S, Ushijima T, Feo F, Pascale RM. Role of transcriptional and posttranscriptional regulation of methionine adenosyltransferases in liver cancer progression. Hepatology 2012; 56:165-175. [PMID: 22318685 DOI: 10.1002/hep.25643] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 01/24/2011] [Indexed: 12/15/2022]
Abstract
UNLABELLED Down-regulation of the liver-specific MAT1A gene, encoding S-adenosylmethionine (SAM) synthesizing isozymes MATI/III, and up-regulation of widely expressed MAT2A, encoding MATII isozyme, known as MAT1A:MAT2A switch, occurs in hepatocellular carcinoma (HCC). Here we found Mat1A:Mat2A switch and low SAM levels, associated with CpG hypermethylation and histone H4 deacetylation of Mat1A promoter, and prevalent CpG hypomethylation and histone H4 acetylation in Mat2A promoter of fast-growing HCC of F344 rats, genetically susceptible to hepatocarcinogenesis. In HCC of genetically resistant BN rats, very low changes in the Mat1A:Mat2A ratio, CpG methylation, and histone H4 acetylation occurred. The highest MAT1A promoter hypermethylation and MAT2A promoter hypomethylation occurred in human HCC with poorer prognosis. Furthermore, levels of AUF1 protein, which destabilizes MAT1A messenger RNA (mRNA), Mat1A-AUF1 ribonucleoprotein, HuR protein, which stabilizes MAT2A mRNA, and Mat2A-HuR ribonucleoprotein sharply increased in F344 and human HCC, and underwent low/no increase in BN HCC. In human HCC, Mat1A:MAT2A expression and MATI/III:MATII activity ratios correlated negatively with cell proliferation and genomic instability, and positively with apoptosis and DNA methylation. Noticeably, the MATI/III:MATII ratio strongly predicted patient survival length. Forced MAT1A overexpression in HepG2 and HuH7 cells led to a rise in the SAM level, decreased cell proliferation, increased apoptosis, down-regulation of Cyclin D1, E2F1, IKK, NF-κB, and antiapoptotic BCL2 and XIAP genes, and up-regulation of BAX and BAK proapoptotic genes. In conclusion, we found for the first time a post-transcriptional regulation of MAT1A and MAT2A by AUF1 and HuR in HCC. Low MATI/III:MATII ratio is a prognostic marker that contributes to determine a phenotype susceptible to HCC and patients' survival. CONCLUSION Interference with cell cycle progression and I-kappa B kinase (IKK)/nuclear factor kappa B (NF-κB) signaling contributes to the antiproliferative and proapoptotic effect of high SAM levels in HCC.
Collapse
MESH Headings
- Animals
- Binding Sites
- Carcinoma, Hepatocellular/enzymology
- Carcinoma, Hepatocellular/pathology
- DNA Methylation
- Disease Models, Animal
- Disease Progression
- Down-Regulation
- Gene Expression Regulation, Enzymologic
- Humans
- Liver/metabolism
- Liver Neoplasms/enzymology
- Liver Neoplasms/pathology
- Methionine Adenosyltransferase/genetics
- Methionine Adenosyltransferase/metabolism
- Multivariate Analysis
- Prognosis
- Promoter Regions, Genetic
- Proportional Hazards Models
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred BN
- Rats, Inbred F344
- S-Adenosylmethionine/metabolism
- Statistics, Nonparametric
- Transcriptional Activation
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Maddalena Frau
- Department of Clinical and Experimental Medicine, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Frau M, Simile MM, Tomasi ML, Demartis MI, Daino L, Seddaiu MA, Brozzetti S, Feo CF, Massarelli G, Solinas G, Feo F, Lee JS, Pascale RM. An expression signature of phenotypic resistance to hepatocellular carcinoma identified by cross-species gene expression analysis. Cell Oncol (Dordr) 2012; 35:163-173. [PMID: 22434528 PMCID: PMC4517440 DOI: 10.1007/s13402-011-0067-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2011] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND AND AIMS Hepatocarcinogenesis is under polygenic control. We analyzed gene expression patterns of dysplastic liver nodules (DNs) and hepatocellular carcinomas (HCCs) chemically-induced in F344 and BN rats, respectively susceptible and resistant to hepatocarcinogenesis. METHODS Expression profiles were performed by microarray and validated by quantitative RT-PCR and Western blot. RESULTS Cluster analysis revealed two distinctive gene expression patterns, the first of which included normal liver of both strains and BN nodules, and the second one F344 nodules and HCC of both strains. We identified a signature predicting DN and HCC progression, characterized by highest expression of oncosuppressors Csmd1, Dmbt1, Dusp1, and Gnmt, in DNs, and Bhmt, Dmbt1, Dusp1, Gadd45g, Gnmt, Napsa, Pp2ca, and Ptpn13 in HCCs of resistant rats. Integrated gene expression data revealed highest expression of proliferation-related CTGF, c-MYC, and PCNA, and lowest expression of BHMT, DMBT1, DUSP1, GADD45g, and GNMT, in more aggressive rat and human HCC. BHMT, DUSP1, and GADD45g expression predicted patients' survival. CONCLUSIONS Our results disclose, for the first time, a major role of oncosuppressor genes as effectors of genetic resistance to hepatocarcinogenesis. Comparative functional genomic analysis allowed discovering an evolutionarily conserved gene expression signature discriminating HCC with different propensity to progression in rat and human.
Collapse
Affiliation(s)
- Maddalena Frau
- Department of Clinical and Experimental Medicine, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| | - Maria M. Simile
- Department of Clinical and Experimental Medicine, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| | - Maria L. Tomasi
- Department of Clinical and Experimental Medicine, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| | - Maria I. Demartis
- Department of Clinical and Experimental Medicine, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| | - Lucia Daino
- Department of Clinical and Experimental Medicine, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| | - Maria A. Seddaiu
- Department of Clinical and Experimental Medicine, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| | - Stefania Brozzetti
- Department of Surgery “Pietro Valdoni”, University of Rome “La Sapienza”, Rome, Italy
| | - Claudio F. Feo
- Department of Clinical and Experimental Medicine, Division of Surgery, University of Sassari, Sassari, Italy
| | - Giovanni Massarelli
- Department of Clinical and Experimental Medicine and Oncology, Division of Morbid Anatomy, University of Sassari, Sassari, Italy
| | - Giuliana Solinas
- Department of Clinical and Experimental Medicine, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| | - Francesco Feo
- Department of Clinical and Experimental Medicine, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| | - Ju-Seog Lee
- MD Anderson Cancer Center, University of Texas, Huston, TX, USA
| | - Rosa M. Pascale
- Department of Clinical and Experimental Medicine, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| |
Collapse
|