1
|
Zhao Y, Lu Y, Li W, Liu P, Xu X. Acquired resistance to vemurafenib restrains thyroid cancer stem cell self-renewal by suppressing STAT3 activation. Cell Signal 2025; 133:111845. [PMID: 40345509 DOI: 10.1016/j.cellsig.2025.111845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/22/2025] [Accepted: 04/29/2025] [Indexed: 05/11/2025]
Abstract
Vemurafenib (PLX4032) is a B-Raf kinase-specific inhibitor that has been approved for treating BRAF-mutated melanoma but is ineffective in treating thyroid cancer. Cancer stem cells (CSCs) play an important role in drug resistance (DR). Our present study aims to determine the status of CSCs in thyroid cancer cells that have acquired adaptive drug resistance to PLX4032. We first established a DR anaplastic thyroid cancer (ATC) cell line by culturing SW1736 cells in the media containing gradually increasing concentrations of PLX4032 (0.1-4 μM) for 6 months. We found that HER3, a member of the ErbB/HER receptor tyrosine kinase (RTK) family, and its downstream MAPK and PI3K pathways are highly activated in DR cells due to increased expression of Yes-associated protein (YAP), a key transcription factor in the Hippo signaling pathway. DR cells can readily proliferate in the presence of PLX4032 (4 μM). However, DR cells express lower levels of the stemness-related genes including Gli1, BMI1, and SOX2, form fewer thyrosphere, and contain fewer aldehyde dehydrogenase (ALDH)-positive cells than parent naïve (PN) cells. DR cells also fail to form tumor xenografts in immunodeficient mice. Mechanistically, constitutive ERK activation in DR cells results in the increased expression of SOCS3 (Suppressor Of Cytokine Signaling 3 expression) and the suppression of STAT3 activation. STAT3 knockout and Ruxolitinib (Rux), a specific inhibitor of Janus kinases (JAK), inhibit the expression of the stemness-related genes. In contrast, STAT3 overexpression increases stemness-related gene expression. Our study suggests that thyroid cancer cells adapted to PLX4032 have limited self-renewal capacity due to impaired STAT3 activation and decreased expression of the stemness-related genes.
Collapse
Affiliation(s)
- Yuqing Zhao
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, PR China
| | - Yurong Lu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, PR China
| | - Wei Li
- College of Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, PR China
| | - Penggang Liu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, PR China
| | - Xiulong Xu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou 225009, Jiangsu Province, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, Jiangsu Province, PR China.
| |
Collapse
|
2
|
Zhang W, Hong X, Xiao Y, Wang H, Zeng X. Sorafenib resistance and therapeutic strategies in hepatocellular carcinoma. Biochim Biophys Acta Rev Cancer 2025; 1880:189310. [PMID: 40187502 DOI: 10.1016/j.bbcan.2025.189310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/30/2025] [Accepted: 03/30/2025] [Indexed: 04/07/2025]
Abstract
Hepatocellular carcinoma (HCC) remains one of the most prevalent and lethal cancers globally. While surgical resection and liver transplantation offer potential cures for early-stage HCC, the majority of patients are diagnosed at advanced stages where such interventions are not viable. Sorafenib, a multi-target kinase inhibitor, has been a cornerstone in the treatment of advanced HCC since its approval in 2007. Despite its significant clinical impact, less than half of the treated patients derive long-term benefits due to the emergence of resistance and associated side effects. This review focuses on the role of sorafenib, an FDA-approved multi-target kinase inhibitor, in treating advanced HCC, discusses the mechanisms underlying its therapeutic effects and associated resistance, and explores additional therapeutic strategies being investigated to improve patient outcomes.
Collapse
Affiliation(s)
- Weijing Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Xuechuan Hong
- Department of Cardiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yuling Xiao
- Department of Cardiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China; State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| | - Xiaodong Zeng
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China.
| |
Collapse
|
3
|
Sun M, Zhang Z, Chen C, Zhong J, Long Z, Shen L, Huang H, Lu J. Exploring the potential mechanisms of sorafenib resistance in hepatocellular carcinoma cell lines based on RNA sequencing. Cancer Cell Int 2025; 25:91. [PMID: 40082884 PMCID: PMC11907981 DOI: 10.1186/s12935-025-03728-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 03/04/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND Exploring the mechanisms underlying sorafenib resistance that arises in hepatocellular carcinoma (HCC) may provide new treatment perspectives. METHODS Drug-resistant and drug-sensitive HCC cell lines were constructed from existing HepG2 and Huh7 cell lines, and gene expression profiles were determined. Genes differentially expressed between the resistant and sensitive lines were identified and organized into modules based on weighted gene co-expression network analysis. Pathways and biological processes involving the module genes were explored and validated using gene set enrichment analysis. By analyzing the expression differences of Long non-coding ribonucleic acid (RNAs), microRNAs (miR), circular RNAs, and messenger RNAs between drug-resistant and sensitive cell lines, a gene regulatory network was constructed to reveal the mechanism of sorafenib resistance. In addition, we also analyzed the correlation between the candidate sorafenib resistance gene and the survival of patients with liver cancer. RESULTS Our analyses suggested that sorafenib resistance could arise when the circular RNA circ_SPECC1 regulated the microRNA hsa-let-7c-5p, which in turn regulated the cell cycle proteins cyclin-dependent kinase 1 and polo-like kinase 1, as well as interleukin 13 receptor, alpha 1 in the Janus kinase-signal transducer (JAK-STAT) and activator of transcription signaling pathway. Patient survival was associated with miR-18a-z and mitogen-activated protein kinase kinase 4 levels. CONCLUSIONS Sorafenib resistance in HCC may involve the circ_SPECC1, hsa-let-7c-5p, cell cycle, and JAK-STAT signaling pathways. These insights may guide future efforts to mitigate or prevent such resistance.
Collapse
Affiliation(s)
- Minghui Sun
- Department of Oncology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530022, Guangxi, China
| | - Zhi Zhang
- Department of Hepatobiliary Surger, Guangxi Medical University Affliated Wuming Hospital, Nanning, 530199, Guangxi, China
| | - Chunyan Chen
- Department of Pharmacy, Shanghai Public Health Clinical Center, Fudan University, 201508, Shanghai, China
| | - Juan Zhong
- Department of traditional Chinese medicine, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530022, China
| | - Zhongrong Long
- Department of Hepatobiliary Surger, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530022, China
| | - Ling Shen
- Department of Oncology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530022, Guangxi, China
| | - Hai Huang
- Department of Hepatobiliary Surger, Guangxi Medical University Affliated Wuming Hospital, Nanning, 530199, Guangxi, China.
| | - Jianxun Lu
- Department of Oncology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530022, Guangxi, China.
| |
Collapse
|
4
|
Yan J, Jiang Z, Zhang S, Yu Q, Lu Y, Miao R, Tang Z, Fan J, Wu L, Duda DG, Zhou J, Yang X. Spatial‒temporal heterogeneities of liver cancer and the discovery of the invasive zone. Clin Transl Med 2025; 15:e70224. [PMID: 39924620 PMCID: PMC11807767 DOI: 10.1002/ctm2.70224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 01/19/2025] [Indexed: 02/11/2025] Open
Abstract
Solid tumours are intricate and highly heterogeneous ecosystems, which grow in and invade normal organs. Their progression is mediated by cancer cells' interaction with different cell types, such as immune cells, stromal cells and endothelial cells, and with the extracellular matrix. Owing to its high incidence, aggressive growth and resistance to local and systemic treatments, liver cancer has particularly high mortality rates worldwide. In recent decades, spatial heterogeneity has garnered significant attention as an unfavourable biological characteristic of the tumour microenvironment, prompting extensive research into its role in liver tumour development. Advances in spatial omics have facilitated the detailed spatial analysis of cell types, states and cell‒cell interactions, allowing a thorough understanding of the spatial and temporal heterogeneities of tumour microenvironment and informing the development of novel therapeutic approaches. This review illustrates the latest discovery of the invasive zone, and systematically introduced specific macroscopic spatial heterogeneities, pathological spatial heterogeneities and tumour microenvironment heterogeneities of liver cancer.
Collapse
Affiliation(s)
- Jiayan Yan
- Department of Liver Surgery & TransplantationLiver Cancer InstituteZhongshan HospitalFudan UniversityShanghaiChina
- Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghaiChina
- Zhongshan‐BGI Precision Medical CenterZhongshan HospitalFudan UniversityShanghaiChina
| | - Zhifeng Jiang
- Department of Liver Surgery & TransplantationLiver Cancer InstituteZhongshan HospitalFudan UniversityShanghaiChina
- Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghaiChina
- Zhongshan‐BGI Precision Medical CenterZhongshan HospitalFudan UniversityShanghaiChina
| | - Shiyu Zhang
- Department of Liver Surgery & TransplantationLiver Cancer InstituteZhongshan HospitalFudan UniversityShanghaiChina
- Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghaiChina
- Zhongshan‐BGI Precision Medical CenterZhongshan HospitalFudan UniversityShanghaiChina
| | - Qichao Yu
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
- BGI‐ShenzhenBeishan Industrial ZoneShenzhenChina
| | - Yijun Lu
- Department of Liver Surgery & TransplantationLiver Cancer InstituteZhongshan HospitalFudan UniversityShanghaiChina
- Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghaiChina
- Zhongshan‐BGI Precision Medical CenterZhongshan HospitalFudan UniversityShanghaiChina
| | - Runze Miao
- Department of Liver Surgery & TransplantationLiver Cancer InstituteZhongshan HospitalFudan UniversityShanghaiChina
- Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghaiChina
- Zhongshan‐BGI Precision Medical CenterZhongshan HospitalFudan UniversityShanghaiChina
| | - Zhaoyou Tang
- Department of Liver Surgery & TransplantationLiver Cancer InstituteZhongshan HospitalFudan UniversityShanghaiChina
- Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghaiChina
| | - Jia Fan
- Department of Liver Surgery & TransplantationLiver Cancer InstituteZhongshan HospitalFudan UniversityShanghaiChina
- Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghaiChina
| | - Liang Wu
- BGI‐ShenzhenBeishan Industrial ZoneShenzhenChina
| | - Dan G. Duda
- Steele Laboratories for Tumor BiologyDepartment of Radiation OncologyMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Jian Zhou
- Department of Liver Surgery & TransplantationLiver Cancer InstituteZhongshan HospitalFudan UniversityShanghaiChina
- Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghaiChina
| | - Xinrong Yang
- Department of Liver Surgery & TransplantationLiver Cancer InstituteZhongshan HospitalFudan UniversityShanghaiChina
- Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghaiChina
| |
Collapse
|
5
|
Liu J, Yu Y, Xu B, Liang Q, Fang T, Zhou N, Sun G. NOTCH1 regulates the DNA damage response and sorafenib resistance by activating ATM in hepatocellular carcinoma. Am J Transl Res 2024; 16:7317-7329. [PMID: 39822534 PMCID: PMC11733373 DOI: 10.62347/eafu3015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/30/2024] [Indexed: 01/19/2025]
Abstract
OBJECTIVE This study investigates the mechanism underlying sorafenib resistance in hepatocellular carcinoma cells (HCC), focusing on DNA damage repair (DDR) pathways to develop targeted therapeutic strategies. METHODS Bioinformatics analysis was used to screen genes associated with sorafenib resistance, which was further demonstrated by western blotting. Cell proliferation was determined using the EdU assay. The presence of binding sites between valproic acid (VPA) and NOTCH1 was analyzed by molecular docking. Comet and flow cytometry assays evaluated DNA damage and cell cycle arrest induced by VPA in sorafenib-resistant cells, with further mechanistic insights gained via western blotting and co-immunoprecipitation (Co-IP). RESULTS We found that NOTCH1/ATM axis plays a vital role in the prognosis of patients with liver cancer and in the behavior of sorafenib-resistant cells. HCC resistant to sorafenib exhibited enhanced cell proliferation ability. Moreover, overexpression of NOTCH1 in sorafenib-sensitive HCC cells significantly increased liver cancer cell proliferation. Conversely, silencing NOTCH1 expression in sorafenib-resistant HCC cell lines reduced their proliferative activity. Additionally, VPA enhanced the therapeutic efficacy against sorafenib-resistance cells by modulating NOTCH1/ATM/p-BRCA1/p-CHK2/γ-H2AX signaling axis and homologous recombination (HR) activity. CONCLUSION Targeting NOTCH1 and ATM is a promising strategy to overcome sorafenib resistance in HCC, particularly through the combined use of VPA and sorafenib.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pharmacy, Shanghai Fifth People’s Hospital, Fudan University801 Heqing Road, Shanghai 200240, China
| | - Yan Yu
- Department of Pharmacy, Shanghai Fifth People’s Hospital, Fudan University801 Heqing Road, Shanghai 200240, China
| | - Bin Xu
- Department of Ultrasonic Medicine, Shanghai Fifth People’s Hospital, Fudan University801 Heqing Road, Shanghai 200240, China
| | - Qing Liang
- Department of Pharmacy, Shanghai Fifth People’s Hospital, Fudan University801 Heqing Road, Shanghai 200240, China
| | - Tingting Fang
- Department of Pharmacy, The Shanghai University of Medicine and Health Sciences279 Zhouzhu Highway, Pudong New Area, Shanghai 201318, China
| | - Ningming Zhou
- Department of Ultrasonic Medicine, Shanghai Fifth People’s Hospital, Fudan University801 Heqing Road, Shanghai 200240, China
| | - Guangchun Sun
- Department of Pharmacy, Shanghai Fifth People’s Hospital, Fudan University801 Heqing Road, Shanghai 200240, China
| |
Collapse
|
6
|
Gawi Ermi A, Sarkar D. Resistance to Tyrosine Kinase Inhibitors in Hepatocellular Carcinoma (HCC): Clinical Implications and Potential Strategies to Overcome the Resistance. Cancers (Basel) 2024; 16:3944. [PMID: 39682130 DOI: 10.3390/cancers16233944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths worldwide, and the development of effective treatment strategies remains a significant challenge in the management of advanced HCC patients. The emergence of tyrosine kinase inhibitors (TKIs) has been a significant advancement in the treatment of HCC, as these targeted therapies have shown promise in prolonging the survival of patients with advanced disease. Although immunotherapy is currently considered as the first line of treatment for advanced HCC patients, many such patients do not meet the clinical criteria to be eligible for immunotherapy, and in many parts of the world there is still lack of accessibility to immunotherapy. As such, TKIs still serve as the first line of treatment and play a major role in the treatment repertoire for advanced HCC patients. However, the development of resistance to these agents is a major obstacle that must be overcome. In this review, we explore the underlying mechanisms of resistance to TKIs in HCC, the clinical implications of this resistance, and the potential strategies to overcome or prevent the emergence of resistance.
Collapse
Affiliation(s)
- Ali Gawi Ermi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
7
|
Chava S, Ekmen N, Ferraris P, Aydin Y, Moroz K, Wu T, Thung SN, Dash S. Mechanisms of Sorafenib Resistance in HCC Culture Relate to the Impaired Membrane Expression of Organic Cation Transporter 1 (OCT1). J Hepatocell Carcinoma 2024; 11:839-855. [PMID: 38741679 PMCID: PMC11090194 DOI: 10.2147/jhc.s452152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/30/2024] [Indexed: 05/16/2024] Open
Abstract
Introduction Sorafenib, an FDA-approved drug for advanced hepatocellular carcinoma (HCC) treatment, encounters resistance in many patients. Deciphering the mechanisms underlying sorafenib resistance is crucial for devising alternative strategies to overcome it. Aim This study aimed to investigate sorafenib resistance mechanisms using a diverse panel of HCC cell lines. Methods HCC cell lines were subjected to continuous sorafenib treatment, and stable cell lines (Huh 7.5 and Huh 7PX) exhibiting sustained growth in its presence were isolated. The investigation of drug resistance mechanisms involved a comparative analysis of drug-targeted signal transduction pathways (EGFR/RAF/MEK/ERK/Cyclin D), sorafenib uptake, and membrane expression of the drug uptake transporter. Results HCC cell lines (Huh 7.5 and Huh 7PX) with a higher IC50 (10μM) displayed a more frequent development of sorafenib resistance compared to those with a lower IC50 (2-4.8μM), indicating a potential impact of IC50 variation on initial treatment response. Our findings reveal that activated overexpression of Raf1 kinases and impaired sorafenib uptake, mediated by reduced membrane expression of organic cation transporter-1 (OCT1), contribute to sorafenib resistance in HCC cultures. Stable expression of the drug transporter OCT1 through cDNA transfection or adenoviral delivery of OCT1 mRNA increased sorafenib uptake and successfully overcame sorafenib resistance. Additionally, consistent with sorafenib resistance in HCC cultures, cirrhotic liver-associated human HCC tumors often exhibited impaired membrane expression of OCT1 and OCT3. Conclusion Intrinsic differences among HCC cell clones, affecting sorafenib sensitivity at the expression level of Raf kinases, drug uptake, and OCT1 transporters, were identified. This study underscores the potential of HCC tumor targeted OCT1 expression to enhance sorafenib treatment response.
Collapse
Affiliation(s)
- Srinivas Chava
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Nergiz Ekmen
- Department of Gastroenterology and Hepatology, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Pauline Ferraris
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Yucel Aydin
- Department of Gastroenterology and Hepatology, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Krzysztof Moroz
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Tong Wu
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Swan N Thung
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Srikanta Dash
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, LA, USA
- Department of Gastroenterology and Hepatology, Tulane University Health Sciences Center, New Orleans, LA, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA
| |
Collapse
|
8
|
Chan YT, Wu J, Lu Y, Li Q, Feng Z, Xu L, Yuan H, Xing T, Zhang C, Tan HY, Feng Y, Wang N. Loss of lncRNA LINC01056 leads to sorafenib resistance in HCC. Mol Cancer 2024; 23:74. [PMID: 38582885 PMCID: PMC10998324 DOI: 10.1186/s12943-024-01988-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/25/2024] [Indexed: 04/08/2024] Open
Abstract
BACKGROUND AND AIMS Sorafenib is a major nonsurgical option for patients with advanced hepatocellular carcinoma (HCC); however, its clinical efficacy is largely undermined by the acquisition of resistance. The aim of this study was to identify the key lncRNA involved in the regulation of the sorafenib response in HCC. MATERIALS AND METHODS A clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) single-guide RNA (sgRNA) synergistic activation mediator (SAM)-pooled lncRNA library was applied to screen for the key lncRNA regulated by sorafenib treatment. The role of the identified lncRNA in mediating the sorafenib response in HCC was examined in vitro and in vivo. The underlying mechanism was delineated by proteomic analysis. The clinical significance of the expression of the identified lncRNA was evaluated by multiplex immunostaining on a human HCC microtissue array. RESULTS CRISPR/Cas9 lncRNA library screening revealed that Linc01056 was among the most downregulated lncRNAs in sorafenib-resistant HCC cells. Knockdown of Linc01056 reduced the sensitivity of HCC cells to sorafenib, suppressing apoptosis in vitro and promoting tumour growth in mice in vivo. Proteomic analysis revealed that Linc01056 knockdown in sorafenib-treated HCC cells induced genes related to fatty acid oxidation (FAO) while repressing glycolysis-associated genes, leading to a metabolic switch favouring higher intracellular energy production. FAO inhibition in HCC cells with Linc01056 knockdown significantly restored sensitivity to sorafenib. Mechanistically, we determined that PPARα is the critical molecule governing the metabolic switch upon Linc01056 knockdown in HCC cells and indeed, PPARα inhibition restored the sorafenib response in HCC cells in vitro and HCC tumours in vivo. Clinically, Linc01056 expression predicted optimal overall and progression-free survival outcomes in HCC patients and predicted a better sorafenib response. Linc01056 expression indicated a low FAO level in HCC. CONCLUSION Our study identified Linc01056 as a critical epigenetic regulator and potential therapeutic target in the regulation of the sorafenib response in HCC.
Collapse
Affiliation(s)
- Yau-Tuen Chan
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Junyu Wu
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Yuanjun Lu
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Qiucheng Li
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Zixin Feng
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Lin Xu
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Hongchao Yuan
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Tingyuan Xing
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Cheng Zhang
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Hor-Yue Tan
- Centre for Chinese Medicine New Drug Development, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.
| |
Collapse
|
9
|
Sanceau J, Poupel L, Joubel C, Lagoutte I, Caruso S, Pinto S, Desbois-Mouthon C, Godard C, Hamimi A, Montmory E, Dulary C, Chantalat S, Roehrig A, Muret K, Saint-Pierre B, Deleuze JF, Mouillet-Richard S, Forné T, Grosset CF, Zucman-Rossi J, Colnot S, Gougelet A. DLK1/DIO3 locus upregulation by a β-catenin-dependent enhancer drives cell proliferation and liver tumorigenesis. Mol Ther 2024; 32:1125-1143. [PMID: 38311851 PMCID: PMC11163201 DOI: 10.1016/j.ymthe.2024.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/05/2024] [Accepted: 01/31/2024] [Indexed: 02/06/2024] Open
Abstract
The CTNNB1 gene, encoding β-catenin, is frequently mutated in hepatocellular carcinoma (HCC, ∼30%) and in hepatoblastoma (HB, >80%), in which DLK1/DIO3 locus induction is correlated with CTNNB1 mutations. Here, we aim to decipher how sustained β-catenin activation regulates DLK1/DIO3 locus expression and the role this locus plays in HB and HCC development in mouse models deleted for Apc (ApcΔhep) or Ctnnb1-exon 3 (β-cateninΔExon3) and in human CTNNB1-mutated hepatic cancer cells. We identified an enhancer site bound by TCF-4/β-catenin complexes in an open conformation upon sustained β-catenin activation (DLK1-Wnt responsive element [WRE]) and increasing DLK1/DIO3 locus transcription in β-catenin-mutated human HB and mouse models. DLK1-WRE editing by CRISPR-Cas9 approach impaired DLK1/DIO3 locus expression and slowed tumor growth in subcutaneous CTNNB1-mutated tumor cell grafts, ApcΔhep HB and β-cateninΔExon3 HCC. Tumor growth inhibition resulted either from increased FADD expression and subsequent caspase-3 cleavage in the first case or from decreased expression of cell cycle actors regulated by FoxM1 in the others. Therefore, the DLK1/DIO3 locus is an essential determinant of FoxM1-dependent cell proliferation during β-catenin-driven liver tumorigenesis. Targeting the DLK1-WRE enhancer to silence the DLK1/DIO3 locus might thus represent an interesting therapeutic strategy to restrict tumor growth in primary liver cancers with CTNNB1 mutations.
Collapse
Affiliation(s)
- Julie Sanceau
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France; Team « Oncogenic functions of beta-catenin signaling in the liver », Équipe labellisée par la Ligue Nationale contre le Cancer, F-75013 Paris, France; APHP, Institut du Cancer Paris CARPEM, F-75015 Paris, France
| | - Lucie Poupel
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France; Team « Oncogenic functions of beta-catenin signaling in the liver », Équipe labellisée par la Ligue Nationale contre le Cancer, F-75013 Paris, France; APHP, Institut du Cancer Paris CARPEM, F-75015 Paris, France; Inovarion, F-75005 Paris, France
| | - Camille Joubel
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France; Team « Oncogenic functions of beta-catenin signaling in the liver », Équipe labellisée par la Ligue Nationale contre le Cancer, F-75013 Paris, France; APHP, Institut du Cancer Paris CARPEM, F-75015 Paris, France
| | - Isabelle Lagoutte
- University Paris Cité, Institut Cochin, INSERM, CNRS, F-75014 Paris, France
| | - Stefano Caruso
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France; APHP, Institut du Cancer Paris CARPEM, F-75015 Paris, France
| | - Sandra Pinto
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France; Team « Oncogenic functions of beta-catenin signaling in the liver », Équipe labellisée par la Ligue Nationale contre le Cancer, F-75013 Paris, France
| | - Christèle Desbois-Mouthon
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France; Team « Oncogenic functions of beta-catenin signaling in the liver », Équipe labellisée par la Ligue Nationale contre le Cancer, F-75013 Paris, France; APHP, Institut du Cancer Paris CARPEM, F-75015 Paris, France
| | - Cécile Godard
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France; Team « Oncogenic functions of beta-catenin signaling in the liver », Équipe labellisée par la Ligue Nationale contre le Cancer, F-75013 Paris, France; APHP, Institut du Cancer Paris CARPEM, F-75015 Paris, France
| | - Akila Hamimi
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France; Team « Oncogenic functions of beta-catenin signaling in the liver », Équipe labellisée par la Ligue Nationale contre le Cancer, F-75013 Paris, France; APHP, Institut du Cancer Paris CARPEM, F-75015 Paris, France
| | - Enzo Montmory
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France; Team « Oncogenic functions of beta-catenin signaling in the liver », Équipe labellisée par la Ligue Nationale contre le Cancer, F-75013 Paris, France; APHP, Institut du Cancer Paris CARPEM, F-75015 Paris, France
| | - Cécile Dulary
- Centre National de Génotypage, Institut de Génomique, CEA, F-91057 Evry, France
| | - Sophie Chantalat
- Centre National de Génotypage, Institut de Génomique, CEA, F-91057 Evry, France
| | - Amélie Roehrig
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France; APHP, Institut du Cancer Paris CARPEM, F-75015 Paris, France
| | - Kevin Muret
- Centre National de Génotypage, Institut de Génomique, CEA, F-91057 Evry, France
| | | | | | - Sophie Mouillet-Richard
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France; APHP, Institut du Cancer Paris CARPEM, F-75015 Paris, France
| | - Thierry Forné
- IGMM, University Montpellier, CNRS, F-34293 Montpellier, France
| | - Christophe F Grosset
- University Bordeaux, INSERM, Biotherapy of Genetic Diseases, Inflammatory Disorders and Cancer, BMGIC, U1035, MIRCADE team, F-33076 Bordeaux, France; University Bordeaux, INSERM, Bordeaux Institute in Oncology, BRIC, U1312, MIRCADE team, F-33076 Bordeaux, France
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France; APHP, Institut du Cancer Paris CARPEM, F-75015 Paris, France
| | - Sabine Colnot
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France; Team « Oncogenic functions of beta-catenin signaling in the liver », Équipe labellisée par la Ligue Nationale contre le Cancer, F-75013 Paris, France; APHP, Institut du Cancer Paris CARPEM, F-75015 Paris, France
| | - Angélique Gougelet
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France; Team « Oncogenic functions of beta-catenin signaling in the liver », Équipe labellisée par la Ligue Nationale contre le Cancer, F-75013 Paris, France; APHP, Institut du Cancer Paris CARPEM, F-75015 Paris, France.
| |
Collapse
|
10
|
Ladd AD, Duarte S, Sahin I, Zarrinpar A. Mechanisms of drug resistance in HCC. Hepatology 2024; 79:926-940. [PMID: 36680397 DOI: 10.1097/hep.0000000000000237] [Citation(s) in RCA: 79] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 11/21/2022] [Indexed: 01/22/2023]
Abstract
HCC comprises ∼80% of primary liver cancer. HCC is the only major cancer for which death rates have not improved over the last 10 years. Most patients are diagnosed with advanced disease when surgical and locoregional treatments are not feasible or effective. Sorafenib, a multikinase inhibitor targeting cell growth and angiogenesis, was approved for advanced unresectable HCC in 2007. Since then, other multikinase inhibitors have been approved. Lenvatinib was found to be noninferior to sorafenib as a first-line agent. Regorafenib, cabozantinib, and ramucirumab were shown to prolong survival as second-line agents. Advances in immunotherapy for HCC have also added hope for patients, but their efficacy remains limited. A large proportion of patients with advanced HCC gain no long-term benefit from systemic therapy due to primary and acquired drug resistance, which, combined with its rising incidence, keeps HCC a highly fatal disease. This review summarizes mechanisms of primary and acquired resistance to therapy and includes methods for bypassing resistance. It addresses recent advancements in immunotherapy, provides new perspectives on the linkage between drug resistance and molecular etiology of HCC, and evaluates the role of the microbiome in drug resistance. It also discusses alterations in signaling pathways, dysregulation of apoptosis, modulations in the tumor microenvironment, involvement of cancer stem cells, changes in drug metabolism/transport, tumor hypoxia, DNA repair, and the role of microRNAs in drug resistance. Understanding the interplay among these factors will provide guidance on the development of new therapeutic strategies capable of improving patient outcomes.
Collapse
Affiliation(s)
- Alexandra D Ladd
- Department of Surgery, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Sergio Duarte
- Department of Surgery, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Ilyas Sahin
- Division of Hematology/Oncology, Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Ali Zarrinpar
- Department of Surgery, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
11
|
Zhang X, Su T, Wu Y, Cai Y, Wang L, Liang C, Zhou L, Wang S, Li XX, Peng S, Kuang M, Yu J, Xu L. N6-Methyladenosine Reader YTHDF1 Promotes Stemness and Therapeutic Resistance in Hepatocellular Carcinoma by Enhancing NOTCH1 Expression. Cancer Res 2024; 84:827-840. [PMID: 38241695 DOI: 10.1158/0008-5472.can-23-1916] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/30/2023] [Accepted: 01/17/2024] [Indexed: 01/21/2024]
Abstract
N6-methyladenosine (m6A) RNA modification is the most common and conserved epigenetic modification in mRNA and has been shown to play important roles in cancer biology. As the m6A reader YTHDF1 has been reported to promote progression of hepatocellular carcinoma (HCC), it represents a potential therapeutic target. In this study, we evaluated the clinical significance of YTHDF1 using human HCC samples and found that YTHDF1 was significantly upregulated in HCCs with high stemness scores and was positively associated with recurrence and poor prognosis. Analysis of HCC spheroids revealed that YTHDF1 was highly expressed in liver cancer stem cells (CSC). Stem cell-specific conditional Ythdf1 knockin (CKI) mice treated with diethylnitrosamine showed elevated tumor burden as compared with wild-type mice. YTHDF1 promoted CSCs renewal and resistance to the multiple tyrosine kinase inhibitors lenvatinib and sorafenib in patient-derived organoids and HCC cell lines, which could be abolished by catalytically inactive mutant YTHDF1. Multiomic analysis, including RNA immunoprecipitation sequencing, m6A methylated RNA immunoprecipitation sequencing, ribosome profiling, and RNA sequencing identified NOTCH1 as a direct downstream of YTHDF1. YTHDF1 bound to m6A modified NOTCH1 mRNA to enhance its stability and translation, which led to increased NOTCH1 target genes expression. NOTCH1 overexpression rescued HCC stemness in YTHDF1-deficient cells in vitro and in vivo. Lipid nanoparticles targeting YTHDF1 significantly enhanced the efficacy of lenvatinib and sorafenib in HCC in vivo. Taken together, YTHDF1 drives HCC stemness and drug resistance through an YTHDF1-m6A-NOTCH1 epitranscriptomic axis, and YTHDF1 is a potential therapeutic target for treating HCC. SIGNIFICANCE Inhibition of YTHDF1 expression suppresses stemness of hepatocellular carcinoma cells and enhances sensitivity to targeted therapies, indicating that targeting YTHDF1 may be a promising therapeutic strategy for liver cancer.
Collapse
Affiliation(s)
- Xinyue Zhang
- Department of Oncology, Cancer Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tianhong Su
- Department of Oncology, Cancer Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yifan Wu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Gastroenterology and Hepatology, The First Afliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yuhong Cai
- Center of Hepato-Pancreate-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lina Wang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Cong Liang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lei Zhou
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shiyan Wang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Xing Li
- Department of Oncology, Cancer Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Sui Peng
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Gastroenterology and Hepatology, The First Afliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Clinical Trials Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ming Kuang
- Center of Hepato-Pancreate-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Clinical Trials Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jun Yu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong
| | - Lixia Xu
- Department of Oncology, Cancer Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
12
|
Zhang S, Jia X, Dai H, Zhu X, Song W, Bian S, Wu H, Chen S, Tang Y, Chen J, Jin C, Zhou M, Xie H, Zheng S, Song P. SERPINE2 promotes liver cancer metastasis by inhibiting c-Cbl-mediated EGFR ubiquitination and degradation. Cancer Commun (Lond) 2024; 44:384-407. [PMID: 38407942 PMCID: PMC10958675 DOI: 10.1002/cac2.12527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 02/27/2024] Open
Abstract
BACKGROUND Liver cancer is a malignancy with high morbidity and mortality rates. Serpin family E member 2 (SERPINE2) has been reported to play a key role in the metastasis of many tumors. In this study, we aimed to investigate the potential mechanism of SERPINE2 in liver cancer metastasis. METHODS The Cancer Genome Atlas database (TCGA), including DNA methylation and transcriptome sequencing data, was utilized to identify the crucial oncogene associated with DNA methylation and cancer progression in liver cancer. Data from the TCGA and RNA sequencing for 94 pairs of liver cancer tissues were used to explore the correlation between SERPINE2 expression and clinical parameters of patients. DNA methylation sequencing was used to detect the DNA methylation levels in liver cancer tissues and cells. RNA sequencing, cytokine assays, immunoprecipitation (IP) and mass spectrometry (MS) assays, protein stability assays, and ubiquitination assays were performed to explore the regulatory mechanism of SERPINE2 in liver cancer metastasis. Patient-derived xenografts and tumor organoid models were established to determine the role of SERPINE2 in the treatment of liver cancer using sorafenib. RESULTS Based on the public database screening, SERPINE2 was identified as a tumor promoter regulated by DNA methylation. SERPINE2 expression was significantly higher in liver cancer tissues and was associated with the dismal prognosis in patients with liver cancer. SERPINE2 promoted liver cancer metastasis by enhancing cell pseudopodia formation, cell adhesion, cancer-associated fibroblast activation, extracellular matrix remodeling, and angiogenesis. IP/MS assays confirmed that SERPINE2 activated epidermal growth factor receptor (EGFR) and its downstream signaling pathways by interacting with EGFR. Mechanistically, SERPINE2 inhibited EGFR ubiquitination and maintained its protein stability by competing with the E3 ubiquitin ligase, c-Cbl. Additionally, EGFR was activated in liver cancer cells after sorafenib treatment, and SERPINE2 knockdown-induced EGFR downregulation significantly enhanced the therapeutic efficacy of sorafenib against liver cancer. Furthermore, we found that SERPINE2 knockdown also had a sensitizing effect on lenvatinib treatment. CONCLUSIONS SERPINE2 promoted liver cancer metastasis by preventing EGFR degradation via c-Cbl-mediated ubiquitination, suggesting that inhibition of the SERPINE2-EGFR axis may be a potential target for liver cancer treatment.
Collapse
|
13
|
Li Q, Niu JQ, Jia JH, Xu W, Bai M, Yao GD, Song SJ. A highly oxidized germacranolide from elephantopus tomentosus inhibits the growth of hepatocellular carcinoma cells by targeting EGFR in vitro and in vivo. Bioorg Chem 2024; 143:107007. [PMID: 38039928 DOI: 10.1016/j.bioorg.2023.107007] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/16/2023] [Accepted: 11/25/2023] [Indexed: 12/03/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide, with high mortality and poor prognosis. WBDC-1 is a novel highly oxidized germacranolide from the Elephantopus tomentosus in our previous work, which has excellent anti-HCC activity, but the detailed mechanism is still unclear. In this study, we found that WBDC-1 was able to inhibit the proliferation and colony formation of Hep3B and HepG2 cells, as well as the cell migration ability and EMT. In addition, WBDC-1 showed no obvious toxicity to normal liver epithelial cells L-02. The potential targets of WBDC-1 were predicted by network pharmacology, and the following verified experiments showed that WBDC-1 exerted anti-HCC effect by targeting EGFR. Mechanismly, subsequent biological analysis showed that WBDC-1 can inhibit EGFR and its downstream RAS/RAF/MEK/ERK and PI3K/AKT signaling pathways. Overexpression of EGFR reversed the anticancer properties of WBDC-1. Consistent with in vitro experiments, WBDC-1 was able to inhibit tumor growth and was non-toxic in xenograft tumor models. In summary, this study revealed a potential tumor suppressive mechanism of WBDC-1 and provided a novel strategy for HCC treatment. It also laid a foundation for further research on the anti-tumor effect of highly oxidized germacranolides.
Collapse
Affiliation(s)
- Qian Li
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, China; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, China; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Jia-Qi Niu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, China; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, China; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Jian-Huan Jia
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, China; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, China; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Wei Xu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, China; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, China; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Ming Bai
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, China; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, China; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Guo-Dong Yao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, China; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, China; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, China; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, China; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| |
Collapse
|
14
|
Wang X, Yang L, Yu C, Ling X, Guo C, Chen R, Li D, Liu Z. An integrated computational strategy to predict personalized cancer drug combinations by reversing drug resistance signatures. Comput Biol Med 2023; 163:107230. [PMID: 37418899 DOI: 10.1016/j.compbiomed.2023.107230] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/22/2023] [Accepted: 07/01/2023] [Indexed: 07/09/2023]
Abstract
Drug resistance currently poses the greatest barrier to cancer treatments. To overcome drug resistance, drug combination therapy has been proposed as a promising treatment strategy. Herein, we present Re-Sensitizing Drug Prediction (RSDP), a novel computational strategy, for predicting the personalized cancer drug combination A + B by reversing the resistance signature of drug A. The process integrates multiple biological features using a robust rank aggregation algorithm, including Connectivity Map, synthetic lethality, synthetic rescue, pathway, and drug target. Bioinformatics assessments revealed that RSDP achieved a relatively accurate prediction performance for identifying personalized combinational re-sensitizing drug B against cell line-specific intrinsic resistance, cell line-specific acquired resistance, and patient-specific intrinsic resistance to drug A. In addition, we developed the largest resource of cell line-specific cancer drug resistance signatures, including intrinsic and acquired resistance, as a byproduct of the proposed strategy. The findings indicate that personalized drug resistance signature reversal is a promising strategy for identifying personalized drug combinations, which may guide future clinical decisions regarding personalized medicine.
Collapse
Affiliation(s)
- Xun Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Lele Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China; College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China
| | - Chuang Yu
- China Astronaut Research and Training Center, Beijing, 100094, China
| | - Xinping Ling
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Congcong Guo
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Ruzhen Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Dong Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China; College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China.
| | - Zhongyang Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China; College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China.
| |
Collapse
|
15
|
Erber J, Herndler-Brandstetter D. Regulation of T cell differentiation and function by long noncoding RNAs in homeostasis and cancer. Front Immunol 2023; 14:1181499. [PMID: 37346034 PMCID: PMC10281531 DOI: 10.3389/fimmu.2023.1181499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/02/2023] [Indexed: 06/23/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) increase in genomes of complex organisms and represent the largest group of RNA genes transcribed in mammalian cells. Previously considered only transcriptional noise, lncRNAs comprise a heterogeneous class of transcripts that are emerging as critical regulators of T cell-mediated immunity. Here we summarize the lncRNA expression landscape of different T cell subsets and highlight recent advances in the role of lncRNAs in regulating T cell differentiation, function and exhaustion during homeostasis and cancer. We discuss the different molecular mechanisms of lncRNAs and highlight lncRNAs that can serve as novel targets to modulate T cell function or to improve the response to cancer immunotherapies by modulating the immunosuppressive tumor microenvironment.
Collapse
|
16
|
Zhou S, Xu H, Wei T. Inhibition of stress proteins TRIB3 and STC2 potentiates sorafenib sensitivity in hepatocellular carcinoma. Heliyon 2023; 9:e17295. [PMID: 37389061 PMCID: PMC10300369 DOI: 10.1016/j.heliyon.2023.e17295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023] Open
Abstract
Sorafenib resistance is one of the main obstacles to the treatment of advanced hepatocellular carcinoma (HCC). Stress proteins TRIB3 and STC2 confer cell resistance to a variety of stresses, including hypoxia, nutritional deprivation, and other perturbations, which induce endoplasmic reticulum stress. However, the role of TRIB3 and STC2 in sorafenib sensitivity to HCC remains unclear. In this study, our results indicated that the common differentially expressed genes (DEGs) in sorafenib-treated HCC cells obtained from the NCBI-GEO database (Huh7 and Hep3B cells; GSE96796) included TRIB3, STC2, HOXD1, C2orf82, ADM2, RRM2, and UNC93A. The most significantly upregulated DEGs were TRIB3 and STC2, which were both stress protein genes. Bioinformatic analysis in NCBI public databases indicated that TRIB3 and STC2 were highly expressed in HCC tissues and closely associated with poor prognoses in HCC patients. Further investigation showed that inhibition of TRIB3 or STC2 with siRNA could enhance the anti-cancer effect of sorafenib in HCC cell lines. In conclusion, our study showed that stress proteins TRIB3 and STC2 are closely associated with sorafenib resistance in HCC. The combination of TRIB3 or STC2 inhibition and sorafenib may be a promising therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Sheng Zhou
- Department of Ultrasound, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410000, China
| | - Huanji Xu
- Department of Abdominal Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Tianhong Wei
- Department of Ultrasound, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410000, China
| |
Collapse
|
17
|
Shi Y, Qiu P, Zhao K, Li X, Feng Y, Deng Z, Wang J. Identifying a novel cuproptosis-related necroptosis gene subtype-related signature for predicting the prognosis, tumor microenvironment, and immunotherapy of hepatocellular carcinoma. Front Mol Biosci 2023; 10:1165243. [PMID: 37287752 PMCID: PMC10242026 DOI: 10.3389/fmolb.2023.1165243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/03/2023] [Indexed: 06/09/2023] Open
Abstract
Background: Cuproptosis and necroptosis represent two distinct programmed cell death modalities implicated in neoplastic progression; however, the role of combining cuproptosis and necroptosis in hepatocellular carcinoma (HCC) remains to be elucidated. Methods: A total of 29 cuproptosis-related necroptosis genes (CRNGs) were identified, followed by an extensive analysis of their mutational characteristics, expression patterns, prognostic implications, and associations with the tumor microenvironment (TME). Subsequently, a CRNG subtype-related signature was developed, and its value of prognostic prediction, TME, and therapeutic responses in HCC were thoroughly investigated. Last, quantitative real-time PCR and Western blotting were employed for investigating the signature gene expression in 15 paired clinical tissue samples. Results: Two distinct CRNG subtypes were discerned, demonstrating associations between CRNG expression patterns, clinicopathological attributes, prognosis, and the TME. A CRNG subtype-related prognostic signature, subjected to external validation, was constructed, serving as an independent prognostic factor for HCC patients, indicating poor prognosis for high-risk individuals. Concurrently, the signature's correlations with an immune-suppressive TME, mutational features, stemness properties, immune checkpoint genes, chemoresistance-associated genes, and drug sensitivity were observed, signifying its utility in predicting treatment responses. Subsequently, highly accurate and clinically convenient nomograms were developed, and the signature genes were validated via quantitative real-time PCR and Western blotting, further substantiating the stability and dependability of the CRNG subtype-related prognostic signature. Conclusion: Overall, this investigation presented an extensive panorama of CRNGs and developed the CRNG subtype-related prognostic signature, which holds potential for implementation in personalized treatment strategies and prognostic forecasting for HCC patients.
Collapse
Affiliation(s)
- Yuanxin Shi
- Department of Biliary and Pancreatic Surgery, Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Qiu
- Department of Biliary and Pancreatic Surgery, Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Zhao
- Department of Biliary and Pancreatic Surgery, Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyu Li
- Department of Biliary and Pancreatic Surgery, Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunxiang Feng
- Department of Biliary and Pancreatic Surgery, Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengdong Deng
- Department of Pediatric Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianming Wang
- Department of Biliary and Pancreatic Surgery, Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Affiliated Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
18
|
Lazzaro A, Hartshorn KL. A Comprehensive Narrative Review on the History, Current Landscape, and Future Directions of Hepatocellular Carcinoma (HCC) Systemic Therapy. Cancers (Basel) 2023; 15:cancers15092506. [PMID: 37173972 PMCID: PMC10177076 DOI: 10.3390/cancers15092506] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
We provide a comprehensive review of current approved systemic treatment strategies for advanced hepatocellular carcinoma (HCC), starting with the phase III clinical trial of sorafenib which was the first to definitively show a survival benefit. After this trial, there was an initial period of little progress. However, in recent years, an explosion of new agents and combinations of agents has resulted in a markedly improved outlook for patients. We then provide the authors' current approach to therapy, i.e., "How We Treat HCC". Promising future directions and important gaps in therapy that persist are finally reviewed. HCC is a highly prevalent cancer worldwide and the incidence is growing due not only to alcoholism, hepatitis B and C, but also to steatohepatitis. HCC, like renal cell carcinoma and melanoma, is a cancer largely resistant to chemotherapy but the advent of anti-angiogenic, targeted and immune therapies have improved survival for all of these cancers. We hope this review will heighten interest in the field of HCC therapies, provide a clear outline of the current data and strategy for treatment, and sensitize readers to new developments that are likely to emerge in the near future.
Collapse
Affiliation(s)
- Alexander Lazzaro
- Department of Medicine, Boston Medical Center, Boston, MA 02118, USA
| | - Kevan L Hartshorn
- Section of Hematology Oncology, Boston University Chobanian and Avedisian School of Medicine, Boston Medical Center, Boston, MA 02118, USA
| |
Collapse
|
19
|
Samavarchi Tehrani S, Esmaeili F, Shirzad M, Goodarzi G, Yousefi T, Maniati M, Taheri-Anganeh M, Anushiravani A. The critical role of circular RNAs in drug resistance in gastrointestinal cancers. Med Oncol 2023; 40:116. [PMID: 36917431 DOI: 10.1007/s12032-023-01980-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/20/2023] [Indexed: 03/16/2023]
Abstract
Nowadays, drug resistance (DR) in gastrointestinal (GI) cancers, as the main reason for cancer-related mortality worldwide, has become a serious problem in the management of patients. Several mechanisms have been proposed for resistance to anticancer drugs, including altered transport and metabolism of drugs, mutation of drug targets, altered DNA repair system, inhibited apoptosis and autophagy, cancer stem cells, tumor heterogeneity, and epithelial-mesenchymal transition. Compelling evidence has revealed that genetic and epigenetic factors are strongly linked to DR. Non-coding RNA (ncRNA) interferences are the most crucial epigenetic alterations explored so far, and among these ncRNAs, circular RNAs (circRNAs) are the most emerging members known to have unique properties. Due to the absence of 5' and 3' ends in these novel RNAs, the two ends are covalently bonded together and are generated from pre-mRNA in a process known as back-splicing, which makes them more stable than other RNAs. As far as the unique structure and function of circRNAs is concerned, they are implicated in proliferation, migration, invasion, angiogenesis, metastasis, and DR. A clear understanding of the molecular mechanisms responsible for circRNAs-mediated DR in the GI cancers will open a new window to the management of GI cancers. Hence, in the present review, we will describe briefly the biogenesis, multiple features, and different biological functions of circRNAs. Then, we will summarize current mechanisms of DR, and finally, discuss molecular mechanisms through which circRNAs regulate DR development in esophageal cancer, pancreatic cancer, gastric cancer, colorectal cancer, and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fataneh Esmaeili
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Moein Shirzad
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Golnaz Goodarzi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tooba Yousefi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmood Maniati
- Department of English, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Amir Anushiravani
- Digestive Disease Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Jiang L, Li L, Liu Y, Zhan M, Lu L, Yuan S, Liu Y. Drug resistance mechanism of kinase inhibitors in the treatment of hepatocellular carcinoma. Front Pharmacol 2023; 14:1097277. [PMID: 36891274 PMCID: PMC9987615 DOI: 10.3389/fphar.2023.1097277] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/01/2023] [Indexed: 02/16/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer, and it usually occurs following chronic liver disease. Although some progress has been made in the treatment of HCC, the prognosis of patients with advanced HCC is not optimistic, mainly because of the inevitable development of drug resistance. Therefore, multi-target kinase inhibitors for the treatment of HCC, such as sorafenib, lenvatinib, cabozantinib, and regorafenib, produce small clinical benefits for patients with HCC. It is necessary to study the mechanism of kinase inhibitor resistance and explore possible solutions to overcome this resistance to improve clinical benefits. In this study, we reviewed the mechanisms of resistance to multi-target kinase inhibitors in HCC and discussed strategies that can be used to improve treatment outcomes.
Collapse
Affiliation(s)
- Lei Jiang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital AffiliatedWith Jinan University), Zhuhai, Guangdong, China
| | - Luan Li
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Yongzhuang Liu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Liaoning Province, China
| | - Meixiao Zhan
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital AffiliatedWith Jinan University), Zhuhai, Guangdong, China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital AffiliatedWith Jinan University), Zhuhai, Guangdong, China
| | - Shengtao Yuan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Liaoning Province, China
| | - Yanyan Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital AffiliatedWith Jinan University), Zhuhai, Guangdong, China
| |
Collapse
|
21
|
Ghosh S, Ramadas B, Manna D. Targeted protein degradation using the lysosomal pathway. RSC Med Chem 2022; 13:1476-1494. [PMID: 36561077 PMCID: PMC9749926 DOI: 10.1039/d2md00273f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
Degradation strategies have shown enormous promise after the inception of molecules like PROTACs (PRoteolysis TArgeting Chimeras) that induce the degradation of the substrate of choice rather than depending on blocking their catalytic activity like conventional inhibitory drugs. Over the past two decades, the application of PROTACs has made quite an impact, even reaching clinical translations. However, a major class of macromolecular targets, be that large proteins, aggregates, organelles or non-protein substrates, remain untouched when utilizing the ubiquitin-proteasomal pathway of degradation. In this review, we have attempted to cover modalities of targeted degradation that instead focus on recruiting the lysosomal pathway of degradation, which is gaining importance and being explored extensively as alternate and efficient approaches for treating disease-related milieus.
Collapse
Affiliation(s)
- Samrajni Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal-462066 MP India
| | - Bhavana Ramadas
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal-462066 MP India
| | - Debasish Manna
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal-462066 MP India
| |
Collapse
|
22
|
Wang Q, Li W, Zhang M, Zou Z, Dong X, Chen Y, Xu J, Zhu M, Li M, Lin B. α-Fetoprotein fragment synergizes with sorafenib to inhibit hepatoma cell growth and migration and promote the apoptosis. J Cell Mol Med 2022; 26:5426-5438. [PMID: 36181321 PMCID: PMC9639031 DOI: 10.1111/jcmm.17565] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 07/21/2022] [Accepted: 08/26/2022] [Indexed: 11/28/2022] Open
Abstract
Alpha fetoprotein (AFP) is associated with hepatocellular carcinoma (HCC) by stimulating the proliferation, metastasis and drug resistance. The application of AFP fragments to inhibit the malignant behaviours induced by AFP is a new strategy for the treatment of HCC. In an effort to design, screen and discover drugs, we attempted to express different human AFP fragments (AFP220-609 , AFP390-609 and AFP460-609 ) in a Bac-to-Bac system. We found that the AFP390-609 fragment was highly expressed in the system. Then, we assessed the bioactivity of the fragment in the human liver cancer cell line Bel7402, and the results indicated that the AFP fragment synergized with sorafenib to inhibit the hepatoma cell growth and migration and promote the apoptosis. This study provides a method to produce significant AFP fragments to screen AFP inhibitors for use in HCC therapy.
Collapse
Affiliation(s)
- Qiujiao Wang
- Hainan Provincial Key Laboratory of Carcinogenesis and InterventionHainan Medical CollegeHaikouChina
| | - Wei Li
- Hainan Provincial Key Laboratory of Carcinogenesis and InterventionHainan Medical CollegeHaikouChina
| | - Minni Zhang
- Hainan Provincial Key Laboratory of Carcinogenesis and InterventionHainan Medical CollegeHaikouChina
| | - Zijuan Zou
- Hainan Provincial Key Laboratory of Carcinogenesis and InterventionHainan Medical CollegeHaikouChina
| | - Xu Dong
- Hainan Provincial Key Laboratory of Carcinogenesis and InterventionHainan Medical CollegeHaikouChina
| | - Yi Chen
- Hainan Provincial Key Laboratory of Carcinogenesis and InterventionHainan Medical CollegeHaikouChina
| | - Junnv Xu
- Hainan Provincial Key Laboratory of Carcinogenesis and InterventionHainan Medical CollegeHaikouChina
- Department of Medical Oncology, Second Affiliated HospitalHainan Medical CollegeHaikouChina
| | - Mingyue Zhu
- Hainan Provincial Key Laboratory of Carcinogenesis and InterventionHainan Medical CollegeHaikouChina
| | - Mengsen Li
- Hainan Provincial Key Laboratory of Carcinogenesis and InterventionHainan Medical CollegeHaikouChina
- Institution of TumorHainan Medical CollegeHaikouChina
| | - Bo Lin
- Hainan Provincial Key Laboratory of Carcinogenesis and InterventionHainan Medical CollegeHaikouChina
| |
Collapse
|
23
|
Taha AM, Aboulwafa MM, Zedan H, Helmy OM. Ramucirumab combination with sorafenib enhances the inhibitory effect of sorafenib on HepG2 cancer cells. Sci Rep 2022; 12:17889. [PMID: 36284117 PMCID: PMC9596484 DOI: 10.1038/s41598-022-21582-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/29/2022] [Indexed: 01/20/2023] Open
Abstract
Sorafenib, an oral multiple kinase inhibitor, is the standardized treatment for hepatocellular carcinoma (HCC). One strategy to improve HCC therapy is to combine agents that target key signaling pathways. In this study we set out to investigate the effect of combining sorafenib with either bevacizumab (anti-VEGF), panitumumab (anti-EGFR) or ramucirumab (anti-VEGFR2) on HepG2 cancer cell line with the aim of improving efficacy and possibility of therapeutic dose reduction of sorafenib.: HepG2 cancer cell line was treated with sorafenib alone or in combination with either bevacizumab, panitumumab or ramucirumab. Cell proliferation; apoptosis and cell cycle distribution; gene expression of VEGFR2, EGFR, MMP-9 and CASPASE3; the protein levels of pVEGFR2 and pSTAT3 and the protein expression of CASPASE3, EGFR and VEGFR2 were determined. Combined treatments of sorafenib with ramucirumab or panitumumab resulted in a significant decrease in sorafenib IC50. Sorafenib combination with ramucirumab or bevacizumab resulted in a significant arrest in pre-G and G0/G1 cell cycle phases, significantly induced apoptosis and increased the relative expression of CASPASE3 and decreased the anti-proliferative and angiogenesis markers´ MMP-9 and pVEGFR2 or VEGFR2 in HepG2 cells. A significant decrease in the levels of pSTAT3 was only detected in case of sorafenib-ramucirumab combination. The combined treatment of sorafenib with panitumumab induced a significant arrest in pre-G and G2/M cell cycle phases and significantly decreased the relative expression of EGFR and MMP-9. Sorafenib-ramucirumab combination showed enhanced apoptosis, inhibited proliferation and angiogenesis in HepG2 cancer cells. Our findings suggest that ramucirumab can be a useful as an adjunct therapy for improvement of sorafenib efficacy in suppression of HCC.
Collapse
Affiliation(s)
| | - Mohammad Mabrouk Aboulwafa
- grid.7269.a0000 0004 0621 1570Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Al Khalifa Al Ma’moun St., Abbassia, Cairo, Egypt ,Present Address: Faculty of Pharmacy, King Salman International University, Ras-Sudr, South Sinai Egypt
| | - Hamdallah Zedan
- grid.7776.10000 0004 0639 9286Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Kasr El-eini St., Cairo, Egypt
| | - Omneya Mohamed Helmy
- grid.7776.10000 0004 0639 9286Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Kasr El-eini St., Cairo, Egypt
| |
Collapse
|
24
|
Luo J, Li L, Zhu Z, Chang B, Deng F, Wang D, Lu X, Zuo D, Chen Q, Zhou J. Fucoidan inhibits EGFR redistribution and potentiates sorafenib to overcome sorafenib-resistant hepatocellular carcinoma. Biomed Pharmacother 2022; 154:113602. [PMID: 36029544 DOI: 10.1016/j.biopha.2022.113602] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide. Although sorafenib is a standard first-line molecule-targeted drug against advanced HCC, the drug resistance development and adverse side effects usually limit its efficacy. This study investigated the effect of fucoidan on the sorafenib sensitivity of sorafenib-resistant human HCC cell line HepG2-SR established by long-time exposure of HepG2 to sorafenib. We demonstrated fucoidan combined with sorafenib synergistically promoted apoptosis and cell cycle arrest whereas inhibited cell migration in HepG2-SR cells. This combination treatment effectively suppressed the cellular epithelial growth factor receptor (EGFR) nuclear distribution and downstream gene transcription. Interestingly, fucoidan bound the cell surface EGFR, dampening EGFR translocation to lipid raft and further nuclear distribution, restoring the sorafenib sensitivity in HepG2-SR cells. Blocking fucoidan-EGFR interaction using EGFR antibody restrained the enhanced anti-tumor effects upon the combined administration. Besides, EGFR knockdown abolished the combination treatment-improved anti-tumor efficacy. This combination also suppressed in vivo xenograft tumor growth in nude mice. Our present study uncovered that fucoidan overcame sorafenib resistance in HCC via its interaction with cell membrane EGFR and further suppression of EGFR redistribution and downstream signaling in sorafenib-resistant cells. Overall, current results suggest that simultaneous treatment of fucoidan and sorafenib might serve as a potential therapeutic strategy against sorafenib-resistant HCC.
Collapse
Affiliation(s)
- Jialiang Luo
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, PR China; Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Lei Li
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, PR China; Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Zhengyumeng Zhu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, PR China; Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Bo Chang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Fan Deng
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, PR China; Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Di Wang
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Xiao Lu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Daming Zuo
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Qingyun Chen
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, PR China.
| | - Jia Zhou
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, PR China; Key Laboratory of Functional Proteomics of Guangdong Province, Guangzhou, Guangdong, PR China.
| |
Collapse
|
25
|
Vaghari-Tabari M, Hassanpour P, Sadeghsoltani F, Malakoti F, Alemi F, Qujeq D, Asemi Z, Yousefi B. CRISPR/Cas9 gene editing: a new approach for overcoming drug resistance in cancer. Cell Mol Biol Lett 2022; 27:49. [PMID: 35715750 PMCID: PMC9204876 DOI: 10.1186/s11658-022-00348-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 05/24/2022] [Indexed: 12/18/2022] Open
Abstract
The CRISPR/Cas9 system is an RNA-based adaptive immune system in bacteria and archaea. Various studies have shown that it is possible to target a wide range of human genes and treat some human diseases, including cancers, by the CRISPR/Cas9 system. In fact, CRISPR/Cas9 gene editing is one of the most efficient genome manipulation techniques. Studies have shown that CRISPR/Cas9 technology, in addition to having the potential to be used as a new therapeutic approach in the treatment of cancers, can also be used to enhance the effectiveness of existing treatments. Undoubtedly, the issue of drug resistance is one of the main obstacles in the treatment of cancers. Cancer cells resist anticancer drugs by a variety of mechanisms, such as enhancing anticancer drugs efflux, enhancing DNA repair, enhancing stemness, and attenuating apoptosis. Mutations in some proteins of different cellular signaling pathways are associated with these events and drug resistance. Recent studies have shown that the CRISPR/Cas9 technique can be used to target important genes involved in these mechanisms, thereby increasing the effectiveness of anticancer drugs. In this review article, studies related to the applications of this technique in overcoming drug resistance in cancer cells will be reviewed. In addition, we will give a brief overview of the limitations of the CRISP/Cas9 gene-editing technique.
Collapse
Affiliation(s)
- Mostafa Vaghari-Tabari
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Hassanpour
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Sadeghsoltani
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faezeh Malakoti
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Forough Alemi
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.
| | - Bahman Yousefi
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran. .,Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
26
|
O-GlcNAcylation regulates epidermal growth factor receptor intracellular trafficking and signaling. Proc Natl Acad Sci U S A 2022; 119:e2107453119. [PMID: 35239437 PMCID: PMC8915906 DOI: 10.1073/pnas.2107453119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceEpidermal growth factor receptor (EGFR) is one of the most important membrane receptors that transduce growth signals into cells to sustain cell growth, proliferation, and survival. EGFR signal termination is initiated by EGFR internalization, followed by trafficking through endosomes, and degradation in lysosomes. How this process is regulated is still poorly understood. Here, we show that hepatocyte growth factor regulated tyrosine kinase substrate (HGS), a key protein in the EGFR trafficking pathway, is dynamically modified by a single sugar N-acetylglucosamine. This modification inhibits EGFR trafficking from endosomes to lysosomes, leading to the accumulation of EGFR and prolonged signaling. This study provides an important insight into diseases with aberrant growth factor signaling, such as cancer, obesity, and diabetes.
Collapse
|
27
|
KAT6A is associated with sorafenib resistance and contributes to progression of hepatocellular carcinoma by targeting YAP. Biochem Biophys Res Commun 2021; 585:185-190. [PMID: 34808502 DOI: 10.1016/j.bbrc.2021.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 01/17/2023]
Abstract
Hepatocellular carcinoma (HCC) is a prevalent solid cancer worldwide and sorafenib is a common treatment. Nevertheless, sorafenib resistance is a severe clinical problem. In the present study, we identified that epigenetic regulator, KAT6A, was overexpressed in clinical HCC tissues and sorafenib-resistant HCC samples. The depletion of KAT6A repressed the cell viability and Edu-positive cell numbers of HCC cells. The IC50 value of sorafenib was increased in sorafenib-resistant HCC cells. In addition, the expression of KAT6A was induced in sorafenib-resistant HCC cells. The depletion of KAT6A suppressed the IC50 of sorafenib. Mechanically, YAP was decreased by the depletion of KAT6A. KAT6A was able to enrich in the promoter of YAP. The silencing of KAT6A reduced the enrichment of histone H3 lysine 23 acetylation (H3K23ac) and RNA polymerase II (RNA pol II) on the promoter of YAP in sorafenib-resistant HCC cells. KAT6A inhibitor WM-1119 repressed the cell proliferation of sorafenib-resistant HCC cells, while overexpression of KAT6A or YAP could reverse the effect in the cells. Meanwhile, the treatment of sorafenib inhibited the viability of sorafenib-resistant HCC cells, while the co-treatment of WM-1119 could improve the effect of sorafenib. Collectively, KAT6A was associated with sorafenib resistance and contributes to progression of HCC by targeting YAP. Targeting KAT6A may be served as a promising therapeutic approach for HCC.
Collapse
|
28
|
Yang S, Yang S, Zhang H, Hua H, Kong Q, Wang J, Jiang Y. Targeting Na + /K + -ATPase by berbamine and ouabain synergizes with sorafenib to inhibit hepatocellular carcinoma. Br J Pharmacol 2021; 178:4389-4407. [PMID: 34233013 DOI: 10.1111/bph.15616] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE The multikinase inhibitor sorafenib is a first-line drug for advanced hepatocellular carcinoma. The response to sorafenib varies among hepatocellular carcinoma patients and many of the responders suffer from reduced sensitivity after long-term treatment. This study aims to explore a novel strategy to potentiate or maximize the anti-hepatocellular carcinoma effects of sorafenib. EXPERIMENTAL APPROACH We used hepatocellular carcinoma cell lines, western blotting, various antagonists, siRNA and tumour xenografts mouse model to determine the anti- hepatocellular carcinoma effects of sorafenib in combination with berbamine or other Na+ /K+ -ATPase ligands. KEY RESULTS Berbamine and the cardiotonic steroid, ouabain, synergize with sorafenib to inhibit hepatocellular carcinoma cells growth. Mechanistically, berbamine induces Src phosphorylation in Na+ /K+ -ATPase-dependent manner, leading to the activation of p38MAPK and EGFR-ERK pathways. The Na+ /K+ -ATPase ligand ouabain also induces Src, EGFR, type I insulin-like growth factor receptor, ERK1/2 and p38MAPK phosphorylation in hepatocellular carcinoma cells. Treatment of hepatocellular carcinoma cells with Src or EGFR inhibitor inhibits the induction of ERK1/2 phosphorylation by berbamine. Moreover, sorafenib inhibits the induction of Src, p38MAPK, EGFR and ERK1/2 phosphorylation by berbamine and ouabain. Importantly, combination of sorafenib with berbamine or ouabain synergistically inhibits both sorafenib-naïve and sorafenib-resistant hepatocellular carcinoma cells growth. Co-treatment of hepatocellular carcinoma cells with berbamine and sorafenib significantly induces cell death and significantly inhibits hepatocellular carcinoma xenografts growth in vivo. CONCLUSION AND IMPLICATIONS Berbamine or other Na+ /K+ -ATPase ligands have a potential for improving sorafenib responsiveness in hepatocellular carcinoma. Targeting Na+ /K+ -ATPase represents a novel strategy to potentiate the anti- hepatocellular carcinoma effects of sorafenib.
Collapse
Affiliation(s)
- Songpeng Yang
- Laboratory of Oncogene, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Shu Yang
- Laboratory of Oncogene, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Hongying Zhang
- Laboratory of Oncogene, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Hui Hua
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu, China
| | - Qingbin Kong
- Laboratory of Oncogene, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jiao Wang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yangfu Jiang
- Laboratory of Oncogene, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
29
|
Zeng Z, Lu Q, Liu Y, Zhao J, Zhang Q, Hu L, Shi Z, Tu Y, Xiao Z, Xu Q, Huang D. Effect of the Hypoxia Inducible Factor on Sorafenib Resistance of Hepatocellular Carcinoma. Front Oncol 2021; 11:641522. [PMID: 34307125 PMCID: PMC8292964 DOI: 10.3389/fonc.2021.641522] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/16/2021] [Indexed: 12/11/2022] Open
Abstract
Sorafenib a multi-target tyrosine kinase inhibitor, is the first-line drug for treating advanced hepatocellular carcinoma (HCC). Mechanistically, it suppresses tumor angiogenesis, cell proliferation and promotes apoptosis. Although sorafenib effectively prolongs median survival rates of patients with advanced HCC, its efficacy is limited by drug resistance in some patients. In HCC, this resistance is attributed to multiple complex mechanisms. Previous clinical data has shown that HIFs expression is a predictor of poor prognosis, with further evidence demonstrating that a combination of sorafenib and HIFs-targeted therapy or HIFs inhibitors can overcome HCC sorafenib resistance. Here, we describe the molecular mechanism underlying sorafenib resistance in HCC patients, and highlight the impact of hypoxia microenvironment on sorafenib resistance.
Collapse
Affiliation(s)
- Zhi Zeng
- The Medical College of Qingdao University, Qingdao, China.,Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, China
| | - Qiliang Lu
- The Medical College of Qingdao University, Qingdao, China.,Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, China
| | - Yang Liu
- The Medical College of Qingdao University, Qingdao, China.,Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, China
| | - Junjun Zhao
- Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, China.,Graduate Department, Bengbu Medical College, Bengbu, China
| | - Qian Zhang
- The Medical College of Qingdao University, Qingdao, China
| | - Linjun Hu
- The Medical College of Qingdao University, Qingdao, China.,Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, China
| | - Zhan Shi
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yifeng Tu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Zunqiang Xiao
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiuran Xu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, China
| | - Dongsheng Huang
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, China
| |
Collapse
|
30
|
Harati R, Vandamme M, Blanchet B, Bardin C, Praz F, Hamoudi RA, Desbois-Mouthon C. Drug-Drug Interaction between Metformin and Sorafenib Alters Antitumor Effect in Hepatocellular Carcinoma Cells. Mol Pharmacol 2021; 100:32-45. [PMID: 33990407 DOI: 10.1124/molpharm.120.000223] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/09/2021] [Indexed: 01/21/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and is one of the leading causes of cancer-related deaths worldwide. The multitarget inhibitor sorafenib is a first-line treatment of patients with advanced unresectable HCC. Recent clinical studies have evidenced that patients treated with sorafenib together with the antidiabetic drug metformin have a survival disadvantage compared with patients receiving sorafenib only. Here, we examined whether a clinically relevant dose of metformin (50 mg/kg per day) could influence the antitumoral effects of sorafenib (15 mg/kg per day) in a subcutaneous xenograft model of human HCC growth using two different sequences of administration, i.e., concomitant versus sequential dosing regimens. We observed that the administration of metformin 6 hours prior to sorafenib was significantly less effective in inhibiting tumor growth (15.4% tumor growth inhibition) than concomitant administration of the two drugs (59.5% tumor growth inhibition). In vitro experiments confirmed that pretreatment of different human HCC cell lines with metformin reduced the effects of sorafenib on cell viability, proliferation, and signaling. Transcriptomic analysis confirmed significant differences between xenografted tumors obtained under the concomitant and the sequential dosing regimens. Taken together, these observations call into question the benefit of parallel use of metformin and sorafenib in patients with advanced HCC and diabetes, as the interaction between the two drugs could ultimately compromise patient survival. SIGNIFICANCE STATEMENT: When drugs are administered sequentially, metformin alters the antitumor effect of sorafenib, the reference treatment for advanced hepatocellular carcinoma, in a preclinical murine xenograft model of liver cancer progression as well as in hepatic cancer cell lines. Defective activation of the AMP-activated protein kinase pathway as well as major transcriptomic changes are associated with the loss of the antitumor effect. These results echo recent clinical work reporting a poorer prognosis for patients with liver cancer who were cotreated with metformin and sorafenib.
Collapse
Affiliation(s)
- Rania Harati
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy (R.H.), and Department of Clinical Sciences, College of Medicine (R.A.H), University of Sharjah, Sharjah, United Arab Emirates; Centre de Recherche Saint-Antoine (R.H., M.V., F.P., C.D.-M.) and Centre de Recherche des Cordeliers (C.D.-M.), Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Paris, Paris, France; Département de Pharmacocinétique et Pharmacochimie, Hôpital Cochin, AP-HP, CARPEM, Paris, France (B.B., C.B.); UMR8038 CNRS, U1268 INSERM, Faculté de Pharmacie, Université de Paris, PRES Sorbonne Paris Cité, Paris, France (B.B); Centre National de la Recherche Scientifique, Paris, France (F.P.); and Division of Surgery and Interventional Science, UCL, London, United Kingdom (R.A.H.)
| | - Marc Vandamme
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy (R.H.), and Department of Clinical Sciences, College of Medicine (R.A.H), University of Sharjah, Sharjah, United Arab Emirates; Centre de Recherche Saint-Antoine (R.H., M.V., F.P., C.D.-M.) and Centre de Recherche des Cordeliers (C.D.-M.), Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Paris, Paris, France; Département de Pharmacocinétique et Pharmacochimie, Hôpital Cochin, AP-HP, CARPEM, Paris, France (B.B., C.B.); UMR8038 CNRS, U1268 INSERM, Faculté de Pharmacie, Université de Paris, PRES Sorbonne Paris Cité, Paris, France (B.B); Centre National de la Recherche Scientifique, Paris, France (F.P.); and Division of Surgery and Interventional Science, UCL, London, United Kingdom (R.A.H.)
| | - Benoit Blanchet
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy (R.H.), and Department of Clinical Sciences, College of Medicine (R.A.H), University of Sharjah, Sharjah, United Arab Emirates; Centre de Recherche Saint-Antoine (R.H., M.V., F.P., C.D.-M.) and Centre de Recherche des Cordeliers (C.D.-M.), Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Paris, Paris, France; Département de Pharmacocinétique et Pharmacochimie, Hôpital Cochin, AP-HP, CARPEM, Paris, France (B.B., C.B.); UMR8038 CNRS, U1268 INSERM, Faculté de Pharmacie, Université de Paris, PRES Sorbonne Paris Cité, Paris, France (B.B); Centre National de la Recherche Scientifique, Paris, France (F.P.); and Division of Surgery and Interventional Science, UCL, London, United Kingdom (R.A.H.)
| | - Christophe Bardin
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy (R.H.), and Department of Clinical Sciences, College of Medicine (R.A.H), University of Sharjah, Sharjah, United Arab Emirates; Centre de Recherche Saint-Antoine (R.H., M.V., F.P., C.D.-M.) and Centre de Recherche des Cordeliers (C.D.-M.), Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Paris, Paris, France; Département de Pharmacocinétique et Pharmacochimie, Hôpital Cochin, AP-HP, CARPEM, Paris, France (B.B., C.B.); UMR8038 CNRS, U1268 INSERM, Faculté de Pharmacie, Université de Paris, PRES Sorbonne Paris Cité, Paris, France (B.B); Centre National de la Recherche Scientifique, Paris, France (F.P.); and Division of Surgery and Interventional Science, UCL, London, United Kingdom (R.A.H.)
| | - Françoise Praz
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy (R.H.), and Department of Clinical Sciences, College of Medicine (R.A.H), University of Sharjah, Sharjah, United Arab Emirates; Centre de Recherche Saint-Antoine (R.H., M.V., F.P., C.D.-M.) and Centre de Recherche des Cordeliers (C.D.-M.), Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Paris, Paris, France; Département de Pharmacocinétique et Pharmacochimie, Hôpital Cochin, AP-HP, CARPEM, Paris, France (B.B., C.B.); UMR8038 CNRS, U1268 INSERM, Faculté de Pharmacie, Université de Paris, PRES Sorbonne Paris Cité, Paris, France (B.B); Centre National de la Recherche Scientifique, Paris, France (F.P.); and Division of Surgery and Interventional Science, UCL, London, United Kingdom (R.A.H.)
| | - Rifat Akram Hamoudi
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy (R.H.), and Department of Clinical Sciences, College of Medicine (R.A.H), University of Sharjah, Sharjah, United Arab Emirates; Centre de Recherche Saint-Antoine (R.H., M.V., F.P., C.D.-M.) and Centre de Recherche des Cordeliers (C.D.-M.), Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Paris, Paris, France; Département de Pharmacocinétique et Pharmacochimie, Hôpital Cochin, AP-HP, CARPEM, Paris, France (B.B., C.B.); UMR8038 CNRS, U1268 INSERM, Faculté de Pharmacie, Université de Paris, PRES Sorbonne Paris Cité, Paris, France (B.B); Centre National de la Recherche Scientifique, Paris, France (F.P.); and Division of Surgery and Interventional Science, UCL, London, United Kingdom (R.A.H.)
| | - Christèle Desbois-Mouthon
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy (R.H.), and Department of Clinical Sciences, College of Medicine (R.A.H), University of Sharjah, Sharjah, United Arab Emirates; Centre de Recherche Saint-Antoine (R.H., M.V., F.P., C.D.-M.) and Centre de Recherche des Cordeliers (C.D.-M.), Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Paris, Paris, France; Département de Pharmacocinétique et Pharmacochimie, Hôpital Cochin, AP-HP, CARPEM, Paris, France (B.B., C.B.); UMR8038 CNRS, U1268 INSERM, Faculté de Pharmacie, Université de Paris, PRES Sorbonne Paris Cité, Paris, France (B.B); Centre National de la Recherche Scientifique, Paris, France (F.P.); and Division of Surgery and Interventional Science, UCL, London, United Kingdom (R.A.H.)
| |
Collapse
|
31
|
Shrestha R, Bridle KR, Cao L, Crawford DHG, Jayachandran A. Dual Targeting of Sorafenib-Resistant HCC-Derived Cancer Stem Cells. ACTA ACUST UNITED AC 2021; 28:2150-2172. [PMID: 34208001 PMCID: PMC8293268 DOI: 10.3390/curroncol28030200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 12/14/2022]
Abstract
Sorafenib, an oral multi-tyrosine kinase inhibitor, has been the first-line therapy for the treatment of patients with advanced HCC, providing a survival benefit of only three months in approximately 30% of patients. Cancer stem cells (CSCs) are a rare tumour subpopulation with self-renewal and differentiation capabilities, and have been implicated in tumour growth, recurrence and drug resistance. The process of epithelial-to-mesenchymal transition (EMT) contributes to the generation and maintenance of the CSC population, resulting in immune evasion and therapy resistance in several cancers, including HCC. The aim of this study is to target the chemoresistant CSC population in HCC by assessing the effectiveness of a combination treatment approach with Sorafenib, an EMT inhibitor and an immune checkpoint inhibitor (ICI). A stem-cell-conditioned serum-free medium was utilised to enrich the CSC population from the human HCC cell lines Hep3B, PLC/PRF/5 and HepG2. The anchorage independent spheres were characterised for CSC features. The human HCC-derived spheres were assessed for EMT status and expression of immune checkpoint molecules. The effect of combination treatment with SB431542, an EMT inhibitor, and siRNA-mediated knockdown of programmed cell death protein ligand-1 (PD-L1) or CD73 along with Sorafenib on human HCC-derived CSCs was examined with cell viability and apoptosis assays. The three-dimensional spheres enriched from human HCC cell lines demonstrated CSC-like features. The human HCC-derived CSCs also exhibited the EMT phenotype along with the upregulation of immune checkpoint molecules. The combined treatment with SB431542 and siRNA-mediated PD-L1 or CD73 knockdown effectively enhanced the cytotoxicity of Sorafenib against the CSC population compared to Sorafenib alone, as evidenced by the reduced size and proliferation of spheres. Furthermore, the combination treatment of Sorafenib with SB431542 and PD-L1 or CD73 siRNA resulted in an increased proportion of an apoptotic population, as evidenced by flow cytometry analysis. In conclusion, the combined targeting of EMT and immune checkpoint molecules with Sorafenib can effectively target the CSC tumour subpopulation.
Collapse
Affiliation(s)
- Ritu Shrestha
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4120, Australia; (R.S.); (K.R.B.); (L.C.); (D.H.G.C.)
- Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD 4120, Australia
| | - Kim R. Bridle
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4120, Australia; (R.S.); (K.R.B.); (L.C.); (D.H.G.C.)
- Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD 4120, Australia
| | - Lu Cao
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4120, Australia; (R.S.); (K.R.B.); (L.C.); (D.H.G.C.)
- Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD 4120, Australia
| | - Darrell H. G. Crawford
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4120, Australia; (R.S.); (K.R.B.); (L.C.); (D.H.G.C.)
- Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD 4120, Australia
| | - Aparna Jayachandran
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4120, Australia; (R.S.); (K.R.B.); (L.C.); (D.H.G.C.)
- Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD 4120, Australia
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3350, Australia
- Correspondence: ; Tel.: +61-4-2424-8058
| |
Collapse
|
32
|
Gallage S, García-Beccaria M, Szydlowska M, Rahbari M, Mohr R, Tacke F, Heikenwalder M. The therapeutic landscape of hepatocellular carcinoma. MED 2021; 2:505-552. [PMID: 35590232 DOI: 10.1016/j.medj.2021.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/23/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023]
|
33
|
LYTACs that engage the asialoglycoprotein receptor for targeted protein degradation. Nat Chem Biol 2021; 17:937-946. [PMID: 33767387 PMCID: PMC8387313 DOI: 10.1038/s41589-021-00770-1] [Citation(s) in RCA: 298] [Impact Index Per Article: 74.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 02/10/2021] [Indexed: 02/06/2023]
Abstract
Selective protein degradation platforms have afforded new development opportunities for therapeutics and tools for biological inquiry. The first lysosome targeting chimeras (LYTACs) targeted extracellular and membrane proteins for degradation by bridging a target protein to the cation-independent mannose-6-phosphate receptor (CI-M6PR). Here, we developed LYTACs that engage the asialoglycoprotein receptor (ASGPR), a liver-specific lysosomal targeting receptor, to degrade extracellular proteins in a cell type-specific manner. We conjugated binders to a tri-GalNAc motif that engages ASGPR to drive downregulation of proteins. Degradation of EGFR by GalNAc-LYTAC attenuated EGFR signaling compared to inhibition with an antibody. Furthermore, we demonstrated that a LYTAC comprising a 3.4 kDa peptide binder linked to a tri-GalNAc ligand degrades integrins and reduces cancer cell proliferation. Degradation with a single tri-GalNAc ligand prompted site-specific conjugation on antibody scaffolds, which improved the pharmacokinetic profile of GalNAc-LYTACs in vivo. GalNAc-LYTACs thus represent an avenue for cell-type restricted protein degradation.
Collapse
|
34
|
Gediya P, Parikh PK, Vyas VK, Ghate MD. Histone deacetylase 2: A potential therapeutic target for cancer and neurodegenerative disorders. Eur J Med Chem 2021; 216:113332. [PMID: 33714914 DOI: 10.1016/j.ejmech.2021.113332] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/20/2021] [Accepted: 02/21/2021] [Indexed: 10/22/2022]
Abstract
Histone deacetylases (HDACs) have been implicated in a number of diseases including cancer, cardiovascular disorders, diabetes mellitus, neurodegenerative disorders and inflammation. For the treatment of epigenetically altered diseases such as cancer, HDAC inhibitors have made a significant progress in terms of development of isoform selective inhibitiors. Isoform specific HDAC inhibitors have less adverse events and better safety profile. A HDAC isoform i.e., HDAC2 demonstrated significant role in the development of variety of diseases, mainly involved in the cancer and neurodegenerative disorders. Discovery and development of selective HDAC2 inhibitors have a great potential for the treatment of target diseases. In the present compilation, we have reviewed the role of HDAC2 in progression of cancer and neurodegenerative disorders, and information on the drug development opportunities for selective HDAC2 inhibition.
Collapse
Affiliation(s)
- Piyush Gediya
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujarat, India
| | - Palak K Parikh
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujarat, India; Department of Pharmaceutical Chemistry, L. M. College of Pharmacy, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Vivek K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujarat, India
| | - Manjunath D Ghate
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujarat, India.
| |
Collapse
|
35
|
Stabilization of snail maintains the sorafenib resistance of hepatocellular carcinoma cells. Arch Biochem Biophys 2021; 699:108754. [PMID: 33450239 DOI: 10.1016/j.abb.2021.108754] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/27/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022]
Abstract
Drug resistance is one of the major challenges for treatment of hepatocellular carcinoma (HCC) with sorafenib. Our present study found that sorafenib resistant (SR) HCC cells showed epithelial-mesenchymal transition (EMT) characteristics with the downregulation of epithelial marker and upregulation of mesenchymal makers. The expression of Snail, a core factor of EMT, was increased in HCC/SR cells, while knockdown of Snail can restore sorafenib sensitivity and EMT potential of HCC/SR cells. Further, the upregulation of protein stability was responsible for the upregulation of Snail in HCC/SR cells. ATM and CSN2, which can stabilize Snail protein, were increased in HCC/SR cells. Knockdown of ATM and CSN2 can suppress the expression of Snail and increase sorafenib sensitivity of HCC/SR cells. It indicated that targeted inhibition of Snail might be helpful to overcome sorafenib resistance of HCC patients.
Collapse
|
36
|
Li W, Liu K, Chen Y, Zhu M, Li M. Role of Alpha-Fetoprotein in Hepatocellular Carcinoma Drug Resistance. Curr Med Chem 2021; 28:1126-1142. [PMID: 32729413 DOI: 10.2174/0929867327999200729151247] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/04/2020] [Accepted: 07/11/2020] [Indexed: 01/30/2023]
Abstract
Hepatocellular carcinoma (HCC) is a major type of primary liver cancer and a major cause of cancer-related deaths worldwide because of its high recurrence rate and poor prognosis. Surgical resection is currently the major treatment measure for patients in the early and middle stages of the disease. Because due to late diagnosis, most patients already miss the opportunity for surgery upon disease confirmation, conservative chemotherapy (drug treatment) remains an important method of comprehensive treatment for patients with middle- and late-stage liver cancer. However, multidrug resistance (MDR) in patients with HCC severely reduces the treatment effect and is an important obstacle to chemotherapeutic success. Alpha-fetoprotein (AFP) is an important biomarker for the diagnosis of HCC. The serum expression levels of AFP in many patients with HCC are increased, and a persistently increased AFP level is a risk factor for HCC progression. Many studies have indicated that AFP functions as an immune suppressor, and AFP can promote malignant transformation during HCC development and might be involved in the process of MDR in patients with liver cancer. This review describes drug resistance mechanisms during HCC drug treatment and reviews the relationship between the mechanism of AFP in HCC development and progression and HCC drug resistance.
Collapse
Affiliation(s)
- Wei Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, China
| | - Kun Liu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, China
| | - Yi Chen
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, China
| | - Mingyue Zhu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, China
| | - Mengsen Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, China
| |
Collapse
|
37
|
Y-Box Binding Protein-1 Promotes Epithelial-Mesenchymal Transition in Sorafenib-Resistant Hepatocellular Carcinoma Cells. Int J Mol Sci 2020; 22:ijms22010224. [PMID: 33379356 PMCID: PMC7795419 DOI: 10.3390/ijms22010224] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma is one of the most common cancer types worldwide. In cases of advanced-stage disease, sorafenib is considered the treatment of choice. However, resistance to sorafenib remains a major obstacle for effective clinical application. Based on integrated phosphoproteomic and The Cancer Genome Atlas (TCGA) data, we identified a transcription factor, Y-box binding protein-1 (YB-1), with elevated phosphorylation of Ser102 in sorafenib-resistant HuH-7R cells. Phosphoinositide-3-kinase (PI3K) and protein kinase B (AKT) were activated by sorafenib, which, in turn, increased the phosphorylation level of YB-1. In functional analyses, knockdown of YB-1 led to decreased cell migration and invasion in vitro. At the molecular level, inhibition of YB-1 induced suppression of zinc-finger protein SNAI1 (Snail), twist-related protein 1 (Twist1), zinc-finger E-box-binding homeobox 1 (Zeb1), matrix metalloproteinase-2 (MMP-2) and vimentin levels, implying a role of YB-1 in the epithelial-mesenchymal transition (EMT) process in HuH-7R cells. Additionally, YB-1 contributes to morphological alterations resulting from F-actin rearrangement through Cdc42 activation. Mutation analyses revealed that phosphorylation at S102 affects the migratory and invasive potential of HuH-7R cells. Our collective findings suggest that sorafenib promotes YB-1 phosphorylation through effect from the EGFR/PI3K/AKT pathway, leading to significant enhancement of hepatocellular carcinoma (HCC) cell metastasis. Elucidation of the specific mechanisms of action of YB-1 may aid in the development of effective strategies to suppress metastasis and overcome resistance.
Collapse
|
38
|
Molecular Mechanisms to Target Cellular Senescence in Hepatocellular Carcinoma. Cells 2020; 9:cells9122540. [PMID: 33255630 PMCID: PMC7761055 DOI: 10.3390/cells9122540] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) has emerged as a major cause of cancer-related death and is the most common type of liver cancer. Due to the current paucity of drugs for HCC therapy there is a pressing need to develop new therapeutic concepts. In recent years, the role of Serum Response Factor (SRF) and its coactivators, Myocardin-Related Transcription Factors A and B (MRTF-A and -B), in HCC formation and progression has received considerable attention. Targeting MRTFs results in HCC growth arrest provoked by oncogene-induced senescence. The induction of senescence acts as a tumor-suppressive mechanism and therefore gains consideration for pharmacological interventions in cancer therapy. In this article, we describe the key features and the functional role of senescence in light of the development of novel drug targets for HCC therapy with a focus on MRTFs.
Collapse
|
39
|
Dong ZR, Sun D, Yang YF, Zhou W, Wu R, Wang XW, Shi K, Yan YC, Yan LJ, Yao CY, Chen ZQ, Zhi XT, Li T. TMPRSS4 Drives Angiogenesis in Hepatocellular Carcinoma by Promoting HB-EGF Expression and Proteolytic Cleavage. Hepatology 2020; 72:923-939. [PMID: 31867749 DOI: 10.1002/hep.31076] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 12/01/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Heparin-binding epidermal growth factor (HB-EGF), a member of the epidermal growth factor family, plays a pivotal role in the progression of several malignancies, but its role and regulatory mechanisms in hepatocellular carcinoma (HCC) remain obscure. Here, we report that transmembrane protease serine 4 (TMPRSS4) significantly enhanced the expression and proteolytic cleavage of HB-EGF to promote angiogenesis and HCC progression. APPROACH AND RESULTS A mechanistic analysis revealed that TMPRSS4 not only increased the transcriptional and translational levels of HB-EGF precursor, but also promoted its proteolytic cleavage by enhancing matrix metallopeptidase 9 expression through the EGF receptor/Akt/mammalian target of rapamycin/ hypoxia-inducible factor 1 α signaling pathway. In addition, HB-EGF promoted HCC proliferation and invasion by the EGF receptor/phosphoinositide 3-kinase/Akt signaling pathway. The level of HB-EGF in clinical samples of serum or HCC tissues from patients with HCC was positively correlated with the expression of TMPRSS4 and the microvessel density, and was identified as a prognostic factor for overall survival and recurrence-free survival, which suggests that HB-EGF can serve as a potential therapeutic target for HCC. More importantly, we provide a demonstration that treatment with the HB-EGF inhibitor cross-reacting material 197 alone or in combination with sorafenib can significantly suppress angiogenesis and HCC progression. CONCLUSIONS HB-EGF can be regulated by TMPRSS4 to promote HCC proliferation, invasion, and angiogenesis, and the combination of the HB-EGF inhibitor cross-reacting material 197 with sorafenib might be used for individualized treatment of HCC.
Collapse
Affiliation(s)
- Zhao-Ru Dong
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Dong Sun
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China.,The First Central Clinical College, Tianjin Medical University, Tianjin, China
| | - Ya-Fei Yang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Wei Zhou
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Rui Wu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Xiao-Wei Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China
| | - Kai Shi
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Yu-Chuan Yan
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Lun-Jie Yan
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Cheng-Yu Yao
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Zhi-Qiang Chen
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Xu-Ting Zhi
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Tao Li
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
40
|
Khan MGM, Ghosh A, Variya B, Santharam MA, Ihsan AU, Ramanathan S, Ilangumaran S. Prognostic significance of SOCS1 and SOCS3 tumor suppressors and oncogenic signaling pathway genes in hepatocellular carcinoma. BMC Cancer 2020; 20:774. [PMID: 32807134 PMCID: PMC7433106 DOI: 10.1186/s12885-020-07285-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/10/2020] [Indexed: 12/14/2022] Open
Abstract
Background SOCS1 and SOCS3 genes are considered tumor suppressors in hepatocellular carcinoma (HCC) due to frequent epigenetic repression. Consistent with this notion, mice lacking SOCS1 or SOCS3 show increased susceptibility to diethylnitrosamine (DEN)-induced HCC. As SOCS1 and SOCS3 are important regulators of cytokine and growth factor signaling, their loss could activate oncogenic signaling pathways. Therefore, we examined the correlation between SOCS1/SOCS3 and key oncogenic signaling pathway genes as well as their prognostic significance in HCC. Methods The Cancer Genome Atlas dataset on HCC comprising clinical and transcriptomic data was retrieved from the cBioportal platform. The correlation between the expression of SOCS1 or SOCS3 and oncogenic pathway genes was evaluated using the GraphPad PRISM software. The inversely correlated genes were assessed for their impact on patient survival using the UALCAN platform and their expression quantified in the regenerating livers and DEN-induced HCC tissues of mice lacking Socs1 or Socs3. Finally, the Cox proportional hazards model was used to evaluate the predictive potential of SOCS1 and SOCS3 when combined with the genes of select oncogenic signaling pathways. Results SOCS1 expression was comparable between HCC and adjacent normal tissues, yet higher SOCS1 expression predicted favorable prognosis. In contrast, SOCS3 expression was significantly low in HCC, yet it lacked predictive potential. The correlation between SOCS1 or SOCS3 expression and key genes of the cell cycle, receptor tyrosine kinase, growth factor and MAPK signaling pathways were mostly positive than negative. Among the negatively correlated genes, only a few showed elevated expression in HCC and predicted survival. Many PI3K pathway genes showed mutual exclusivity with SOCS1 and/or SOCS3 and displayed independent predictive ability. Among genes that negatively correlated with SOCS1 and/or SOCS3, only CDK2 and AURKA showed corresponding modulations in the regenerating livers and DEN-induced tumors of hepatocyte-specific Socs1 or Socs3 deficient mice and predicted patient survival. The Cox proportional hazards model identified the combinations of SOCS1 or SOCS3 with CXCL8 and DAB2 as highly predictive. Conclusions SOCS1 expression in HCC has an independent prognostic value whereas SOCS3 expression does not. The predictive potential of SOCS1 expression is increased when combined with other oncogenic signaling pathway genes.
Collapse
Affiliation(s)
- Md Gulam Musawwir Khan
- Immunology graduate program, Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001 North 12th avenue, Sherbrooke, QC, J1H 5N4, Canada
| | - Amit Ghosh
- Cell biology graduate program, Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001 North 12th avenue, Sherbrooke, QC, J1H 5N4, Canada
| | - Bhavesh Variya
- Cell biology graduate program, Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001 North 12th avenue, Sherbrooke, QC, J1H 5N4, Canada
| | - Madanraj Appiya Santharam
- Cell biology graduate program, Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001 North 12th avenue, Sherbrooke, QC, J1H 5N4, Canada
| | - Awais Ullah Ihsan
- Cell biology graduate program, Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001 North 12th avenue, Sherbrooke, QC, J1H 5N4, Canada
| | - Sheela Ramanathan
- Immunology graduate program, Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001 North 12th avenue, Sherbrooke, QC, J1H 5N4, Canada.,Cell biology graduate program, Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001 North 12th avenue, Sherbrooke, QC, J1H 5N4, Canada.,CRCHUS, Sherbrooke, Québec, J1H 5N4, Canada
| | - Subburaj Ilangumaran
- Immunology graduate program, Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001 North 12th avenue, Sherbrooke, QC, J1H 5N4, Canada. .,Cell biology graduate program, Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001 North 12th avenue, Sherbrooke, QC, J1H 5N4, Canada. .,CRCHUS, Sherbrooke, Québec, J1H 5N4, Canada.
| |
Collapse
|
41
|
Wang P, Jiang Z, Liu X, Yu K, Wang C, Li H, Zhong L. PI16 attenuates response to sorafenib and represents a predictive biomarker in hepatocellular carcinoma. Cancer Med 2020; 9:6972-6983. [PMID: 32779397 PMCID: PMC7541153 DOI: 10.1002/cam4.3331] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/05/2020] [Accepted: 06/25/2020] [Indexed: 01/07/2023] Open
Abstract
Sorafenib has become the only FDA‐approved first‐line therapy for advanced hepatocellular carcinoma (HCC) for more than 10 years, but there is still no validated predictive or prognostic marker. Peptidase inhibitor 16 (PI16) is a functionally unknown gene in cancer research. This study aimed to determine the exact function of PI16 in HCC and whether it can represent as a biomarker for sorafenib response. We found that PI16 was over expressed in HCC tissues vs paired normal tissues. PI16 knockdown sensitize HCC cells to sorafenib treatment both in vitro and in vivo, whereas ectopic PI16 expression produced the opposite effect. Mechanistically, PI16 could suppress p38 MAPK/caspase‐dependent apoptosis in this process, and p38 MAPK inhibitor reversed the sorafenib sensitive phenotype caused by PI16 inhibition. Clinically, immunohistochemistry was used to detect PI16 levels in resected patients with HCC prior to sorafenib treatment. We showed that high PI16 levels represented an independent risk factor for disease progression in patients treated with sorafenib. Patients with low PI16 showed significantly better progression free survival and overall survival after sorafenib therapy. In conclusion, PI16 attenuates response to sorafenib treatment in HCC, and may be a helpful prognostic biomarker of sorafenib treatment.
Collapse
Affiliation(s)
- Pusen Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhongyi Jiang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueni Liu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kanru Yu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunguang Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Li
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Zhong
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
42
|
Hong CS, Sun EG, Choi JN, Kim DH, Kim JH, Ryu KH, Shim HJ, Hwang JE, Bae WK, Kim HR, Kim KK, Jung C, Chung IJ, Cho SH. Fibroblast growth factor receptor 4 increases epidermal growth factor receptor (EGFR) signaling by inducing amphiregulin expression and attenuates response to EGFR inhibitors in colon cancer. Cancer Sci 2020; 111:3268-3278. [PMID: 32533590 PMCID: PMC7469799 DOI: 10.1111/cas.14526] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/03/2020] [Accepted: 06/06/2020] [Indexed: 02/06/2023] Open
Abstract
Fibroblast growth factor receptor 4 (FGFR4) is known to induce cancer cell proliferation, invasion, and antiapoptosis through activation of RAS/RAF/ERK and PI3K/AKT pathways, which are also known as major molecular bases of colon cancer carcinogenesis related with epidermal growth factor receptor (EGFR) signaling. However, the interaction between FGFR4 and EGFR signaling in regard to colon cancer progression is unclear. Here, we investigated a potential cross‐talk between FGFR4 and EGFR, and the effect of anti‐EGFR therapy in colon cancer treatment. To explore the biological roles of FGFR4 in cancer progression, RNA sequencing was carried out using FGFR4 transfected colon cell lines. Gene ontology data showed the upregulation of genes related to EGFR signaling, and we identified that FGFR4 overexpression secretes EGFR ligands such as amphiregulin (AREG) with consequent activation of EGFR and ErbB3. This result was also shown in in vivo study and the cooperative interaction between EGFR and FGFR4 promoted tumor growth. In addition, FGFR4 overexpression reduced cetuximab‐induced cytotoxicity and the combination of FGFR4 inhibitor (BLU9931) and cetuximab showed profound antitumor effect compared to cetuximab alone. Clinically, we found the positive correlation between FGFR4 and AREG expression in tumor tissue, but not in normal tissue, from colon cancer patients and these expressions were significantly correlated with poor overall survival in patients treated with cetuximab. Therefore, our results provide the novel mechanism of FGFR4 in connection with EGFR activation and the combination of FGFR4 inhibitor and cetuximab could be a promising therapeutic option to achieve the optimal response to anti‐EGFR therapy in colon cancer.
Collapse
Affiliation(s)
- Chang-Soo Hong
- Division of Hematology-Oncology, Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea
| | - Eun-Gene Sun
- Division of Hematology-Oncology, Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea
| | - Ji-Na Choi
- Division of Hematology-Oncology, Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea
| | - Dae-Hwan Kim
- Division of Hematology-Oncology, Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea
| | - Jo-Heon Kim
- Department of Pathology, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Kyung-Hyun Ryu
- Department of Biological Science, Sookmyung Women's University, Seoul, Korea
| | - Hyun-Jeong Shim
- Division of Hematology-Oncology, Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea
| | - Jun-Eul Hwang
- Division of Hematology-Oncology, Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea
| | - Woo-Kyun Bae
- Division of Hematology-Oncology, Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea.,Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun, Korea
| | - Hyeong-Rok Kim
- Department of Surgery, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Kyung Keun Kim
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Korea
| | - Chaeyong Jung
- Department of Anatomy, Chonnam National University Medical School, Hwasun, Korea
| | - Ik-Joo Chung
- Division of Hematology-Oncology, Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea.,Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun, Korea
| | - Sang-Hee Cho
- Division of Hematology-Oncology, Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea.,Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun, Korea
| |
Collapse
|
43
|
Marin JJ, Macias RI, Monte MJ, Romero MR, Asensio M, Sanchez-Martin A, Cives-Losada C, Temprano AG, Espinosa-Escudero R, Reviejo M, Bohorquez LH, Briz O. Molecular Bases of Drug Resistance in Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12061663. [PMID: 32585893 PMCID: PMC7352164 DOI: 10.3390/cancers12061663] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 12/11/2022] Open
Abstract
The poor outcome of patients with non-surgically removable advanced hepatocellular carcinoma (HCC), the most frequent type of primary liver cancer, is mainly due to the high refractoriness of this aggressive tumor to classical chemotherapy. Novel pharmacological approaches based on the use of inhibitors of tyrosine kinases (TKIs), mainly sorafenib and regorafenib, have provided only a modest prolongation of the overall survival in these HCC patients. The present review is an update of the available information regarding our understanding of the molecular bases of mechanisms of chemoresistance (MOC) with a significant impact on the response of HCC to existing pharmacological tools, which include classical chemotherapeutic agents, TKIs and novel immune-sensitizing strategies. Many of the more than one hundred genes involved in seven MOC have been identified as potential biomarkers to predict the failure of treatment, as well as druggable targets to develop novel strategies aimed at increasing the sensitivity of HCC to pharmacological treatments.
Collapse
Affiliation(s)
- Jose J.G. Marin
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (R.I.R.M.); (M.J.M.); (M.R.R.); (M.A.); (A.S.-M.); (C.C.-L.); (A.G.T.); (R.E.-E.); (M.R.); (L.H.B.)
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain
- Correspondence: (J.J.G.M.); (O.B.); Tel.: +34-663182872 (J.J.G.M.); +34-923294674 (O.B.)
| | - Rocio I.R. Macias
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (R.I.R.M.); (M.J.M.); (M.R.R.); (M.A.); (A.S.-M.); (C.C.-L.); (A.G.T.); (R.E.-E.); (M.R.); (L.H.B.)
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain
| | - Maria J. Monte
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (R.I.R.M.); (M.J.M.); (M.R.R.); (M.A.); (A.S.-M.); (C.C.-L.); (A.G.T.); (R.E.-E.); (M.R.); (L.H.B.)
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain
| | - Marta R. Romero
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (R.I.R.M.); (M.J.M.); (M.R.R.); (M.A.); (A.S.-M.); (C.C.-L.); (A.G.T.); (R.E.-E.); (M.R.); (L.H.B.)
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain
| | - Maitane Asensio
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (R.I.R.M.); (M.J.M.); (M.R.R.); (M.A.); (A.S.-M.); (C.C.-L.); (A.G.T.); (R.E.-E.); (M.R.); (L.H.B.)
| | - Anabel Sanchez-Martin
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (R.I.R.M.); (M.J.M.); (M.R.R.); (M.A.); (A.S.-M.); (C.C.-L.); (A.G.T.); (R.E.-E.); (M.R.); (L.H.B.)
| | - Candela Cives-Losada
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (R.I.R.M.); (M.J.M.); (M.R.R.); (M.A.); (A.S.-M.); (C.C.-L.); (A.G.T.); (R.E.-E.); (M.R.); (L.H.B.)
| | - Alvaro G. Temprano
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (R.I.R.M.); (M.J.M.); (M.R.R.); (M.A.); (A.S.-M.); (C.C.-L.); (A.G.T.); (R.E.-E.); (M.R.); (L.H.B.)
| | - Ricardo Espinosa-Escudero
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (R.I.R.M.); (M.J.M.); (M.R.R.); (M.A.); (A.S.-M.); (C.C.-L.); (A.G.T.); (R.E.-E.); (M.R.); (L.H.B.)
| | - Maria Reviejo
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (R.I.R.M.); (M.J.M.); (M.R.R.); (M.A.); (A.S.-M.); (C.C.-L.); (A.G.T.); (R.E.-E.); (M.R.); (L.H.B.)
| | - Laura H. Bohorquez
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (R.I.R.M.); (M.J.M.); (M.R.R.); (M.A.); (A.S.-M.); (C.C.-L.); (A.G.T.); (R.E.-E.); (M.R.); (L.H.B.)
| | - Oscar Briz
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (R.I.R.M.); (M.J.M.); (M.R.R.); (M.A.); (A.S.-M.); (C.C.-L.); (A.G.T.); (R.E.-E.); (M.R.); (L.H.B.)
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain
- Correspondence: (J.J.G.M.); (O.B.); Tel.: +34-663182872 (J.J.G.M.); +34-923294674 (O.B.)
| |
Collapse
|
44
|
Cabral LKD, Tiribelli C, Sukowati CHC. Sorafenib Resistance in Hepatocellular Carcinoma: The Relevance of Genetic Heterogeneity. Cancers (Basel) 2020; 12:1576. [PMID: 32549224 PMCID: PMC7352671 DOI: 10.3390/cancers12061576] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023] Open
Abstract
Despite advances in biomedicine, the incidence and the mortality of hepatocellular carcinoma (HCC) remain high. The majority of HCC cases are diagnosed in later stages leading to the less than optimal outcome of the treatments. Molecular targeted therapy with sorafenib, a dual-target inhibitor targeting the serine-threonine kinase Raf and the tyrosine kinases VEGFR/PDGFR, is at present the main treatment for advanced-stage HCC, either in a single or combinatory regimen. However, it was observed in a large number of patients that its effectiveness is hampered by drug resistance. HCC is highly heterogeneous, within the tumor and among individuals, and this influences disease progression, classification, prognosis, and naturally cellular susceptibility to drug resistance. This review aims to provide an insight on how HCC heterogeneity influences the different primary mechanisms of chemoresistance against sorafenib including reduced drug intake, enhanced drug efflux, intracellular drug metabolism, alteration of molecular targets, activation/inactivation of signaling pathways, changes in the DNA repair machinery, and negative balance between apoptosis and survival of the cancer cells. The diverse variants, mutations, and polymorphisms in molecules and their association with drug response can be a helpful tool in treatment decision making. Accordingly, the existence of heterogeneous biomarkers in the tumor must be considered to strengthen multi-target strategies in patient-tailored treatment.
Collapse
Affiliation(s)
| | | | - Caecilia H. C. Sukowati
- Fondazione Italiana Fegato (Italian Liver Foundation), AREA Science Park, Basovizza, 34149 Trieste, Italy; (L.K.D.C.); (C.T.)
| |
Collapse
|
45
|
Rodríguez-Hernández MA, Chapresto-Garzón R, Cadenas M, Navarro-Villarán E, Negrete M, Gómez-Bravo MA, Victor VM, Padillo FJ, Muntané J. Differential effectiveness of tyrosine kinase inhibitors in 2D/3D culture according to cell differentiation, p53 status and mitochondrial respiration in liver cancer cells. Cell Death Dis 2020; 11:339. [PMID: 32382022 PMCID: PMC7206079 DOI: 10.1038/s41419-020-2558-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/24/2022]
Abstract
Sorafenib and Regorafenib are the recommended first- and second-line therapies in patients with advanced hepatocellular carcinoma (HCC). Lenvatinib and Cabozantinib have shown non-inferior antitumoral activities compared with the corresponding recommended therapies. The clinical trials have established recommended doses for each treatment that lead different blood concentrations in patients for Sorafenib (10 µM), Regorafenib (1 µM), Lenvatinib (0.1 µM), and Cabozantinib (1 µM). However, very low response rates are observed in patients attributed to intrinsic resistances or upregulation of survival signaling. The aim of the study was the comparative dose-response analysis of the drugs (0-100 µM) in well-differentiated (HepG2, Hep3B, and Huh7), moderately (SNU423), and poorly (SNU449) differentiated liver cancer cells in 2D/3D cultures. Cells harbors wild-type p53 (HepG2), non-sense p53 mutation (Hep3B), inframe p53 gene deletion (SNU423), and p53 point mutation (Huh7 and SNU449). The administration of regular used in vitro dose (10 µM) in 3D and 2D cultures, as well as the dose-response analysis in 2D cultures showed Sorafenib and Regorafenib were increasingly effective in reducing cell proliferation, and inducing apoptosis in well-differentiated and expressing wild-type p53 in HCC cells. Lenvatinib and Cabozantinib were particularly effective in moderately to poorly differentiated cells with mutated or lacking p53 that have lower basal oxygen consumption rate (OCR), ATP, and maximal respiration capacity than observed in differentiated HCC cells. Sorafenib and Regorafenib downregulated, and Lenvatinib and Cabozantinib upregulated epidermal growth factor receptor (EGFR) and mesenchymal-epithelial transition factor receptor (c-Met) in HepG2 cells. Conclusions: Sorafenib and Regorafenib were especially active in well-differentiated cells, with wild-type p53 and increased mitochondrial respiration. By contrast, Lenvatinib and Cabozantinib appeared more effective in moderately to poorly differentiated cells with mutated p53 and low mitochondrial respiration. The development of strategies that allow us to deliver increased doses in tumors might potentially enhance the effectiveness of the treatments.
Collapse
Affiliation(s)
- María A Rodríguez-Hernández
- Institute of Biomedicine of Seville (IBiS), Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain
- Spanish Network for Biomedical Research in Hepatic and Digestive diseases (CIBERehd), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Raquel Chapresto-Garzón
- Institute of Biomedicine of Seville (IBiS), Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain
| | - Miryam Cadenas
- Institute of Biomedicine of Seville (IBiS), Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain
| | - Elena Navarro-Villarán
- Institute of Biomedicine of Seville (IBiS), Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain
- Spanish Network for Biomedical Research in Hepatic and Digestive diseases (CIBERehd), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - María Negrete
- Institute of Biomedicine of Seville (IBiS), Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain
| | - Miguel A Gómez-Bravo
- Institute of Biomedicine of Seville (IBiS), Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain
- Spanish Network for Biomedical Research in Hepatic and Digestive diseases (CIBERehd), Institute of Health Carlos III (ISCIII), Madrid, Spain
- Department of General Surgery, Hospital University "Virgen del Rocío"/CSIC/University of Seville/IBIS, Seville, Spain
| | - Victor M Victor
- Spanish Network for Biomedical Research in Hepatic and Digestive diseases (CIBERehd), Institute of Health Carlos III (ISCIII), Madrid, Spain
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
- Department of Physiology, University of Valencia, Valencia, Spain
| | - Francisco J Padillo
- Institute of Biomedicine of Seville (IBiS), Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain
- Spanish Network for Biomedical Research in Hepatic and Digestive diseases (CIBERehd), Institute of Health Carlos III (ISCIII), Madrid, Spain
- Department of General Surgery, Hospital University "Virgen del Rocío"/CSIC/University of Seville/IBIS, Seville, Spain
| | - Jordi Muntané
- Institute of Biomedicine of Seville (IBiS), Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain.
- Spanish Network for Biomedical Research in Hepatic and Digestive diseases (CIBERehd), Institute of Health Carlos III (ISCIII), Madrid, Spain.
- Department of General Surgery, Hospital University "Virgen del Rocío"/CSIC/University of Seville/IBIS, Seville, Spain.
| |
Collapse
|
46
|
Wang C, Wang H, Lieftink C, du Chatinier A, Gao D, Jin G, Jin H, Beijersbergen RL, Qin W, Bernards R. CDK12 inhibition mediates DNA damage and is synergistic with sorafenib treatment in hepatocellular carcinoma. Gut 2020; 69:727-736. [PMID: 31519701 DOI: 10.1136/gutjnl-2019-318506] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 08/22/2019] [Accepted: 09/03/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Hepatocellular carcinoma (HCC) is one of the most frequent malignancies and a major leading cause of cancer-related deaths worldwide. Several therapeutic options like sorafenib and regorafenib provide only modest survival benefit to patients with HCC. This study aims to identify novel druggable candidate genes for patients with HCC. DESIGN A non-biased CRISPR (clustered regularly interspaced short palindromic repeats) loss-of-function genetic screen targeting all known human kinases was performed to identify vulnerabilities of HCC cells. Whole-transcriptome sequencing (RNA-Seq) and bioinformatics analyses were performed to explore the mechanisms of the action of a cyclin-dependent kinase 12 (CDK12) inhibitor in HCC cells. Multiple in vitro and in vivo assays were used to study the synergistic effects of the combination of CDK12 inhibition and sorafenib. RESULTS We identify CDK12 as critically required for most HCC cell lines. Suppression of CDK12 using short hairpin RNAs (shRNAs) or its inhibition by the covalent small molecule inhibitor THZ531 leads to robust proliferation inhibition. THZ531 preferentially suppresses the expression of DNA repair-related genes and induces strong DNA damage response in HCC cell lines. The combination of THZ531 and sorafenib shows striking synergy by inducing apoptosis or senescence in HCC cells. The synergy between THZ531 and sorafenib may derive from the notion that THZ531 impairs the adaptive responses of HCC cells induced by sorafenib treatment. CONCLUSION Our data highlight the potential of CDK12 as a drug target for patients with HCC. The striking synergy of THZ531 and sorafenib suggests a potential combination therapy for this difficult to treat cancer.
Collapse
Affiliation(s)
- Cun Wang
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cor Lieftink
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Aimee du Chatinier
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Dongmei Gao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Guangzhi Jin
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Haojie Jin
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Roderick L Beijersbergen
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wenxin Qin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - René Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
47
|
Quantitative phosphoproteomic analysis identifies the potential therapeutic target EphA2 for overcoming sorafenib resistance in hepatocellular carcinoma cells. Exp Mol Med 2020; 52:497-513. [PMID: 32203105 PMCID: PMC7156679 DOI: 10.1038/s12276-020-0404-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/24/2019] [Accepted: 02/05/2020] [Indexed: 12/22/2022] Open
Abstract
Limited therapeutic options are available for advanced-stage hepatocellular carcinoma owing to its poor diagnosis. Drug resistance to sorafenib, the only available targeted agent, is commonly reported. The comprehensive elucidation of the mechanisms underlying sorafenib resistance may thus aid in the development of more efficacious therapeutic agents. To clarify the signaling changes contributing to resistance, we applied quantitative phosphoproteomics to analyze the differential phosphorylation changes between parental and sorafenib-resistant HuH-7 cells. Consequently, an average of ~1500 differential phosphoproteins were identified and quantified, among which 533 were significantly upregulated in resistant cells. Further bioinformatic integration via functional categorization annotation, pathway enrichment and interaction linkage analysis led to the discovery of alterations in pathways associated with cell adhesion and motility, cell survival and cell growth and the identification of a novel target, EphA2, in resistant HuH-7R cells. In vitro functional analysis indicated that the suppression of EphA2 function impairs cell proliferation and motility and, most importantly, overcomes sorafenib resistance. The attenuation of sorafenib resistance may be achieved prior to its development through the modulation of EphA2 and the subsequent inhibition of Akt activity. Binding analyses and in silico modeling revealed a ligand mimic lead compound, prazosin, that could abate the ligand-independent oncogenic activity of EphA2. Finally, data obtained from in vivo animal models verified that the simultaneous inhibition of EphA2 with sorafenib treatment can effectively overcome sorafenib resistance and extend the projected survival of resistant tumor-bearing mice. Thus our findings regarding the targeting of EphA2 may provide an effective approach for overcoming sorafenib resistance and may contribute to the management of advanced hepatocellular carcinoma.
Collapse
|
48
|
Sueangoen N, Tantiwetrueangdet A, Panvichian R. HCC-derived EGFR mutants are functioning, EGF-dependent, and erlotinib-resistant. Cell Biosci 2020; 10:41. [PMID: 32190291 PMCID: PMC7076995 DOI: 10.1186/s13578-020-00407-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/10/2020] [Indexed: 02/07/2023] Open
Abstract
Background Epidermal growth factor receptor (EGFR) has emerged as an important therapeutic target. Overexpression of EGFR is frequently observed in hepatocellular carcinoma (HCC) and EGFR activation has been proven to be a potential determinant of primary resistance of HCC cells to sorafenib. In our previous study, we found 13 missense mutations in EGFR exon 19-23 from hepatocellular carcinoma (HCC) tissues, but the functions of these mutations have not been determined. This study aims to determine the kinase activity and sensitivity to erlotinib, a 1st-generation EGFR-tyrosine kinase inhibitor (TKI), of seven HCC-derived mutants (K757E, N808S, R831C, V897A, P937L, T940A, and M947T). Results Using transduction of pBabe-puro retroviral vector with or without EGFR, we constructed and determined the function of EGFRs in NIH-3T3 cells stably harboring each of the seven mutants, as well as the erlotinib-sensitive L858R-mutant, the erlotinib-resistant T790M-mutant, and EGFR wild type (WT). Our results indicate that the seven mutants are functioning, EGF-dependent, EGFRs. Cells harboring six of the seven mutants could generate some level of EGFR phosphorylation in the absence of EGF, indicating some constitutive kinase activity, but all of the seven mutants remain primarily EGF-dependent. Our results demonstrate that erlotinib induces differential degree of apoptosis and autophagy among cells harboring different EGFRs: complete apoptosis and autophagy (cleavage of both caspase-3 and PARP, and marked LC3-II increment) in L858R-mutant; partial apoptosis and autophagy (only cleavage of caspase-3, and moderate LC3-II increment) in WT and HCC-derived mutants; and no apoptosis and minimal autophagy (no cleavage of caspase-3 and PARP, and minimal LC3-II increment) in T790M-mutant. The seven HCC-derived mutants are erlotinib-resistant, as treatment with erlotinib up to high concentration could only induce partial inhibition of EGFR phosphorylation, partial or no inhibition of AKT and ERK phosphorylation, and partial apoptosis and autophagy. Conclusion The seven HCC-derived EGFR mutants in this study are functioning, EGF-dependent, and erlotinib-resistant. Erlotinib induces differential degree of apoptosis and autophagy among cells harboring different EGFRs. The degree of inhibition of EGFR phosphorylation by erlotinib is the determining factor for the degree of apoptosis and autophagy amongst cells harboring EGFR mutants. This study paves the way for further investigation into the sensitivity of these HCC-derived mutants to the 3rd-generation irreversible EGFR-TKI, osimertinib.
Collapse
Affiliation(s)
- Natthaporn Sueangoen
- Research Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | - Ravat Panvichian
- Department of Internal Medicine, Division of Medical Oncology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Rama 6 Road, Ratchathewi, Bangkok, 10400 Thailand
| |
Collapse
|
49
|
Medical oncology management of advanced hepatocellular carcinoma 2019: a reality check. Front Med 2019; 14:273-283. [PMID: 31863306 DOI: 10.1007/s11684-019-0728-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 10/12/2019] [Indexed: 02/06/2023]
Abstract
In terms of global cancer-related deaths, hepatocellular carcinoma (HCC) has the fourth highest mortality rate. Up until 2017, treatment of advanced HCC was largely limited to sorafenib, an oral tyrosine kinase inhibitor, with little to no success in the development of alternative treatment options. However, in the past two years, there has been an unprecedented increase in both the number and type of treatment options available for HCC. As of 2019, the US FDA has approved four oral tyrosine kinase inhibitors, two immune checkpoint inhibitors, and one anti-angiogenesis antibody for the treatment of HCC. Even with this new variety, systemic treatment of advanced HCC remains largely unsatisfactory, and the median survival rate stands at approximately one year. The expected breakthrough of using immune checkpoint inhibitors in advanced HCC did not materialize in 2019. The use of immune checkpoint inhibitors in conjunction with oral tyrosine kinase inhibitors or anti-angiogenesis medications is the current clinical research trend, the results of which are eagerly anticipated. Despite limited progress in survival, HCC research is currently experiencing a period of growth and innovation, and there is hope for significant advances in the treatment of advanced HCC as the field continues to develop.
Collapse
|
50
|
Wei L, Lee D, Law CT, Zhang MS, Shen J, Chin DWC, Zhang A, Tsang FHC, Wong CLS, Ng IOL, Wong CCL, Wong CM. Genome-wide CRISPR/Cas9 library screening identified PHGDH as a critical driver for Sorafenib resistance in HCC. Nat Commun 2019; 10:4681. [PMID: 31615983 PMCID: PMC6794322 DOI: 10.1038/s41467-019-12606-7] [Citation(s) in RCA: 261] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 09/17/2019] [Indexed: 02/07/2023] Open
Abstract
Sorafenib is the standard treatment for advanced hepatocellular carcinoma (HCC). However, the development of drug resistance is common. By using genome-wide CRISPR/Cas9 library screening, we identify phosphoglycerate dehydrogenase (PHGDH), the first committed enzyme in the serine synthesis pathway (SSP), as a critical driver for Sorafenib resistance. Sorafenib treatment activates SSP by inducing PHGDH expression. With RNAi knockdown and CRISPR/Cas9 knockout models, we show that inactivation of PHGDH paralyzes the SSP and reduce the production of αKG, serine, and NADPH. Concomitantly, inactivation of PHGDH elevates ROS level and induces HCC apoptosis upon Sorafenib treatment. More strikingly, treatment of PHGDH inhibitor NCT-503 works synergistically with Sorafenib to abolish HCC growth in vivo. Similar findings are also obtained in other FDA-approved tyrosine kinase inhibitors (TKIs), including Regorafenib or Lenvatinib. In summary, our results demonstrate that targeting PHGDH is an effective approach to overcome TKI drug resistance in HCC. Resistance to the tyrosine kinase inhibitor Sorafenib, which is the standard treatment for advanced hepatocellular carcinoma, is a major clinical challenge. Here, the authors show that phosphoglycerate dehydrogenase, a key enzyme in the serine synthesis pathway, drives sorafenib resistance.
Collapse
Affiliation(s)
- Lai Wei
- State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong.,Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Derek Lee
- State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong.,Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Cheuk-Ting Law
- State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong.,Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Misty Shuo Zhang
- State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong.,Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Jialing Shen
- State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong.,Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Don Wai-Ching Chin
- State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong.,Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Allen Zhang
- State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong.,Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Felice Ho-Ching Tsang
- State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong.,Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Ceci Lok-Sze Wong
- State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong.,Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Irene Oi-Lin Ng
- State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong.,Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Carmen Chak-Lui Wong
- State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong. .,Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.
| | - Chun-Ming Wong
- State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong. .,Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.
| |
Collapse
|