1
|
Trivedi PJ, Hirschfield GM, Adams DH, Vierling JM. Immunopathogenesis of Primary Biliary Cholangitis, Primary Sclerosing Cholangitis and Autoimmune Hepatitis: Themes and Concepts. Gastroenterology 2024; 166:995-1019. [PMID: 38342195 DOI: 10.1053/j.gastro.2024.01.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 01/21/2024] [Accepted: 01/28/2024] [Indexed: 02/13/2024]
Abstract
Autoimmune liver diseases include primary biliary cholangitis, primary sclerosing cholangitis, and autoimmune hepatitis, a family of chronic immune-mediated disorders that target hepatocytes and cholangiocytes. Treatments remain nonspecific, variably effective, and noncurative, and the need for liver transplantation is disproportionate to their rarity. Development of effective therapies requires better knowledge of pathogenic mechanisms, including the roles of genetic risk, and how the environment and gut dysbiosis cause immune cell dysfunction and aberrant bile acid signaling. This review summarizes key etiologic and pathogenic concepts and themes relevant for clinical practice and how such learning can guide the development of new therapies for people living with autoimmune liver diseases.
Collapse
Affiliation(s)
- Palak J Trivedi
- National Institute for Health Research Birmingham Biomedical Research Centre, Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom; Liver Unit, University Hospitals Birmingham, Birmingham, United Kingdom; Institute of Translational Medicine, University of Birmingham, Birmingham, United Kingdom.
| | - Gideon M Hirschfield
- Division of Gastroenterology and Hepatology, Toronto Centre for Liver Disease, University of Toronto, Toronto, Ontario, Canada
| | - David H Adams
- National Institute for Health Research Birmingham Biomedical Research Centre, Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom; Liver Unit, University Hospitals Birmingham, Birmingham, United Kingdom
| | - John M Vierling
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas; Division of Abdominal Transplantation, Department of Surgery, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
2
|
Li Z, Wang S, Xu Q, Su X, Wang Y, Wang L, Zhang Y. The double roles of T cell-mediated immune response in the progression of MASLD. Biomed Pharmacother 2024; 173:116333. [PMID: 38479177 DOI: 10.1016/j.biopha.2024.116333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/27/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease(MASLD), formerly known as non-alcoholic fatty liver disease(NAFLD), has become a major cause of chronic liver disease and a significant risk factor for hepatocellular carcinoma, which poses a huge burden on global public health and economy. MASLD includes steatotic liver disease, steatohepatitis, and cirrhosis, and the latter two cause great harm to human health and life, even complicated with liver cancer. Immunologic mechanism plays a major role in promoting its development into hepatitis and cirrhosis. Now more and more evidences show that T cells play an important role in the progression of MASLD. In this review, we discuss the double roles of T cells in MASLD from the perspective of T cell response pathways, as well as new evidences regarding the possible application of immunomodulatory therapy in MASH.
Collapse
Affiliation(s)
- Zigan Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Shujun Wang
- Department of Medical Parasitology, Wannan Medical College, Wuhu 241000, China
| | - Qinchen Xu
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Xin Su
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province 250021, China
| | - Lina Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China.
| | - Yong Zhang
- Shandong Provincial Third Hospital Affiliated to Shandong University, Jinan, Shandong Province 250031, China.
| |
Collapse
|
3
|
Liu J, Ding M, Bai J, Luo R, Liu R, Qu J, Li X. Decoding the role of immune T cells: A new territory for improvement of metabolic-associated fatty liver disease. IMETA 2023; 2:e76. [PMID: 38868343 PMCID: PMC10989916 DOI: 10.1002/imt2.76] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 06/14/2024]
Abstract
Metabolic-associated fatty liver disease (MAFLD) is a new emerging concept and is associated with metabolic dysfunction, generally replacing the name of nonalcoholic fatty liver disease (NAFLD) due to heterogeneous liver condition and inaccuracies in definition. The prevalence of MAFLD is rising by year due to dietary changes, metabolic disorders, and no approved therapy, affecting a quarter of the global population and representing a major economic problem that burdens healthcare systems. Currently, in addition to the common causative factors like insulin resistance, oxidative stress, and lipotoxicity, the role of immune cells, especially T cells, played in MAFLD is increasingly being emphasized by global scholars. Based on the diverse classification and pathophysiological effects of immune T cells, we comprehensively analyzed their bidirectional regulatory effects on the hepatic inflammatory microenvironment and MAFLD progression. This interaction between MAFLD and T cells was also associated with hepatic-intestinal immune crosstalk and gut microbiota homeostasis. Moreover, we pointed out several T-cell-based therapeutic approaches including but not limited to adoptive transfer of T cells, fecal microbiota transplantation, and drug therapy, especially for natural products and Chinese herbal prescriptions. Overall, this study contributes to a better understanding of the important role of T cells played in MAFLD progression and corresponding therapeutic options and provides a potential reference for further drug development.
Collapse
Affiliation(s)
- Jia Liu
- School of Life SciencesBeijing University of Chinese MedicineBeijingChina
| | - Mingning Ding
- School of Life SciencesBeijing University of Chinese MedicineBeijingChina
| | - Jinzhao Bai
- School of Chinese Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Ranyi Luo
- School of Life SciencesBeijing University of Chinese MedicineBeijingChina
| | - Runping Liu
- School of Chinese Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Jiaorong Qu
- School of Life SciencesBeijing University of Chinese MedicineBeijingChina
| | - Xiaojiaoyang Li
- School of Life SciencesBeijing University of Chinese MedicineBeijingChina
| |
Collapse
|
4
|
Mucosal immunity in primary sclerosing cholangitis: from the bowel to bile ducts and back again. Curr Opin Gastroenterol 2022; 38:104-113. [PMID: 35034083 DOI: 10.1097/mog.0000000000000809] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW In this article, we provide a contemporary overview on PSC pathogenesis, with a specific focus on the role of mucosal immunity. RECENT FINDINGS The extent of enteric dysbiosis in PSC has been extensively quantified, with evidence of reduced bacterial diversity and enrichment of species capable of driving lymphocyte recruitment from the gut to the liver. Integrative pathway-based analysis and metagenomic sequencing indicate a reduction in butyrate-producing species, near absence of bacteria that activate the nuclear bile acid receptor FXR, and depletion of species that regulate the synthesis of vitamin B6 and branched-chain amino acids. Immunotyping of the cellular inflammatory infiltrate has identified a population of intrahepatic naive T cells, with tendency to acquire a Th17 polarisation state, paralleled by heightened responses to pathogen stimulation. Moreover, the search for antigen specificity has revealed the presence of overlapping nucleotide clonotypes across the gut and liver, highlighting the ability to recognize a common pool of epitopes bearing structural similarities across afflicted sites. SUMMARY Understanding the complex mechanisms that underpin mucosal immune responses between the liver and gut will help identify new druggable targets in PSC, centring on gut microbial manipulation, bile acid therapies, and restoration of immune homeostasis.
Collapse
|
5
|
Wellhöner F, Döscher N, Woelfl F, Vital M, Plumeier I, Kahl S, Potthoff A, Manns MP, Pieper DH, Cornberg M, Wedemeyer H, Heidrich B. Eradication of Chronic HCV Infection: Improvement of Dysbiosis Only in Patients Without Liver Cirrhosis. Hepatology 2021; 74:72-82. [PMID: 33411981 DOI: 10.1002/hep.31700] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/14/2020] [Accepted: 12/13/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS It is well accepted that liver diseases and their outcomes are associated with intestinal microbiota, but causality is difficult to establish. The intestinal microbiota are altered in patients with hepatitis C. As chronic HCV infection can now be cured in almost all patients, it is an ideal model to study the influence of liver disease on the microbiota. APPROACH AND RESULTS We aimed to prospectively analyze the changes in the gut microbiome in patients who received direct-acting antivirals (DAA) and achieved sustained virological response (SVR). Amplicon sequencing of the V1-V2 region in the 16S ribosomal RNA gene was performed in stool samples of patients with chronic hepatitis C. Patients in the treatment group received DAA (n = 65), whereas in the control group, no DAA were given (n = 33). Only patients achieving SVR were included. The alpha diversity increased numerically but not significantly from baseline to SVR at week 24 or 48 (SVR24/48; 2.784 ± 0.248 vs. 2.846 ± 0.224; P = 0.057). When stratifying for the presence of liver cirrhosis, a significant increase in diversity was only seen in patients without cirrhosis. Differences in the microbial community structure induced by the achievement of SVR were only observed in patients without liver cirrhosis. In patients with liver cirrhosis and in the control group, no significant differences were observed. CONCLUSIONS In conclusion, the achievement of SVR24/48 in patients with chronic HCV was associated with changes in the intestinal microbiota. However, these changes were only seen in patients without liver cirrhosis. A major role of liver remodeling on the intestinal microbiota is indicated by the dynamics of the intestinal microbial community structure depending on the stage of fibrosis in patients resolving chronic hepatitis C.
Collapse
Affiliation(s)
- Freya Wellhöner
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Nico Döscher
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Franziska Woelfl
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Marius Vital
- Microbial Interactions and Processes Research Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Iris Plumeier
- Microbial Interactions and Processes Research Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Silke Kahl
- Microbial Interactions and Processes Research Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Andrej Potthoff
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Michael Peter Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.,German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Dietmar Helmut Pieper
- Microbial Interactions and Processes Research Group, Helmholtz Center for Infection Research, Braunschweig, Germany.,German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Markus Cornberg
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.,German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.,German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Benjamin Heidrich
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.,Microbial Interactions and Processes Research Group, Helmholtz Center for Infection Research, Braunschweig, Germany.,German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| |
Collapse
|
6
|
Yang X, Lu D, Zhuo J, Lin Z, Yang M, Xu X. The Gut-liver Axis in Immune Remodeling: New insight into Liver Diseases. Int J Biol Sci 2020; 16:2357-2366. [PMID: 32760203 PMCID: PMC7378637 DOI: 10.7150/ijbs.46405] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023] Open
Abstract
The gut microbiota consists of a dynamic multispecies community of bacteria, fungi, archaea, and protozoans, playing a fundamental role in the induction, training, and function of the host immune system. The liver is anatomically and physiologically linked to the gut microbiota via enterohepatic circulation, specifically receiving intestine-derived blood through the portal vein. The gut microbiota is crucial for maintaining immune homeostasis of the gut-liver axis. A shift in gut microbiota composition can result in activation of the mucosal immune response causing homeostasis imbalance. This imbalance results in translocation of bacteria and migration of immune cells to the liver, which is related to inflammation-mediated liver injury and tumor progression. In this review, we outline the role of the gut microbiota in modulating host immunity and summarize novel findings and recent advances in immune-based therapeutics associated with the gut-liver axis. Moving forward, a deep understanding of the microbiome-immune-liver axis will provide insight into the basic mechanisms of gut microbiota dysbiosis affecting liver diseases.
Collapse
Affiliation(s)
- Xinyu Yang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China.,NHFPC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Di Lu
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China.,NHFPC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Jianyong Zhuo
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China.,NHFPC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Zuyuan Lin
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China.,NHFPC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Modan Yang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China.,NHFPC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China.,NHFPC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| |
Collapse
|
7
|
Stamataki Z, Swadling L. The liver as an immunological barrier redefined by single-cell analysis. Immunology 2020; 160:157-170. [PMID: 32176810 PMCID: PMC7218664 DOI: 10.1111/imm.13193] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/12/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022] Open
Abstract
The liver is a front-line immune tissue that plays a major role in the detection, capture and clearance of pathogens and foreign antigens entering the bloodstream, especially from the gut. Our largest internal organ maintains this immune barrier in the face of constant exposure to external but harmless antigens through a highly specialized network of liver-adapted immune cells. Mapping the immune resident compartment in the liver has been challenging because it requires multimodal single-cell deep phenotyping approaches of often rare cell populations in difficult to access samples. We can now measure the RNA transcripts present in a single cell (scRNA-seq), which is revolutionizing the way we characterize cell types. scRNA-seq has been applied to the diverse array of immune cells present in murine and human livers in health and disease. Here, we summarize how emerging single-cell technologies have advanced or redefined our understanding of the immunological barrier provided by the liver.
Collapse
Affiliation(s)
- Zania Stamataki
- Institute of Immunology and ImmunotherapyCentre for Liver and Gastrointestinal ResearchUniversity of BirminghamBirminghamUK
- NIHR Birmingham Liver Biomedical Research CentreUniversity Hospitals Birmingham NHS Foundation TrustBirminghamUK
| | - Leo Swadling
- Division of Infection & ImmunityUniversity College LondonLondonUK
| |
Collapse
|
8
|
Inflammation: Cause or consequence of chronic cholestatic liver injury. Food Chem Toxicol 2020; 137:111133. [PMID: 31972189 DOI: 10.1016/j.fct.2020.111133] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/04/2019] [Accepted: 01/14/2020] [Indexed: 12/12/2022]
Abstract
Cholestasis is a result of obstruction of the biliary tracts. It is a common cause of liver pathology after exposure to toxic xenobiotics and during numerous other liver diseases. Accumulation of bile acids in the liver is thought to be a major driver of liver injury during cholestasis and can lead to eventual liver fibrosis and cirrhosis. As such, current therapy in the field of chronic liver diseases with prominent cholestasis relies heavily on increasing choleresis to limit accumulation of bile acids. Many of these same diseases also present with autoimmunity before the onset of cholestasis though, indicating the inflammation may be an initiating component of the pathology. Moreover, cytotoxic inflammatory mediators accumulate during cholestasis and can propagate liver injury. Anti-inflammatory biologics and small molecules have largely failed clinical trials in these diseases though and as such, targeting inflammation as a means to address cholestatic liver injury remains debatable. The purpose of this review is to understand the different roles that inflammation can play during cholestatic liver injury and attempt to define how new therapeutic targets that limit or control inflammation may be beneficial for patients with chronic cholestatic liver disease.
Collapse
|
9
|
de Krijger M, Wildenberg ME, de Jonge WJ, Ponsioen CY. Return to sender: Lymphocyte trafficking mechanisms as contributors to primary sclerosing cholangitis. J Hepatol 2019; 71:603-615. [PMID: 31108158 DOI: 10.1016/j.jhep.2019.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/29/2019] [Accepted: 05/09/2019] [Indexed: 12/14/2022]
Abstract
Primary sclerosing cholangitis (PSC) is an inflammatory disease of the biliary tree, characterised by stricturing bile duct disease and progression to liver fibrosis. The pathophysiology of PSC is still unknown. The concurrence with inflammatory bowel disease (IBD) in about 70% of cases has led to the hypothesis that gut-homing lymphocytes aberrantly traffic to the liver, contributing to disease pathogenesis in patients with both PSC and IBD (PSC-IBD). The discovery of mutual trafficking pathways of lymphocytes to target tissues, and expression of gut-specific adhesion molecules and chemokines in the liver has pointed in this direction. There is now increasing interest in using drugs that intervene with these trafficking pathways (e.g. vedolizumab, etrolizumab) for the treatment of PSC-IBD. In this review we discuss what is currently known about the immunological interactions between the gut and the liver in concomitant PSC and IBD, as well as potential therapeutic options for intervening in these mechanisms.
Collapse
Affiliation(s)
- Manon de Krijger
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Manon E Wildenberg
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Wouter J de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Department of Surgery, University of Bonn, Bonn, Germany
| | - Cyriel Y Ponsioen
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
10
|
Wilson DS, Damo M, Hirosue S, Raczy MM, Brünggel K, Diaceri G, Quaglia-Thermes X, Hubbell JA. Synthetically glycosylated antigens induce antigen-specific tolerance and prevent the onset of diabetes. Nat Biomed Eng 2019; 3:817-829. [DOI: 10.1038/s41551-019-0424-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 06/07/2019] [Indexed: 12/19/2022]
|
11
|
Wu N, Wang B, Cui ZW, Zhang XY, Cheng YY, Xu X, Li XM, Wang ZX, Chen DD, Zhang YA. Integrative Transcriptomic and microRNAomic Profiling Reveals Immune Mechanism for the Resilience to Soybean Meal Stress in Fish Gut and Liver. Front Physiol 2018; 9:1154. [PMID: 30246797 PMCID: PMC6140834 DOI: 10.3389/fphys.2018.01154] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/31/2018] [Indexed: 12/18/2022] Open
Abstract
In aquafeeds, fish-meal has been commonly replaced with plant protein, which often causes enteritis. Currently, foodborne enteritis has few solutions in regards to prevention or cures. The recovery mechanism from enteritis in herbivorous fish may further help understand prevention or therapy. However, few reports could be found regarding the recovery or resilience to fish foodborne enteritis. In this study, grass carp was used as an animal model for soybean meal induced enteritis and it was found that the fish could adapt to the soybean meal at a moderate level of substitution. Resilience to soybean meal stress was found in the 40% soybean meal group for juvenile fish at growth performance, morphological and gene expression levels, after a 7-week feeding trial. Furthermore, the intestinal transcriptomic data, including transcriptome and miRNAome, was applied to demonstrate resilience mechanisms. The result of this study revealed that in juvenile grass carp after a 7-week feeding cycle with 40% soybean meal, the intestine recovered via enhancing both an immune tolerance and wound healing, the liver gradually adapted via re-balancing immune responses, such as phagosome and complement cascades. Also, many immune factors in the gut and liver were systemically revealed among stages of on-setting, remising, and recovering (or relief). In addition, miRNA regulation played a key role in switching immune states. Thus, the present data systemically demonstrated that the molecular adaptation mechanism of fish gut-liver immunity is involved in the resilience to soybean meal stress.
Collapse
Affiliation(s)
- Nan Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, China
| | - Biao Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zheng-Wei Cui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiang-Yang Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ying-Yin Cheng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xuan Xu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Xian-Mei Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhao-Xi Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Dan-Dan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, China
| | - Yong-An Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, China
| |
Collapse
|
12
|
Park JB. Javamide-II Found in Coffee Is Better than Caffeine at Suppressing TNF-α Production in PMA/PHA-Treated Lymphocytic Jurkat Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6782-6789. [PMID: 29888601 DOI: 10.1021/acs.jafc.8b01885] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Recent studies have suggested positive benefits of coffee consumption on inflammation-related diseases, such as liver diseases and diabetes, where activated lymphocytes and TNF-α are critically implicated. Interestingly, some reports suggested that javamide-II found in coffee may have anti-inflammatory activity greater than that of caffeine, but there is limited information about its effect on TNF-α production by activated lymphocytes. Therefore, the inhibitory effect of javamide-II on TNF-α was investigated in PMA/PHA-treated lymphocytic Jurkat cells. At 5 μM, javamide-II, not caffeine, inhibited TNF-α production in the cells (45 ± 4%, P < 0.001). To elucidate the underlying mechanism, the phosphorylation of MAP kinases (ERK, p38, and JNK) was investigated in the Jurkat cells. Javamide-II had little effect on JNK or p38 phosphorylation, but javamide-II (<20 μM) decreased ERK phosphorylation, consequently reducing TNF-α mRNA expression in the cells ( P < 0.001). The involvement of ERK phosphorylation was also confirmed by an ERK1/2 inhibitor (SCH772984). Furthermore, javamide-II was also found to inhibit IL-2 production, which is up-regulated by ERK phosphorylation in cells ( P < 0.001). These data suggested that javamide-II may be a potent compound to suppress TNF-α production more efficiently than caffeine by inhibiting ERK phosphorylation in Jurkat cells.
Collapse
Affiliation(s)
- Jae B Park
- Diet, Genomics, and Immunology Laboratory, BHNRC, ARS , USDA , Building 307C, Room 131 , Beltsville , Maryland 20705 , United States
| |
Collapse
|
13
|
Liu QZ, Ma WT, Yang JB, Zhao ZB, Yan K, Yao Y, Li L, Miao Q, Gershwin ME, Lian ZX. The CXC Chemokine Receptor 3 Inhibits Autoimmune Cholangitis via CD8 + T Cells but Promotes Colitis via CD4 + T Cells. Front Immunol 2018; 9:1090. [PMID: 29868034 PMCID: PMC5966573 DOI: 10.3389/fimmu.2018.01090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/01/2018] [Indexed: 11/13/2022] Open
Abstract
CXC chemokine receptor 3 (CXCR3), a receptor for the C-X-C motif chemokines (CXCL) CXCL9, CXCL10, and CXCL11, which not only plays a role in chemotaxis but also regulates differentiation and development of memory and effector T cell populations. Herein, we explored the function of CXCR3 in the modulation of different organ-specific autoimmune diseases in interleukin (IL)-2 receptor deficiency (CD25-/-) mice, a murine model for both cholangitis and colitis. We observed higher levels of CXCL9 and CXCL10 in the liver and colon and higher expression of CXCR3 on T cells of the CD25-/- mice compared with control animals. Deletion of CXCR3 resulted in enhanced liver inflammation but alleviated colitis. These changes in liver and colon pathology after CXCR3 deletion were associated with increased numbers of hepatic CD4+ and CD8+ T cells, in particular effector memory CD8+ T cells, as well as decreased T cells in mesenteric lymph nodes and colon lamina propria. In addition, increased interferon-γ response and decreased IL-17A response was observed in both liver and colon after CXCR3 deletion. CXCR3 modulated the functions of T cells involved in different autoimmune diseases, whereas the consequence of such modulation was organ-specific regarding to their effects on disease severity. Our findings emphasize the importance of extra caution in immunotherapy for organ-specific autoimmune diseases, as therapeutic interventions aiming at a target such as CXCR3 for certain disease could result in adverse effects in an unrelated organ.
Collapse
Affiliation(s)
- Qing-Zhi Liu
- Liver Immunology Laboratory, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Chronic Disease Laboratory, School of Medicine, Institutes for Life Sciences, South China University of Technology, Guangzhou, China
| | - Wen-Tao Ma
- Liver Immunology Laboratory, School of Life Sciences, University of Science and Technology of China, Hefei, China.,College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
| | - Jing-Bo Yang
- Liver Immunology Laboratory, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Zhi-Bin Zhao
- Liver Immunology Laboratory, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Chronic Disease Laboratory, School of Medicine, Institutes for Life Sciences, South China University of Technology, Guangzhou, China
| | - Kai Yan
- Liver Immunology Laboratory, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Chronic Disease Laboratory, School of Medicine, Institutes for Life Sciences, South China University of Technology, Guangzhou, China
| | - Yuan Yao
- Liver Immunology Laboratory, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Chronic Disease Laboratory, School of Medicine, Institutes for Life Sciences, South China University of Technology, Guangzhou, China
| | - Liang Li
- Liver Immunology Laboratory, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Chronic Disease Laboratory, School of Medicine, Institutes for Life Sciences, South China University of Technology, Guangzhou, China
| | - Qi Miao
- Department of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Zhe-Xiong Lian
- Liver Immunology Laboratory, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Chronic Disease Laboratory, School of Medicine, Institutes for Life Sciences, South China University of Technology, Guangzhou, China
| |
Collapse
|
14
|
Sabino J, Torres J. Editorial: the role of colonic inflammation in the progression of liver disease in patients with primary sclerosing cholangitis. Aliment Pharmacol Ther 2018; 47:439-440. [PMID: 29314124 DOI: 10.1111/apt.14418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- J Sabino
- Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium
| | - J Torres
- Gastroenterology Department, Hospital Beatriz Ângelo, Loures, Portugal
| |
Collapse
|
15
|
Wu N, Song YL, Wang B, Zhang XY, Zhang XJ, Wang YL, Cheng YY, Chen DD, Xia XQ, Lu YS, Zhang YA. Fish gut-liver immunity during homeostasis or inflammation revealed by integrative transcriptome and proteome studies. Sci Rep 2016; 6:36048. [PMID: 27808112 PMCID: PMC5093735 DOI: 10.1038/srep36048] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 10/10/2016] [Indexed: 12/11/2022] Open
Abstract
The gut-associated lymphoid tissue, connected with liver via bile and blood, constructs a local immune environment of both defense and tolerance. The gut-liver immunity has been well-studied in mammals, yet in fish remains largely unknown, even though enteritis as well as liver and gallbladder syndrome emerged as a limitation in aquaculture. In this study, we performed integrative bioinformatic analysis for both transcriptomic (gut and liver) and proteomic (intestinal mucus and bile) data, in both healthy and infected tilapias. We found more categories of immune transcripts in gut than liver, as well as more adaptive immune in gut meanwhile more innate in liver. Interestingly reduced differential immune transcripts between gut and liver upon inflammation were also revealed. In addition, more immune proteins in bile than intestinal mucus were identified. And bile probably providing immune effectors to intestinal mucus upon inflammation was deduced. Specifically, many key immune transcripts in gut or liver as well as key immune proteins in mucus or bile were demonstrated. Accordingly, we proposed a hypothesized profile of fish gut-liver immunity, during either homeostasis or inflammation. Current data suggested that fish gut and liver may collaborate immunologically while keep homeostasis using own strategies, including potential unique mechanisms.
Collapse
Affiliation(s)
- Nan Wu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yu-Long Song
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.,Demorgen Bioinformation Technology Co. Ltd, Wuhan 430072, China
| | - Bei Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiang-Yang Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu-Jie Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Ya-Li Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Ying-Yin Cheng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Dan-Dan Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Qin Xia
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yi-Shan Lu
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.,State Key Laboratory of Freshwater Ecology and Biotechnology, Wuhan 430072, China
| |
Collapse
|
16
|
State of the Art, Unresolved Issues, and Future Research Directions in the Fight against Hepatitis C Virus: Perspectives for Screening, Diagnostics of Resistances, and Immunization. J Immunol Res 2016; 2016:1412840. [PMID: 27843956 PMCID: PMC5098088 DOI: 10.1155/2016/1412840] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/09/2016] [Accepted: 09/20/2016] [Indexed: 12/13/2022] Open
Abstract
Hepatitis C virus (HCV) still represents a major public health threat, with a dramatic burden from both epidemiological and clinical points of view. New generation of direct-acting antiviral agents (DAAs) has been recently introduced in clinical practice promising to cure HCV and to overcome the issues related to the interferon-based therapies. However, the emergence of drug resistance and the suboptimal activity of DAAs therapies against diverse HCV genotypes have been observed, determining treatment failure and hampering an effective control of HCV spread worldwide. Moreover, these treatments remain poorly accessible, particularly in low-income countries. Finally, effective screening strategy is crucial to early identifying and treating all HCV chronically infected patients. For all these reasons, even though new drugs may contribute to impacting HCV spread worldwide a preventive HCV vaccine remains a cornerstone in the road to significantly reduce the HCV spread globally, with the ultimate goal of its eradication. Advances in molecular vaccinology, together with a strong financial, political, and societal support, will enable reaching this fundamental success in the coming years. In this comprehensive review, the state of the art about these major topics in the fight against HCV and the future of research in these fields are discussed.
Collapse
|
17
|
Trivedi PJ, Bruns T, Ward S, Mai M, Schmidt C, Hirschfield GM, Weston CJ, Adams DH. Intestinal CCL25 expression is increased in colitis and correlates with inflammatory activity. J Autoimmun 2016; 68:98-104. [PMID: 26873648 PMCID: PMC4803021 DOI: 10.1016/j.jaut.2016.01.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/29/2016] [Accepted: 01/31/2016] [Indexed: 12/13/2022]
Abstract
CCL25-mediated activation of CCR9 is critical for mucosal lymphocyte recruitment to the intestine. In immune-mediated liver injury complicating inflammatory bowel disease, intrahepatic activation of this pathway allows mucosal lymphocytes to be recruited to the liver, driving hepatobiliary destruction in primary sclerosing cholangitis (PSC). However, in mice and healthy humans CCL25 expression is restricted to the small bowel, whereas few data exist on activation of this pathway in the inflamed colon despite the vast majority of PSC patients having ulcerative colitis. Herein, we show that colonic CCL25 expression is not only upregulated in patients with active colitis, but strongly correlates with endoscopic Mayo score and mucosal TNFα expression. Moreover, approximately 90% (CD4(+)) and 30% (CD8(+)) of tissue-infiltrating T-cells in colitis were identified as CCR9(+) effector lymphocytes, compared to <10% of T-cells being CCR9(+) in normal colon. Sorted CCR9(+) lymphocytes also demonstrated enhanced cellular adhesion to stimulated hepatic sinusoidal endothelium compared with their CCR9(-) counterparts when under flow. Collectively, these results suggest that CCR9/CCL25 interactions are not only involved in colitis pathogenesis but also correlate with colonic inflammatory burden; further supporting the existence of overlapping mucosal lymphocyte recruitment pathways between the inflamed colon and liver.
Collapse
Affiliation(s)
- Palak J Trivedi
- National Institute for Health Research (NIHR) Birmingham Liver Biomedical Research Unit (BRU), Institute of Immunology and Immunotherapy, University of Birmingham, United Kingdom; Liver Unit, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Tony Bruns
- National Institute for Health Research (NIHR) Birmingham Liver Biomedical Research Unit (BRU), Institute of Immunology and Immunotherapy, University of Birmingham, United Kingdom; Dept. of Internal Medicine IV, University Hospital Jena, Jena, Germany; Center for Sepsis Control and Care, University Hospital Jena, Jena, Germany
| | - Stephen Ward
- National Institute for Health Research (NIHR) Birmingham Liver Biomedical Research Unit (BRU), Institute of Immunology and Immunotherapy, University of Birmingham, United Kingdom; Department of General and Colorectal Surgery, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Martina Mai
- Dept. of Internal Medicine IV, University Hospital Jena, Jena, Germany; Center for Sepsis Control and Care, University Hospital Jena, Jena, Germany
| | - Carsten Schmidt
- Dept. of Internal Medicine IV, University Hospital Jena, Jena, Germany
| | - Gideon M Hirschfield
- National Institute for Health Research (NIHR) Birmingham Liver Biomedical Research Unit (BRU), Institute of Immunology and Immunotherapy, University of Birmingham, United Kingdom; Liver Unit, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Chris J Weston
- National Institute for Health Research (NIHR) Birmingham Liver Biomedical Research Unit (BRU), Institute of Immunology and Immunotherapy, University of Birmingham, United Kingdom
| | - David H Adams
- National Institute for Health Research (NIHR) Birmingham Liver Biomedical Research Unit (BRU), Institute of Immunology and Immunotherapy, University of Birmingham, United Kingdom; Liver Unit, Queen Elizabeth Hospital, Birmingham, United Kingdom.
| |
Collapse
|
18
|
Hu Y, Zhang H, Li J, Cong X, Chen Y, He G, Chi Y, Liu Y. Gut-derived lymphocyte recruitment to liver and induce liver injury in non-alcoholic fatty liver disease mouse model. J Gastroenterol Hepatol 2016; 31:676-84. [PMID: 26430807 DOI: 10.1111/jgh.13183] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 08/12/2015] [Accepted: 08/31/2015] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND AIM Most studies focus on gut-derived factors like microbiota and its products and how they contribute to non-alcoholic fatty liver disease (NAFLD) progression. This study investigated whether the gut-derived lymphocytes could migrate to the liver and induce liver injury in NAFLD. METHODS A high-fat diet induced an NAFLD mouse model, and lymphocytes were labeled with 1,1-dioctadecyl-3,3,3,3 tetramethylindotricarbocyanine iodide and carboxy-fluorescein succinimidyl ester, respectively, and intravenously injected to mice to monitor lymphocyte migration. RESULTS Adoptive transfer model results indicated that compared with lymphocytes from the spleen, bone marrow and thymus of NAFLD donor mice, mesenteric lymph nodes (MLN) cells from NAFLD donor mice predominately accumulated in the livers of NAFLD recipient mice. The frequencies of central memory CD4(+) T and CD8(+) T cells in livers of NAFLD mice were significantly increased; however, the activated T cells were not significantly altered. After adoptively transferred MLN cells, the frequencies of the activated CD4(+) T and CD8(+) T cells increased in livers of NAFLD recipient mice. By contrast, the frequencies of central memory and naïve CD4(+) T and CD8(+) T cells decreased. MLN cells also induced liver injury in NAFLD recipient mice, as reflected by elevated serum alanine aminotransferase and glutamic oxaloacetic transaminase serums. Moreover, the chemotaxis assay showed that CCL5 mediated the MLN cell migration to the liver. Also, blocking the CCL5 inhibited MLN cell migration to the liver in vitro. CONCLUSIONS Gut-derived lymphocytes from NAFLD mice could migrate to the liver and induce liver injury and hepatic CD4(+) T and CD8(+) T cells activation. The migration was associated with the upregulation of CCL5 in the liver.
Collapse
Affiliation(s)
- Ying Hu
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
| | - Henghui Zhang
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University Hepatology Institute, Peking University People's Hospital, Beijing, China
| | - Jing Li
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
| | - Xu Cong
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University Hepatology Institute, Peking University People's Hospital, Beijing, China
| | - Yanhui Chen
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University Hepatology Institute, Peking University People's Hospital, Beijing, China
| | - Gaixia He
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University Hepatology Institute, Peking University People's Hospital, Beijing, China
| | - Yujing Chi
- Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, China
| | - Yulan Liu
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
| |
Collapse
|