1
|
Kouroumalis E, Tsomidis I, Voumvouraki A. HFE-Related Hemochromatosis May Be a Primary Kupffer Cell Disease. Biomedicines 2025; 13:683. [PMID: 40149659 PMCID: PMC11940282 DOI: 10.3390/biomedicines13030683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/28/2025] [Accepted: 03/08/2025] [Indexed: 03/29/2025] Open
Abstract
Iron overload can lead to increased deposition of iron and cause organ damage in the liver, the pancreas, the heart and the synovium. Iron overload disorders are due to either genetic or acquired abnormalities such as excess transfusions or chronic liver diseases. The most common genetic disease of iron deposition is classic hemochromatosis (HH) type 1, which is caused by mutations of HFE. Other rare forms of HH include type 2A with mutations at the gene hemojuvelin or type 2B with mutations in HAMP that encodes hepcidin. HH type 3, is caused by mutations of the gene that encodes transferrin receptor 2. Mutations of SLC40A1 which encodes ferroportin cause either HH type 4A or HH type 4B. In the present review, an overview of iron metabolism including absorption by enterocytes and regulation of iron by macrophages, liver sinusoidal endothelial cells (LSECs) and hepatocyte production of hepcidin is presented. Hereditary Hemochromatosis and the current pathogenetic model are analyzed. Finally, a new hypothesis based on published data was suggested. The Kupffer cell is the primary defect in HFE hemochromatosis (and possibly in types 2 and 3), while the hepcidin-relative deficiency, which is the common underlying abnormality in the three types of HH, is a secondary consequence.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Department of Gastroenterology, PAGNI University Hospital, University of Crete Medical School, 71500 Heraklion, Greece
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Greece;
| | - Ioannis Tsomidis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Greece;
| | - Argyro Voumvouraki
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Greece;
| |
Collapse
|
2
|
Pei Z, Fan J, Tang M, Li Y. Ferroptosis: A New Strategy for the Treatment of Fibrotic Diseases. Adv Biol (Weinh) 2025; 9:e2400383. [PMID: 39377183 DOI: 10.1002/adbi.202400383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/07/2024] [Indexed: 10/09/2024]
Abstract
Ferroptosis is a new type of cell death characterized by iron dependence and the excessive accumulation of lipid reactive oxygen species (lipid ROS) that has gradually become better characterized. There is sufficient evidence indicating that ferroptosis is associated with a variety of human life activities and diseases, such as tumor suppression, ischemic organ injury, and degenerative disorders. Notably, ferroptosis is also involved in the initiation and development of fibrosis in various organs, including liver fibrosis, pulmonary fibrosis, renal fibrosis, and cardiac fibrosis, which is usually irreversible and refractory. Although a large number of patients with fibrosis urgently need to be treated, the current treatment options are still limited and unsatisfactory. Organ fibrosis involves a series of complex and orderly processes, such as parenchymal cell damage, recruitment of inflammatory cells and activation of fibroblasts, which ultimately leads to the accumulation of extracellular matrix (ECM) and the formation of fibrosis. An increasing number of studies have confirmed the close association between these pathological processes and ferroptosis. This review summarizes the role and function of ferroptosis in fibrosis and proposes several potential therapeutic strategies and pathways based on ferroptosis.
Collapse
Affiliation(s)
- Zhuo Pei
- Air Force Hospital of the Central Theater Command of PLA, Datong, 037006, China
| | - Jing Fan
- Air Force Hospital of the Northern Theater Command of the People's Liberation Army of China, Shenyang, 110044, China
| | - Maolin Tang
- Air Force Hospital of the Central Theater Command of PLA, Datong, 037006, China
| | - Yuhong Li
- Department of Cell Biology, Army Medical University, Chongqing, 400038, China
| |
Collapse
|
3
|
Xuan W, Song D, Hou J, Meng X. Regulation of Hippo-YAP1/TAZ pathway in metabolic dysfunction-associated steatotic liver disease. Front Pharmacol 2025; 16:1505117. [PMID: 39917623 PMCID: PMC11798981 DOI: 10.3389/fphar.2025.1505117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/07/2025] [Indexed: 02/09/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) has become the most prevalent chronic liver disease worldwide, but effective treatments are still lacking. Metabolic disorders such as iron overload, glycolysis, insulin resistance, lipid dysregulation, and glutaminolysis are found to induce liver senescence and ferroptosis, which are hot topics in the research of MASLD. Recent studies have shown that Hippo-YAP1/TAZ pathway is involved in the regulations of metabolism disorders, senescence, ferroptosis, inflammation, and fibrosis in MASLD, but their complex connections and contrast roles are also reported. In addition, therapeutics based on the Hippo-YAP1/TAZ pathway hold promising for MASLD treatment. In this review, we highlight the regulation and molecular mechanism of the Hippo-YAP1/TAZ pathway in MASLD and summarize potential therapeutic strategies for MASLD by regulating Hippo-YAP1/TAZ pathway.
Collapse
Affiliation(s)
- Wei Xuan
- Department of Hepatopancreaticobiliary Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Dandan Song
- Department of Clinical Laboratory, Second Hospital of Jilin University, Changchun, China
| | - Jianghua Hou
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Xiuping Meng
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
4
|
Shang J, Yan J, Lou H, Shou R, Zhan Y, Lu X, Fan X. Genome-wide DNA methylation sequencing reveals the involvement of ferroptosis in hepatotoxicity induced by dietary exposure to food-grade titanium dioxide. Part Fibre Toxicol 2024; 21:37. [PMID: 39294687 PMCID: PMC11409784 DOI: 10.1186/s12989-024-00598-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/06/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND Following the announcement by the European Food Safety Authority that the food additive titanium dioxide (E 171) is unsafe for human consumption, and the subsequent ban by the European Commission, concerns have intensified over the potential risks E 171 poses to human vital organs. The liver is the main organ for food-grade nanoparticle metabolism. It is increasingly being found that epigenetic changes may play an important role in nanomaterial-induced hepatotoxicity. However, the profound effects of E 171 on the liver, especially at the epigenetic level, remain largely unknown. METHODS Mice were exposed orally to human-relevant doses of two types of E 171 mixed in diet for 28 and/or 84 days. Conventional toxicology and global DNA methylation analyses were performed to assess E 171-induced hepatotoxicity and epigenetic changes. Whole genome bisulfite sequencing and further ferroptosis protein detection were used to reveal E 171-induced changes in liver methylation profiles and toxic mechanisms. RESULTS Exposed to E 171 for 28 and/or 84 days resulted in reduced global DNA methylation and hydroxymethylation in the liver of mice. E 171 exposure for 84 days elicited inflammation and damage in the mouse liver, whereas 28-day exposure did not. Whole-genome DNA methylation sequencing disclosed substantial methylation alterations at the CG and non-CG sites of the liver DNA in mice exposed to E 171 for 84 days. Mechanistic analysis of the DNA methylation alterations indicated that ferroptosis contributed to the liver toxicity induced by E 171. E 171-induced DNA methylation changes triggered NCOA4-mediated ferritinophagy, attenuated the protein levels of GPX4, FTH1, and FTL in the liver, and thereby caused ferroptosis. CONCLUSIONS Long-term oral exposure to E 171 triggers hepatotoxicity and induces methylation changes in both CG and non-CG sites of liver DNA. These epigenetic alterations activate ferroptosis in the liver through NCOA4-mediated ferritinophagy, highlighting the role of DNA methylation and ferroptosis in the potential toxicity caused by E 171 in vivo.
Collapse
Affiliation(s)
- Jiaxin Shang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jun Yan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - He Lou
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Rongshang Shou
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yingqi Zhan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoyan Lu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- State Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314102, China.
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China.
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- State Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314102, China.
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China.
- The Joint-Laboratory of Clinical Multi-Omics Research between Zhejiang University and Ningbo Municipal Hospital of TCM, Ningbo Municipal Hospital of TCM, Ningbo, 315010, China.
| |
Collapse
|
5
|
Amengual J, Alay A, Vaquero J, Gonzalez-Sanchez E, Bertran E, Sánchez A, Herrera B, Meyer K, Maus M, Serrano M, Martínez-Chantar ML, Fabregat I. Iron chelation as a new therapeutic approach to prevent senescence and liver fibrosis progression. Cell Death Dis 2024; 15:680. [PMID: 39289337 PMCID: PMC11408630 DOI: 10.1038/s41419-024-07063-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024]
Abstract
Iron overload and cellular senescence have been implicated in liver fibrosis, but their possible mechanistic connection has not been explored. To address this, we have delved into the role of iron and senescence in an experimental model of chronic liver injury, analyzing whether an iron chelator would prevent liver fibrosis by decreasing hepatocyte senescence. The model of carbon tetrachloride (CCl4) in mice was used as an experimental model of liver fibrosis. Results demonstrated that during the progression of liver fibrosis, accumulation of iron occurs, concomitant with the appearance of fibrotic areas and cells undergoing senescence. Isolated parenchymal hepatocytes from CCl4-treated mice present a gene transcriptomic signature compatible with iron accumulation and senescence, which correlates with induction of Reactive Oxygen Species (ROS)-related genes, activation of the Transforming Growth Factor-beta (TGF-β) pathway and inhibition of oxidative metabolism. Analysis of the iron-related gene signature in a published single-cell RNA-seq dataset from CCl4-treated livers showed iron accumulation correlating with senescence in other non-parenchymal liver cells. Treatment with deferiprone, an iron chelator, attenuated iron accumulation, fibrosis and senescence, concomitant with relevant changes in the senescent-associated secretome (SASP), which switched toward a more anti-inflammatory profile of cytokines. In vitro experiments in human hepatocyte HH4 cells demonstrated that iron accumulates in response to a senescence-inducing reagent, doxorubicin, being deferiprone able to prevent senescence and SASP, attenuating growth arrest and cell death. However, deferiprone did not significantly affect senescence induced by two different agents (doxorubicin and deoxycholic acid) or activation markers in human hepatic stellate LX-2 cells. Transcriptomic data from patients with different etiologies demonstrated the relevance of iron accumulation in the progression of liver chronic damage and fibrosis, correlating with a SASP-related gene signature and pivotal hallmarks of fibrotic changes. Altogether, our study establishes iron accumulation as a clinically exploitable driver to attenuate pathological senescence in hepatocytes.
Collapse
Affiliation(s)
- Josep Amengual
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Ania Alay
- Unit of Bioinformatics for Precision Oncology, Catalan Institute of Oncology (ICO), L'Hospitalet de Llobregat, Barcelona, Spain
- Preclinical and Experimental Research in Thoracic Tumors (PReTT), Oncobell Program, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Javier Vaquero
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- HepatoBiliary Tumours Lab, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Salamanca, 37007, Spain
| | - Ester Gonzalez-Sanchez
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- HepatoBiliary Tumours Lab, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Salamanca, 37007, Spain
- Department of Physiology and Pharmacology, University of Salamanca, 37007, Salamanca, Spain
| | - Esther Bertran
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Aránzazu Sánchez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Health Research Institute of the "Hospital Clínico San Carlos" (IdISSC), Madrid, Spain
| | - Blanca Herrera
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Health Research Institute of the "Hospital Clínico San Carlos" (IdISSC), Madrid, Spain
| | - Kathleen Meyer
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Altos Labs, Cambridge Institute of Science, Cambridge, United Kingdom
| | - Mate Maus
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Manuel Serrano
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Altos Labs, Cambridge Institute of Science, Cambridge, United Kingdom
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - María Luz Martínez-Chantar
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Liver Disease and Liver Metabolism Laboratory, CIC bioGUNE-BRTA (Basque Research & Technology Alliance), Derio, Bizkaia, Spain
| | - Isabel Fabregat
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain.
| |
Collapse
|
6
|
Li T, Zhang J, Li P. Ferritin and iron supplements in gestational diabetes mellitus: less or more? Eur J Nutr 2024; 63:67-78. [PMID: 37775606 DOI: 10.1007/s00394-023-03250-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 09/08/2023] [Indexed: 10/01/2023]
Abstract
Iron metabolism has been found to be closely related to gestational diabetes mellitus (GDM). Excessive ferritin levels were shown to be related to an increased risk of GDM because of iron overload which may lead to insulin resistance and β-cell injury by enhancing oxidative stress and inflammatory responses. On the contrary, insufficient ferritin levels can cause a number of obstetric complications, such as high incidence rates of anaemia and gestational hypertension. Therefore, high or low ferritin levels may have adverse effects on the mother and the foetus, putting clinicians in a dilemma when giving pregnant women iron supplements. This also explains why there have been more conflicting findings in the studies on dietary or oral iron supplementation during pregnancy. Hence, there is an urgent need for more evidence and strategies for appropriate recommendations for ferritin levels and iron supplementation during pregnancy to prevent iron insufficiency without causing iron overload and increasing the risk of GDM. Therefore, we gave an updated review on the association of GDM with ferritin metabolism, ferritin levels and iron supplementation based on the summary of the latest research.
Collapse
Affiliation(s)
- Tianlian Li
- Department of Endocrinology, Shengjing Hospital of China Medical University, No. 39, Huaxiang Road, Tiexi District, Shenyang, 110022, Liaoning, China
| | - Jingfan Zhang
- Department of Endocrinology, Shengjing Hospital of China Medical University, No. 39, Huaxiang Road, Tiexi District, Shenyang, 110022, Liaoning, China
| | - Ping Li
- Department of Endocrinology, Shengjing Hospital of China Medical University, No. 39, Huaxiang Road, Tiexi District, Shenyang, 110022, Liaoning, China.
| |
Collapse
|
7
|
Uzhytchak M, Lunova M, Smolková B, Jirsa M, Dejneka A, Lunov O. Iron oxide nanoparticles trigger endoplasmic reticulum damage in steatotic hepatic cells. NANOSCALE ADVANCES 2023; 5:4250-4268. [PMID: 37560414 PMCID: PMC10408607 DOI: 10.1039/d3na00071k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/13/2023] [Indexed: 08/11/2023]
Abstract
Iron oxide nanoparticles (IONPs) are being actively researched in various biomedical applications, particularly as magnetic resonance imaging (MRI) contrast agents for diagnosing various liver pathologies like nonalcoholic fatty liver diseases, nonalcoholic steatohepatitis, and cirrhosis. Emerging evidence suggests that IONPs may exacerbate hepatic steatosis and liver injury in susceptible livers such as those with nonalcoholic fatty liver disease. However, our understanding of how IONPs may affect steatotic cells at the sub-cellular level is still fragmented. Generally, there is a lack of studies identifying the molecular mechanisms of potential toxic and/or adverse effects of IONPs on "non-heathy" in vitro models. In this study, we demonstrate that IONPs, at a dose that does not cause general toxicity in hepatic cells (Alexander and HepG2), induce significant toxicity in steatotic cells (cells loaded with non-toxic doses of palmitic acid). Mechanistically, co-treatment with PA and IONPs resulted in endoplasmic reticulum (ER) stress, accompanied by the release of cathepsin B from lysosomes to the cytosol. The release of cathepsin B, along with ER stress, led to the activation of apoptotic cell death. Our results suggest that it is necessary to consider the interaction between IONPs and the liver, especially in susceptible livers. This study provides important basic knowledge for the future optimization of IONPs as MRI contrast agents for various biomedical applications.
Collapse
Affiliation(s)
- Mariia Uzhytchak
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences Prague 18221 Czech Republic
| | - Mariia Lunova
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences Prague 18221 Czech Republic
- Institute for Clinical & Experimental Medicine (IKEM) Prague 14021 Czech Republic
| | - Barbora Smolková
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences Prague 18221 Czech Republic
| | - Milan Jirsa
- Institute for Clinical & Experimental Medicine (IKEM) Prague 14021 Czech Republic
| | - Alexandr Dejneka
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences Prague 18221 Czech Republic
| | - Oleg Lunov
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences Prague 18221 Czech Republic
| |
Collapse
|
8
|
Sun Z, Zou X, Bao M, Huang Z, Lou Y, Zhang Y, Huang P. Role of Ferroptosis in Fibrosis Diseases. Am J Med Sci 2023:S0002-9629(23)01174-6. [PMID: 37192694 DOI: 10.1016/j.amjms.2023.04.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/22/2023] [Accepted: 04/20/2023] [Indexed: 05/18/2023]
Abstract
Ferroptosis is a pervasive non-apoptotic mode of cell death that is different from autophagy or necrosis. It is mainly caused by an imbalance between the production and degradation of lipid reactive oxygen species in cells. Several metabolic pathways and biochemical processes, such as amino acid and lipid metabolism, iron handling, and mitochondrial respiration, affect and regulate cell sensitivity to peroxidation and ferroptosis. Organ fibrosis, a pathological manifestation of several etiological conditions, leads to chronic tissue injury and is characterized by excessive deposition of extracellular matrix components. Excessive tissue fibrosis can have diverse pathophysiological effects on several organ systems, eventually causing organ dysfunction and failure. The current manuscript provides a review that illustrates the link between ferroptosis and organ fibrosis and to better understand the underlying mechanisms. It provides novel potential therapeutic approaches and targets for fibrosis diseases.
Collapse
Affiliation(s)
- Zhiyong Sun
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xiaozhou Zou
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Meihua Bao
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China
| | - Zhongjie Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China; College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yutao Lou
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China; College of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Yiwen Zhang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, Zhejiang, China.
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
9
|
Uzhytchak M, Smolková B, Lunova M, Frtús A, Jirsa M, Dejneka A, Lunov O. Lysosomal nanotoxicity: Impact of nanomedicines on lysosomal function. Adv Drug Deliv Rev 2023; 197:114828. [PMID: 37075952 DOI: 10.1016/j.addr.2023.114828] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/28/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Although several nanomedicines got clinical approval over the past two decades, the clinical translation rate is relatively small so far. There are many post-surveillance withdrawals of nanomedicines caused by various safety issues. For successful clinical advancement of nanotechnology, it is of unmet need to realize cellular and molecular foundation of nanotoxicity. Current data suggest that lysosomal dysfunction caused by nanoparticles is emerging as the most common intracellular trigger of nanotoxicity. This review analyzes prospect mechanisms of lysosomal dysfunction-mediated toxicity induced by nanoparticles. We summarized and critically assessed adverse drug reactions of current clinically approved nanomedicines. Importantly, we show that physicochemical properties have great impact on nanoparticles interaction with cells, excretion route and kinetics, and subsequently on toxicity. We analyzed literature on adverse reactions of current nanomedicines and hypothesized that adverse reactions might be linked with lysosomal dysfunction caused by nanomedicines. Finally, from our analysis it becomes clear that it is unjustifiable to generalize safety and toxicity of nanoparticles, since different particles possess distinct toxicological properties. We propose that the biological mechanism of the disease progression and treatment should be central in the optimization of nanoparticle design.
Collapse
Affiliation(s)
- Mariia Uzhytchak
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Barbora Smolková
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Mariia Lunova
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; Institute for Clinical & Experimental Medicine (IKEM), 14021 Prague, Czech Republic
| | - Adam Frtús
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Milan Jirsa
- Institute for Clinical & Experimental Medicine (IKEM), 14021 Prague, Czech Republic
| | - Alexandr Dejneka
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Oleg Lunov
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic.
| |
Collapse
|
10
|
Liang M, Chen L, He Q, Mi X, Qu L, Xie J, Song N. Intraperitoneal injection of iron dextran induces peripheral iron overload and mild neurodegeneration in the nigrostriatal system in C57BL/6 mice. Life Sci 2023; 320:121508. [PMID: 36858315 DOI: 10.1016/j.lfs.2023.121508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 03/03/2023]
Abstract
AIMS Elevated iron levels in the affected areas of brain are linked to several neurodegenerative diseases including Parkinson's disease (PD). This study investigated the influence of peripheral iron overload in peripheral tissues, as well as its entry into the brain regions on lysosomal functions. The survival of dopaminergic neurons in the nigrostriatal system and motor coordination were also investigated. MAIN METHODS An intraperitoneal injection of iron dextran (FeDx) mouse model was established. Western blot was used to detect iron deposition and lysosomal functions in the liver, spleen, hippocampal (HC), striatum (STR), substantia nigra (SN) and olfactory bulb (OB). Iron in serum and cerebrospinal fluid (CSF) was determined by an iron assay kit. Immunofluorescence and immunohistochemical staining were applied to detect dopaminergic neurons and fibers. Motor behavior was evaluated by gait analysis. KEY FINDINGS Iron was deposited consistently in the liver and spleen, and serum iron was elevated. While iron deposition occurred late in the HC, STR and SN, without apparently affecting CSF iron levels. Although cathepsin B (CTSB), cathepsin D (CTSD), glucocerebrosidase (GCase) and lysosome integrated membrane protein 2 (LIMP-2) protein levels were dramatically up-regulated in the liver and spleen, they were almost unchanged in the brain regions. However, CTSB was up-regulated in acute iron-overloaded OB and primary cultured astrocytes. The number of dopaminergic neurons in the SN remained unchanged, and mice did not exhibit significant motor incoordination. SIGNIFICANCE Intraperitoneal injection of FeDx in mice induces largely peripheral iron overload while not necessarily sufficient to cause severe disruption of the nigrostriatal system.
Collapse
Affiliation(s)
- Meiyu Liang
- School of Basic Medicine, Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao 266071, China
| | - Lei Chen
- School of Basic Medicine, Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao 266071, China
| | - Qing He
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Xiaoqing Mi
- School of Basic Medicine, Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao 266071, China
| | - Le Qu
- School of Basic Medicine, Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao 266071, China
| | - Junxia Xie
- School of Basic Medicine, Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao 266071, China.
| | - Ning Song
- School of Basic Medicine, Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
11
|
Chen L, Zhao Q, Du X, Chen X, Jiao Q, Jiang H. Effects of oxidative stress caused by iron overload on arachidonic acid metabolites in MES23.5 cells. J Biosci 2022. [DOI: 10.1007/s12038-022-00321-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Zhang F, Zhen H, Cheng H, Hu F, Jia Y, Huang B, Jiang M. Di-(2-ethylhexyl) phthalate exposure induces liver injury by promoting ferroptosis via downregulation of GPX4 in pregnant mice. Front Cell Dev Biol 2022; 10:1014243. [PMID: 36438553 PMCID: PMC9686828 DOI: 10.3389/fcell.2022.1014243] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/25/2022] [Indexed: 10/07/2023] Open
Abstract
As one kind of endocrine disrupting chemical, di-(2-ethylhexyl) phthalate (DEHP) has been reported to cause liver dysfunction in epidemiological and experimental studies. Abnormal liver function in pregnancy is associated with adverse maternal and perinatal outcomes. Few studies have investigated the potential effect of gestational DEHP exposure on the liver in pregnant mice, and the underlying mechanisms remain unclear. In the present study, pregnant ICR mice were exposed to doses (0, 500, 1,000 mg/kg/day) of DEHP in the presence or absence of 5 mg/kg/day ferrostatin-1 (Fer-1, ferroptosis inhibitor) by oral gavage from gestation day 4 to day 18. HepG2 cells were exposed to different doses of monoethylhexyl phthalate (MEHP, a major metabolite of DEHP) in vitro. Hepatic function and pathologic changes were observed. Oxidative stress, iron metabolism, and ferroptosis-related indicators and genes were evaluated both in vivo and in vitro. The results showed that gestational DEHP exposure induced disordered liver function and hepatocyte morphology changes in pregnant mice, along with increased malondialdehyde (MDA) and Fe2+ content and decreased glutathione (GSH) levels. The expression levels of the selected ferroptosis-related genes Slc7a11, Gpx4, and Nfr2 were significantly decreased, and Ptgs2 and Lpcat3 were significantly increased. Notably, Fer-1 attenuated DEHP-induced liver injury and ferroptosis. Furthermore, MEHP exhibited a synergistic effect with RSL3 (a GPX4 inhibitor) in promoting ferroptosis in vitro. Taken together, the results demonstrated that DEHP induced liver injury and ferroptosis in pregnant mice, probably by inhibiting the GPX4 pathway through lipid peroxidation and iron accumulation.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Hualong Zhen
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Hengshun Cheng
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Fengying Hu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Yunfei Jia
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Binbin Huang
- MOE Key Laboratory of Population Health Across Life Cycle, Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Minmin Jiang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, China
| |
Collapse
|
13
|
Chen H, Zhao W, Yan X, Huang T, Yang A. Overexpression of Hepcidin Alleviates Steatohepatitis and Fibrosis in a Diet-induced Nonalcoholic Steatohepatitis. J Clin Transl Hepatol 2022; 10:577-588. [PMID: 36062292 PMCID: PMC9396326 DOI: 10.14218/jcth.2021.00289] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND AIMS Iron overload can contribute to the progression of nonalcoholic fatty liver disease (NAFLD) to nonalcoholic steatohepatitis (NASH). Hepcidin (Hamp), which is primarily synthesized in hepatocytes, is a key regulator of iron metabolism. However, the role of Hamp in NASH remains unclear. Therefore, we aimed to elucidate the role of Hamp in the pathophysiology of NASH. METHODS Male mice were fed a choline-deficient L-amino acid-defined (CDAA) diet for 16 weeks to establish the mouse NASH model. A choline-supplemented amino acid-defined (CSAA) diet was used as the control diet. Recombinant adeno-associated virus genome 2 serotype 8 vector expressing Hamp (rAAV2/8-Hamp) or its negative control (rAAV2/8-NC) was administered intravenously at week 8 of either the CDAA or CSAA diet. RESULTS rAAV2/8-Hamp treatment markedly decreased liver weight and improved hepatic steatosis in the CDAA-fed mice, accompanied by changes in lipogenesis-related genes and adiponectin expression. Compared with the control group, rAAV2/8-Hamp therapy attenuated liver damage, with mice exhibiting reduced histological NAFLD inflammation and fibrosis, as well as lower levels of liver enzymes. Moreover, α-smooth muscle actin-positive activated hepatic stellate cells (HSCs) and CD68-postive macrophages increased in number in the CDAA-fed mice, which was reversed by rAAV2/8-Hamp treatment. Consistent with the in vivo findings, overexpression of Hamp increased adiponectin expression in hepatocytes and Hamp treatment inhibited HSC activation. CONCLUSIONS Overexpression of Hamp using rAAV2/8-Hamp robustly attenuated liver steatohepatitis, inflammation, and fibrosis in an animal model of NASH, suggesting a potential therapeutic role for Hamp.
Collapse
Affiliation(s)
- Hui Chen
- Digestive Department, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Correspondence to: Hui Chen, Digestive Department, Beijing Chaoyang Hospital, Capital Medical University, No. 5 Jingyuan Road, Shijingshan District, Beijing 100043, China. Tel: +86-10-51718484, Fax: +86-10-83165944, E-mail: . Aiting Yang, Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China. ORCID: https://orcid.org/0000-0002-5671-696X. Tel: +86-10-63139311, Fax: +86-10-83165944, E-mail:
| | - Wenshan Zhao
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Xuzhen Yan
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Tao Huang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Aiting Yang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center of Digestive Diseases, Beijing, China
- Beijing Clinical Medicine Institute, Beijing, China
- Correspondence to: Hui Chen, Digestive Department, Beijing Chaoyang Hospital, Capital Medical University, No. 5 Jingyuan Road, Shijingshan District, Beijing 100043, China. Tel: +86-10-51718484, Fax: +86-10-83165944, E-mail: . Aiting Yang, Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China. ORCID: https://orcid.org/0000-0002-5671-696X. Tel: +86-10-63139311, Fax: +86-10-83165944, E-mail:
| |
Collapse
|
14
|
Zou L, Zhang H, Wang Q, Zhong W, Du Y, Liu H, Xing W. Simultaneous liver steatosis, fibrosis and iron deposition quantification with mDixon quant based on radiomics analysis in a rabbit model. Magn Reson Imaging 2022; 94:36-42. [PMID: 35988836 DOI: 10.1016/j.mri.2022.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/08/2022] [Accepted: 08/14/2022] [Indexed: 11/17/2022]
Abstract
PURPOSE To evaluate the feasibility of simultaneous quantification of liver fibrosis, liver steatosis and abnormal iron deposition using mDixon Quant based on radiomics analysis, and to eliminate the interference among different histopathologic features. METHODS One hundred and twenty rabbits that were administered CCl4 for 4-16 weeks and a cholesterol rich diet for the initial 4 weeks in the experimental group and 20 rabbits in the control group were examined using mDixon. Radiomics features of the whole liver were extracted from PDFF and R2* and radiomics models for discriminating steatosis: S0-S1 vs. S2-S4, fibrosis: F0-F2 vs. F3-F4 and iron deposition: normal vs. abnormal were constructed respectively and evaluated using receiver operating characteristic (ROC) curves with the histopathological results as reference standard. Combined corrected models merging the radscore and the other two histopathologic features were evaluated using multiple logistic regression analyses and compared with radiomics models. RESULTS The area under the ROC curve (AUC) of the radiomics model with PDFF features was 0.886 and 0.843 in the training and the test set, respectively, for the diagnosis of liver steatosis grade S0-1 and S2-S4. The radiomics model based on R2* features were 0.815 and 0.801 for distinguishing F0-F2 and F3-F4 and 0.831 and 0.738 for discriminating abnormal iron deposition in the training and test set, respectively. The corrected model for liver steatosis and fibrosis (0.944 and 0.912 in the test set) outperformed the radiomics models by eliminating the interference of histopathologic features(P < 0.05), but had comparable diagnostic performance for abnormal iron deposition(P > 0.05). CONCLUSIONS It is feasible for mDixon to simultaneously quantify whole liver steatosis, fibrosis and iron deposition based on radiomics analysis. It is valuable to minimize the interference of different pathological features for the assessment of liver steatosis and fibrosis.
Collapse
Affiliation(s)
- LiQiu Zou
- Department of Radiology, Sixth Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, China
| | - Hao Zhang
- Department of Radiology, Sixth Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, China
| | - Qing Wang
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213200, China
| | - WenXin Zhong
- Department of Radiology, Sixth Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, China
| | - YaNan Du
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213200, China
| | - HaiFeng Liu
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213200, China
| | - Wei Xing
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213200, China.
| |
Collapse
|
15
|
Role of Iron in Aging Related Diseases. Antioxidants (Basel) 2022; 11:antiox11050865. [PMID: 35624729 PMCID: PMC9137504 DOI: 10.3390/antiox11050865] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/17/2022] [Accepted: 04/25/2022] [Indexed: 02/05/2023] Open
Abstract
Iron progressively accumulates with age and can be further exacerbated by dietary iron intake, genetic factors, and repeated blood transfusions. While iron plays a vital role in various physiological processes within the human body, its accumulation contributes to cellular aging in several species. In its free form, iron can initiate the formation of free radicals at a cellular level and contribute to systemic disorders. This is most evident in high iron conditions such as hereditary hemochromatosis, when accumulation of iron contributes to the development of arthritis, cirrhosis, or cardiomyopathy. A growing body of research has further identified iron’s contributory effects in neurodegenerative diseases, ocular disorders, cancer, diabetes, endocrine dysfunction, and cardiovascular diseases. Reducing iron levels by repeated phlebotomy, iron chelation, and dietary restriction are the common therapeutic considerations to prevent iron toxicity. Chelators such as deferoxamine, deferiprone, and deferasirox have become the standard of care in managing iron overload conditions with other potential applications in cancer and cardiotoxicity. In certain animal models, drugs with iron chelating ability have been found to promote health and even extend lifespan. As we further explore the role of iron in the aging process, iron chelators will likely play an increasingly important role in our health.
Collapse
|
16
|
Li T, Tan Y, Ouyang S, He J, Liu L. Resveratrol protects against myocardial ischemia-reperfusion injury via attenuating ferroptosis. Gene 2022; 808:145968. [PMID: 34530090 DOI: 10.1016/j.gene.2021.145968] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/09/2021] [Accepted: 09/09/2021] [Indexed: 01/18/2023]
Abstract
Resveratrol (Res) is a polyphenol with a variety of biological activities. However, whether Res can prevent myocardial ischemia-reperfusion (I/R) injury is not yet known. This study aimed to investigate the protective effect of Res on myocardial I/R injury and to explore its potential mechanism. H9c2 cells were used for the in vitro experiments and oxygen-glucose deprivation/reoxygenation (OGD/R) model was established. Rats were ligated and perfused by the left anterior descending branch with or without Res (50 mg/kg·bw) for 14 days.The higher level of oxidative stress and Fe2+ content was observed in OGD/R-induced H9c2 cells than that of normal cells. OGD/R-induced H9c2 cells showed increased ferroptosis, mainly by reducing the expression of glutathione peroxidase 4 (GPX4) and ferritin heavy chain 1 (FTH1), but enhancing the expression of transferrin receptor 1 (TfR1). Both in vivo and in vitro experiments indicated that Res reduced the level of oxidative stress and Fe2 + content. In addition, Res inhibited ferroptosis, decreased TfR1 expression, and increased the expressions of FTH1 and GPX4 in OGD/R-induced H9c2 cells and I/R rats. Moreover, we found that Res inhibited ferroptosis by the regulation of ubiquity specific peptidase 19 (USP19)-Beclin1 autophagy. Res protects against myocardial I/R injury via reducing oxidative stress and attenuating ferroptosis. Res could be a potential agent to the prevention of myocardial I/R injury.
Collapse
Affiliation(s)
- Ting Li
- Departments of Cardiovascular Medicine, The First Affiliated Hospital, University of South China, Hengyang, Hunan, 421001, PR China.
| | - Ying Tan
- Departments of Cardiovascular Medicine, The First Affiliated Hospital, University of South China, Hengyang, Hunan, 421001, PR China
| | - Shao Ouyang
- Departments of Cardiovascular Medicine, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, 421001, PR China
| | - Jin He
- Departments of Cardiovascular Medicine, The First Affiliated Hospital, University of South China, Hengyang, Hunan, 421001, PR China
| | - Lingling Liu
- Departments of Cardiovascular Medicine, The First Affiliated Hospital, University of South China, Hengyang, Hunan, 421001, PR China
| |
Collapse
|
17
|
Zaman BA, Rasool SO, Merza MA, Abdulah DM. Hepcidin-to-ferritin ratio: A potential novel index to predict iron overload-liver fibrosis in ß-thalassemia major. Transfus Clin Biol 2021; 29:153-160. [PMID: 34856399 DOI: 10.1016/j.tracli.2021.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 11/25/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVES We aimed to determine a threshold cutoff for hepcidin, ferritin, and the hepcidin-to-ferritin ratio in the diagnosis of liver fibrosis caused by iron overload in chronic hepatitis C virus (HCV)-free ß-thalassemia major patients . METHODS This 1:1-matched case-control study included 102 individuals (3-30 yr.); 51 ß-thalassemia major patients with iron overload , and 51 apparently healthy individuals. RESULTS The highest areas under the receiver operating characteristic curves (AUC-ROCs) for the diagnosis of patients vs. controls had overlapping 95% confidence intervals (CIs): serum hepcidin (0.758; 0.64-0.87; P ˂ 0.001), serum ferritin (1.000; 1.00-1.00; P˂0.001), and the hepcidin/ferritin ratio (1.000; 1.00-1.00; P˂0.001). For differentiation of patients with liver fibrosis stages of F0-F1 vs. F2-F4 and F0-F1 vs. F3-F4, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) with P-values˂0.001 were the only statistically significant parameters, while the AUC-ROCs of the hepcidin/ferritin ratio (0.631, P=0.188 and 0.684, P=0.098) exhibited 90% and 89.5% sensitivity, respectively, in staging liver fibrosis. CONCLUSION Our results showed that the hepcidin/ferritin ratio is as effective as the APRI and maybe a better predictor for the diagnosis of liver fibrosis and discriminating its stages, with excellent sensitivity and specificity compared to its components.
Collapse
Affiliation(s)
- B A Zaman
- Department of Pharmacology, College of Pharmacy, University of Duhok, Kurdistan region, Iraq.
| | - S O Rasool
- Department of Clinical Pharmacy, College of Pharmacy, University of Duhok, Kurdistan region, Iraq.
| | - M A Merza
- Azadi Teaching Hospital, Department of Internal Medicine, College of Pharmacy, University of Duhok, Kurdistan region, Iraq.
| | - D M Abdulah
- Community Health Unit, College of Nursing, University of Duhok, Kurdistan region, Iraq.
| |
Collapse
|
18
|
Lunova M, Frankova S, Gottfriedova H, Senkerikova R, Neroldova M, Kovac J, Kieslichova E, Lanska V, Sticova E, Spicak J, Jirsa M, Sperl J. Portal hypertension is the main driver of liver stiffness in advanced liver cirrhosis. Physiol Res 2021; 70:563-577. [PMID: 34062072 DOI: 10.33549/physiolres.934626] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Liver stiffness (LS) is a novel non-invasive parameter widely used in clinical hepatology. LS correlates with liver fibrosis stage in non-cirrhotic patients. In cirrhotic patients it also shows good correlation with Hepatic Venous Pressure Gradient (HVPG). Our aim was to assess the contribution of liver fibrosis and portal hypertension to LS in patients with advanced liver cirrhosis. Eighty-one liver transplant candidates with liver cirrhosis of various aetiologies underwent direct HVPG and LS measurement by 2D shear-wave elastography (Aixplorer Multiwave, Supersonic Imagine, France). Liver collagen content was assessed in the explanted liver as collagen proportionate area (CPA) and hydroxyproline content (HP). The studied cohort included predominantly patients with Child-Pugh class B and C (63/81, 77.8%), minority of patients were Child-Pugh A (18/81, 22.2%). LS showed the best correlation with HVPG (r=0.719, p< 0.001), correlation of LS with CPA (r=0.441, p< 0.001) and HP/Amino Acids (r=0.414, p< 0.001) was weaker. Both variables expressing liver collagen content showed good correlation with each other (r=0.574, p<0.001). Multiple linear regression identified the strongest association between LS and HVPG (p < 0.0001) and weaker association of LS with CPA (p = 0.01883). Stepwise modelling showed minimal increase in r2 after addition of CPA to HVPG (0.5073 vs. 0.5513). The derived formula expressing LS value formation is: LS = 2.48 + (1.29 x HVPG) + (0.26 x CPA). We conclude that LS is determined predominantly by HVPG in patients with advanced liver cirrhosis whereas contribution of liver collagen content is relatively low.
Collapse
Affiliation(s)
- M Lunova
- Department of Hepatogastroenterology, Transplant Centre; Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Qi X, Song A, Ma M, Wang P, Zhang X, Lu C, Zhang J, Zheng S, Jin H. Curcumol inhibits ferritinophagy to restrain hepatocyte senescence through YAP/NCOA4 in non-alcoholic fatty liver disease. Cell Prolif 2021; 54:e13107. [PMID: 34346124 PMCID: PMC8450123 DOI: 10.1111/cpr.13107] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/23/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
Objectives In recent years, cellular senescence has attracted a lot of interest in researchers due to its involvement in non‐alcoholic fatty liver disease (NAFLD). However, the mechanism of cellular senescence is not clear. The purpose of this study was to investigate the effect of curcumol on hepatocyte senescence in NAFLD and the molecular mechanisms implicated. Materials and methods LVG Golden Syrian hamsters, C57BL/6J mice and human hepatocyte cell line LO2 were used. Cellular senescence was assessed by analyses of senescence marker SA‐β‐gal, p16 and p21, H3K9me3, γ‐H2AX and telomerase activity. Results The results showed that curcumol could inhibit hepatocyte senescence in both in vivo and in vitro NAFLD models, and the mechanism might be related to its regulation of ferritinophagy and subsequent alleviation of iron overload. Moreover, overexpression of nuclear receptor coactivator 4 (NCOA4) weakened the effect of curcumol on ferritinophagy‐mediated iron overload and cellular senescence. Furthermore, we demonstrated that curcumol reduced the expression of NCOA4 by Yes‐associated protein (YAP). In addition, depression of YAP could impair the effect of curcumol on iron overload and cellular senescence. Conclusion Our results clarified the mechanism of curcumol inhibition of hepatocyte senescence through YAP/NCOA4 regulation of ferritinophagy in NAFLD. These findings provided a promising option of curcumol to regulate cellular senescence by target YAP/NCOA4 for the treatment of NAFLD.
Collapse
Affiliation(s)
- Xiaoyu Qi
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Anping Song
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Mingyue Ma
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Peipei Wang
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Xinbei Zhang
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Chunfeng Lu
- School of Pharmacy, Nantong University, Nantong, China
| | - Junxiu Zhang
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Shuguo Zheng
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Huanhuan Jin
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, China
| |
Collapse
|
20
|
Iron overload-induced oxidative stress in myelodysplastic syndromes and its cellular sequelae. Crit Rev Oncol Hematol 2021; 163:103367. [PMID: 34058341 DOI: 10.1016/j.critrevonc.2021.103367] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 03/30/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022] Open
Abstract
The myelodysplastic syndromes (MDS) are clonal hematopoietic stem cell disorders. MDS patients often require red blood cell transfusions, resulting in iron overload (IOL). IOL increases production of reactive oxygen species (ROS), oxygen free radicals. We review and illustrate how IOL-induced ROS influence cellular activities relevant to MDS pathophysiology. ROS damage lipids, nucleic acids in mitochondrial and nuclear DNA, structural proteins, transcription factors and enzymes. Cellular consequences include decreased metabolism and tissue and organ dysfunction. In hematopoietic stem cells (HSC), consequences of ROS include decreased glycolysis, shifting the cell from anaerobic to aerobic metabolism and causing HSC to exit the quiescent state, leading to HSC exhaustion or senescence. ROS oxidizes DNA bases, resulting in accumulation of mutations. Membrane oxidation alters fluidity and permeability. In summary, evidence indicates that IOL-induced ROS alters cellular signaling pathways resulting in toxicity to organs and hematopoietic cells, in keeping with adverse clinical outcomes in MDS.
Collapse
|
21
|
Zhang Y, Yang B, Davis JM, Drake MM, Younes M, Shen Q, Zhao Z, Cao Y, Ko TC. Distinct Murine Pancreatic Transcriptomic Signatures during Chronic Pancreatitis Recovery. Mediators Inflamm 2021; 2021:5595464. [PMID: 34104113 PMCID: PMC8158417 DOI: 10.1155/2021/5595464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/15/2021] [Accepted: 04/25/2021] [Indexed: 11/17/2022] Open
Abstract
We have previously demonstrated that the pancreas can recover from chronic pancreatitis (CP) lesions in the cerulein-induced mouse model. To explore how pancreatic recovery is achieved at the molecular level, we used RNA-sequencing (seq) and profiled transcriptomes during CP transition to recovery. CP was induced by intraperitoneally injecting cerulein in C57BL/6 mice. Time-matched controls (CON) were given normal saline. Pancreata were harvested from mice 4 days after the final injections (designated as CP and CON) or 4 weeks after the final injections (designated as CP recovery (CPR) and control recovery (CONR)). Pancreatic RNAs were extracted for RNA-seq and quantitative (q) PCR validation. Using RNA-seq, we identified a total of 3,600 differentially expressed genes (DEGs) in CP versus CON and 166 DEGs in CPR versus CONR. There are 132 DEGs overlapped between CP and CPR and 34 DEGs unique to CPR. A number of selected pancreatic fibrosis-relevant DEGs were validated by qPCR. The top 20 gene sets enriched from DEGs shared between CP and CPR are relevant to extracellular matrix and cancer biology, whereas the top 10 gene sets enriched from DEGs specific to CPR are pertinent to DNA methylation and specific signaling pathways. In conclusion, we identified a distinct set of DEGs in association with extracellular matrix and cancer cell activities to contrast CP and CPR. Once during ongoing CP recovery, DEGs relevant to DNA methylation and specific signaling pathways were induced to express. The DEGs shared between CP and CPR and the DEGs specific to CPR may serve as the unique transcriptomic signatures and biomarkers for determining CP recovery and monitoring potential therapeutic responses at the molecular level to reflect pancreatic histological resolution.
Collapse
Affiliation(s)
- Yinjie Zhang
- Department of Surgery, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Baibing Yang
- Department of Surgery, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Joy M. Davis
- Department of Surgery, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Madeline M. Drake
- Department of Surgery, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Mamoun Younes
- Department of Pathology & Laboratory Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Qiang Shen
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yanna Cao
- Department of Surgery, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Tien C. Ko
- Department of Surgery, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
22
|
Kuscuoglu D, Bewersdorf L, Wenzel K, Gross A, Kobazi Ensari G, Luo Y, Kilic K, Hittatiya K, Golob-Schwarzl N, Leube RE, Preisinger C, George J, Metwally M, Eslam M, Lampertico P, Petta S, Mangia A, Berg T, Boonstra A, Brouwer WP, Abate ML, Loglio A, Sutton A, Nahon P, Schaefer B, Zoller H, Aigner E, Trautwein C, Haybaeck J, Strnad P. Dual proteotoxic stress accelerates liver injury via activation of p62-Nrf2. J Pathol 2021; 254:80-91. [PMID: 33586163 DOI: 10.1002/path.5643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 01/29/2021] [Accepted: 02/10/2021] [Indexed: 02/06/2023]
Abstract
Protein accumulation is the hallmark of various neuronal, muscular, and other human disorders. It is also often seen in the liver as a major protein-secretory organ. For example, aggregation of mutated alpha1-antitrypsin (AAT), referred to as PiZ, is a characteristic feature of AAT deficiency, whereas retention of hepatitis B surface protein (HBs) is found in chronic hepatitis B (CHB) infection. We investigated the interaction of both proteotoxic stresses in humans and mice. Animals overexpressing both PiZ and HBs (HBs-PiZ mice) had greater liver injury, steatosis, and fibrosis. Later they exhibited higher hepatocellular carcinoma load and a more aggressive tumor subtype. Although PiZ and HBs displayed differing solubility properties and distinct distribution patterns, HBs-PiZ animals manifested retention of AAT/HBs in the degradatory pathway and a marked accumulation of the autophagy adaptor p62. Isolation of p62-containing particles revealed retained HBs/AAT and the lipophagy adapter perilipin-2. p62 build-up led to activation of the p62-Nrf2 axis and emergence of reactive oxygen species. Our results demonstrate that the simultaneous presence of two prevalent proteotoxic stresses promotes the development of liver injury due to protein retention and activation of the p62-Nrf2 axis. In humans, the PiZ variant was over-represented in CHB patients with advanced liver fibrosis (unadjusted odds ratio = 9.92 [1.15-85.39]). Current siRNA approaches targeting HBs/AAT should be considered for these individuals. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Deniz Kuscuoglu
- Department of Medicine III, University Hospital Aachen, Aachen, Germany
| | - Lisa Bewersdorf
- Department of Medicine III, University Hospital Aachen, Aachen, Germany
| | - Kathrin Wenzel
- Department of Medicine III, University Hospital Aachen, Aachen, Germany
| | - Annika Gross
- Department of Medicine III, University Hospital Aachen, Aachen, Germany
| | | | - Yizhao Luo
- Department of Medicine III, University Hospital Aachen, Aachen, Germany
| | - Konrad Kilic
- Department of Medicine III, University Hospital Aachen, Aachen, Germany
| | | | | | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Christian Preisinger
- Proteomics Facility, Interdisciplinary Centre for Clinical Research (IZKF), Medical School, RWTH Aachen University, Aachen, Germany
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, Australia
| | - Mayada Metwally
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, Australia
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, Australia
| | - Pietro Lampertico
- CRC 'A. M. e A. Migliavacca' Center for Liver Disease Division of Gastroenterology and Hepatology Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Università di Milano, Milan, Italy
| | - Salvatore Petta
- Sezione di Gastroenterologia e Epatologia, DiBiMIS, University of Palermo, Palermo, Italy
| | - Alessandra Mangia
- Division of Hepatology, Ospedale Casa Sollievo della Sofferenza, IRCCS, San Giovanni Rotondo, Italy
| | - Thomas Berg
- Section of Hepatology, Clinic for Gastroenterology and Rheumatology, University Clinic Leipzig, Leipzig, Germany
| | - Andre Boonstra
- Department of Gastroenterology and Hepatology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Willem P Brouwer
- Department of Gastroenterology and Hepatology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Maria Lorena Abate
- Division of Gastroenterology and Hepatology, Department of Medical Science, University of Turin, Turin, Italy
| | - Alessandro Loglio
- CRC 'A. M. e A. Migliavacca' Center for Liver Disease Division of Gastroenterology and Hepatology Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Università di Milano, Milan, Italy
| | - Angela Sutton
- Centre de Ressources Biologiques (Liver Disease Biobank) Groupe Hospitalier Paris, Seine-Saint-Denis, France
- AP-HP Hôpital Jean Verdier, Service de Biochimie, Bondy, France
- Inserm U1148, Université Paris 13, Bobigny, France
| | - Pierre Nahon
- AP-HP, Hôpital Jean Verdier, Service d'Hépatologie, Bondy, France
- Université Paris 13, Sorbonne Paris Cité, 'Equipe Labellisée Ligue Contre le Cancer', Saint-Denis, France
- Inserm, UMR-1162, 'Génomique Fonctionnelle des Tumeur Solides', Paris, France
| | - Benedikt Schaefer
- Department of Internal Medicine I, Medical University of Innsbruck, Innsbruck, Austria
| | - Heinz Zoller
- Department of Internal Medicine I, Medical University of Innsbruck, Innsbruck, Austria
| | - Elmar Aigner
- First Department of Medicine, Paracelsus Medical University, Salzburg, Austria
| | | | - Johannes Haybaeck
- Department of Pathology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Department of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
| | - Pavel Strnad
- Department of Medicine III, University Hospital Aachen, Aachen, Germany
| |
Collapse
|
23
|
Huang Y, Wu B, Shen D, Chen J, Yu Z, Chen C. Ferroptosis in a sarcopenia model of senescence accelerated mouse prone 8 (SAMP8). Int J Biol Sci 2021; 17:151-162. [PMID: 33390840 PMCID: PMC7757032 DOI: 10.7150/ijbs.53126] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/01/2020] [Indexed: 12/20/2022] Open
Abstract
As a systemic syndrome characterized by age-associated degenerative skeletal muscle atrophy, sarcopenia leads to a risk of adverse outcomes in the elderly. Age-related iron accumulation is found in the muscles of sarcopenia animal models and patients, but the role of iron in sarcopenia remains poorly understood. It has been recently found that iron overload in several diseases is involved in ferroptosis, an iron- dependent form of programmed cell death. However, whether this excess iron can result in ferroptosis in muscles is still unclear. In our present study, we found that ferric citrate induced ferroptosis in C2C12 cells, as well as impaired their differentiation from myoblasts to myotubes. Due to the decreased muscle mass and fiber size, 40-week-old senescence accelerated mouse prone 8 (SAMP8) mice were used as a sarcopenia model, in whose muscles the iron content and markers of ferroptosis were found to increase, compared to 8-week- old SAMP8 controls. Moreover, our results showed that iron overload upregulated the expression of P53, which subsequently repressed the protein level of Slc7a11 (solute carrier family 7, member 11), a known ferroptosis-related gene. The downregulation of Slc7a11 then induced the ferroptosis of muscle cells through the accumulation of lipid peroxidation products, which may be one of the causes of sarcopenia. The findings in this study indicate that iron plays a key role in triggering P53- Slc7a11-mediated ferroptosis in muscles, and suggest that targeting iron accumulation and ferroptosis might be a therapeutic strategy for treating sarcopenia.
Collapse
Affiliation(s)
- Yan Huang
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, People's Republic of China
| | - Beiling Wu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, People's Republic of China
| | - Dingzhu Shen
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, People's Republic of China
| | - Jiulin Chen
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, People's Republic of China
| | - Zhihua Yu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, People's Republic of China
| | - Chuan Chen
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, People's Republic of China
| |
Collapse
|
24
|
Hamed EM, Meabed MH, Aly UF, Hussein RRS. Recent Progress in Gene Therapy and Other Targeted Therapeutic Approaches for Beta Thalassemia. Curr Drug Targets 2020; 20:1603-1623. [PMID: 31362654 DOI: 10.2174/1389450120666190726155733] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/17/2019] [Accepted: 07/05/2019] [Indexed: 01/19/2023]
Abstract
Beta-thalassemia is a genetic disorder characterized by the impaired synthesis of the betaglobin chain of adult hemoglobin. The disorder has a complex pathophysiology that affects multiple organ systems. The main complications of beta thalassemia are ineffective erythropoiesis, chronic hemolytic anemia and hemosiderosis-induced organ dysfunction. Regular blood transfusions are the main therapy for beta thalassemia major; however, this treatment can cause cardiac and hepatic hemosiderosis - the most common cause of death in these patients. This review focuses on unique future therapeutic interventions for thalassemia that reverse splenomegaly, reduce transfusion frequency, decrease iron toxicity in organs, and correct chronic anemia. The targeted effective protocols include hemoglobin fetal inducers, ineffective erythropoiesis correctors, antioxidants, vitamins, and natural products. Resveratrol is a new herbal therapeutic approach which serves as fetal Hb inducer in beta thalassemia. Hematopoietic stem cell transplantation (HSCT) is the only curative therapy for beta thalassemia major and is preferred over iron chelation and blood transfusion for ensuring long life in these patients. Meanwhile, several molecular therapies, such as ActRIIB/IgG1 Fc recombinant protein, have emerged to address complications of beta thalassemia or the adverse effects of current drugs. Regarding gene correction strategies, a phase III trial called HGB-207 (Northstar-2; NCT02906202) is evaluating the efficacy and safety of autologous cell transplantation with LentiGlobin. Advanced gene-editing approaches aim to cut DNA at a targeted site and convert HbF to HbA during infancy, such as the suppression of BCL11A (B cell lymphoma 11A), HPFH (hereditary persistence of fetal hemoglobin) and zinc-finger nucleases. Gene therapy is progressing rapidly, with multiple clinical trials being conducted in many countries and the promise of commercial products to be available in the near future.
Collapse
Affiliation(s)
- Eman M Hamed
- Department of Pharmaceutics and Clinical Pharmacy; Faculty of Pharmacy; Nahda University, Nahda, Egypt
| | | | - Usama Farghaly Aly
- Asso. Professor of Pharmaceutics; Faculty of Pharmacy; Minia University, Minya, Egypt
| | - Raghda R S Hussein
- Lecturer of Clinical Pharmacy; Faculty of Pharmacy; Beni- Suef University, Egypt
| |
Collapse
|
25
|
Macías-Rodríguez RU, Inzaugarat ME, Ruiz-Margáin A, Nelson LJ, Trautwein C, Cubero FJ. Reclassifying Hepatic Cell Death during Liver Damage: Ferroptosis-A Novel Form of Non-Apoptotic Cell Death? Int J Mol Sci 2020; 21:1651. [PMID: 32121273 PMCID: PMC7084577 DOI: 10.3390/ijms21051651] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/10/2020] [Accepted: 02/14/2020] [Indexed: 12/11/2022] Open
Abstract
Ferroptosis has emerged as a new type of cell death in different pathological conditions, including neurological and kidney diseases and, especially, in different types of cancer. The hallmark of this regulated cell death is the presence of iron-driven lipid peroxidation; the activation of key genes related to this process such as glutathione peroxidase-4 (gpx4), acyl-CoA synthetase long-chain family member-4 (acsl4), carbonyl reductase [NADPH] 3 (cbr3), and prostaglandin peroxidase synthase-2 (ptgs2); and morphological changes including shrunken and electron-dense mitochondria. Iron overload in the liver has long been recognized as both a major trigger of liver damage in different diseases, and it is also associated with liver fibrosis. New evidence suggests that ferroptosis might be a novel type of non-apoptotic cell death in several liver diseases including non-alcoholic steatohepatitis (NASH), alcoholic liver disease (ALD), drug-induced liver injury (DILI), viral hepatitis, and hemochromatosis. The interaction between iron-related lipid peroxidation, cellular stress signals, and antioxidant systems plays a pivotal role in the development of this novel type of cell death. In addition, integrated responses from lipidic mediators together with free iron from iron-containing enzymes are essential to understanding this process. The presence of ferroptosis and the exact mechanisms leading to this non-apoptotic type of cell death in the liver remain scarcely elucidated. Recognizing ferroptosis as a novel type of cell death in the liver could lead to the understanding of the complex interaction between different types of cell death, their role in progression of liver fibrosis, the development of new biomarkers, as well as the use of modulators of ferroptosis, allowing improved theranostic approaches in the clinic.
Collapse
Affiliation(s)
- Ricardo U. Macías-Rodríguez
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico;
- Department of Internal Medicine III, University Hospital RWTH Aachen, 52074 Aachen, Germany; (M.E.I.); (C.T.)
- MICTLÁN-Network (Mechanisms of Liver Injury, Cell Death and Translational Nutrition in Liver Diseases Research Network), Mexico City 14080, Mexico
- Liver Fibrosis and Nutrition Lab (LFN Lab), Mexico City 14080, Mexico
| | - María Eugenia Inzaugarat
- Department of Internal Medicine III, University Hospital RWTH Aachen, 52074 Aachen, Germany; (M.E.I.); (C.T.)
- MICTLÁN-Network (Mechanisms of Liver Injury, Cell Death and Translational Nutrition in Liver Diseases Research Network), Mexico City 14080, Mexico
| | - Astrid Ruiz-Margáin
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico;
- Department of Internal Medicine III, University Hospital RWTH Aachen, 52074 Aachen, Germany; (M.E.I.); (C.T.)
- MICTLÁN-Network (Mechanisms of Liver Injury, Cell Death and Translational Nutrition in Liver Diseases Research Network), Mexico City 14080, Mexico
- Liver Fibrosis and Nutrition Lab (LFN Lab), Mexico City 14080, Mexico
| | - Leonard J. Nelson
- Institute for Bioengineering (IBioE), School of Engineering, Faraday Building, The University of Edinburgh, Edinburgh EH9 3 JL, UK;
| | - Christian Trautwein
- Department of Internal Medicine III, University Hospital RWTH Aachen, 52074 Aachen, Germany; (M.E.I.); (C.T.)
| | - Francisco Javier Cubero
- MICTLÁN-Network (Mechanisms of Liver Injury, Cell Death and Translational Nutrition in Liver Diseases Research Network), Mexico City 14080, Mexico
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, 28040 Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28041 Madrid, Spain
| |
Collapse
|
26
|
Scheiner B, Semmler G, Maurer F, Schwabl P, Bucsics TA, Paternostro R, Bauer D, Simbrunner B, Trauner M, Mandorfer M, Reiberger T. Prevalence of and risk factors for anaemia in patients with advanced chronic liver disease. Liver Int 2020; 40:194-204. [PMID: 31444993 PMCID: PMC6973120 DOI: 10.1111/liv.14229] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 07/19/2019] [Accepted: 08/10/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Anaemia is common in advanced chronic liver disease (ACLD) as a result of various risk factors. AIMS & METHODS We evaluated the prevalence and severity of anaemia as well as the impact of anaemia on clinical outcomes in consecutive patients with ACLD and portal hypertension. RESULTS Among 494 patients, 324 (66%) patients had anaemia. Anaemic patients showed higher MELD (12 ± 4 vs 9 ± 3; P < .001), lower albumin (34 ± 6 vs 39 ± 5 g/dL; P < .001) and more often Child-Pugh B/C stage (56% vs 17%; P < .001). The prevalence of moderate-severe anaemia (haemoglobin <10 g/dL) increased with the degree of portal hypertension (HVPG: 6-9 mm Hg: 22% vs HVPG: 10-19 mm Hg: 24% vs HVPG ≥ 20 mm Hg: 36%; P = .031). The most common aetiologies of anaemia were gastrointestinal bleeding (25%) and iron deficiency (9%), while reason for anaemia remained unclear in 53% of cases. Male gender (odds ratio [OR]: 1.94 [95% CI: 1.09-3.47]; P = .025), MELD (OR: 1.20 [95% CI: 1.09-1.32]; P < .001), hepatic decompensation (OR: 4.40 [95% CI: 2.48-7.82]; P < .001) and HVPG (OR per mm Hg: 1.07 [95% CI: 1.02-1.13]; P = .004) were independent risk factors for anaemia. Anaemia was associated with hepatic decompensation (1 year: 25.1% vs 8.1%; 5 years: 60.3% vs 32.9%; P < .0001), hospitalization (73% vs 57%; P < .001) and a higher incidence rate of acute-on-chronic liver failure (0.05 [95% CI: 0.04-0.07] vs 0.03 [95% CI: 0.01-0.04]). Anaemic patients had worse overall survival (1 year: 87.1% vs 93.7%, 5 year survival: 50.5% vs 68.6%; P < .0001) and increased liver-related mortality (1 year mortality: 9.7% vs 5.7%, 5 year mortality: 38.0% vs 26.9%; P = .003). CONCLUSION Two-thirds of patients with ACLD suffer from anaemia. The degree of hepatic dysfunction and of portal hypertension correlate with severity of anaemia. Anaemia is associated with decompensation, ACLF and increased mortality in patients with ACLD.
Collapse
Affiliation(s)
- Bernhard Scheiner
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria,Vienna Hepatic Hemodynamic LaboratoryMedical University of ViennaViennaAustria
| | - Georg Semmler
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria,Vienna Hepatic Hemodynamic LaboratoryMedical University of ViennaViennaAustria
| | - Florian Maurer
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria,Vienna Hepatic Hemodynamic LaboratoryMedical University of ViennaViennaAustria
| | - Philipp Schwabl
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria,Vienna Hepatic Hemodynamic LaboratoryMedical University of ViennaViennaAustria
| | - Theresa A. Bucsics
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria,Vienna Hepatic Hemodynamic LaboratoryMedical University of ViennaViennaAustria
| | - Rafael Paternostro
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria,Vienna Hepatic Hemodynamic LaboratoryMedical University of ViennaViennaAustria
| | - David Bauer
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria,Vienna Hepatic Hemodynamic LaboratoryMedical University of ViennaViennaAustria
| | - Benedikt Simbrunner
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria,Vienna Hepatic Hemodynamic LaboratoryMedical University of ViennaViennaAustria
| | - Michael Trauner
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Mattias Mandorfer
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria,Vienna Hepatic Hemodynamic LaboratoryMedical University of ViennaViennaAustria
| | - Thomas Reiberger
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria,Vienna Hepatic Hemodynamic LaboratoryMedical University of ViennaViennaAustria
| |
Collapse
|
27
|
Wang CY, Xiao X, Bayer A, Xu Y, Dev S, Canali S, Nair AV, Masia R, Babitt JL. Ablation of Hepatocyte Smad1, Smad5, and Smad8 Causes Severe Tissue Iron Loading and Liver Fibrosis in Mice. Hepatology 2019; 70:1986-2002. [PMID: 31127639 PMCID: PMC6874904 DOI: 10.1002/hep.30780] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 05/17/2019] [Indexed: 12/15/2022]
Abstract
A failure of iron to appropriately regulate liver hepcidin production is central to the pathogenesis of hereditary hemochromatosis. SMAD1/5 transcription factors, activated by bone morphogenetic protein (BMP) signaling, are major regulators of hepcidin production in response to iron; however, the role of SMAD8 and the contribution of SMADs to hepcidin production by other systemic cues remain uncertain. Here, we generated hepatocyte Smad8 single (Smad8fl/fl ;Alb-Cre+ ), Smad1/5/8 triple (Smad158;Alb-Cre+ ), and littermate Smad1/5 double (Smad15;Alb-Cre+ ) knockout mice to investigate the role of SMAD8 in hepcidin and iron homeostasis regulation and liver injury. We found that Smad8;Alb-Cre+ mice exhibited no iron phenotype, whereas Smad158;Alb-Cre+ mice had greater iron overload than Smad15;Alb-Cre+ mice. In contrast to the sexual dimorphism reported for wild-type mice and other hemochromatosis models, hepcidin deficiency and extrahepatic iron loading were similarly severe in Smad15;Alb-Cre+ and Smad158;Alb-Cre+ female compared with male mice. Moreover, epidermal growth factor (EGF) failed to suppress hepcidin in Smad15;Alb-Cre+ hepatocytes. Conversely, hepcidin was still increased by lipopolysaccharide in Smad158;Alb-Cre+ mice, although lower basal hepcidin resulted in lower maximal hepcidin. Finally, unlike most mouse hemochromatosis models, Smad158;Alb-Cre+ developed liver injury and fibrosis at 8 weeks. Liver injury and fibrosis were prevented in Smad158;Alb-Cre+ mice by a low-iron diet and were minimal in iron-loaded Cre- mice. Conclusion: Hepatocyte Smad1/5/8 knockout mice are a model of hemochromatosis that encompasses liver injury and fibrosis seen in human disease. These mice reveal the redundant but critical role of SMAD8 in hepcidin and iron homeostasis regulation, establish a requirement for SMAD1/5/8 in hepcidin regulation by testosterone and EGF but not inflammation, and suggest a pathogenic role for both iron loading and SMAD1/5/8 deficiency in liver injury and fibrosis.
Collapse
Affiliation(s)
- Chia-Yu Wang
- Program in Anemia Signaling Research, Division of Nephrology, Program in Membrane Biology, Center for Systems Biology,Address correspondence to: Chia-Yu Wang, Massachusetts General Hospital, 185 Cambridge St., CPZN-8150, Boston, MA 02114, Phone: (617)-724-9078, Fax: (617)-643-3182,
| | - Xia Xiao
- Program in Anemia Signaling Research, Division of Nephrology, Program in Membrane Biology, Center for Systems Biology
| | - Abraham Bayer
- Program in Anemia Signaling Research, Division of Nephrology, Program in Membrane Biology, Center for Systems Biology
| | - Yang Xu
- Program in Anemia Signaling Research, Division of Nephrology, Program in Membrane Biology, Center for Systems Biology
| | - Som Dev
- Program in Anemia Signaling Research, Division of Nephrology, Program in Membrane Biology, Center for Systems Biology
| | - Susanna Canali
- Program in Anemia Signaling Research, Division of Nephrology, Program in Membrane Biology, Center for Systems Biology
| | - Anil V. Nair
- Program in Anemia Signaling Research, Division of Nephrology, Program in Membrane Biology, Center for Systems Biology
| | - Ricard Masia
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Jodie L. Babitt
- Program in Anemia Signaling Research, Division of Nephrology, Program in Membrane Biology, Center for Systems Biology
| |
Collapse
|
28
|
Mouse models of hereditary hemochromatosis do not develop early liver fibrosis in response to a high fat diet. PLoS One 2019; 14:e0221455. [PMID: 31442254 PMCID: PMC6707558 DOI: 10.1371/journal.pone.0221455] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/05/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatic iron overload, a hallmark of hereditary hemochromatosis, triggers progressive liver disease. There is also increasing evidence for a pathogenic role of iron in non-alcoholic fatty liver disease (NAFLD), which may progress to non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis and hepatocellular cancer. Mouse models of hereditary hemochromatosis and NAFLD can be used to explore potential interactions between iron and lipid metabolic pathways. Hfe-/- mice, a model of moderate iron overload, were reported to develop early liver fibrosis in response to a high fat diet. However, this was not the case with Hjv-/- mice, a model of severe iron overload. These data raised the possibility that the Hfe gene may protect against liver injury independently of its iron regulatory function. Herein, we addressed this hypothesis in a comparative study utilizing wild type, Hfe-/-, Hjv-/- and double Hfe-/-Hjv-/- mice. The animals, all in C57BL/6J background, were fed with high fat diets for 14 weeks and developed hepatic steatosis, associated with iron overload. Hfe co-ablation did not sensitize steatotic Hjv-deficient mice to liver injury. Moreover, we did not observe any signs of liver inflammation or fibrosis even in single steatotic Hfe-/- mice. Ultrastructural studies revealed a reduced lipid and glycogen content in Hjv-/- hepatocytes, indicative of a metabolic defect. Interestingly, glycogen levels were restored in double Hfe-/-Hjv-/- mice, which is consistent with a metabolic function of Hfe. We conclude that hepatocellular iron excess does not aggravate diet-induced steatosis to steatohepatitis or early liver fibrosis in mouse models of hereditary hemochromatosis, irrespectively of the presence or lack of Hfe.
Collapse
|
29
|
Lysosome motility and distribution: Relevance in health and disease. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1076-1087. [DOI: 10.1016/j.bbadis.2019.03.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 12/28/2022]
|
30
|
Li J, Zhao YR, Tian Z. Roles of hepatic stellate cells in acute liver failure: From the perspective of inflammation and fibrosis. World J Hepatol 2019; 11:412-420. [PMID: 31183002 PMCID: PMC6547291 DOI: 10.4254/wjh.v11.i5.412] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/14/2019] [Accepted: 05/21/2019] [Indexed: 02/06/2023] Open
Abstract
Acute liver failure (ALF) usually results in hepatocellular dysfunction and coagulopathy and carries a high mortality rate. Hepatic stellate cells (HSCs) are famous for their role in liver fibrosis. Although some recent studies revealed that HSCs might participate in the pathogenesis of ALF, the accurate mechanism is still not fully understood. This review focuses on the recent advances in understanding the functions of HSCs in ALF and revealed both protective and promotive roles during the pathogenesis of ALF: HSC activation participates in the maintenance of cell attachment and the architecture of liver tissue via extracellular matrix production and assists liver regeneration by producing growth factors; and HSC inflammation plays a role in relaying inflammation signaling from sinusoids to parenchyma via secretion of inflammatory cytokines. A better understanding of roles of HSCs in the pathogenesis of ALF may lead to improvements and novel strategies for treating ALF patients.
Collapse
Affiliation(s)
- Juan Li
- Department of Infectious Diseases, Institute of Hepatology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Ying-Ren Zhao
- Department of Infectious Diseases, Institute of Hepatology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Zhen Tian
- Department of Infectious Diseases, Institute of Hepatology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| |
Collapse
|
31
|
Tangudu NK, Buth N, Strnad P, Cirstea IC, Spasić MV. Deregulation of Hepatic Mek1/2⁻Erk1/2 Signaling Module in Iron Overload Conditions. Pharmaceuticals (Basel) 2019; 12:ph12020070. [PMID: 31067696 PMCID: PMC6631327 DOI: 10.3390/ph12020070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/30/2019] [Accepted: 05/05/2019] [Indexed: 02/07/2023] Open
Abstract
The liver, through the production of iron hormone hepcidin, controls body iron levels. High liver iron levels and deregulated hepcidin expression are commonly observed in many liver diseases including highly prevalent genetic iron overload disorders. In spite of a number of breakthrough investigations into the signals that control hepcidin expression, little progress has been made towards investigations into intracellular signaling in the liver under excess of iron. This study examined hepatic signaling pathways underlying acquired and genetic iron overload conditions. Our data demonstrate that hepatic iron overload associates with a decline in the activation of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (Erk) kinase (Mek1/2) pathway by selectively affecting the phosphorylation of Erk1/2. We propose that Mek1/2-Erk1/2 signaling is uncoupled from iron-Bmp-Smad-mediated hepcidin induction and that it may contribute to a number of liver pathologies in addition to toxic effects of iron. We believe that our findings will advance the understanding of cellular signaling events in the liver during iron overload of different etiologies.
Collapse
Affiliation(s)
- Naveen Kumar Tangudu
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm 89081, Germany; (N.K.T.); (N.B.); (I.C.C.)
| | - Nils Buth
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm 89081, Germany; (N.K.T.); (N.B.); (I.C.C.)
| | - Pavel Strnad
- Department of Medicine III and IZKF, University Hospital Aachen, Aachen 52074, Germany;
| | - Ion C. Cirstea
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm 89081, Germany; (N.K.T.); (N.B.); (I.C.C.)
| | - Maja Vujić Spasić
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm 89081, Germany; (N.K.T.); (N.B.); (I.C.C.)
- Correspondence: ; Tel.: +49-731-50-32635
| |
Collapse
|
32
|
Iron-Induced Liver Injury: A Critical Reappraisal. Int J Mol Sci 2019; 20:ijms20092132. [PMID: 31052166 PMCID: PMC6539962 DOI: 10.3390/ijms20092132] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/25/2019] [Accepted: 04/27/2019] [Indexed: 12/12/2022] Open
Abstract
Iron is implicated in the pathogenesis of a number of human liver diseases. Hereditary hemochromatosis is the classical example of a liver disease caused by iron, but iron is commonly believed to contribute to the progression of other forms of chronic liver disease such as hepatitis C infection and nonalcoholic fatty liver disease. In this review, we present data from cell culture experiments, animal models, and clinical studies that address the hepatotoxicity of iron. These data demonstrate that iron overload is only weakly fibrogenic in animal models and rarely causes serious liver damage in humans, calling into question the concept that iron overload is an important cause of hepatotoxicity. In situations where iron is pathogenic, iron-induced liver damage may be potentiated by coexisting inflammation, with the resulting hepatocyte necrosis an important factor driving the fibrogenic response. Based on the foregoing evidence that iron is less hepatotoxic than is generally assumed, claims that assign a causal role to iron in liver injury in either animal models or human liver disease should be carefully evaluated.
Collapse
|
33
|
Nekrasova TP, Berestova AV. [Value of liver biopsy in the diagnosis of hereditary hemochromatosis]. Arkh Patol 2019; 81:35-39. [PMID: 30830103 DOI: 10.17116/patol20198101135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The paper gives an update on the pathogenesis and main clinical manifestations of primary (hereditary) hemochromatosis and its diagnostic methods. It emphasizes the importance of genetic research in the diagnosis of the disease. Its clinical manifestations are associated with iron deposition in organs, such as the liver, pancreas, joints, skin, and heart. The paper points out the importance of liver biopsy using Perls' reaction for the diagnosis of liver damage with the development of fibrosis, cirrhosis, and cancer as the main cause of death in patients with hereditary hemochromatosis and presents the results of examining liver biopsy specimens in patients with hemochromatosis.
Collapse
Affiliation(s)
- T P Nekrasova
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia, Moscow, Russia
| | - A V Berestova
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia, Moscow, Russia
| |
Collapse
|
34
|
Mahmood AA, Zhang J, Liao R, Pan X, Xu D, Xu H, Zhou Q. Evaluation of non-targeting, C- or N-pH (low) insertion peptide modified superparamagnetic iron oxide nanoclusters for selective MRI of liver tumors and their potential toxicity in cirrhosis. RSC Adv 2019; 9:14051-14059. [PMID: 35519327 PMCID: PMC9064030 DOI: 10.1039/c9ra02430a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 05/01/2019] [Indexed: 11/21/2022] Open
Abstract
Superparamagnetic iron oxide nanoclusters (SPIONs) modified with pH (low) insertion peptide (pHLIP) could be advantageous for magnetic resonance imaging (MRI) diagnosis of liver tumors at the early stage due to their unique responsiveness to the tumor acidic microenvironment when tumor markers are unknown. However, many critical aspects including the effectiveness of selective MRI in liver tumors, types of delivery and the potential safety profile in cirrhosis need to be fully evaluated. In this study, we report the evaluation of non-targeting, C- or N-pHLIP modified SPIONs as the contrast agent for selective MRI of liver tumors and their potential toxicity profile in cirrhosis. It was found that N-pHLIP modified SPIONs did not result in the loss of liver tumor in the T2-weight MRI but provided additional dynamic details of tumor structures that would enhance the diagnosis of liver tumors at a small size below 8 mm. In addition, an enhanced safety profile was found for N-pHLIP modified SPIONs with almost fully recoverable impact in cirrhosis. In contrast, the poly-d-lysine assembled SPIONs and C-terminus linked pHLIP SPIONs had non-tumor specific MRI contrast enhancement and potential safety risks in cirrhosis due to the iron overload post injection. All these results implied the promising potential of N-terminus linked pHLIP SPIONs as an MRI contrast agent for the diagnosis of liver tumors. The acid-responsive pHLIP modified SPION as an MRI contrast agent for liver cancer diagnosis requires the validation of both the tumor-specific enhancement and a safe profile in cirrhosis.![]()
Collapse
Affiliation(s)
- Abdulrahman Ahmed Mahmood
- Department of Nanomedicine & Biopharmaceuticals
- College of Life Science and Technology
- National Engineering Research Center for Nanomedicine
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Jianqi Zhang
- Department of Nanomedicine & Biopharmaceuticals
- College of Life Science and Technology
- National Engineering Research Center for Nanomedicine
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Rufang Liao
- Department of Radiology
- Zhongnan Hospital of Wuhan University
- Wuhan 430071
- China
| | - Xiwei Pan
- Department of Nanomedicine & Biopharmaceuticals
- College of Life Science and Technology
- National Engineering Research Center for Nanomedicine
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Dan Xu
- Department of Radiology
- Zhongnan Hospital of Wuhan University
- Wuhan 430071
- China
| | - Haibo Xu
- Department of Radiology
- Zhongnan Hospital of Wuhan University
- Wuhan 430071
- China
| | - Qibing Zhou
- Department of Nanomedicine & Biopharmaceuticals
- College of Life Science and Technology
- National Engineering Research Center for Nanomedicine
- Huazhong University of Science and Technology
- Wuhan 430074
| |
Collapse
|
35
|
Mühlfeld C, Neves J, Brandenberger C, Hegermann J, Wrede C, Altamura S, Muckenthaler MU. Air-blood barrier thickening and alterations of alveolar epithelial type 2 cells in mouse lungs with disrupted hepcidin/ferroportin regulatory system. Histochem Cell Biol 2018; 151:217-228. [PMID: 30280242 DOI: 10.1007/s00418-018-1737-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2018] [Indexed: 11/28/2022]
Abstract
Iron accumulates in the lungs of patients with common respiratory diseases or transfusion-dependent beta-thalassemia. Based on our previous work, we hypothesized that systemic iron overload affects the alveolar region of the lung and in particular the surfactant producing alveolar epithelial type II (AE2) cells. Mice with a point mutation in the iron exporter ferroportin, a model for human hemochromatosis type 4 were compared to wildtype mice (n = 5 each). Lungs were fixed and prepared for light and electron microscopy (EM) according to state-of-the-art protocols to detect subcellular iron localization by scanning EM/EDX and to perform design-based stereology. Iron was detected as electron dense particles in membrane-bound organelles, likely lysosomes, in AE1 cells. AE2 cells were higher in number but had a lower mean volume in mutated mice. Lamellar body volume per AE2 cell was lower but total volume of lamellar bodies in the lung was comparable to wildtype mice. While the volume of alveoli was lower in mutated mice, the volume of alveolar ducts as well as the surface area, volume and the mean thickness and composition of the septa was similar in both genotypes. The thickness of the air-blood barrier was greater in the mutated than in the WT mice. In conclusion, disruption of systemic iron homeostasis affects the ultrastructure of interalveolar septa which is characterized by membrane-bound iron storage in AE1 cells, thickening of the air-blood barrier and hyperplasia and hypotrophy of AE2 cells despite normal total intracellular surfactant pools. The functional relevance of these findings requires further analysis to better understand the impact of iron on intra-alveolar surfactant function.
Collapse
Affiliation(s)
- Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany. .,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany. .,Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany.
| | - Joana Neves
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Christina Brandenberger
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany.,Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany
| | - Jan Hegermann
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany.,Research Core Unit Electron Microscopy, Hannover Medical School, Hannover, Germany
| | - Christoph Wrede
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany.,Research Core Unit Electron Microscopy, Hannover Medical School, Hannover, Germany
| | - Sandro Altamura
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, Heidelberg, Germany
| | - Martina U Muckenthaler
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
36
|
Dietary Iron Overload Abrogates Chemically-Induced Liver Cirrhosis in Rats. Nutrients 2018; 10:nu10101400. [PMID: 30279328 PMCID: PMC6213820 DOI: 10.3390/nu10101400] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/28/2018] [Accepted: 09/29/2018] [Indexed: 02/07/2023] Open
Abstract
Chronic liver disease is an intractable disease, which can progress to cirrhosis and hepatocellular carcinoma. Hepatic iron overload is considered to be involved in the progression of chronic liver diseases; however, the mechanism remains to be elucidated. Here we investigate the role of dietary iron overload using chemically-induced liver cirrhosis model. Rats were fed a high-iron or standard diet and were injected intraperitoneally with thioacetamide (TAA) or saline twice a week for 20 weeks. Rats with TAA treatment (TAA group) had progressive liver cirrhosis characterized by persistent hepatocellular injury, mononuclear cell inflammation and bridging fibrosis; these lesions were markedly reduced in rats with iron feeding and TAA treatment (Fe-TAA group). Rats with iron feeding alone (Fe group) had no evidence of liver injury. Hepatic expression of cleaved caspase-3, but not phospho-RIP3, was decreased in Fe-TAA group compared with that in TAA group. The number of TUNEL-positive (terminal deoxynucleotidyl transferase dUTP nick end labeling) apoptotic hepatocytes was lower in the Fe-TAA group than in the TAA group. Hepatic xenobiotic metabolism and lipid peroxidation were shown to be less related to the abrogation of liver cirrhosis. Our results suggested that dietary hepatic iron overload abrogates chemically-induced liver cirrhosis in rats, which could partly involve decreased hepatocellular apoptosis.
Collapse
|
37
|
Bauckman KA, Mysorekar IU. Ferritinophagy drives uropathogenic Escherichia coli persistence in bladder epithelial cells. Autophagy 2018; 12:850-63. [PMID: 27002654 DOI: 10.1080/15548627.2016.1160176] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Autophagy is a cellular recycling pathway, which in many cases, protects host cells from infections by degrading pathogens. However, uropathogenic Escherichia coli (UPEC), the predominant cause of urinary tract infections (UTIs), persist within the urinary tract epithelium (urothelium) by forming reservoirs within autophagosomes. Iron is a critical nutrient for both host and pathogen, and regulation of iron availability is a key host defense against pathogens. Iron homeostasis depends on the shuttling of iron-bound ferritin to the lysosome for recycling, a process termed ferritinophagy (a form of selective autophagy). Here, we demonstrate for the first time that UPEC shuttles with ferritin-bound iron into the autophagosomal and lysosomal compartments within the urothelium. Iron overload in urothelial cells induces ferritinophagy in an NCOA4-dependent manner causing increased iron availability for UPEC, triggering bacterial overproliferation and host cell death. Addition of even moderate levels of iron is sufficient to increase and prolong bacterial burden. Furthermore, we show that lysosomal damage due to iron overload is the specific mechanism causing host cell death. Significantly, we demonstrate that host cell death and bacterial burden can be reversed by inhibition of autophagy or inhibition of iron-regulatory proteins, or chelation of iron. Together, our findings suggest that UPEC persist in host cells by taking advantage of ferritinophagy. Thus, modulation of iron levels in the bladder may provide a therapeutic avenue to controlling UPEC persistence, epithelial cell death, and recurrent UTIs.
Collapse
Affiliation(s)
- Kyle A Bauckman
- a Departments of Obstetrics & Gynecology, Washington University School of Medicine , St. Louis , MO , USA
| | - Indira U Mysorekar
- a Departments of Obstetrics & Gynecology, Washington University School of Medicine , St. Louis , MO , USA.,b Pathology & Immunology, Washington University School of Medicine , St. Louis , MO , USA
| |
Collapse
|
38
|
Cetin B, Yılmaz GE, Armagan B, Afsar B, Demirci U, Gulbahar O, Gumusay O, Bilgetekin I, Ozet A, Uner A. Pazopanib-Induced Hepatotoxicity in an Experimental Rat Model. Chemotherapy 2018; 63:39-45. [PMID: 29393107 DOI: 10.1159/000481795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/25/2017] [Indexed: 12/14/2022]
Abstract
Pazopanib is an effective treatment for advanced renal cell carcinoma and soft tissue sarcoma. Besides classical adverse events of this drug class, hepatotoxicity has been described as a frequent side effect. The aim of the present study was to evaluate the effect of pazopanib on the liver in an experimental rat model. Sixteen Wistar albino rats were divided into 3 groups: experimental toxicity was induced with pazopanib (10 mg/kg) administered for 28 days (group 2) or 56 days (group 3) orally by gavage. Group 1 (control group) received only distilled water. Rats in groups 2 and 3 were sacrificed after the collection of blood and tissue samples on the 28th and 56th days, respectively. We found significant differences in bilirubin, alkaline phosphatase, lactate dehydrogenase, glucose, triglyceride, very-low-density lipoprotein, and iron values (p < 0.050 for all) but none in any other parameter (p > 0.050). All rats in the control group had normal histological features; however, none of the rats in groups 2 and 3 showed normal histology. In group 2, we observed mild sinusoidal dilatation, congestion, enlarged Kupffer cells, accumulation of yellow-brown-black pigment in the Kupffer cells and the accumulation of hemosiderin with Prussian blue reaction in the hepatocytes. In group 3, the findings mentioned above were more prominent, and besides these findings focal acinar transformation and macrovesicular steatosis were also observed. In group 3, mild inflammation within the portal areas was observed consisting of lymphocytes, neutrophils, and eosinophils. This study is the first that reports the biochemical and histopathological evaluation of pazopanib-related hepatic toxicity.
Collapse
Affiliation(s)
- Bulent Cetin
- Department of Internal Medicine, Division of Medical Oncology, Recep Tayyip Erdogan University Faculty of Medicine, Rize, Turkey
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Wang H, An P, Xie E, Wu Q, Fang X, Gao H, Zhang Z, Li Y, Wang X, Zhang J, Li G, Yang L, Liu W, Min J, Wang F. Characterization of ferroptosis in murine models of hemochromatosis. Hepatology 2017; 66:449-465. [PMID: 28195347 PMCID: PMC5573904 DOI: 10.1002/hep.29117] [Citation(s) in RCA: 499] [Impact Index Per Article: 62.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/09/2017] [Indexed: 12/11/2022]
Abstract
UNLABELLED Ferroptosis is a recently identified iron-dependent form of nonapoptotic cell death implicated in brain, kidney, and heart pathology. However, the biological roles of iron and iron metabolism in ferroptosis remain poorly understood. Here, we studied the functional role of iron and iron metabolism in the pathogenesis of ferroptosis. We found that ferric citrate potently induces ferroptosis in murine primary hepatocytes and bone marrow-derived macrophages. Next, we screened for ferroptosis in mice fed a high-iron diet and in mouse models of hereditary hemochromatosis with iron overload. We found that ferroptosis occurred in mice fed a high-iron diet and in two knockout mouse lines that develop severe iron overload (Hjv-/- and Smad4Alb/Alb mice) but not in a third line that develops only mild iron overload (Hfe-/- mice). Moreover, we found that iron overload-induced liver damage was rescued by the ferroptosis inhibitor ferrostatin-1. To identify the genes involved in iron-induced ferroptosis, we performed microarray analyses of iron-treated bone marrow-derived macrophages. Interestingly, solute carrier family 7, member 11 (Slc7a11), a known ferroptosis-related gene, was significantly up-regulated in iron-treated cells compared with untreated cells. However, genetically deleting Slc7a11 expression was not sufficient to induce ferroptosis in mice. Next, we studied iron-treated hepatocytes and bone marrow-derived macrophages isolated from Slc7a11-/- mice fed a high-iron diet. CONCLUSION We found that iron treatment induced ferroptosis in Slc7a11-/- cells, indicating that deleting Slc7a11 facilitates the onset of ferroptosis specifically under high-iron conditions; these results provide compelling evidence that iron plays a key role in triggering Slc7a11-mediated ferroptosis and suggest that ferroptosis may be a promising target for treating hemochromatosis-related tissue damage. (Hepatology 2017;66:449-465).
Collapse
Affiliation(s)
- Hao Wang
- School of Public Health, Zhengzhou University; School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesSchool of Medicine, Zhejiang UniversityHangzhouChina
| | - Peng An
- School of Public Health, Zhengzhou University; School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesSchool of Medicine, Zhejiang UniversityHangzhouChina
| | - Enjun Xie
- School of Public Health, Zhengzhou University; School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesSchool of Medicine, Zhejiang UniversityHangzhouChina
| | - Qian Wu
- School of Public Health, Zhengzhou University; School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesSchool of Medicine, Zhejiang UniversityHangzhouChina
| | - Xuexian Fang
- School of Public Health, Zhengzhou University; School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesSchool of Medicine, Zhejiang UniversityHangzhouChina
| | - Hong Gao
- School of Public Health, Zhengzhou University; School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesSchool of Medicine, Zhejiang UniversityHangzhouChina
| | - Zhuzhen Zhang
- School of Public Health, Zhengzhou University; School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesSchool of Medicine, Zhejiang UniversityHangzhouChina
| | - Yuzhu Li
- School of Public Health, Zhengzhou University; School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesSchool of Medicine, Zhejiang UniversityHangzhouChina
| | - Xudong Wang
- School of Public Health, Zhengzhou University; School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesSchool of Medicine, Zhejiang UniversityHangzhouChina
| | - Jiaying Zhang
- School of Public Health, Zhengzhou University; School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesSchool of Medicine, Zhejiang UniversityHangzhouChina
| | - Guoli Li
- School of Public Health, Zhengzhou University; School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesSchool of Medicine, Zhejiang UniversityHangzhouChina
| | - Lei Yang
- School of Public Health, Zhengzhou University; School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesSchool of Medicine, Zhejiang UniversityHangzhouChina
| | - Wei Liu
- Department of Biochemistry and Molecular Biology, Program in Molecular and Cell Biology, School of MedicineZhejiang UniversityHangzhouChina
| | - Junxia Min
- School of Public Health, Zhengzhou University; School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesSchool of Medicine, Zhejiang UniversityHangzhouChina
| | - Fudi Wang
- School of Public Health, Zhengzhou University; School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesSchool of Medicine, Zhejiang UniversityHangzhouChina
| |
Collapse
|
40
|
Imam MU, Zhang S, Ma J, Wang H, Wang F. Antioxidants Mediate Both Iron Homeostasis and Oxidative Stress. Nutrients 2017; 9:E671. [PMID: 28657578 PMCID: PMC5537786 DOI: 10.3390/nu9070671] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 06/20/2017] [Accepted: 06/22/2017] [Indexed: 12/18/2022] Open
Abstract
Oxidative stress is a common denominator in the pathogenesis of many chronic diseases. Therefore, antioxidants are often used to protect cells and tissues and reverse oxidative damage. It is well known that iron metabolism underlies the dynamic interplay between oxidative stress and antioxidants in many pathophysiological processes. Both iron deficiency and iron overload can affect redox state, and these conditions can be restored to physiological conditions using iron supplementation and iron chelation, respectively. Similarly, the addition of antioxidants to these treatment regimens has been suggested as a viable therapeutic approach for attenuating tissue damage induced by oxidative stress. Notably, many bioactive plant-derived compounds have been shown to regulate both iron metabolism and redox state, possibly through interactive mechanisms. This review summarizes our current understanding of these mechanisms and discusses compelling preclinical evidence that bioactive plant-derived compounds can be both safe and effective for managing both iron deficiency and iron overload conditions.
Collapse
Affiliation(s)
- Mustapha Umar Imam
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Shenshen Zhang
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Jifei Ma
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Hao Wang
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou 450001, China.
- Department of Nutrition, Nutrition Discovery Innovation Center, School of Public Health, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Fudi Wang
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou 450001, China.
- Department of Nutrition, Nutrition Discovery Innovation Center, School of Public Health, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
41
|
The hepatocyte-specific HNF4α/miR-122 pathway contributes to iron overload-mediated hepatic inflammation. Blood 2017; 130:1041-1051. [PMID: 28655781 DOI: 10.1182/blood-2016-12-755967] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 05/15/2017] [Indexed: 12/12/2022] Open
Abstract
Hepatic iron overload (IO) is a major complication of transfusional therapy. It was generally thought that IO triggers substantial inflammatory responses by producing reactive oxygen species in hepatic macrophages. Recently, a decrease in microRNA-122 (miR-122) expression was observed in a genetic knockout (Hfe-/-) mouse model of IO. Because hepatocyte-enriched miR-122 is a key regulator of multiple hepatic pathways, including inflammation, it is of interest whether hepatocyte directly contributes to IO-mediated hepatic inflammation. Here, we report that IO induced similar inflammatory responses in human primary hepatocytes and Thp-1-derived macrophages. In the mouse liver, IO resulted in altered expression of not only inflammatory genes but also >230 genes that are known targets of miR-122. In addition, both iron-dextran injection and a 3% carbonyl iron-containing diet led to upregulation of hepatic inflammation, which was associated with a significant reduction in HNF4α expression and its downstream target, miR-122. Interestingly, the same signaling pathway was changed in macrophage-deficient mice, suggesting that macrophages are not the only target of IO. Most importantly, hepatocyte-specific overexpression of miR-122 rescued IO-mediated hepatic inflammation. Our findings indicate the direct involvement of hepatocytes in IO-induced hepatic inflammation and are informative for developing new molecular targets and preventative therapies for patients with major hemoglobinopathy.
Collapse
|
42
|
Hepcidin inhibits Smad3 phosphorylation in hepatic stellate cells by impeding ferroportin-mediated regulation of Akt. Nat Commun 2016; 7:13817. [PMID: 28004654 PMCID: PMC5192182 DOI: 10.1038/ncomms13817] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 11/03/2016] [Indexed: 02/08/2023] Open
Abstract
Hepatic stellate cell (HSC) activation on liver injury facilitates fibrosis. Hepatokines affecting HSCs are largely unknown. Here we show that hepcidin inhibits HSC activation and ameliorates liver fibrosis. We observe that hepcidin levels are inversely correlated with exacerbation of fibrosis in patients, and also confirm the relationship in animal models. Adenoviral delivery of hepcidin to mice attenuates liver fibrosis induced by CCl4 treatment or bile duct ligation. In cell-based assays, either hepcidin from hepatocytes or exogenous hepcidin suppresses HSC activation by inhibiting TGFβ1-mediated Smad3 phosphorylation via Akt. In activated HSCs, ferroportin is upregulated, which can be prevented by hepcidin treatment. Similarly, ferroportin knockdown in HSCs prohibits TGFβ1-inducible Smad3 phosphorylation and increases Akt phosphorylation, whereas ferroportin over-expression has the opposite effect. HSC-specific ferroportin deletion also ameliorates liver fibrosis. In summary, hepcidin suppresses liver fibrosis by impeding TGFβ1-induced Smad3 phosphorylation in HSCs, which depends on Akt activated by a deficiency of ferroportin. The peptide hormone hepcidin is released from hepatocytes and regulates iron homoeostasis. Here, the authors show that hepcidin also regulates the activation of hepatic stellate cells (HSCs) in mouse models of liver fibrosis by reducing ferroportin expression and inhibiting the HSC response to TGFβ.
Collapse
|
43
|
Eid R, Arab NTT, Greenwood MT. Iron mediated toxicity and programmed cell death: A review and a re-examination of existing paradigms. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:399-430. [PMID: 27939167 DOI: 10.1016/j.bbamcr.2016.12.002] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/08/2016] [Accepted: 12/04/2016] [Indexed: 12/11/2022]
Abstract
Iron is an essential micronutrient that is problematic for biological systems since it is toxic as it generates free radicals by interconverting between ferrous (Fe2+) and ferric (Fe3+) forms. Additionally, even though iron is abundant, it is largely insoluble so cells must treat biologically available iron as a valuable commodity. Thus elaborate mechanisms have evolved to absorb, re-cycle and store iron while minimizing toxicity. Focusing on rarely encountered situations, most of the existing literature suggests that iron toxicity is common. A more nuanced examination clearly demonstrates that existing regulatory processes are more than adequate to limit the toxicity of iron even in response to iron overload. Only under pathological or artificially harsh situations of exposure to excess iron does it become problematic. Here we review iron metabolism and its toxicity as well as the literature demonstrating that intracellular iron is not toxic but a stress responsive programmed cell death-inducing second messenger.
Collapse
Affiliation(s)
- Rawan Eid
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada
| | - Nagla T T Arab
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada
| | - Michael T Greenwood
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada.
| |
Collapse
|
44
|
Lunova M, Schwarz P, Nuraldeen R, Levada K, Kuscuoglu D, Stützle M, Vujić Spasić M, Haybaeck J, Ruchala P, Jirsa M, Deschemin JC, Vaulont S, Trautwein C, Strnad P. Hepcidin knockout mice spontaneously develop chronic pancreatitis owing to cytoplasmic iron overload in acinar cells. J Pathol 2016; 241:104-114. [PMID: 27741349 DOI: 10.1002/path.4822] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 09/21/2016] [Accepted: 09/29/2016] [Indexed: 12/14/2022]
Abstract
Iron is both an essential and a potentially toxic element, and its systemic homeostasis is controlled by the iron hormone hepcidin. Hepcidin binds to the cellular iron exporter ferroportin, causes its degradation, and thereby diminishes iron uptake from the intestine and the release of iron from macrophages. Given that hepcidin-resistant ferroportin mutant mice show exocrine pancreas dysfunction, we analysed pancreata of aging hepcidin knockout (KO) mice. Hepcidin and Hfe KO mice were compared with wild-type (WT) mice kept on standard or iron-rich diets. Twelve-month-old hepcidin KO mice were subjected to daily minihepcidin PR73 treatment for 1 week. Six-month-old hepcidin KO mice showed cytoplasmic acinar iron overload and mild pancreatitis, together with elevated expression of the iron uptake mediators DMT1 and Zip14. Acinar atrophy, massive macrophage infiltration, fatty changes and pancreas fibrosis were noted in 1-year-old hepcidin KO mice. As an underlying mechanism, 6-month-old hepcidin KO mice showed increased pancreatic oxidative stress, with elevated DNA damage, apoptosis and activated nuclear factor-κB (NF-κB) signalling. Neither iron overload nor pancreatic damage was observed in WT mice fed iron-rich diet or in Hfe KO mice. Minihepcidin application to hepcidin KO mice led to an improvement in general health status and to iron redistribution from acinar cells to macrophages. It also resulted in decreased NF-κB activation and reduced DNA damage. In conclusion, loss of hepcidin signalling in mice leads to iron overload-induced chronic pancreatitis that is not seen in situations with less severe iron accumulation. The observed tissue injury can be reversed by hepcidin supplementation. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Mariia Lunova
- Department of Medicine III and IZKF, University Hospital Aachen, Aachen, Germany.,Institute of Clinical and Experimental Medicine (IKEM), Prague, Czech Republic
| | - Peggy Schwarz
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Renwar Nuraldeen
- Department of Medicine III and IZKF, University Hospital Aachen, Aachen, Germany
| | - Kateryna Levada
- Department of Medicine III and IZKF, University Hospital Aachen, Aachen, Germany
| | - Deniz Kuscuoglu
- Department of Medicine III and IZKF, University Hospital Aachen, Aachen, Germany
| | - Michael Stützle
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Maja Vujić Spasić
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | | | - Piotr Ruchala
- Department of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Milan Jirsa
- Institute of Clinical and Experimental Medicine (IKEM), Prague, Czech Republic
| | | | | | - Christian Trautwein
- Department of Medicine III and IZKF, University Hospital Aachen, Aachen, Germany
| | - Pavel Strnad
- Department of Medicine III and IZKF, University Hospital Aachen, Aachen, Germany.,Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| |
Collapse
|
45
|
Genetic disruption of NRF2 promotes the development of necroinflammation and liver fibrosis in a mouse model of HFE-hereditary hemochromatosis. Redox Biol 2016; 11:157-169. [PMID: 27936457 PMCID: PMC5149069 DOI: 10.1016/j.redox.2016.11.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 11/16/2016] [Accepted: 11/28/2016] [Indexed: 12/18/2022] Open
Abstract
Background and Aims In hereditary hemochromatosis, iron deposition in the liver parenchyma may lead to fibrosis, cirrhosis and hepatocellular carcinoma. Most cases are ascribed to a common mutation in the HFE gene, but the extent of clinical expression is greatly influenced by the combined action of yet unidentified genetic and/or environmental modifying factors. In mice, transcription factor NRF2 is a critical determinant of hepatocyte viability during exposure to acute dietary iron overload. We evaluated if the genetic disruption of Nrf2 would prompt the development of liver damage in Hfe-/- mice (an established model of human HFE-hemochromatosis). Methods Wild-type, Nrf2-/-, Hfe-/- and double knockout (Hfe/Nrf2-/-) female mice on C57BL/6 genetic background were sacrificed at the age of 6 (young), 12–18 (middle-aged) or 24 months (old) for evaluation of liver pathology. Results Despite the parenchymal iron accumulation, Hfe-/- mice presented no liver injury. The combination of iron overload (Hfe-/-) and defective antioxidant defences (Nrf2-/-) increased the number of iron-related necroinflammatory lesions (sideronecrosis), possibly due to the accumulation of toxic oxidation products such as 4-hydroxy-2-nonenal-protein adducts. The engulfment of dead hepatocytes led to a gradual accumulation of iron within macrophages, featuring large aggregates. Myofibroblasts recruited towards the injury areas produced substantial amounts of collagen fibers involving the liver parenchyma of double-knockout animals with increased hepatic fibrosis in an age-dependent manner. Conclusions The genetic disruption of Nrf2 promotes the transition from iron accumulation (siderosis) to liver injury in Hfe-/- mice, representing the first demonstration of spontaneous hepatic fibrosis in the long term in a mouse model of hereditary hemochromatosis displaying mildly elevated liver iron. Despite the parenchymal iron overload, single Hfe-/- mice present no liver injury. Hfe and Nrf2 double knockout mice develop liver fibrosis with aging. Fibrosis is triggered by iron-related hepatocellular death (sideronecrosis). Nrf2 genetic disruption increases susceptibility to oxidative/electrophilic stress. NRF2 status is a potential determinant of liver injury in hemochromatosis.
Collapse
|
46
|
Zhou Q, Wei Y. For Better or Worse, Iron Overload by Superparamagnetic Iron Oxide Nanoparticles as a MRI Contrast Agent for Chronic Liver Diseases. Chem Res Toxicol 2016; 30:73-80. [DOI: 10.1021/acs.chemrestox.6b00298] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Qibing Zhou
- Department of Nanomedicine & Biopharmaceuticals, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei, China
| | - Yushuang Wei
- Department of Nanomedicine & Biopharmaceuticals, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei, China
| |
Collapse
|
47
|
Juang V, Lee HP, Lin AMY, Lo YL. Cationic PEGylated liposomes incorporating an antimicrobial peptide tilapia hepcidin 2-3: an adjuvant of epirubicin to overcome multidrug resistance in cervical cancer cells. Int J Nanomedicine 2016; 11:6047-6064. [PMID: 27895479 PMCID: PMC5117904 DOI: 10.2147/ijn.s117618] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Antimicrobial peptides (AMPs) have been recently evaluated as a new generation of adjuvants in cancer chemotherapy. In this study, we designed PEGylated liposomes encapsulating epirubicin as an antineoplastic agent and tilapia hepcidin 2–3, an AMP, as a multidrug resistance (MDR) transporter suppressor and an apoptosis/autophagy modulator in human cervical cancer HeLa cells. Cotreatment of HeLa cells with PEGylated liposomal formulation of epirubicin and hepcidin 2–3 significantly increased the cytotoxicity of epirubicin. The liposomal formulations of epirubicin and/or hepcidin 2–3 were found to noticeably escalate the intracellular H2O2 and O2− levels of cancer cells. Furthermore, these treatments considerably reduced the mRNA expressions of MDR protein 1, MDR-associated protein (MRP) 1, and MRP2. The addition of hepcidin 2–3 in liposomes was shown to markedly enhance the intracellular epirubicin uptake and mainly localized into the nucleus. Moreover, this formulation was also found to trigger apoptosis and autophagy in HeLa cells, as validated by significant increases in the expressions of cleaved poly ADP ribose polymerase, caspase-3, caspase-9, and light chain 3 (LC3)-II, as well as a decrease in mitochondrial membrane potential. The apoptosis induction was also confirmed by the rise in sub-G1 phase of cell cycle assay and apoptosis percentage of annexin V/propidium iodide assay. We found that liposomal epirubicin and hepcidin 2–3 augmented the accumulation of GFP-LC3 puncta as amplified by chloroquine, implying the involvement of autophagy. Interestingly, the partial inhibition of necroptosis and the epithelial–mesenchymal transition by this combination was also verified. Altogether, our results provide evidence that coincubation with PEGylated liposomes of hepcidin 2–3 and epirubicin caused programmed cell death in cervical cancer cells through modulation of multiple signaling pathways, including MDR transporters, apoptosis, autophagy, and/or necroptosis. Thus, this formulation may provide a new platform for the combined treatment of traditional chemotherapy and hepcidin 2–3 as a new adjuvant for effective MDR reversal.
Collapse
Affiliation(s)
- Vivian Juang
- Department and Institute of Pharmacology, National Yang-Ming University
| | - Hsin-Pin Lee
- Department of Biological Sciences and Technology, National University of Tainan
| | - Anya Maan-Yuh Lin
- Department and Institute of Pharmacology, National Yang-Ming University; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
| | - Yu-Li Lo
- Department and Institute of Pharmacology, National Yang-Ming University
| |
Collapse
|
48
|
Iron overload by Superparamagnetic Iron Oxide Nanoparticles is a High Risk Factor in Cirrhosis by a Systems Toxicology Assessment. Sci Rep 2016; 6:29110. [PMID: 27357559 PMCID: PMC4928111 DOI: 10.1038/srep29110] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 06/15/2016] [Indexed: 12/14/2022] Open
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) as a contrast agent have been widely used in magnetic resonance imaging for tumor diagnosis and theranostics. However, there has been safety concern of SPIONs with cirrhosis related to excess iron-induced oxidative stress. In this study, the impact of iron overload by SPIONs was assessed on a mouse cirrhosis model. A single dose of SPION injection at 0.5 or 5 mg Fe/kg in the cirrhosis group induced a septic shock response at 24 h with elevated serum levels of liver and kidney function markers and extended impacts over 14 days including high levels of serum cholesterols and persistent low serum iron level. In contrast, full restoration of liver functions was found in the normal group with the same dosages over time. Analysis with PCR array of the toxicity pathways revealed the high dose of SPIONs induced significant expression changes of a distinct subset of genes in the cirrhosis liver. All these results suggested that excess iron of the high dose of SPIONs might be a risk factor for cirrhosis because of the marked impacts of elevated lipid metabolism, disruption of iron homeostasis and possibly, aggravated loss of liver functions.
Collapse
|
49
|
Homocysteine upregulates hepcidin expression through BMP6/SMAD signaling pathway in hepatocytes. Biochem Biophys Res Commun 2016; 471:303-8. [PMID: 26855134 DOI: 10.1016/j.bbrc.2016.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 02/01/2016] [Indexed: 12/25/2022]
Abstract
Subjects with severe hyperhomocysteinemia have hypoferric anemia and excessive iron deposition in the liver. Hepcidin, the central regulator of iron homeostasis, plays a key role in iron metabolism. However, the regulation of homocysteine (Hcy) on hepcidin is largely unclear. We conducted experiments in HepG2 cells to identify the mechanisms with which Hcy modulates hepcidin expression. We found that treatment with Hcy dose-dependently increased both hepcidin transcript levels and protein levels, as assessed by quantitative real-time reverse-transcriptase polymerase chain reaction and western blotting, respectively. Hcy also activated BMP6 signaling and increased the phosphorylation of SMAD1/5/8 in HepG2 cells. We found that Hcy's effect on hepcidin expression was impaired by the knockdown of BMP6 and its receptors ALK2/3/6 with siRNAs. These results demonstrated that Hcy up-regulated hepcidin expression through the BMP6/SMAD pathway, suggesting a novel mechanism underlying the hyperhomocysteinemia-associated perturbation of iron homeostasis.
Collapse
|
50
|
Lu S, Bennett RG, Kharbanda KK, Harrison-Findik DD. Lack of hepcidin expression attenuates steatosis and causes fibrosis in the liver. World J Hepatol 2016; 8:211-225. [PMID: 26855692 PMCID: PMC4733464 DOI: 10.4254/wjh.v8.i4.211] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 10/14/2015] [Accepted: 11/13/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the role of key iron-regulatory protein, hepcidin in non-alcoholic fatty liver disease (NAFLD).
METHODS: Hepcidin (Hamp1) knockout and floxed control mice were administered a high fat and high sucrose (HFS) or a regular control diet for 3 or 7 mo. Steatosis, triglycerides, fibrosis, protein and gene expression in mice livers were determined by histological and biochemical techniques, western blotting and real-time polymerase chain reaction.
RESULTS: Knockout mice exhibited hepatic iron accumulation. Despite similar weight gains, HFS feeding induced hepatomegaly in floxed, but not knockout, mice. The livers of floxed mice exhibited higher levels of steatosis, triglycerides and c-Jun N-terminal kinase (JNK) phosphorylation than knockout mice. In contrast, a significant increase in fibrosis was observed in knockout mice livers within 3 mo of HFS administration. The hepatic gene expression levels of sterol regulatory element-binding protein-1c and fat-specific protein-27, but not peroxisome proliferator-activated receptor-alpha or microsomal triglyceride transfer protein, were attenuated in HFS-fed knockout mice. Knockout mice fed with regular diet displayed increased carnitine palmitoyltransferase-1a and phosphoenolpyruvate carboxykinase-1 but decreased glucose-6-phosphatase expression in the liver. In summary, attenuated steatosis correlated with decreased expression of lipogenic and lipid storage genes, and JNK phosphorylation. Deletion of Hamp1 alleles per se modulated hepatic expression of beta-oxidation and gluconeogenic genes.
CONCLUSION: Lack of hepcidin expression inhibits hepatic lipid accumulation and induces early development of fibrosis following high fat intake. Hepcidin and iron may play a role in the regulation of metabolic pathways in the liver, which has implications for NAFLD pathogenesis.
Collapse
|