1
|
Xue Y, Tian T, Ottallah M, Mannan M, Barkin J, Jin-Smith B, Pi L. Alcohol-Associated Hepatocarcinogenesis: Wnt/β-Catenin in Action. THE AMERICAN JOURNAL OF PATHOLOGY 2025:S0002-9440(25)00156-7. [PMID: 40350059 DOI: 10.1016/j.ajpath.2025.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/06/2025] [Accepted: 04/14/2025] [Indexed: 05/14/2025]
Abstract
Long-term alcohol consumption is a leading global health concern, primarily due to its deleterious effects on liver function and its well-established association with hepatocellular carcinoma. Alcohol-related liver disease (ALD) encompasses a continuum-from reversible hepatic steatosis and steatohepatitis through progressive fibrosis and cirrhosis to overt hepatocellular carcinoma. Accumulating studies have revealed that the Wnt/β-catenin signaling pathway is an essential regulator in ALD pathogenesis, orchestrating diverse molecular, immunologic, and epigenetic processes. Aberrant β-catenin activity disrupts redox homeostasis, promotes chronic inflammation, drives extracellular matrix remodeling, and alters hepatocyte cell fate, thereby creating a microenvironment that is highly conducive to carcinogenesis. This article provides a systematic review of the significant function of Wnt/β-catenin signaling in ALD, emphasizing its regulatory impact on liver fat accumulation, its inflammatory role in steatohepatitis, its involvement in fibrogenesis, and its tumor-promoting effects in alcohol-related hepatocellular carcinoma. In addition, emerging therapeutic strategies that offer potential for early identification and tailored therapy of ALD are explored-including direct Wnt modulators, combinatory therapeutics, and precision medicine approaches.
Collapse
Affiliation(s)
- Yuhua Xue
- Department of Pathology, Tulane University, New Orleans, Louisiana
| | - Tian Tian
- Department of Pathology, Tulane University, New Orleans, Louisiana
| | - Melak Ottallah
- Department of Pathology, Tulane University, New Orleans, Louisiana
| | - Mahfuza Mannan
- Department of Pathology, Tulane University, New Orleans, Louisiana
| | - Joshua Barkin
- Department of Pathology, Tulane University, New Orleans, Louisiana
| | - Brady Jin-Smith
- Department of Pathology, Tulane University, New Orleans, Louisiana
| | - Liya Pi
- Department of Pathology, Tulane University, New Orleans, Louisiana.
| |
Collapse
|
2
|
Chen H, Nisar MA, Mulla J, Li X, Cao K, Lu S, Nagaoka K, Wu S, Ting PS, Tseng TS, Lin HY, Yin XM, Feng W, Wu Z, Cheng Z, Mueller W, Bay A, Schechner L, Bai X, Huang CK. Liver TET1 promotes metabolic dysfunction-associated steatotic liver disease. EMBO Mol Med 2025; 17:1101-1117. [PMID: 40164757 DOI: 10.1038/s44321-025-00224-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 03/07/2025] [Accepted: 03/12/2025] [Indexed: 04/02/2025] Open
Abstract
Global hepatic DNA methylation change has been linked to human patients with metabolic dysfunction-associated steatotic liver disease (MASLD). DNA demethylation is regulated by the TET family proteins, whose enzymatic activities require 2-oxoglutarate (2-OG) and iron that both are elevated in human MASLD patients. We aimed to investigate liver TET1 in MASLD progression. Depleting TET1 using two different strategies substantially alleviated MASLD progression. Knockout (KO) of TET1 slightly improved diet induced obesity and glucose homeostasis. Intriguingly, hepatic cholesterols, triglycerides, and CD36 were significantly decreased upon TET1 depletion. Consistently, liver specific TET1 KO led to improvement of MASLD progression. Mechanistically, TET1 promoted CD36 expression through transcriptional upregulation via DNA demethylation control. Overexpression of CD36 reversed the impacts of TET1 downregulation on fatty acid uptake in hepatocytes. More importantly, targeting TET1 with a small molecule inhibitor significantly suppressed MASLD progression. Conclusively, liver TET1 plays a deleterious role in MASLD, suggesting the potential of targeting TET1 in hepatocytes to suppress MASLD.
Collapse
Affiliation(s)
- Hongze Chen
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Pancreatic and Biliary Surgery, First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Muhammad Azhar Nisar
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Joud Mulla
- Liver Research Center, Division of Gastroenterology & Liver Research Center, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA
| | - Xinjian Li
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Pancreatic and Biliary Surgery, First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Kevin Cao
- Liver Research Center, Division of Gastroenterology & Liver Research Center, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA
| | - Shaolei Lu
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI, USA
| | - Katsuya Nagaoka
- Liver Research Center, Division of Gastroenterology & Liver Research Center, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA
| | - Shang Wu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Peng-Sheng Ting
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Tung-Sung Tseng
- School of Public Health, Louisiana State University Health Sciences Center, New Orleans, USA
| | - Hui-Yi Lin
- School of Public Health, Louisiana State University Health Sciences Center, New Orleans, USA
| | - Xiao-Ming Yin
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Wenke Feng
- Department Structural Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Zhijin Wu
- Department of Biostatistics, School of Public Health, Brown University, Providence, RI, USA
| | - Zhixiang Cheng
- Liver Research Center, Division of Gastroenterology & Liver Research Center, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA
| | - William Mueller
- Liver Research Center, Division of Gastroenterology & Liver Research Center, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA
| | - Amalia Bay
- Liver Research Center, Division of Gastroenterology & Liver Research Center, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA
| | - Layla Schechner
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Xuewei Bai
- Department of Pancreatic and Biliary Surgery, First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang Province, China
- Liver Research Center, Division of Gastroenterology & Liver Research Center, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA
| | - Chiung-Kuei Huang
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
3
|
Liu M, Hemba-Waduge RUS, Li X, Huang X, Liu TH, Han X, Wang Y, Ji JY. Wnt/Wingless signaling promotes lipid mobilization through signal-induced transcriptional repression. Proc Natl Acad Sci U S A 2024; 121:e2322066121. [PMID: 38968125 PMCID: PMC11252803 DOI: 10.1073/pnas.2322066121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/31/2024] [Indexed: 07/07/2024] Open
Abstract
The Wnt/Wingless signaling pathway plays critical roles in metazoan development and energy metabolism, but its role in regulating lipid homeostasis remains not fully understood. Here, we report that the activation of canonical Wnt/Wg signaling promotes lipolysis while concurrently inhibiting lipogenesis and fatty acid β-oxidation in both larval and adult adipocytes, as well as cultured S2R+ cells, in Drosophila. Using RNA-sequencing and CUT&RUN (Cleavage Under Targets & Release Using Nuclease) assays, we identified a set of Wnt target genes responsible for intracellular lipid homeostasis. Notably, active Wnt signaling directly represses the transcription of these genes, resulting in decreased de novo lipogenesis and fatty acid β-oxidation, but increased lipolysis. These changes lead to elevated free fatty acids and reduced triglyceride (TG) accumulation in adipocytes with active Wnt signaling. Conversely, downregulation of Wnt signaling in the fat body promotes TG accumulation in both larval and adult adipocytes. The attenuation of Wnt signaling also increases the expression of specific lipid metabolism-related genes in larval adipocytes, wing discs, and adult intestines. Taken together, these findings suggest that Wnt signaling-induced transcriptional repression plays an important role in regulating lipid homeostasis by enhancing lipolysis while simultaneously suppressing lipogenesis and fatty acid β-oxidation.
Collapse
Affiliation(s)
- Mengmeng Liu
- Department of Biochemistry and Molecular Biology, Louisiana Cancer Research Center, Tulane University School of Medicine, New Orleans, LA70112
| | | | - Xiao Li
- Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ08540
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Department of Molecular Systems Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Tzu-Hao Liu
- Department of Biochemistry and Molecular Biology, Louisiana Cancer Research Center, Tulane University School of Medicine, New Orleans, LA70112
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX78229
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Department of Molecular Systems Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Jun-Yuan Ji
- Department of Biochemistry and Molecular Biology, Louisiana Cancer Research Center, Tulane University School of Medicine, New Orleans, LA70112
| |
Collapse
|
4
|
Shree Harini K, Ezhilarasan D, Mani U. Molecular insights on intracellular Wnt/β-catenin signaling in alcoholic liver disease. Cell Biochem Funct 2024; 42:e3916. [PMID: 38269515 DOI: 10.1002/cbf.3916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/27/2023] [Accepted: 12/10/2023] [Indexed: 01/26/2024]
Abstract
Alcoholic liver disease (ALD) is one of the most common health problems worldwide, especially in developing countries caused by chronic consumption of alcohol on a daily basis. The ALD spectrum is initiated with the early stages of alcoholic fatty liver (steatosis), progressing to alcoholic steatohepatitis, followed by the later stages of fibrosis and in some cases, cirrhosis and hepatocellular carcinoma (HCC). The Wnt/β-catenin signaling required for healthy liver development, function, and regeneration is found to be aberrated in ALD, attributed to its progression. This review is to elucidate the association of Wnt/β-catenin signaling with various stages of ALD progression. Alcohol causes downregulation of Wnt/β-catenin signaling components and thereby suppressing the pathway. Reports have been published that aberrated Wnt/β-catenin signaling, especially the absence of β-catenin, results in decreased alcohol metabolism, causing steatosis followed by steatohepatitis via lipid accumulation, lipid peroxidation, liver injury, increased oxidative stress and apoptosis of hepatocytes, contributing to the advancement of ALD. Contrastingly, the progression of later stages of ALD like fibrosis and HCC depends on the increased activation of Wnt/β-catenin signaling and its components. Existing studies reveal the varied expression of Wnt/β-catenin signaling in ALD. However, the dual role of the Wnt/β-catenin pathway in earlier and later stages of ALD is not clear. Therefore, studies on the Wnt/β-catenin pathway and its components in various manifestations of ALD might provide insight in targeting the Wnt/β-catenin pathway in ALD treatment.
Collapse
Affiliation(s)
- Karthik Shree Harini
- Department of Pharmacology, Hepatology & Molecular Medicine Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, India
| | - Devaraj Ezhilarasan
- Department of Pharmacology, Hepatology & Molecular Medicine Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, India
| | - Uthirappan Mani
- Animal House Division, CSIR-Central Leather Research Institute, Chennai, India
| |
Collapse
|
5
|
Shibamoto A, Kaji K, Nishimura N, Kubo T, Iwai S, Tomooka F, Suzuki J, Tsuji Y, Fujinaga Y, Kawaratani H, Namisaki T, Akahane T, Yoshiji H. Vitamin D deficiency exacerbates alcohol-related liver injury via gut barrier disruption and hepatic overload of endotoxin. J Nutr Biochem 2023; 122:109450. [PMID: 37777163 DOI: 10.1016/j.jnutbio.2023.109450] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/16/2023] [Accepted: 09/21/2023] [Indexed: 10/02/2023]
Abstract
Endogenous lipopolysaccharide (LPS) that translocates via the disrupted intestinal barrier plays an essential role in the progression of alcohol-related liver disease (ALD). Vitamin D deficiency is observed in ALD, and it participates in regulating gut barrier function. The current study aimed to examine the association between vitamin D deficiency and endotoxemia in patients with ALD-related cirrhosis. Moreover, the effect of vitamin D deficiency on ethanol (EtOH)- and carbon tetrachloride (CCl4)-induced liver injury relevant to gut barrier disruption in mice was investigated. Patients with ALD-related cirrhosis (Child-Pugh Class A/B/C; n=56/15/7) had lower 25(OH)D levels and higher endotoxin activities than non-drinking healthy controls (n=19). The serum 25(OH)D levels were found to be negatively correlated with endotoxin activity (R=-0.481, P<.0001). The EtOH/CCl4-treated mice developed hepatic inflammation and fibrosis, which were significantly enhanced by vitamin D-deficient diet. Vitamin D deficiency enhanced gut hyperpermeability by inhibiting the intestinal expressions of tight junction proteins including ZO-1, occludin, and claudin-2/5/12/15 in the EtOH/CCl4-treated mice. Consequently, it promoted the accumulation of lipid peroxidases, increased the expression of NADPH oxidases, and induced Kupffer cell infiltration and LPS/toll-like receptor 4 signaling-mediated proinflammatory response. Based on the in vitro assay, vitamin D-mediated vitamin D receptor activation inhibited EtOH-stimulated paracellular permeability and the downregulation of tight junction proteins via the upregulation of caudal-type homeobox 1 in Caco-2 cells. Hence, vitamin D deficiency exacerbates the pathogenesis of ALD via gut barrier disruption and hepatic overload of LPS.
Collapse
Affiliation(s)
- Akihiko Shibamoto
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Kosuke Kaji
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan.
| | - Norihisa Nishimura
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Takahiro Kubo
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Satoshi Iwai
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Fumimasa Tomooka
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Junya Suzuki
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Yuki Tsuji
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Yukihisa Fujinaga
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Hideto Kawaratani
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Tadashi Namisaki
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Takemi Akahane
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Hitoshi Yoshiji
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| |
Collapse
|
6
|
Nejak-Bowen K, Monga SP. Wnt-β-catenin in hepatobiliary homeostasis, injury, and repair. Hepatology 2023; 78:1907-1921. [PMID: 37246413 PMCID: PMC10687322 DOI: 10.1097/hep.0000000000000495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/14/2023] [Indexed: 05/30/2023]
Abstract
Wnt-β-catenin signaling has emerged as an important regulatory pathway in the liver, playing key roles in zonation and mediating contextual hepatobiliary repair after injuries. In this review, we will address the major advances in understanding the role of Wnt signaling in hepatic zonation, regeneration, and cholestasis-induced injury. We will also touch on some important unanswered questions and discuss the relevance of modulating the pathway to provide therapies for complex liver pathologies that remain a continued unmet clinical need.
Collapse
Affiliation(s)
- Kari Nejak-Bowen
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center, Pittsburgh, PA USA
| | - Satdarshan P. Monga
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center, Pittsburgh, PA USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| |
Collapse
|
7
|
Cheng Y, Lin S, Ren T, Zhang J, Shi Y, Chen Y, Chen Y. New murine model of alcoholic hepatitis in obesity-induced metabolic-associated fatty liver disease. Exp Anim 2023; 72:389-401. [PMID: 37019681 PMCID: PMC10435355 DOI: 10.1538/expanim.22-0160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/23/2023] [Indexed: 04/07/2023] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) and alcoholic hepatitis (AH) are among the most prevalent liver diseases worldwide, and their coexistence is common in clinical practice. However, currently established models of MAFLD-AH coexistence do not fully replicate their pathological characteristics and require sophisticated experimental techniques. Therefore, we aimed to develop an easily replicable model that mimics obesity-induced MAFLD-AH in patients. Our goal was to establish a murine model that replicates MAFLD and AH coexistence, resulting in significant liver injury and inflammation. To this end, we administered a single ethanol gavage dose to ob/ob mice on a chow diet. The administration of a single dose of ethanol led to elevated serum transaminase levels, increased liver steatosis, and apoptosis in ob/ob mice. Furthermore, ethanol binge caused a significant increase in oxidative stress in ob/ob mice, as measured via 4-hydroxynonenal. Importantly, the single dose of ethanol also markedly exacerbated liver neutrophil infiltration and upregulated the hepatic mRNA expression of several chemokines and neutrophil-related proteins, including Cxcl1, Cxcl2, and Lcn2. Whole-liver transcriptomic analysis revealed that ethanol-induced changes in gene expression profile shared similar features with AH and MAFLD. In ob/ob mice, a single dose of ethanol binge caused significant liver injury and neutrophil infiltration. This easy-to-replicate murine model successfully mimics the pathological and clinical features of patients with coexisting MAFLD and AH and closely resembles the transcriptional regulation seen in human disease.
Collapse
Affiliation(s)
- Yuqing Cheng
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, P.R. China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, 1665 Kongjiang Road, Shanghai, 200092, P.R. China
| | - Shuangzhe Lin
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, P.R. China
| | - Tianyi Ren
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, P.R. China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, 1665 Kongjiang Road, Shanghai, 200092, P.R. China
| | - Jianbin Zhang
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, P.R. China
| | - Yingying Shi
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, P.R. China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, 1665 Kongjiang Road, Shanghai, 200092, P.R. China
| | - Yingwei Chen
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, P.R. China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, 1665 Kongjiang Road, Shanghai, 200092, P.R. China
| | - Yuanwen Chen
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, 221 West Yan’an Road, Shanghai, 200040, P.R. China
- Department of Geriatrics, Huadong Hospital Affiliated to Fudan University, 221 West Yan’an Road, Shanghai, 200040, P.R. China
| |
Collapse
|
8
|
Liraglutide Attenuates Hepatic Oxidative Stress, Inflammation, and Apoptosis in Streptozotocin-Induced Diabetic Mice by Modulating the Wnt/ β-Catenin Signaling Pathway. Mediators Inflamm 2023; 2023:8974960. [PMID: 36756089 PMCID: PMC9899592 DOI: 10.1155/2023/8974960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/19/2022] [Accepted: 12/27/2022] [Indexed: 02/01/2023] Open
Abstract
Liraglutide has been extensively applied in the treatment of type 2 diabetes mellitus and also has hepatoprotective effects. However, the role of liraglutide treatment on liver injury in a mouse model of type 1 diabetes mellitus (T1DM) induced by streptozotocin (STZ) and its underlying mechanisms remain to be elucidated. In the present study, diabetes was initiated in experimental animals by single-dose intraperitoneal inoculation of STZ. Forty female C57BL/6J mice were equally assigned into five groups: diabetic group, insulin+diabetic group, liraglutide+diabetic group, insulin+liraglutide+diabetic group, and control group for eight weeks. Diabetic mice exhibited a significantly elevated blood glucose level and decreased body weight, and morphological changes of increased steatosis and apoptosis were observed in the liver compared with the control. Furthermore, a significant increase in the levels of malondialdehyde and inflammatory markers such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin 1β (IL-1β) and the proapoptotic proteins caspase-3 and Bax were observed in the livers of diabetic mice, together with marked increases in antioxidants superoxide dismutase (SOD) and glutathione peroxidase (GPX) as well as antiapoptotic protein Bcl-2, all of which were significantly mitigated by treatment with liraglutide, insulin, and their combinations. Interestingly, liraglutide monotherapy showed better efficacy in ameliorating liver injury in T1DM mice than insulin monotherapy, similar to the combined drug therapy. Furthermore, the expression of Wnt/β-catenin signaling pathway-associated molecules was upregulated in the liver of mice treated with liraglutide or insulin. The results of the present study suggested that liraglutide improves T1DM-induced liver injury and may have important implications for the treatment of nonalcoholic fatty liver disease (NAFLD) in patients with T1DM.
Collapse
|
9
|
Role of FOXO3a Transcription Factor in the Regulation of Liver Oxidative Injury. Antioxidants (Basel) 2022; 11:antiox11122478. [PMID: 36552685 PMCID: PMC9774119 DOI: 10.3390/antiox11122478] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Oxidative stress has been identified as a key mechanism in liver damage caused by various chemicals. The transcription factor FOXO3a has emerged as a critical regulator of redox imbalance. Multiple post-translational changes and epigenetic processes closely regulate the activity of FOXO3a, resulting in synergistic or competing impacts on its subcellular localization, stability, protein-protein interactions, DNA binding affinity, and transcriptional programs. Depending on the chemical nature and subcellular context, the oxidative-stress-mediated activation of FOXO3a can induce multiple transcriptional programs that play crucial roles in oxidative injury to the liver by chemicals. Here, we mainly review the role of FOXO3a in coordinating programs of genes that are essential for cellular homeostasis, with an emphasis on exploring the regulatory mechanisms and potential application of FOXO3a as a therapeutic target to prevent and treat liver oxidative injury.
Collapse
|
10
|
Ding Q, Zhang G, Wang Y, Xu L, Wu M, Zhou Y, Xu T, Meng X, Huang C, Zhang L. β-catenin ISGylation promotes lipid deposition and apoptosis in ethanol-stimulated liver injury models. Redox Rep 2022; 27:239-248. [PMID: 36259544 PMCID: PMC9586657 DOI: 10.1080/13510002.2022.2109360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background The restoration of the Wnt/β-catenin pathway to alleviate alcoholic fatty liver disease (AFLD) progression is under study as a new strategy for alcoholic liver disease (ALD) treatment. Recent studies have indicated that interferon-stimulated gene 15 (ISG15) can covalently bind to β-catenin by HECT E3 ubiquitin ligase 5 (HERC5), leading to ISG degradation and downregulation of β-catenin levels. However, the relationship between β-catenin and the ISG15 system in AFLD remains unclear. Methods Here, we explored the roles of the ISG15 system in β-catenin activation and in the pathogenesis of alcohol-induced liver injury and steatosis. Results In this study, HERC5 silencing upregulated β-catenin protein expression and inhibited lipid metabolism disorders and cell apoptosis. Reduced β-catenin protein expression, increased lipid metabolism disorders, and cell apoptosis were detected in cells induced with HERC5 overexpression, which was reversible with the reactive oxygen species (ROS) inhibitor. All the above results were statistically analyzed. Thus, these observations demonstrate that β-catenin ISGylation is a prominent regulator of ALD pathology, which works by regulating ROS to induce lipid metabolism disorders and cell apoptosis. Conclusion Our findings provided the mechanism involved in the β-catenin ISGylation, allowing for future studies on the prevention or amelioration of liver injury in ALD.
Collapse
Affiliation(s)
- Qi Ding
- Anhui No.2 Provincial People's Hospital, Hefei, People's Republic of China
| | - Guodong Zhang
- School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China.,Key Laboratory of major autoimmune disease, Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China.,The Key Laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Anhui Medical University, Hefei, People's Republic of China
| | - Yang Wang
- School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China.,Key Laboratory of major autoimmune disease, Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China.,The Key Laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Anhui Medical University, Hefei, People's Republic of China
| | - Lei Xu
- School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China.,Key Laboratory of major autoimmune disease, Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China.,The Key Laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Anhui Medical University, Hefei, People's Republic of China
| | - Meifei Wu
- School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China.,Key Laboratory of major autoimmune disease, Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China.,The Key Laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Anhui Medical University, Hefei, People's Republic of China
| | - Yiwen Zhou
- School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China.,Key Laboratory of major autoimmune disease, Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China.,The Key Laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Anhui Medical University, Hefei, People's Republic of China
| | - Tao Xu
- School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China.,Key Laboratory of major autoimmune disease, Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China.,The Key Laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Anhui Medical University, Hefei, People's Republic of China
| | - Xiaoming Meng
- School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China.,Key Laboratory of major autoimmune disease, Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China.,The Key Laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Anhui Medical University, Hefei, People's Republic of China
| | - Cheng Huang
- School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China.,Key Laboratory of major autoimmune disease, Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China.,The Key Laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Anhui Medical University, Hefei, People's Republic of China
| | - Lei Zhang
- School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China.,Key Laboratory of major autoimmune disease, Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China.,The Key Laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
11
|
Zhao R, Li H, Ge W, Zhu X, Zhu L, Wan X, Wang G, Pan H, Lu J, Han W. Comprehensive Analysis of Genomic Alterations in Hepatoid Adenocarcinoma of the Stomach and Identification of Clinically Actionable Alterations. Cancers (Basel) 2022; 14:cancers14163849. [PMID: 36010842 PMCID: PMC9405706 DOI: 10.3390/cancers14163849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Hepatoid adenocarcinoma of the stomach (HAS) is a subset of gastric cancer (GC) histologically characterized by hepatocellular carcinoma-like foci with or without alpha-fetoprotein secretion, which is easily misdiagnosed. Genomic alterations and potential targets for this population are still largely unknown. Additionally, treatment regimens of HAS are mainly based on GC guidelines, which is not reasonable for diseases with great heterogeneity. The present study comprehensively depicts the genomic features of HAS, and they are significantly different from GC, AFP-producing GC (AFPGC), and liver hepatocellular carcinoma (LIHC). Multiple aggressive behavior-related amplificated or deleted regions in HAS are firstly reported. Moreover, reliable and practicable clinically actionable alterations for HAS are identified, providing evidence for making personalized therapy based on the genomic characteristics of HAS instead of GC. Abstract Hepatoid adenocarcinoma of the stomach (HAS) is a rare malignancy with aggressive biological behavior. This study aimed to compare the genetic landscape of HAS with liver hepatocellular carcinoma (LIHC), gastric cancer (GC), and AFP-producing GC (AFPGC) and identify clinically actionable alterations. Thirty-eight cases of HAS were collected for whole-exome sequencing. Significantly mutated genes were identified. TP53 was the most frequently mutated gene (66%). Hypoxia, TNF-α/NFκB, mitotic spindle assembly, DNA repair, and p53 signaling pathways mutated frequently. Mutagenesis mechanisms in HAS were associated with spontaneous or enzymatic deamination of 5-methylcytosine to thymine and defective homologous recombination-related DNA damage repair. However, LIHC was characteristic of exposure to aflatoxin and aristolochic acid. The copy number variants (CNVs) in HAS was significantly different compared to LIHC, GC, and AFPGC. Aggressive behavior-related CNVs were identified, including local vascular invasion, advanced stages, and adverse prognosis. In 55.26% of HAS patients there existed at least one clinically actionable alteration, including ERBB2, FGFR1, CDK4, EGFR, MET, and MDM2 amplifications and BRCA1/2 mutations. MDM2 amplification with functional TP53 was detected in 5% of HAS patients, which was proved sensitive to MDM2 inhibitors. A total of 10.53% of HAS patients harbored TMB > 10 muts/Mb. These findings improve our understanding of the genomic features of HAS and provide potential therapeutic targets.
Collapse
Affiliation(s)
- Rongjie Zhao
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Hongshen Li
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Weiting Ge
- Cancer Institute, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310005, China
| | - Xiuming Zhu
- Department of Medical Oncology, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou 314408, China
| | - Liang Zhu
- Department of Pathology, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou 310005, China
| | - Xiangbo Wan
- Department of Radical Oncology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 518052, China
| | - Guanglan Wang
- Department of Pathology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Jie Lu
- Department of Gastroenterology, Gongli Hospital of Shanghai Pudong New Area, Shanghai University, Shanghai 200135, China
- Department of Gastroenterology, The Tenth People’s Hospital of Tongji University, Shanghai 311202, China
- Correspondence: (J.L.); (W.H.)
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou 310016, China
- Correspondence: (J.L.); (W.H.)
| |
Collapse
|
12
|
Sun HY, Gu AX, Huang BY, Zhang T, Li JP, Shan AS. Dietary Grape Seed Proanthocyanidin Alleviates the Liver Injury Induced by Long-Term High-Fat Diets in Sprague Dawley Rats. Front Vet Sci 2022; 9:959906. [PMID: 35990272 PMCID: PMC9382112 DOI: 10.3389/fvets.2022.959906] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 06/16/2022] [Indexed: 12/03/2022] Open
Abstract
In mammals, the liver is the most important organ that plays a vital function in lipid metabolism. Grape seed proanthocyanidin (GSPE) is a kind of natural polyphenolic compound primarily obtained from grape skin and seeds. Recent research found it had high bioavailability in defending against obesity, hyperlipidemia, inflammatory, oxidative stress, and targeting liver tissue. However, the mechanism of GSPE in regulating obesity induced by dietary high-fat (HF) was not fully understood, particularly the influences on liver functions. Therefore, this study aimed to investigate the effects of GSPE supplementation on the liver function and lipid metabolic parameters in rats fed HF diets long-term. A total of 40 healthy female Sprague Dawley rats were selected. After 8 weeks of obesity model feeding, the rats were randomly divided into four treatments: NC, standard diet; NC + GSPE, standard diet + 500 mg/kg body weight GSPE; HF, high-fat diet; HG + GSPE, high fat diet + 500 mg/kg body weight GSPE. Results indicated that long-term HF feeding caused severe liver problems including megalohepatia, steatosis, inflammation, and hepatocyte apoptosis. The supplementation of GSPE alleviated these symptoms. The results of the current experiment confirmed that GSPE addition up-regulated the expression of the Wnt3a/β-catenin signaling pathway, thereby restraining the liver cell endoplasmic reticulum stress and hepatocyte apoptosis. Furthermore, the microRNA-103 may play a role in this signal-regulated pathway. In summary, GSPE had a protective effect on the liver and the current experiment provided a reference for the application of GSPE in animal nutrition as a kind of natural feed additive.
Collapse
Affiliation(s)
| | | | | | | | - Jian Ping Li
- College of Animal Science and Technology, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - An Shan Shan
- College of Animal Science and Technology, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| |
Collapse
|
13
|
Noack L, Bundkirchen K, Xu B, Gylstorff S, Zhou Y, Köhler K, Jantaree P, Neunaber C, Nowak AJ, Relja B. Acute Intoxication With Alcohol Reduces Trauma-Induced Proinflammatory Response and Barrier Breakdown in the Lung via the Wnt/β-Catenin Signaling Pathway. Front Immunol 2022; 13:866925. [PMID: 35663960 PMCID: PMC9159919 DOI: 10.3389/fimmu.2022.866925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Background Trauma is the third leading cause of mortality worldwide. Upon admission, up to 50% of traumatized patients are acutely intoxicated with alcohol, which might lead to aberrant immune responses. An excessive and uncontrolled inflammatory response to injury is associated with damage to trauma-distant organs. We hypothesize that, along with inflammation-induced apoptosis, the activation of the Wnt/β-catenin signaling pathway would cause breakdown of the lung barrier and the development of lung injury after trauma. It remains unclear whether ethanol intoxication (EI) prior to trauma and hemorrhagic shock will attenuate inflammation and organ injury. Methods In this study, 14 male C57BL/6J mice were randomly assigned to two groups and exposed either to EtOH or to NaCl as a control by an oral gavage before receiving a femur fracture (Fx) and hemorrhagic shock, followed by resuscitation (THFx). Fourteen sham animals received either EtOH or NaCl and underwent surgical procedures without THFx induction. After 24 h, oil red O staining of fatty vacuoles in the liver was performed. Histological lung injury score (LIS) was assessed to analyze the trauma-induced RLI. Gene expression of Cxcl1, Il-1β, Muc5ac, Tnf, and Tnfrsf10b as well as CXCL1, IL-1β, and TNF protein levels in the lung tissue and bronchoalveolar lavage fluid were determined by RT-qPCR, ELISA, and immunohistological analyses. Infiltrating polymorphonuclear leukocytes (PMNLs) were examined via immunostaining. Apoptosis was detected by activated caspase-3 expression in the lung tissue. To confirm active Wnt signaling after trauma, gene expression of Wnt3a and its inhibitor sclerostin (Sost) was determined. Protein expression of A20 and RIPK4 as possible modulators of the Wnt signaling pathway was analyzed via immunofluorescence. Results Significant fatty changes in the liver confirmed the acute EI. Histopathology and decreased Muc5ac expression revealed an increased lung barrier breakdown and concomitant lung injury after THFx versus sham. EI prior trauma decreased lung injury. THFx increased not only the gene expression of pro-inflammatory markers but also the pulmonary infiltration with PMNL and apoptosis versus sham, while EI prior to THFx reduced those changes significantly. EI increased the THFx-reduced gene expression of Sost and reduced the THFx-induced expression of Wnt3a. While A20, RIPK4, and membranous β-catenin were significantly reduced after trauma, they were enhanced upon EI. Conclusion These findings suggest that acute EI alleviates the uncontrolled inflammatory response and lung barrier breakdown after trauma by suppressing the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Laurens Noack
- Department of Radiology and Nuclear Medicine, Experimental Radiology, Otto-von-Guericke University, Magdeburg, Germany
| | | | - Baolin Xu
- Department of Radiology and Nuclear Medicine, Experimental Radiology, Otto-von-Guericke University, Magdeburg, Germany.,Trauma Department, Hannover Medical School, Hannover, Germany
| | - Severin Gylstorff
- Department of Radiology and Nuclear Medicine, Experimental Radiology, Otto-von-Guericke University, Magdeburg, Germany
| | - Yuzhuo Zhou
- Department of Radiology and Nuclear Medicine, Experimental Radiology, Otto-von-Guericke University, Magdeburg, Germany.,Trauma Department, Hannover Medical School, Hannover, Germany
| | - Kernt Köhler
- Institute of Veterinary Pathology, Justus Liebig University Giessen, Giessen, Germany
| | - Phatcharida Jantaree
- Institute of Experimental Internal Medicine, Otto-von-Guericke University, Magdeburg, Germany
| | | | - Aleksander J Nowak
- Department of Radiology and Nuclear Medicine, Experimental Radiology, Otto-von-Guericke University, Magdeburg, Germany
| | - Borna Relja
- Department of Radiology and Nuclear Medicine, Experimental Radiology, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
14
|
Warner DR, Warner JB, Hardesty JE, Song YL, Chen CY, Chen Z, Kang JX, McClain CJ, Kirpich IA. Beneficial effects of an endogenous enrichment in n3-PUFAs on Wnt signaling are associated with attenuation of alcohol-mediated liver disease in mice. FASEB J 2021; 35:e21377. [PMID: 33481293 DOI: 10.1096/fj.202001202r] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022]
Abstract
Alcohol-associated liver disease (ALD) is a major human health issue for which there are limited treatment options. Experimental evidence suggests that nutrition plays an important role in ALD pathogenesis, and specific dietary fatty acids, for example, n6 or n3-PUFAs, may exacerbate or attenuate ALD, respectively. The purpose of the current study was to determine whether the beneficial effects of n3-PUFA enrichment in ALD were mediated, in part, by improvement in Wnt signaling. Wild-type (WT) and fat-1 transgenic mice (that endogenously convert n6-PUFAs to n3) were fed ethanol (EtOH) for 6 weeks followed by a single LPS challenge. fat-1 mice had less severe liver damage than WT littermates as evidenced by reduced plasma alanine aminotransferase, hepatic steatosis, liver tissue neutrophil infiltration, and pro-inflammatory cytokine expression. WT mice had a greater downregulation of Axin2, a key gene in the Wnt pathway, than fat-1 mice in response to EtOH and LPS. Further, there were significant differences between WT and fat-1 EtOH+LPS-challenged mice in the expression of five additional genes linked to the Wnt signaling pathway, including Apc, Fosl1/Fra-1, Mapk8/Jnk-1, Porcn, and Nkd1. Compared to WT, primary hepatocytes isolated from fat-1 mice exhibited more effective Wnt signaling and were more resistant to EtOH-, palmitic acid-, or TNFα-induced cell death. Further, we demonstrated that the n3-PUFA-derived lipid mediators, resolvins D1 and E1, can regulate hepatocyte expression of several Wnt-related genes that were differentially expressed between WT and fat-1 mice. These data demonstrate a novel mechanism by which n3-PUFAs can ameliorate ALD.
Collapse
Affiliation(s)
- Dennis R Warner
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Jeffrey B Warner
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY, USA.,Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Josiah E Hardesty
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY, USA.,Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Ying L Song
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Chi-Yu Chen
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Zoe Chen
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jing X Kang
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Craig J McClain
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY, USA.,Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.,University of Louisville Alcohol Center, University of Louisville School of Medicine, Louisville, KY, USA.,Hepatobiology & Toxicology Center, University of Louisville School of Medicine, Louisville, KY, USA.,Robley Rex Veterans Medical Center, Louisville, KY, USA
| | - Irina A Kirpich
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY, USA.,Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.,University of Louisville Alcohol Center, University of Louisville School of Medicine, Louisville, KY, USA.,Hepatobiology & Toxicology Center, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
15
|
Zhang F, Wang F, He J, Lian N, Wang Z, Shao J, Ding H, Tan S, Chen A, Zhang Z, Wang S, Zheng S. Regulation of hepatic stellate cell contraction and cirrhotic portal hypertension by Wnt/β-catenin signalling via interaction with Gli1. Br J Pharmacol 2021; 178:2246-2265. [PMID: 33085791 DOI: 10.1111/bph.15289] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 09/05/2020] [Accepted: 09/27/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Portal hypertension is a lethal complication of cirrhosis. Its mechanism and therapeutic targets remain largely unknown. Hepatic stellate cell (HSC) contraction increases intrahepatic vascular resistance contributing to portal hypertension. We investigated how HSC contraction was regulated by Wnt signalling and the therapeutic implications. EXPERIMENTAL APPROACH Liver tissues from cirrhotic patients were examined. Cirrhotic mice with genetic or pharmacological treatments were used for in vivo assessments, and their primary cells were isolated. Cellular functions and signalling pathways were analysed in human HSC-LX2 cells using real-time PCR, Western blotting, siRNA, luciferase reporter assay, chromatin immunoprecipitation, co-immunoprecipitation and site-directed mutagenesis. KEY RESULTS Wnt/β-catenin correlated with HSC contraction in human cirrhotic liver. Wnt3a stimulated Smo-independent Gli1 nuclear translocation followed by LARG-mediated RhoA activation leading to HSC contraction. Suppressor of fused (Sufu) negatively mediated Wnt3a-induced Gli1 nuclear translocation. Wnt/β-catenin repressed transcription of Sufu dependent on β-catenin/TCF4 interaction and TCF4 binding to Sufu promoter. Molecular simulation and site-directed mutagenesis identified the β-catenin residues Lys312 and Lys435 critically involved in this interaction. TCF4 binding to the sequence CACACCTTCC at Sufu promoter was required for transrepression of Sufu. In cirrhotic mice, short-term liver-targeting β-catenin deficiency or acute treatment with β-catenin inhibitors reduced portal pressure via restriction of HSC contraction rather than inhibiting HSC activation. Long-term deficiency or treatments also ameliorated liver injury, fibrosis and inflammation. CONCLUSION AND IMPLICATIONS Interaction between Wnt/β-catenin and Smo-independent Gli1 pathways promoted HSC contraction via TCF4-dependent transrepression of Sufu. HSC-specific inhibition of β-catenin may have therapeutic benefits for cirrhotic portal hypertension.
Collapse
Affiliation(s)
- Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feixia Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianlin He
- The Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Naqi Lian
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhenyi Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiangjuan Shao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hai Ding
- Department of Integrated TCM & Western Medicine in Hepatology, The Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Shanzhong Tan
- Department of Integrated TCM & Western Medicine in Hepatology, The Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Anping Chen
- Department of Pathology, School of Medicine, Saint Louis University, St. Louis, Missouri, USA
| | - Zili Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shijun Wang
- Shandong Co-innovation Center of TCM Formula, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shizhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
16
|
Luo P, Zheng M, Zhang R, Zhang H, Liu Y, Li W, Sun X, Yu Q, Tipoe GL, Xiao J. S-Allylmercaptocysteine improves alcoholic liver disease partly through a direct modulation of insulin receptor signaling. Acta Pharm Sin B 2021; 11:668-679. [PMID: 33777674 PMCID: PMC7982498 DOI: 10.1016/j.apsb.2020.11.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/31/2020] [Accepted: 09/07/2020] [Indexed: 12/18/2022] Open
Abstract
Alcoholic liver disease (ALD) causes insulin resistance, lipid metabolism dysfunction, and inflammation. We investigated the protective effects and direct regulating target of S-allylmercaptocysteine (SAMC) from aged garlic on liver cell injury. A chronic ethanol-fed ALD in vivo model (the NIAAA model) was used to test the protective functions of SAMC. It was observed that SAMC (300 mg/kg, by gavage method) effectively ameliorated ALD-induced body weight reduction, steatosis, insulin resistance, and inflammation without affecting the health status of the control mice, as demonstrated by histological, biochemical, and molecular biology assays. By using biophysical assays and molecular docking, we demonstrated that SAMC directly targeted insulin receptor (INSR) protein on the cell membrane and then restored downstream IRS-1/AKT/GSK3β signaling. Liver-specific knock-down in mice and siRNA-mediated knock-down in AML-12 cells of Insr significantly impaired SAMC (250 μmol/L in cells)-mediated protection. Restoration of the IRS-1/AKT signaling partly recovered hepatic injury and further contributed to SAMC's beneficial effects. Continuous administration of AKT agonist and recombinant IGF-1 in combination with SAMC showed hepato-protection in the mice model. Long-term (90-day) administration of SAMC had no obvious adverse effect on healthy mice. We conclude that SAMC is an effective and safe hepato-protective complimentary agent against ALD partly through the direct binding of INSR and partial regulation of the IRS-1/AKT/GSK3β pathway.
Collapse
Key Words
- ADIPOQ, adiponectin
- AKT
- ALD, alcoholic liver disease
- ALDH2, aldehyde dehydrogenase 2
- ALT, alanine aminotransferase
- AMPK, adenosine 5′-monophosphate (AMP)-activated protein kinase
- AST, aspartate aminotransferase
- ATGL, adipose triglyceride lipase
- Alcoholic liver disease
- CPT1, carnitine palmitoyltransferase I
- CYP2E1, cytochrome P450 2E1
- FDA, U.S. Food and Drug Administration
- FFA, free fatty acids
- GRB14, growth factor receptor-bound protein 14
- GSK3β
- GSK3β, glycogen synthase kinase 3 beta
- GTT, glucose tolerance test
- HSL, hormone sensitive lipase
- IGF-1, insulin-like growth factors-1
- IL, interleukin
- INSR, insulin receptor
- IRS, insulin receptor substrate
- IRS-1
- IRTK, insulin receptor tyrosine kinase
- Insulin receptor
- Insulin resistance
- LDLR, low-density lipoprotein receptor
- LRP6, low-density lipoprotein receptor related protein 6
- MTT, 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl-tetrazolium bromide
- NAC, N-acetyl-cysteine
- NAFLD, non-alcoholic fatty liver disease
- NAS, NAFLD activity score
- NF-κB, nuclear factor kappa B
- NIAAA, National Institute on Alcohol Abuse and Alcoholism
- NRF2, nuclear factor erythroid 2-related factor 2
- ORF, open reading frame
- PA, palmitate acid
- PPARα, peroxisome proliferator-activated receptor alpha
- RER, respiratory exchange ratio
- S-Allylmercaptocysteine
- SAMC, S-allylmercaptocysteine
- SPR, surface plasmon resonance
- SREBP-1c, sterol regulatory element-binding protein 1c
- Safety
- TC, total cholesterol
- TCF/LEF, T-cell factor/lymphoid enhancer factor
- TG, triglyceride
- TNF, tumor necrosis factor
- TSA, thermal shift assay
- WAT, white adipose tissues
- WT, wild-type
Collapse
|
17
|
Liu Y, Wang Z, Kong F, Teng L, Zheng X, Liu X, Wang D. Triterpenoids Extracted From Antrodia cinnamomea Mycelia Attenuate Acute Alcohol-Induced Liver Injury in C57BL/6 Mice via Suppression Inflammatory Response. Front Microbiol 2020; 11:1113. [PMID: 32719658 PMCID: PMC7350611 DOI: 10.3389/fmicb.2020.01113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022] Open
Abstract
Excessive alcohol consumption causes liver injury–induced mortality. Here we systematically analyzed the structure of triterpenoids extracted from Antrodia cinnamomea mycelia (ACT) and investigated their protective effects against acute alcohol-induced liver injury in mice. Liquid chromatography–mass spectrometry and liquid chromatography with tandem mass spectrometry were performed to determine the structures of ACT constituents. Alcohol-induced liver injury was generated in C57BL/6 mice by oral gavage of 13 g/kg white spirit (a wine at 56% ABV). Mice were treated with either silibinin or ACT for 2 weeks. Liver injury markers and pathological signaling were then quantified with enzyme-linked immunosorbent assays, antibody array assays, and Western blots, and pathological examinations were performed using hematoxylin-eosin staining and periodic acid–Schiff staining. Triterpenoids extracted from A. cinnamomea mycelia contain 25 types of triterpenoid compounds. A 2-weeks alcohol consumption treatment caused significant weight loss, liver dyslipidemia, and elevation of alanine aminotransferase, aspartate aminotransferase, γ-glutamyl transferase, and alkaline phosphatase activities in the serum and/or liver. These effects were markedly reversed after 2-weeks ACT administration. Triterpenoids extracted from A. cinnamomea mycelia alleviated the organ structural changes and inflammatory infiltration of alcohol-damaged tissues. Triterpenoids extracted from A. cinnamomea mycelia inhibited proinflammatory cytokine levels and enhanced anti-inflammatory cytokine levels. Acute alcohol treatment promoted inflammation with significant correlations to hypoxia-inducible factor 1α (HIF-1α), which was reduced by ACT and was partially related to modulation of the protein kinase B (Akt)/70-kDa ribosomal protein S6 kinase phosphorylation (p70S6K) and Wnt/β-catenin signaling pathways. In conclusion, ACT protected against acute alcohol-induced liver damage in mice mainly through its suppression of the inflammatory response, which may be related to HIF-1α signaling.
Collapse
Affiliation(s)
- Yange Liu
- School of Life Sciences, Jilin University, Changchun, China.,School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Zhuqian Wang
- School of Life Sciences, Jilin University, Changchun, China
| | - Fange Kong
- School of Life Sciences, Jilin University, Changchun, China
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun, China
| | - Xiaoyi Zheng
- Division of Nephrology, Stanford University School of Medicine, Stanford, CA, United States
| | - Xingkai Liu
- Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
18
|
Yang C, Li J, Sun F, Zhou H, Yang J, Yang C. The functional duality of SGK1 in the regulation of hyperglycemia. Endocr Connect 2020; 9:R187-R194. [PMID: 32621586 PMCID: PMC7424354 DOI: 10.1530/ec-20-0225] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 07/02/2020] [Indexed: 12/11/2022]
Abstract
Hyperglycemia is the consequence of blood glucose dysregulation and a driving force of diabetic complications including retinopathy, nephropathy and cardiovascular diseases. The serum and glucocorticoid inducible kinase-1 (SGK1) has been suggested in the modulation of various pathophysiological activities. However, the role of SGK1 in blood glucose homeostasis remains less appreciated. In this review, we intend to summarize the function of SGK1 in glucose level regulation and to examine the evidence supporting the therapeutic potential of SGK1 inhibitors in hyperglycemia. Ample evidence points to the controversial roles of SGK1 in pancreatic insulin secretion and peripheral insulin sensitivity, which reflects the complex interplay between SGK1 activation and blood glucose fluctuation. Furthermore, SGK1 is engaged in glucose absorption and excretion in intestine and kidney and participates in the progression of hyperglycemia-induced secondary organ damage. As a net effect, blockage of SGK1 activation via either pharmacological inhibition or genetic manipulation seems to be helpful in glucose control at varying diabetic stages.
Collapse
Affiliation(s)
- Chunliang Yang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Center for Biomedical Research, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junyi Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Sun
- The Center for Biomedical Research, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haifeng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Yang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Correspondence should be addressed to C Yang or J Yang: or
| | - Chao Yang
- Department of Gerontology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, China
- Correspondence should be addressed to C Yang or J Yang: or
| |
Collapse
|
19
|
The metabolite, alpha-ketoglutarate inhibits non-alcoholic fatty liver disease progression by targeting lipid metabolism. LIVER RESEARCH 2020. [DOI: 10.1016/j.livres.2020.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Vitamin D Deficiency Aggravates Hepatic Oxidative Stress and Inflammation during Chronic Alcohol-Induced Liver Injury in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5715893. [PMID: 32184917 PMCID: PMC7063183 DOI: 10.1155/2020/5715893] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/06/2020] [Accepted: 02/12/2020] [Indexed: 12/11/2022]
Abstract
Vitamin D deficiency has been reported in alcoholics. This study is aimed at evaluating the effects of vitamin D deficiency on chronic alcohol-induced liver injury in mice. Mice were fed with modified Lieber-DeCarli liquid diets for 6 weeks to establish an animal model of chronic alcohol-induced liver injury. In the VDD+EtOH group, mice were fed with modified diets, in which vitamin D was depleted. Vitamin D deficiency aggravated alcohol-induced liver injury. Furthermore, vitamin D deficiency aggravated hepatocyte apoptosis during alcohol-induced liver injury. Although it has a little effect on hepatic TG content, vitamin D deficiency promoted alcohol-induced hepatic GSH depletion and lipid peroxidation. Further analysis showed that vitamin D deficiency further increased alcohol-induced upregulation of hepatic inducible nitric oxide synthase (inos), two NADPH oxidase subunits p47phox and gp91phox, and heme oxygenase- (HO-) 1. By contrast, vitamin D deficiency attenuated alcohol-induced upregulation of hepatic antioxidant enzyme genes, such as superoxide dismutase (sod) 1 and gshpx. In addition, vitamin D deficiency significantly elevated alcohol-induced upregulation of hepatic proinflammatory cytokines and chemokines. Taken together, these results suggest that vitamin D deficiency aggravates hepatic oxidative stress and inflammation during chronic alcohol-induced liver injury.
Collapse
|
21
|
Tan K, Xie X, Shi W, Miao L, Dong X, Yang W, Shao C, Zhao H, Wang Y, Wang G, Hou F, Hong Y. Deficiency of canonical Wnt/β-catenin signalling in hepatic dendritic cells triggers autoimmune hepatitis. Liver Int 2020; 40:131-140. [PMID: 31505100 DOI: 10.1111/liv.14246] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 08/21/2019] [Accepted: 08/27/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Autoimmune hepatitis (AIH) is a chronic inflammatory liver disease manifested with the aberrant activation of hepatic dendritic cells (HDCs) and the subsequent breakdown of immune homeostasis. As an important player, HDC maintains immunological balance between tolerance to self-antigens versus destruction against pathogens in liver. However, the intracellular signalling networks that program HDC remain unclear. We have now found the role of canonical Wnt/β-catenin signalling in HDCs. METHODS Liver sections from AIH patients and healthy subjects were stained for the markers of Wnt/β-catenin signalling. Concanavalin A (ConA) and HDC/Hepa1-6 vaccine-induced AIH mouse models were examined for liver injury, inflammation and immune cell functions by serum biochemistry, histology, quantitative reverse transcription polymerase chain reaction (qRT-PCR), enzyme-linked immunosorbent assay (ELISA) and flow cytometry analysis. Wnt/β-catenin signalling expression was measured using immunoblot and qRT-PCR. RESULTS Canonical Wnt/β-catenin signalling in HDC is deficient in AIH patients and a mouse model, which coincides with the immunogenic function of HDCs. Furthermore, Wnt ligand engagement reactivates Wnt/β-catenin signalling and recovers the immunoregulatory phenotype of HDCs, in turn alleviating the severity of AIH. Likewise, pharmacologic activation of Wnt/β-catenin signalling attenuates AIH progression. CONCLUSIONS We report here that the constitutively active canonical Wnt/β-catenin signalling confers HDCs tolerogenicity under steady-state conditions. Deficiency of this pathway gives rise to T cell-mediated immune response and incidence of AIH. It may act as a new pathogenesis and treatment target for AIH.
Collapse
Affiliation(s)
- Kangan Tan
- Infectious Diseases Department, Peking University First Hospital, Beijing, China
| | - Xuehai Xie
- General Surgery Department, Peking University First Hospital, Beijing, China
| | - Wanwan Shi
- Infectious Diseases Department, Peking University First Hospital, Beijing, China
| | - Liang Miao
- Qinhuangdao Third Hospital, Hebei, China
| | - Xiaoqin Dong
- Infectious Diseases Department, Peking University First Hospital, Beijing, China
| | - Wanna Yang
- Infectious Diseases Department, Peking University First Hospital, Beijing, China
| | - Chen Shao
- Pathology Department, Capital Medical University Youan Hospital, Beijing, China
| | - Hong Zhao
- Infectious Diseases Department, Peking University First Hospital, Beijing, China
| | - Yan Wang
- Infectious Diseases Department, Peking University First Hospital, Beijing, China
| | - Guiqiang Wang
- Infectious Diseases Department, Peking University First Hospital, Beijing, China
| | - Fengqin Hou
- Infectious Diseases Department, Peking University First Hospital, Beijing, China
| | - Yuan Hong
- Infectious Diseases Department, Peking University First Hospital, Beijing, China
| |
Collapse
|
22
|
Jiang G, Huang CK, Zhang X, Lv X, Wang Y, Yu T, Cai X. Wnt signaling in liver disease: emerging trends from a bibliometric perspective. PeerJ 2019; 7:e7073. [PMID: 31275745 PMCID: PMC6590390 DOI: 10.7717/peerj.7073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/05/2019] [Indexed: 12/20/2022] Open
Abstract
Background The Wnt signaling pathway, an evolutionarily conserved molecular transduction cascade, has been identified as playing a pivotal role in various physiological and pathological processes of the liver, including homeostasis, regeneration, cirrhosis, and hepatocellular carcinoma (HCC). In this study, we aimed to use a bibliometric method to evaluate the emerging trends on Wnt signaling in liver diseases. Methods Articles were retrieved from the Web of Science Core Collection. We used a bibliometric software, CiteSpace V 5.3.R4, to analyze the active countries or institutions in the research field, the landmark manuscripts, important subtopics, and evolution of scientific ideas. Results In total, 1,768 manuscripts were published, and each was cited 33.12 times on average. The U.S. published most of the articles, and the most active center was the University of Pittsburgh. The top 5 landmark papers were identified by four bibliometric indexes including citation, burstness, centrality, and usage 2013. The clustering process divided the whole area into nine research subtopics, and the two major important subtopics were "liver zonation" and "HCC." Using the "Part-of-Speech" technique, 1,743 terms representing scientific ideas were identified. After 2008, the bursting phrases were "liver development," "progenitor cells," "hepatic stellate cells," "liver regeneration," "liver fibrosis," "epithelial-mesenchymal transition," and etc. Conclusion Using bibliometric methods, we quantitatively summarized the advancements and emerging trends in Wnt signaling in liver diseases. These bibliometric findings may pioneer the future direction of this field in the next few years, and further studies are needed.
Collapse
Affiliation(s)
- Guangyi Jiang
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Laparoscopic Technology of Zhejiang Province, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chiung-Kuei Huang
- Liver Research Center, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Xinjie Zhang
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Laparoscopic Technology of Zhejiang Province, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xingyu Lv
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Laparoscopic Technology of Zhejiang Province, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yifan Wang
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Laparoscopic Technology of Zhejiang Province, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tunan Yu
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Laparoscopic Technology of Zhejiang Province, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiujun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Laparoscopic Technology of Zhejiang Province, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
23
|
Wang W, Smits R, Hao H, He C. Wnt/β-Catenin Signaling in Liver Cancers. Cancers (Basel) 2019; 11:E926. [PMID: 31269694 PMCID: PMC6679127 DOI: 10.3390/cancers11070926] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022] Open
Abstract
Liver cancer is among the leading global healthcare issues associated with high morbidity and mortality. Liver cancer consists of hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA), hepatoblastoma (HB), and several other rare tumors. Progression has been witnessed in understanding the interactions between etiological as well as environmental factors and the host in the development of liver cancers. However, the pathogenesis remains poorly understood, hampering the design of rational strategies aiding in preventing liver cancers. Accumulating evidence demonstrates that aberrant activation of the Wnt/β-catenin signaling pathway plays an important role in the initiation and progression of HCC, CCA, and HB. Targeting Wnt/β-catenin signaling potentiates a novel avenue for liver cancer treatment, which may benefit from the development of numerous small-molecule inhibitors and biologic agents in this field. In this review, we discuss the interaction between various etiological factors and components of Wnt/β-catenin signaling early in the precancerous lesion and the acquired mechanisms to further enhance Wnt/β-catenin signaling to promote robust cancer formation at later stages. Additionally, we shed light on current relevant inhibitors tested in liver cancers and provide future perspectives for preclinical and clinical liver cancer studies.
Collapse
Affiliation(s)
- Wenhui Wang
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing 211198, China
| | - Ron Smits
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center and Postgraduate School Molecular Medicine, Rotterdam 3015 CN, The Netherlands
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing 211198, China.
| | - Chaoyong He
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
24
|
Zhong F, Hu Z, Jiang K, Lei B, Wu Z, Yuan G, Luo H, Dong C, Tang B, Zheng C, Yang S, Zeng Y, Guo Z, Yu S, Su H, Zhang G, Qiu X, Tomlinson S, He S. Complement C3 activation regulates the production of tRNA-derived fragments Gly-tRFs and promotes alcohol-induced liver injury and steatosis. Cell Res 2019; 29:548-561. [PMID: 31076642 PMCID: PMC6796853 DOI: 10.1038/s41422-019-0175-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 04/12/2019] [Indexed: 12/23/2022] Open
Abstract
Complement is known to play a role in alcoholic fatty liver disease (AFLD), but the underlying mechanisms are poorly understood, thereby constraining the development of a rational approach for therapeutic intervention in the complement system. C3 deficiency has been shown to impart protective effects against ethanol-induced hepatic steatosis and inflammation. Here we demonstrate a protection effect in wild-type mice by treatment with CR2-Crry, a specific inhibitor of C3 activation. The expression of glycine transfer (t) RNA-derived fragments (Gly-tRFs) is upregulated in ethanol-fed mice and inhibition of Gly-tRFs in vivo decreases chronic ethanol feeding-induced hepatosteatosis without affecting inflammation. The expression of Gly-tRF was downregulated in C3-deficient or CR2-Crry-treated mice, but not in C5-deficient mice; Gly-tRF expression was restored by the C3 activation products C3a or Asp (C3a-des-Arg) via the regulation of CYP2E1. Transcriptome profiling of hepatic tissues showed that Gly-tRF inhibitors upregulate the expression of sirtuin1 (Sirt1) and subsequently affect downstream lipogenesis and β-oxidation pathways. Mechanistically, Gly-tRF interacts with AGO3 to downregulate Sirt1 expression via sequence complementarity in the 3' UTR. Notably, the expression levels of C3d, CYP2E1 and Gly-tRF are upregulated, whereas Sirt1 is decreased in AFLD patients compared to healthy controls. Collectively, our findings suggest that C3 activation products contribute to hepatosteatosis by regulating the expression of Gly-tRF. Complement inhibition at the C3 activation step and treatment with Gly-tRF inhibitors may be potential and precise therapeutic approaches for AFLD.
Collapse
Affiliation(s)
- Fudi Zhong
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhigao Hu
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Laboratory of Liver Injury and Repair, Nanning, Guangxi, China
| | - Keqing Jiang
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Biao Lei
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhan Wu
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Guandou Yuan
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Hongliang Luo
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Chunqiang Dong
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Bo Tang
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Chaowen Zheng
- Laboratory of Liver Injury and Repair, Nanning, Guangxi, China
| | - Shuai Yang
- Laboratory of Liver Injury and Repair, Nanning, Guangxi, China
| | - Yonglian Zeng
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhenya Guo
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Shuiping Yu
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Huizhao Su
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Guo Zhang
- Department of Gastroenterology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Xiaoqiang Qiu
- Laboratory of Liver Injury and Repair, Nanning, Guangxi, China
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Songqing He
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Laboratory of Liver Injury and Repair, Nanning, Guangxi, China.
| |
Collapse
|
25
|
Wang H, Lekbaby B, Fares N, Augustin J, Attout T, Schnuriger A, Cassard AM, Panasyuk G, Perlemuter G, Bieche I, Vacher S, Selves J, Péron JM, Bancel B, Merle P, Kremsdorf D, Hall J, Chemin I, Soussan P. Alteration of splicing factors' expression during liver disease progression: impact on hepatocellular carcinoma outcome. Hepatol Int 2019; 13:454-467. [PMID: 31140152 DOI: 10.1007/s12072-019-09950-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/29/2019] [Indexed: 12/29/2022]
Abstract
PURPOSE Trans-acting splicing factors (SF) shape the eukaryotic transcriptome by regulating alternative splicing (AS). This process is recurrently modulated in liver cancer suggesting its direct contribution to the course of liver disease. The aim of our study was to investigate the relationship between the regulation of SFs expression and liver damage. METHODS The expression profile of 10 liver-specific SF and the AS events of 7 genes associated with liver disorders was assessed by western-blotting in 6 murine models representing different stages of liver damage, from inflammation to hepatocellular carcinoma (HCC). Relevant SFs (PSF, SRSF3, and SRSF6) and target genes (INSR, SRSF3, and SLK) modulated in mice were investigated in a cohort of 179 HCC patients. RESULTS Each murine model of liver disease was characterized by a unique SF expression profile. Changes in the SF profile did not affect AS events of the selected genes despite the presence of corresponding splicing sites. In human HCC expression of SFs, including the tumor-suppressor SRSF3, and AS regulation of genes studied were frequently upregulated in tumor versus non-tumor tissues. Risk of tumor recurrence positively correlated with AS isoform of the INSR gene. In contrast, increased levels of SFs expression correlated with an extended overall survival of patients. CONCLUSIONS Dysregulation of SF expression is an early event occurring during liver injury and not just at the stage of HCC. Besides impacting on AS regulation, overexpression of SF may contribute to preserving hepatocyte homeostasis during liver pathogenesis.
Collapse
Affiliation(s)
- Hualin Wang
- INSERM U1135, Centre d'immunologie et de maladie infectieuse, 91 boulevard de l'Hôpital, 75013, Paris, France
- Sorbonne Université, Paris, France
| | - Bouchra Lekbaby
- INSERM U1135, Centre d'immunologie et de maladie infectieuse, 91 boulevard de l'Hôpital, 75013, Paris, France
- Sorbonne Université, Paris, France
| | - Nadim Fares
- Centre de Recherche en Cancérologie de Lyon, UMR INSERM 1052, CNRS 5286, Lyon Cedex 03, France
| | - Jeremy Augustin
- INSERM U1135, Centre d'immunologie et de maladie infectieuse, 91 boulevard de l'Hôpital, 75013, Paris, France
- Sorbonne Université, Paris, France
| | - Tarik Attout
- INSERM U1135, Centre d'immunologie et de maladie infectieuse, 91 boulevard de l'Hôpital, 75013, Paris, France
- Sorbonne Université, Paris, France
| | - Aurelie Schnuriger
- INSERM U1135, Centre d'immunologie et de maladie infectieuse, 91 boulevard de l'Hôpital, 75013, Paris, France
- Sorbonne Université, Paris, France
- Département de Virologie, Hôpitaux Est Parisien, Paris, France
| | - Anne-Marie Cassard
- Faculté de médecine Paris-Sud, Université Paris-Sud, 94270, Kremlin-Bicêtre, France
| | - Ganna Panasyuk
- Institut Necker-Enfants Malades, Université Paris Descartes, Paris, France
- INSERM U1151/CNRS Unité Mixte de Recherche (UMR) 8253, Paris, France
| | - Gabriel Perlemuter
- Faculté de médecine Paris-Sud, Université Paris-Sud, 94270, Kremlin-Bicêtre, France
- AP-HP, Hôpital Antoine Béclère, Service d'hépato-gastroentérologie, 92140, Clamart, France
| | | | | | - Janick Selves
- Institut Universitaire de Cancérologie de Toulouse Oncopole, Université Paul Sabatier, Toulouse, France
| | - Jean-Marie Péron
- Institut Universitaire de Cancérologie de Toulouse Oncopole, Université Paul Sabatier, Toulouse, France
| | - Brigitte Bancel
- Centre de Recherche en Cancérologie de Lyon, UMR INSERM 1052, CNRS 5286, Lyon Cedex 03, France
| | - Philippe Merle
- Centre de Recherche en Cancérologie de Lyon, UMR INSERM 1052, CNRS 5286, Lyon Cedex 03, France
| | - Dina Kremsdorf
- INSERM U1135, Centre d'immunologie et de maladie infectieuse, 91 boulevard de l'Hôpital, 75013, Paris, France
- Sorbonne Université, Paris, France
| | - Janet Hall
- Centre de Recherche en Cancérologie de Lyon, UMR INSERM 1052, CNRS 5286, Lyon Cedex 03, France
| | - Isabelle Chemin
- Centre de Recherche en Cancérologie de Lyon, UMR INSERM 1052, CNRS 5286, Lyon Cedex 03, France
| | - Patrick Soussan
- INSERM U1135, Centre d'immunologie et de maladie infectieuse, 91 boulevard de l'Hôpital, 75013, Paris, France.
- Sorbonne Université, Paris, France.
- Département de Virologie, Hôpitaux Est Parisien, Paris, France.
| |
Collapse
|
26
|
Kong LZ, Chandimali N, Han YH, Lee DH, Kim JS, Kim SU, Kim TD, Jeong DK, Sun HN, Lee DS, Kwon T. Pathogenesis, Early Diagnosis, and Therapeutic Management of Alcoholic Liver Disease. Int J Mol Sci 2019; 20:ijms20112712. [PMID: 31159489 PMCID: PMC6600448 DOI: 10.3390/ijms20112712] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 02/08/2023] Open
Abstract
Alcoholic liver disease (ALD) refers to the damages to the liver and its functions due to alcohol overconsumption. It consists of fatty liver/steatosis, alcoholic hepatitis, steatohepatitis, chronic hepatitis with liver fibrosis or cirrhosis, and hepatocellular carcinoma. However, the mechanisms behind the pathogenesis of alcoholic liver disease are extremely complicated due to the involvement of immune cells, adipose tissues, and genetic diversity. Clinically, the diagnosis of ALD is not yet well developed. Therefore, the number of patients in advanced stages has increased due to the failure of proper early detection and treatment. At present, abstinence and nutritional therapy remain the conventional therapeutic interventions for ALD. Moreover, the therapies which target the TNF receptor superfamily, hormones, antioxidant signals, and MicroRNAs are used as treatments for ALD. In particular, mesenchymal stem cells (MSCs) are gaining attention as a potential therapeutic target of ALD. Therefore, in this review, we have summarized the current understandings of the pathogenesis and diagnosis of ALD. Moreover, we also discuss the various existing treatment strategies while focusing on promising therapeutic approaches for ALD.
Collapse
Affiliation(s)
- Ling-Zu Kong
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea.
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.
| | - Nisansala Chandimali
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea.
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.
| | - Ying-Hao Han
- Department of Disease Model Animal Research Center, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Dong-Ho Lee
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si, Jeonbuk 56216, Korea.
| | - Ji-Su Kim
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si, Jeonbuk 56216, Korea.
| | - Sun-Uk Kim
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju-si, Chungcheongbuk-do 28116, Korea.
| | - Tae-Don Kim
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.
| | - Dong Kee Jeong
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea.
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea.
| | - Hu-Nan Sun
- Department of Disease Model Animal Research Center, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea.
| | - Dong Sun Lee
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea.
- Department of Biotechnology, College of Applied Life Science, Jeju National University, Jeju 63243, Korea.
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si, Jeonbuk 56216, Korea.
| |
Collapse
|
27
|
Perugorria MJ, Olaizola P, Labiano I, Esparza-Baquer A, Marzioni M, Marin JJG, Bujanda L, Banales JM. Wnt-β-catenin signalling in liver development, health and disease. Nat Rev Gastroenterol Hepatol 2019; 16:121-136. [PMID: 30451972 DOI: 10.1038/s41575-018-0075-9] [Citation(s) in RCA: 392] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The canonical Wnt-β-catenin pathway is a complex, evolutionarily conserved signalling mechanism that regulates fundamental physiological and pathological processes. Wnt-β-catenin signalling tightly controls embryogenesis, including hepatobiliary development, maturation and zonation. In the mature healthy liver, the Wnt-β-catenin pathway is mostly inactive but can become re-activated during cell renewal and/or regenerative processes, as well as in certain pathological conditions, diseases, pre-malignant conditions and cancer. In hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), the two most prevalent primary liver tumours in adults, Wnt-β-catenin signalling is frequently hyperactivated and promotes tumour growth and dissemination. A substantial proportion of liver tumours (mainly HCC and, to a lesser extent, CCA) have mutations in genes encoding key components of the Wnt-β-catenin signalling pathway. Likewise, hepatoblastoma, the most common paediatric liver cancer, is characterized by Wnt-β-catenin activation, mostly as a result of β-catenin mutations. In this Review, we discuss the most relevant molecular mechanisms of action and regulation of Wnt-β-catenin signalling in liver development and pathophysiology. Moreover, we highlight important preclinical and clinical studies and future directions in basic and clinical research.
Collapse
Affiliation(s)
- Maria J Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital - University of the Basque Country (UPV/EHU), San Sebastian, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health (ISCIII), Madrid, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Paula Olaizola
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital - University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Ibone Labiano
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital - University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Aitor Esparza-Baquer
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital - University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Marco Marzioni
- Department of Gastroenterology, Università Politecnica delle Marche, Ancona, Italy
| | - Jose J G Marin
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health (ISCIII), Madrid, Spain
- Experimental Hepatology and Drug Targeting (HEVEFARM), Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Luis Bujanda
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital - University of the Basque Country (UPV/EHU), San Sebastian, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health (ISCIII), Madrid, Spain
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital - University of the Basque Country (UPV/EHU), San Sebastian, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health (ISCIII), Madrid, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
28
|
Ji C, Nagaoka K, Zou J, Casulli S, Lu S, Cao KY, Zhang H, Iwagami Y, Carlson RI, Brooks K, Lawrence J, Mueller W, Wands JR, Huang CK. Chronic ethanol-mediated hepatocyte apoptosis links to decreased TET1 and 5-hydroxymethylcytosine formation. FASEB J 2018; 33:1824-1835. [PMID: 30188753 DOI: 10.1096/fj.201800736r] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The 5-hydroxymethylcytosine (5hmc) is a newly identified epigenetic modification thought to be regulated by the TET family of proteins. Little information is available about how ethanol consumption may modulate 5hmC formation and alcoholic liver disease (ALD) progression. A rat ALD model was used to study 5hmC in relationship to hepatocyte apoptosis. Human ALD liver samples were also used to validate these findings. It was found that chronic ethanol feeding significantly reduced 5hmC formation in a rat ALD model. There were no significant changes in TET2 and TET3 between the control- and ethanol-fed animals. In contrast, methylcytosine dioxygenase TET1 (TET1) expression was substantially reduced in the ethanol-fed rats and was accompanied by increased hepatocyte apoptosis. Similarly, knockdown of TET1 in human hepatocyte-like cells also significantly promoted apoptosis. Down-regulation of TET1 resulted in elevated expression of the DNA damage marker, suggesting a role for 5hmc in hepatocyte DNA damage as well. Mechanistic studies revealed that inhibition of TET1 promoted apoptotic gene expression. Similarly, targeting TET1 activity by removing cosubstrate promoted apoptosis and DNA damage. Furthermore, treatment with 5-azacitidine significantly mimics these effects, suggesting that chronic ethanol consumption promotes hepatocyte apoptosis and DNA damage by diminishing TET1-mediated 5hmC formation and DNA methylation. In summary, the current study provides a novel molecular insight that TET1-mediated 5hmC is involved in hepatocyte apoptosis in ALD progression.-Ji, C., Nagaoka, K., Zou, J., Casulli, S., Lu, S., Cao, K. Y., Zhang, H., Iwagami, Y., Carlson, R. I., Brooks, K., Lawrence, J., Mueller, W., Wands, J. R., Huang, C.-K. Chronic ethanol-mediated hepatocyte apoptosis links to decreased TET1 and 5-hydroxymethylcytosine formation.
Collapse
Affiliation(s)
- Chengcheng Ji
- Division of Gastroenterology and Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA.,Critical Care Center, Beijing 302 Hospital, Beijing, China
| | - Katsuya Nagaoka
- Division of Gastroenterology and Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Jing Zou
- Division of Gastroenterology and Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA.,Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Sarah Casulli
- Division of Gastroenterology and Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Shaolei Lu
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Kevin Y Cao
- Division of Gastroenterology and Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Hongyu Zhang
- Division of Gastroenterology and Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Yoshifumi Iwagami
- Division of Gastroenterology and Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Rolf I Carlson
- Division of Gastroenterology and Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Keri Brooks
- Division of Gastroenterology and Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Jonathan Lawrence
- Division of Gastroenterology and Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - William Mueller
- Division of Gastroenterology and Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Jack R Wands
- Division of Gastroenterology and Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Chiung-Kuei Huang
- Division of Gastroenterology and Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
29
|
Ormosanine from Akebia quinata suppresses ethanol-induced inflammation and apoptosis and activates antioxidants via the mitogen activated protein kinase signaling pathway. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.07.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
30
|
Emerging role and therapeutic implication of Wnt signaling pathways in liver fibrosis. Gene 2018; 674:57-69. [PMID: 29944952 DOI: 10.1016/j.gene.2018.06.053] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/14/2018] [Accepted: 06/16/2018] [Indexed: 02/08/2023]
Abstract
Activation of hepatic stellate cells (HSCs) is a pivotal cellular event in liver fibrosis. Therefore, improving our understanding of the molecular pathways that are involved in these processes is essential to generate new therapies for liver fibrosis. Greater knowledge of the role of the Wnt signaling pathway in liver fibrosis could improve understanding of the liver fibrosis pathogenesis. The aim of this review is to describe the present knowledge about the Wnt signaling pathway, which significantly participates in liver fibrosis and HSC activation, and look ahead on new perspectives of Wnt signaling pathway research. Moreover, we will discuss the different interactions with Wnt signaling pathway-regulated liver fibrosis. The Wnt signaling pathway modulates several important aspects of function, including cell proliferation, activation and differentiation. Targeting the Wnt signaling pathway can be a promising direction in liver fibrosis treatment. We discuss new perspectives of Wnt signaling pathway activation in liver fibrosis. For example, antagonist to Wnt and Wnt ligands could inhibit liver fibrosis by regulating Wnt/β-catenin signaling pathway. These findings identify the Wnt signaling pathway as a potentially important for therapeutic targets in liver fibrosis. Future studies are needed in order to find safer and more effective Wnt-based drugs.
Collapse
|
31
|
Iwagami Y, Zou J, Zhang H, Cao K, Ji C, Kim M, Huang CK. Alcohol-mediated miR-34a modulates hepatocyte growth and apoptosis. J Cell Mol Med 2018; 22:3987-3995. [PMID: 29873178 PMCID: PMC6050481 DOI: 10.1111/jcmm.13681] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 04/11/2018] [Indexed: 01/02/2023] Open
Abstract
MicroRNAs (miRs) have been recently shown to be heavily involved in the development of alcoholic liver disease (ALD) and suggested as a potential therapeutic target in ALD. The miR‐34a was consistently reported to be significantly elevated in several ALD rodent models, but it remains unclear how miR‐34a modulates the cellular behaviours of hepatocytes in ALD development and progression. This study aims to characterize alcohol‐induced miR‐34a impact on hepatocytes growth and apoptosis. The miRNA array was performed to assess changes in miRNA after chronic alcohol feeding. Liver and blood samples were used to examine ALD progression. The miR‐34a was overexpressed in human hepatocytes to evaluate its impact on cell growth and apoptosis. Real‐time quantitative PCR and Western blot were used to determine the growth and apoptosis molecular signalling pathways associated with miR‐34a. Alcohol feeding significantly promoted fatty liver progression, serum ALT levels, apoptosis and miR‐34a expression in rat liver. Overexpression of miR‐34a in human hepatocytes suppressed cell growth signallings, including c‐Met, cyclin D1 and cyclin‐dependent kinase 6 (CDK6). The miR‐34a might also inhibit the expression of sirtuin 1 (Sirt1) and its target, B‐cell lymphoma 2. Interestingly, the expression of miR‐34a reverses the suppressive effects of ethanol on cell growth. But, miR‐34a promotes hepatocyte senescence and apoptosis. Although the miR‐34a‐mediated down‐regulation of cell growth‐associated genes may contribute to cell growth retardation, other miR‐34a targets, such as Sirt1, may reverse this phenotype. Future studies will be needed to clarify the role of miR‐34a in ALD progression.
Collapse
Affiliation(s)
- Yoshifumi Iwagami
- Department of Medicine, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Jing Zou
- Department of Medicine, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Hongyu Zhang
- Department of Medicine, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Kevin Cao
- Department of Medicine, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Chengcheng Ji
- Department of Medicine, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Miran Kim
- Department of Medicine, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Chiung-Kuei Huang
- Department of Medicine, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| |
Collapse
|
32
|
Salvianolic acid A alleviates chronic ethanol-induced liver injury via promotion of β-catenin nuclear accumulation by restoring SIRT1 in rats. Toxicol Appl Pharmacol 2018; 350:21-31. [PMID: 29729281 DOI: 10.1016/j.taap.2018.04.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 04/27/2018] [Accepted: 04/29/2018] [Indexed: 02/07/2023]
Abstract
In recent years, alcoholic liver disease (ALD) has emerged as a growing public health problem worldwide. β-catenin plays an important role in the growth, development, regeneration and metabolic activity of the liver. Salvianolic acid A (SalA) is a water-soluble component from the root extract of Salvia miltiorrhiza Bunge, and its effect on ALD has not yet been investigated. This study aimed to investigate the effect of SalA on chronic alcohol-induced liver injury and to explore the role of SIRT1-mediated β-catenin deacetylation in such an effect. In this study, SalA treatment significantly alleviated the accumulation of lipid droplets and reduced the plasma alanine aminotransferase (ALT), aspartate aminotransferase (AST), total cholesterol (TC), triglyceride (TG), alcohol and ammonia levels in rats. SalA enhanced ethanol and ammonia metabolism and maintained mitochondrial homeostasis. Moreover, SalA restored the activity of the major ethanol-metabolizing enzymes and oxidative stress functions in the liver. Importantly, we found that SalA treatment effectively inhibited the ethanol-mediated decrease in nuclear β-catenin by upregulating SIRT1 in the liver. SIRT1 then deacetylated β-catenin to promote its accumulation in the nucleus, thereby preventing alcohol-induced liver injury. The results demonstrate that the SIRT1/β-catenin pathway is a key therapeutic target in liver injury caused by chronic alcohol exposure and that SalA protects against alcohol-induced liver injury via the SIRT1-mediated deacetylation of β-catenin.
Collapse
|
33
|
Enooku K, Kondo M, Fujiwara N, Sasako T, Shibahara J, Kado A, Okushin K, Fujinaga H, Tsutsumi T, Nakagomi R, Minami T, Sato M, Nakagawa H, Kondo Y, Asaoka Y, Tateishi R, Ueki K, Ikeda H, Yoshida H, Moriya K, Yotsuyanagi H, Kadowaki T, Fukayama M, Koike K. Hepatic IRS1 and ß-catenin expression is associated with histological progression and overt diabetes emergence in NAFLD patients. J Gastroenterol 2018; 53:1261-1275. [PMID: 29749571 PMCID: PMC6244858 DOI: 10.1007/s00535-018-1472-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 04/30/2018] [Indexed: 02/04/2023]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a risk factor for type 2 diabetes. Our aim was to investigate the relationship between NAFLD and impaired glucose metabolism in terms of insulin receptor substrate 1 and 2 (IRS1 and IRS2) expression in the liver. METHODS Liver biopsy was performed at the University of Tokyo Hospital between November 2011 and March 2016 on 146 patients with NAFLD who were not being treated with any diabetes or dyslipidemia drugs. Among them, 63 underwent liver biopsy after an overnight fast, and 83 at 5 h after an oral glucose tolerance test (OGTT). Differences in messenger RNA (mRNA) levels of several glucose metabolism-related factors were determined and correlated with hepatic histological changes assessed by NAFLD activity score. We prospectively followed up with the patients until May 2017. RESULTS Hepatic necroinflammation was significantly correlated with serum insulin levels and inversely correlated with IRS1 mRNA levels. In specimens obtained after an OGTT, hepatic necroinflammation and IRS1 expression correlated significantly with both peripheral and hepatic insulin resistance. We also found that hepatic β-catenin and glucokinase mRNA levels were elevated in patients undergoing liver biopsy after an OGTT, especially in those with less hepatic necroinflammation and a lower degree of fibrosis. A prospective cohort study showed that ballooning is the most significant risk factor for developing diabetes. CONCLUSIONS The decreased hepatic expression of IRS1 and β-catenin in NAFLD is linked to histological progression such as ballooning, and might lead to diabetes as a result of impaired glucose metabolism.
Collapse
Affiliation(s)
- Kenichiro Enooku
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Mayuko Kondo
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Naoto Fujiwara
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Takayoshi Sasako
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Junji Shibahara
- 0000 0000 9340 2869grid.411205.3Department of Pathology, Kyorin University, Mitaka, Japan
| | - Akira Kado
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Kazuya Okushin
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Hidetaka Fujinaga
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Takeya Tsutsumi
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Infectious Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryo Nakagomi
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Tatsuya Minami
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Masaya Sato
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Hayato Nakagawa
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Yuji Kondo
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Yoshinari Asaoka
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Ryosuke Tateishi
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Kohjiro Ueki
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hitoshi Ikeda
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Kyoji Moriya
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Infection Control and Prevention, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Yotsuyanagi
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Infectious Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takashi Kadowaki
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masashi Fukayama
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuhiko Koike
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| |
Collapse
|
34
|
Xin Z, Ma Z, Hu W, Jiang S, Yang Z, Li T, Chen F, Jia G, Yang Y. FOXO1/3: Potential suppressors of fibrosis. Ageing Res Rev 2018; 41:42-52. [PMID: 29138094 DOI: 10.1016/j.arr.2017.11.002] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/07/2017] [Accepted: 11/08/2017] [Indexed: 02/06/2023]
Abstract
Fibrosis is a universally age-related disease that involves nearly all organs. It is typically initiated by organic injury and eventually results in organ failure. There are still few effective therapeutic strategy targets for fibrogenesis. Forkhead box proteins O1 and O3 (FOXO1/3) have been shown to have favorable inhibitory effects on fibroblast activation and subsequent extracellular matrix production and can ameliorate fibrosis levels in numerous organs, including the heart, liver, lung, and kidney; they are therefore promising targets for anti-fibrosis therapy. Moreover, we can develop appropriate strategies to make the best use of FOXO1/3's anti-fibrosis properties. The information reviewed here should be significant for understanding the roles of FOXO1/3 in fibrosis and should contribute to the design of further studies related to FOXO1/3 and the fibrotic response and shed light on a potential treatment for fibrosis.
Collapse
Affiliation(s)
- Zhenlong Xin
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Department of Occupational and Environmental Health and The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Zhiqiang Ma
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Wei Hu
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Shuai Jiang
- Department of Aerospace Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Zhi Yang
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Tian Li
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Fulin Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Guozhan Jia
- Department of General Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China.
| |
Collapse
|
35
|
Wang X, Zhu Y, Sun C, Wang T, Shen Y, Cai W, Sun J, Chi L, Wang H, Song N, Niu C, Shen J, Cong W, Zhu Z, Xuan Y, Li X, Jin L. Feedback Activation of Basic Fibroblast Growth Factor Signaling via the Wnt/β-Catenin Pathway in Skin Fibroblasts. Front Pharmacol 2017; 8:32. [PMID: 28217097 PMCID: PMC5289949 DOI: 10.3389/fphar.2017.00032] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/17/2017] [Indexed: 12/12/2022] Open
Abstract
Skin wound healing is a complex process requiring the coordinated behavior of many cell types, especially in the proliferation and migration of fibroblasts. Basic fibroblast growth factor (bFGF) is a member of the FGF family that promotes fibroblast migration, but the underlying molecular mechanism remains elusive. The present RNA sequencing study showed that the expression levels of several canonical Wnt pathway genes, including Wnt2b, Wnt3, Wnt11, T-cell factor 7 (TCF7), and Frizzled 8 (FZD8) were modified by bFGF stimulation in fibroblasts. Enzyme-linked immunosorbent assay (ELISA) analysis also showed that Wnt pathway was activated under bFGF treatment. Furthermore, treatment of fibroblasts with lithium chloride or IWR-1, an inducer and inhibitor of the Wnt signaling pathway, respectively, promoted and inhibited cell migration. Also, levels of cytosolic glycogen synthase kinase 3 beta phosphorylated at serine9 (pGSK3β Ser9) and nuclear β-catenin were increased upon exposure to bFGF. Molecular and biochemical assays indicated that phosphoinositide 3-kinase (PI3K) signaling activated the GSK3β/β-catenin/Wnt signaling pathway via activation of c-Jun N-terminal kinase (JNK), suggesting that PI3K and JNK act at the upstream of β-catenin. In contrast, knock-down of β-catenin delayed fibroblast cell migration even under bFGF stimulation. RNA sequencing analysis of β-catenin knock-down fibroblasts demonstrated that β-catenin positively regulated the transcription of bFGF and FGF21. Moreover, FGF21 treatment activated AKT and JNK, and accelerated fibroblast migration to a similar extent as bFGF does. In addition, ELISA analysis demonstrated that both of bFGF and FGF21 were auto secretion factor and be regulated by Wnt pathway stimulators. Taken together, our analyses define a feedback regulatory loop between bFGF (FGF21) and Wnt signaling acting through β-catenin in skin fibroblasts.
Collapse
Affiliation(s)
- Xu Wang
- Key Laboratory of Biotechnology Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou, China
| | - Yuting Zhu
- Haining Hospital of Traditional Chinese Medicine Haining, China
| | - Congcong Sun
- Key Laboratory of Biotechnology Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou, China
| | - Tao Wang
- Key Laboratory of Biotechnology Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou, China
| | - Yingjie Shen
- Key Laboratory of Biotechnology Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou, China
| | - Wanhui Cai
- Key Laboratory of Biotechnology Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou, China
| | - Jia Sun
- Key Laboratory of Biotechnology Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou, China
| | - Lisha Chi
- Key Laboratory of Biotechnology Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou, China
| | - Haijun Wang
- School of Basic Medical Sciences, Xinxiang Medical University Xinxiang, China
| | - Na Song
- School of Basic Medical Sciences, Xinxiang Medical University Xinxiang, China
| | - Chao Niu
- Key Laboratory of Biotechnology Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou, China
| | - Jiayi Shen
- Key Laboratory of Biotechnology Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou, China
| | - Weitao Cong
- Key Laboratory of Biotechnology Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou, China
| | - Zhongxin Zhu
- Key Laboratory of Biotechnology Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou, China
| | - Yuanhu Xuan
- Key Laboratory of Biotechnology Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou, China
| | - Xiaokun Li
- Key Laboratory of Biotechnology Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou, China
| | - Litai Jin
- Key Laboratory of Biotechnology Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou, China
| |
Collapse
|
36
|
Xu Y, Wang Q, Li D, Wu Z, Li D, Lu K, Zhao Y, Sun Y. Protective effect of lithium chloride against hypoglycemia-induced apoptosis in neuronal PC12 cell. Neuroscience 2016; 330:100-108. [PMID: 27241942 DOI: 10.1016/j.neuroscience.2016.05.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/22/2016] [Accepted: 05/23/2016] [Indexed: 11/27/2022]
Abstract
Hypoglycemia is defined by an arbitrary plasma glucose level lower than 3.9mmol/L and is a most common and feared adverse effect of treatment of diabetes mellitus. Emerging evidences demonstrated that hypoglycemia could induce enhanced apoptosis. Lithium chloride (LiCl), a FDA approved drug clinically used for treatment of bipolar disorders, is recently proven having neuroprotection against various stresses in the cellular and animal models of neural disorders. Here, we have established a hypoglycemia model in vitro and assessed the neuroprotective efficacy of LiCl against hypoglycemia-induced apoptosis and the underlying cellular and molecular mechanisms. Our studies showed that LiCl protects against hypoglycemia-induced neurotoxicity in vitro. Exposure to hypoglycemia results in enhanced apoptosis and the underlying cellular and molecular mechanisms involved inhibition of the canonical Wnt signaling pathway by decreasing wnt3a levels, β-catenin levels and increasing GSK-3β levels, which was confirmed by the use of Wnt-specific activator LiCl. Hypoglycemia-induced apoptosis were significantly reversed by LiCl, leading to increased cell survival. LiCl also alters the expression/levels of the Wnt pathway genes/proteins, which were reduced due to exposed to hypoglycemia. Overall, our results conclude that LiCl provides neuroprotection against hypoglycemia-induced apoptosis via activation of the canonical Wnt signaling pathway.
Collapse
Affiliation(s)
- Yuzhen Xu
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qian Wang
- Department of Central Laboratory, The Central Hospital of Tai'an, Taishan Medical College, Tai'an, Shandong Province, China
| | - Dongsheng Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenghua Wu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Dawei Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Kaili Lu
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yuwu Zhao
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Yongning Sun
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
37
|
Role of Signal Regulatory Protein α in Arsenic Trioxide-induced Promyelocytic Leukemia Cell Apoptosis. Sci Rep 2016; 6:23710. [PMID: 27010069 PMCID: PMC4806322 DOI: 10.1038/srep23710] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 03/14/2016] [Indexed: 01/30/2023] Open
Abstract
Signal regulatory protein α (SIRPα) has been shown to operate as a negative regulator in cancer cell survival. The mechanism underneath such function, however, remains poorly defined. In the present study, we demonstrate that overexpression of SIRPα in acute promyelocytic leukemia (APL) cells results in apoptosis possibly via inhibiting the β-catenin signaling pathway and upregulating Foxo3a. Pharmacological activation of β-catenin signal pathway attenuates apoptosis caused by SIRPα. Interestingly, we also find that the pro-apoptotic effect of SIRPα plays an important role in arsenic trioxide (ATO)-induced apoptosis in APL cells. ATO treatment induces the SIRPα protein expression in APL cells and abrogation of SIRPα induction by lentivirus-mediated SIRPα shRNA significantly reduces the ATO-induced apoptosis. Mechanistic study further shows that induction of SIRPα protein in APL cells by ATO is mediated through suppression of c-Myc, resulting in reduction of three SIRPα-targeting microRNAs: miR-17, miR-20a and miR-106a. In summary, our results demonstrate that SIRPα inhibits tumor cell survival and significantly contributes to ATO-induced APL cell apoptosis.
Collapse
|
38
|
Weiskirchen R. Hepatoprotective and Anti-fibrotic Agents: It's Time to Take the Next Step. Front Pharmacol 2016; 6:303. [PMID: 26779021 PMCID: PMC4703795 DOI: 10.3389/fphar.2015.00303] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 12/11/2015] [Indexed: 12/21/2022] Open
Abstract
Hepatic fibrosis and cirrhosis cause strong human suffering and necessitate a monetary burden worldwide. Therefore, there is an urgent need for the development of therapies. Pre-clinical animal models are indispensable in the drug discovery and development of new anti-fibrotic compounds and are immensely valuable for understanding and proofing the mode of their proposed action. In fibrosis research, inbreed mice and rats are by far the most used species for testing drug efficacy. During the last decades, several hundred or even a thousand different drugs that reproducibly evolve beneficial effects on liver health in respective disease models were identified. However, there are only a few compounds (e.g., GR-MD-02, GM-CT-01) that were translated from bench to bedside. In contrast, the large number of drugs successfully tested in animal studies is repeatedly tested over and over engender findings with similar or identical outcome. This circumstance undermines the 3R (Replacement, Refinement, Reduction) principle of Russell and Burch that was introduced to minimize the suffering of laboratory animals. This ethical framework, however, represents the basis of the new animal welfare regulations in the member states of the European Union. Consequently, the legal authorities in the different countries are halted to foreclose testing of drugs in animals that were successfully tested before. This review provides a synopsis on anti-fibrotic compounds that were tested in classical rodent models. Their mode of action, potential sources and the observed beneficial effects on liver health are discussed. This review attempts to provide a reference compilation for all those involved in the testing of drugs or in the design of new clinical trials targeting hepatic fibrosis.
Collapse
Affiliation(s)
- Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy, and Clinical Chemistry, RWTH University Hospital Aachen Aachen, Germany
| |
Collapse
|
39
|
Lijie Z, Ranran F, Xiuying L, Yutang H, Bo W, Tao M. Soyasaponin Bb Protects Rat Hepatocytes from Alcohol-Induced Oxidative Stress by Inducing Heme Oxygenase-1. Pharmacogn Mag 2016; 12:302-306. [PMID: 27867273 PMCID: PMC5096277 DOI: 10.4103/0973-1296.192203] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND It has been known that oxidative stress induced by alcohol played a crucial role in the formation of alcoholic liver disease. Although the formation mechanisms underlying liver injury induced by alcohol still remained largely unknown, it has been considered that oxidative stress played a core role in the pathogenesis of hepatocyte damage. OBJECTIVE The aim of this study was to investigate the effects of soyasaponin Bb (Ss-Bb) on oxidative stress in alcohol-induced rat hepatocyte injury. RESULTS It has been shown that the administration of Ss-Bb could significantly restore antioxidant activity in BRL 3A cells. Moreover, the impaired liver function and morphology changes resulting from ethanol exposure were improved by Ss-Bb treatment. Treatment with a pharmacological inhibitor of haem oxygenase-1 (HO-1) indicated a critical role of HO-1 in mediating the protective role. Finally, we found that pretreatment with Ss-Bb to ethanol exposure cells increased the expression level of HO-1. CONCLUSION It was suggested that Ss-Bb may protect against alcohol-induced hepatocyte injury through ameliorating oxidative stress, and the induction of HO-1 was an important protective mechanism. SUMMARY Effects of soyasaponin Bb was investigated on oxidative stress in rat hepatocytesCell viability and antioxidant capacities were evaluated to determine the effectsThe expression level of HO-1 was measured to reveal the proptective mechanisms.
Collapse
Affiliation(s)
- Zhu Lijie
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, China
| | - Fu Ranran
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, China
| | - Liu Xiuying
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, China
| | - He Yutang
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, China
| | - Wang Bo
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, China
| | - Ma Tao
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, China
| |
Collapse
|