1
|
Sheng Y, Lin Y, Qiang Z, Shen X, He Y, Li L, Li S, Zhang G, Wang F. Protein kinase a suppresses antiproliferative effect of interferon-α in hepatocellular carcinoma by activation of protein tyrosine phosphatase SHP2. J Biol Chem 2025; 301:108195. [PMID: 39826687 PMCID: PMC11849638 DOI: 10.1016/j.jbc.2025.108195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/22/2025] Open
Abstract
Src homology-2-containing protein tyrosine phosphatase 2 (SHP2) plays a dual role in cancer initiation and progression. Identifying signals that modulate the function of SHP2 can improve current therapeutic approaches for IFN-α/β in HCC. We showed that cAMP-dependent PKA suppresses IFN-α/β-induced JAK/STAT signaling by increasing the phosphatase activity of SHP2, promoting the dissociation of SHP2 from the receptor for activated C-kinase 1 (RACK1) and binding to STAT1. Additionally, cAMP-degrading phosphodiesterase 4D (PDE4D) physically interacts with RACK1 to regulate PKA-mediated SHP2 activity and STAT1 phosphorylation. IFN-α activates PKA by inducing the expression of cyclooxygenase 2 (COX2) and the production of prostaglandin E2 (PGE2), which in turn stimulates the binding of SHP2 to IFNAR2 via RACK1. A COX inhibitor aspirin potently increases the antitumor effects of IFN-α in the suppression of HCC cell proliferation in vivo. Higher expression of COX2 and phosphorylated STAT3 is associated with poor development and prognosis in HCC patients by analyzing human HCC clinical samples. These observations suggest that a fundamental PKA/SHP2-dependent negative feedback loop acts on IFN signaling, and inhibition of this signaling by the selective COX2 inhibitors may enhance the clinical efficacy of type I IFNs in treating HCC.
Collapse
MESH Headings
- Humans
- Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism
- Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/enzymology
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/enzymology
- Interferon-alpha/pharmacology
- Interferon-alpha/metabolism
- Receptors for Activated C Kinase
- Animals
- Cell Proliferation/drug effects
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Cyclic AMP-Dependent Protein Kinases/genetics
- Mice
- Neoplasm Proteins/metabolism
- Neoplasm Proteins/genetics
- Signal Transduction/drug effects
- STAT1 Transcription Factor/metabolism
- STAT1 Transcription Factor/genetics
- Cyclooxygenase 2/metabolism
- Cyclooxygenase 2/genetics
- Receptor, Interferon alpha-beta/metabolism
- Receptor, Interferon alpha-beta/genetics
- GTP-Binding Proteins/metabolism
- GTP-Binding Proteins/genetics
- Cell Line, Tumor
- Phosphorylation/drug effects
- STAT3 Transcription Factor/metabolism
- STAT3 Transcription Factor/genetics
- Dinoprostone/metabolism
Collapse
Affiliation(s)
- Yuwen Sheng
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Yuan Lin
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Zhe Qiang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China; Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Xiaofei Shen
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China; Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yujiao He
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China; Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
| | - Lingyu Li
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China; University of Chinese Academy of Sciences, Beijing, China
| | - Sheng Li
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Guolin Zhang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Fei Wang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China.
| |
Collapse
|
2
|
Hao LS, Ji JX, Jiang MY, Song J, Chen PP, Zhan ZY, Miao XJ, Gao YY, Wang W, Liu T. Effects of changes in SHP2 expression on liver fibrosis by influencing the apoptosis of hepatic stellate cells. APMIS 2025; 133:e13487. [PMID: 39500724 DOI: 10.1111/apm.13487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 10/21/2024] [Indexed: 12/18/2024]
Abstract
Accumulating research has revealed that src-homology domain 2-containing protein tyrosine phosphatase-2 (SHP2), an oncogenic protein tyrosine phosphatase, is associated with liver fibrosis. Currently, it is still unclear whether SHP2 affects liver fibrosis by influencing the apoptosis of hepatic stellate cells (HSC). In present study, we investigate effects of SHP2 expression changes on liver fibrosis, with special emphasis on the apoptosis of HSC. Using adenovirus vector, wild-type SHP2 gene and short hairpin RNA targeting SHP2 were introduced into rats with liver fibrosis and LX-2 cells in vitro. The expressions of type I and III collagen, pathological and functional changes, collagen deposition in rat liver and apoptosis of LX-2 cells were detected by immunohistochemical and HE staining, automated biochemical analyzer, Masson trichrome staining, and TUNEL. This study showed that overexpression of SHP2 exacerbated dysfunction, inflammatory damage, collagen deposition and increased expression of type I and III collagen in rat liver reduced apoptosis of LX-2 cells. On the contrary, low expression of SHP2 alleviated the aforementioned detection indicators of rats and promoted apoptosis of LX-2 cells. In conclusion, the downregulation of SHP2 expression alleviates liver fibrosis by inducing the apoptosis of HSC, while overexpressed SHP2 exacerbates liver fibrosis by inhibiting the apoptosis of HSC.
Collapse
Affiliation(s)
- Li-Sen Hao
- Department of Gastroenterology, Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei Province, China
| | - Jing-Xiu Ji
- Department of Gastroenterology, Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei Province, China
| | - Mei-Yu Jiang
- Department of Gastroenterology, Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei Province, China
| | - Jie Song
- Department of Gastroenterology, Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei Province, China
| | - Pan-Pan Chen
- Department of Gastroenterology, Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei Province, China
| | - Zong-Yuan Zhan
- Department of Gastroenterology, Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei Province, China
| | - Xiao-Jia Miao
- Department of Gastroenterology, Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei Province, China
| | - Ying-Ying Gao
- Department of Gastroenterology, Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei Province, China
| | - Wei Wang
- Department of Gastroenterology, Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei Province, China
| | - Tian Liu
- Department of Gastroenterology, Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei Province, China
| |
Collapse
|
3
|
Xia Q, Liu G, Lin W, Zhang J. microRNA-2117 Negatively Regulates Liver Cancer Stem Cells Expansion and Chemoresistance Via Targeting SOX2. Mol Carcinog 2025; 64:33-43. [PMID: 39400383 PMCID: PMC11636587 DOI: 10.1002/mc.23824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 10/15/2024]
Abstract
Cancer stem cells (CSCs) are involved in the regulation of tumor initiation, progression, recurrence, and chemoresistance. However, the role of microRNAs (miRNAs) in liver CSCs has not been fully understood. Here we show that miR-2117 is downregulated in liver CSCs and predicts the poor prognosis of hepatocellular carcinoma (HCC) patients. Biofunction studies found that knockdown miR-2117 facilitates liver CSCs self-renewal and tumorigenesis. Conversely, forced miR-2117 expression suppresses liver CSCs self-renewal and tumorigenesis. Mechanistically, we find that transcription factor SOX2 is required for miR-2117-mediated liver CSCs expansion. The correlation between miR-2117 and SOX2 was confirmed in human HCC tissues. More importantly, miR-2117 overexpression HCC cells are more sensitive to CDDP treatment. Analysis of patients' cohort further demonstrates that miR-2117 may predict transcatheter arterial chemoembolization benefits in HCC patients. Our findings revealed the crucial role of miR-2117 in liver CSCs expansion, rendering miR-2117 as an optimal therapeutic target for HCC.
Collapse
Affiliation(s)
- Qing Xia
- Department of General Surgery, Hwa Mei Hospital (Ningbo No.2 Hospital)University of Chinese Academy of SciencesNingboChina
- Ningbo Institute of Life and Health IndustryUniversity of Chinese Academy of SciencesNingboChina
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang ProvinceNingboChina
| | - Guanghua Liu
- Department of General SurgeryXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Department of Interventional RadiologyXinhua Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Wenbo Lin
- Department of Orthopedic Surgery, Changzheng HospitalNavy Medical UniversityShanghaiChina
| | - Jin Zhang
- Department of General SurgeryThird Affiliated Hospital of Second Military Medical UniversityShanghaiChina
| |
Collapse
|
4
|
Xu J, Liu W, Yao Y, Knowles TPJ, Zhang ZG, Zhang YL. Liquid-liquid phase separation in hepatocellular carcinoma. Front Cell Dev Biol 2024; 12:1454587. [PMID: 39777266 PMCID: PMC11703843 DOI: 10.3389/fcell.2024.1454587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Liquid-liquid phase separation (LLPS) drives the formation of membraneless intracellular compartments within both cytoplasm and nucleus. These compartments can form distinct physicochemical environments, and in particular display different concentrations of proteins, RNA, and macromolecules compared to the surrounding cytosol. Recent studies have highlighted the significant role of aberrant LLPS in cancer development and progression, impacting many core processes such as oncogenic signalling pathways, transcriptional dysregulation, and genome instability. In hepatocellular carcinoma (HCC), aberrant formation of biomolecular condensates has been observed in a number of preclinical models, highlighting their significance as an emerging factor in understanding cancer biology and its molecular underpinnings. In this review, we summarize emerging evidence and recent advances in understanding the role of LLPS in HCC, with a particular focus on the regulation and dysregulation of cytoplasmic and nuclear condensates in cancer cells. We finally discuss how an emerging understanding of phase separation processes in HCC opens up new potential treatment avenues.
Collapse
Affiliation(s)
- Jianguo Xu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wangwang Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yihan Yao
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Tuomas P. J. Knowles
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Zhi-Gang Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan-Li Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
Lin X, Wu Q, Lei W, Wu D, Sheng J, Liang G, Hou G, Fan D. miR-3154 promotes glioblastoma proliferation and metastasis via targeting TP53INP1. Cell Div 2024; 19:30. [PMID: 39487468 PMCID: PMC11529598 DOI: 10.1186/s13008-024-00134-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/18/2024] [Indexed: 11/04/2024] Open
Abstract
Glioblastomas (GBM) are most common types of primary brain tumors and miRNAs play an important role in pathogenesis of glioblastomas. Here, we reported a new miRNA, miR-3154, which regulates glioblastoma proliferation and metastasis. miR-3154 was elevated in glioblastoma tissue and cell lines, and its elevation was associated with grade of glioblastomas. Knockdown of miR-3154 in cell lines weakened ability of proliferation and colony formation, and caused cell cycle arrested and higher percentage of apoptosis. Knockdown of miR-3154 also impaired ability of migration and invasion in glioblastoma cells. In mechanism, miR-3154 bound directly to Tumor Protein P53 Inducible Nuclear Protein 1 (TP53INP1), down-regulating TP53INP1 expression at both mRNA and protein level. Silence of TP53INP1 reversed the effect of miR-3154 knockdown on proliferation and metastasis of glioblastoma cells. These findings show that miR-3154 promotes glioblastoma proliferation and metastasis via targeting TP53INP1.
Collapse
Affiliation(s)
- Xiangdan Lin
- Department of Neurosurgery, General Hospital of Northern Theater Command, 83 Wenhua Road, ShenHe District, Shengyang, Liaoning, 110016, China
- Department of Neurosurgery, The first affiliated hospital of Jinzhou medical university, Jinzhou, 121000, China
| | - Qiong Wu
- Department of Thoracic Surgery, General Hospital of Northern Theater Command, NO.83 Wenhua Road, ShenHe District, Shenyang, 110016, China
| | - Wei Lei
- Department of Neurosurgery, General Hospital of Northern Theater Command, 83 Wenhua Road, ShenHe District, Shengyang, Liaoning, 110016, China
| | - Dongyang Wu
- Department of Neurosurgery, General Hospital of Northern Theater Command, 83 Wenhua Road, ShenHe District, Shengyang, Liaoning, 110016, China
| | - Jianchun Sheng
- Department of Neurosurgery, General Hospital of Northern Theater Command, 83 Wenhua Road, ShenHe District, Shengyang, Liaoning, 110016, China
| | - Guobiao Liang
- Department of Neurosurgery, General Hospital of Northern Theater Command, 83 Wenhua Road, ShenHe District, Shengyang, Liaoning, 110016, China
| | - Guojun Hou
- Department of General Surgery, Third Affiliated Hospital of Second Military Medical University, Shanghai, 200438, China
| | - Di Fan
- Department of Neurosurgery, General Hospital of Northern Theater Command, 83 Wenhua Road, ShenHe District, Shengyang, Liaoning, 110016, China.
| |
Collapse
|
6
|
Xue F, Liu L, Tao X, Zhu W. TET3-mediated DNA demethylation modification activates SHP2 expression to promote endometrial cancer progression through the EGFR/ERK pathway. J Gynecol Oncol 2024; 35:e64. [PMID: 38456588 PMCID: PMC11390245 DOI: 10.3802/jgo.2024.35.e64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/18/2023] [Accepted: 02/11/2024] [Indexed: 03/09/2024] Open
Abstract
OBJECTIVE Src homology phosphotyrosin phosphatase 2 (SHP2) has been implicated in the progression of several cancer types. However, its function in endometrial cancer (EC) remains unclear. Here, we report that the ten-eleven translocation 3 (TET3)-mediated DNA demethylation modification is responsible for the oncogenic role of SHP2 in EC and explore the detailed mechanism. METHODS The transcriptomic differences between EC tissues and control tissues were analyzed using bioinformatics tools, followed by protein-protein interaction network establishment. EC cells were treated with shRNA targeting SHP2 alone or in combination with isoprocurcumenol, an epidermal growth factor receptor (EGFR) signaling activator. The cell biological behavior was examined using cell counting kit-8, colony formation, flow cytometry, scratch assay, and transwell assays, and the median inhibition concentration values to medroxyprogesterone acetate/gefitinib were calculated. The binding of TET3 to the SHP2 promoter was verified. EC cells with TET3 knockdown and combined with SHP2 overexpression were selected to construct tumor xenografts in mice. RESULTS TET3 and SHP2 were overexpressed in EC cells. TET3 bound to the SHP2 promoter, thereby increasing the DNA hydroxymethylation modification and activating SHP2 to induce the EGFR/extracellular signal-regulated kinase (ERK) pathway. Knockdown of TET3 or SHP2 inhibited EC cell malignant aggressiveness and impaired the EGFR/ERK pathway. Silencing of TET3 inhibited the tumorigenic capacity of EC cells, and ectopic expression of SHP2 or isoprocurcumenol reversed the inhibitory effect of TET3 knockdown on the biological activity of EC cells. CONCLUSION TET3 promoted the DNA demethylation modification in the SHP2 promoter and activated SHP2, thus activating the EGFR/ERK pathway and leading to EC progression.
Collapse
Affiliation(s)
- Fen Xue
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Obstetrics and Gynecology, The Fourth Hospital of Baotou, Baotou, China
| | - Lifen Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xueqiang Tao
- Department of Spinal Surgery, The Fourth Hospital of Baotou, Baotou, China
| | - Weipei Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
7
|
Wang A, Zhang Y, Lv X, Liang G. Therapeutic potential of targeting protein tyrosine phosphatases in liver diseases. Acta Pharm Sin B 2024; 14:3295-3311. [PMID: 39220870 PMCID: PMC11365412 DOI: 10.1016/j.apsb.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 09/04/2024] Open
Abstract
Protein tyrosine phosphorylation is a post-translational modification that regulates protein structure to modulate demic organisms' homeostasis and function. This physiological process is regulated by two enzyme families, protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). As an important regulator of protein function, PTPs are indispensable for maintaining cell intrinsic physiology in different systems, as well as liver physiological and pathological processes. Dysregulation of PTPs has been implicated in multiple liver-related diseases, including chronic liver diseases (CLDs), hepatocellular carcinoma (HCC), and liver injury, and several PTPs are being studied as drug therapeutic targets. Therefore, given the regulatory role of PTPs in diverse liver diseases, a collated review of their function and mechanism is necessary. Moreover, based on the current research status of targeted therapy, we emphasize the inclusion of several PTP members that are clinically significant in the development and progression of liver diseases. As an emerging breakthrough direction in the treatment of liver diseases, this review summarizes the research status of PTP-targeting compounds in liver diseases to illustrate their potential in clinical treatment. Overall, this review aims to support the development of novel PTP-based treatment pathways for liver diseases.
Collapse
Affiliation(s)
- Ao Wang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China
| | - Yi Zhang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Xinting Lv
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Guang Liang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
8
|
Yang D, Zhang P, Yang Z, Hou G, Yang Z. miR-4461 inhibits liver cancer stem cells expansion and chemoresistance via regulating SIRT1. Carcinogenesis 2024; 45:463-474. [PMID: 36437743 DOI: 10.1093/carcin/bgac093] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/11/2022] [Accepted: 11/27/2022] [Indexed: 02/17/2024] Open
Abstract
MicroRNAs (miRNAs) were involved in tumorigenesis, progression, recurrence and drug resistance of hepatocellular carcinoma (HCC). However, few miRNAs have been identified and entered clinical practice. We show here that miR-4461 expression is reduced in liver cancer stem cells (CSCs) and predicts the poor prognosis of HCC patients. Knockdown of miR-4461 enhances the self-renewal and tumorigenicity of liver CSCs. Conversely, forced miR-4461 expression inhibits liver CSCs self-renewal and tumorigenesis. Mechanically, miR-4461 directly targets sirtuin 1 (SIRT1) via binding to its 3' untranslated region in liver CSCs. The correlation of miR-4461 and SIRT1 was confirmed in human HCC patients' tissues. Additionally, we found that miR-4461 overexpression hepatoma cells are more sensitive to cisplatin treatment. Patient-derived xenografts also showed that miR-4461 high HCC xenografts are sensitive to cisplatin treatment. Clinical cohort analysis further confirmed that HCC patients with high miR-4461 benefited more from transcatheter arterial chemoembolization treatment. In conclusion, our findings revealed the crucial role of miR-4461 in liver CSCs expansion and cisplatin response, rendering miR-4461 as an optimal target for the prevention and intervention of HCC.
Collapse
Affiliation(s)
- Daji Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Xinmin Street, Changchun 130021, China
| | - Ping Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Xinmin Street, Changchun 130021, China
| | - Ziting Yang
- Department of Emergency, The 964th Hospital of the Chinese People's Liberation Army, Changchun, China
| | - Guojun Hou
- Department of Hepatic Surgery, Third Affiliated Hospital of Second Military Medical University, Shanghai 200438, China
| | - Ziyu Yang
- Department of Integrative Medicine, Third Affiliated Hospital of Second Military Medical University, Shanghai 200438, China
| |
Collapse
|
9
|
Scheiter A, Lu LC, Gao LH, Feng GS. Complex Roles of PTPN11/SHP2 in Carcinogenesis and Prospect of Targeting SHP2 in Cancer Therapy. ANNUAL REVIEW OF CANCER BIOLOGY 2024; 8:15-33. [PMID: 39959686 PMCID: PMC11824402 DOI: 10.1146/annurev-cancerbio-062722-013740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
The non-receptor tyrosine phosphatase SHP2 has been at the center of cell signaling research for three decades. SHP2 is required to fully activate the RTK-RAS-ERK cascade, although the underlying mechanisms are not completely understood. PTPN11, coding for SHP2, is the first identified proto-oncogene that encodes a tyrosine phosphatase, with dominantly activating mutations detected in leukemias and solid tumors. However, SHP2 has been shown to have pro- and anti-oncogenic effects, and the most recent data reveal opposite activities of SHP2 in tumor cells and microenvironment cells. Allosteric SHP2 inhibitors show promising anti-tumor effects and overcome resistance to inhibitors of RAS-ERK signaling in animal models. Many clinical trials with orally bioactive SHP2 inhibitors, alone or combined with other regimens, are ongoing for a variety of cancers worldwide, with therapeutic outcomes yet unknown. This review discusses the multi-faceted SHP2 functions in oncogenesis, preclinical studies and clinical trials with SHP2 inhibitors in oncological treatment.
Collapse
Affiliation(s)
- Alexander Scheiter
- Department of Pathology, and Moores Cancer Center, School of Medicine, University of California San Diego, La Jolla, California 92093
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Li-Chun Lu
- Department of Pathology, and Moores Cancer Center, School of Medicine, University of California San Diego, La Jolla, California 92093
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan (ROC)
| | - Lilian H. Gao
- Department of Pathology, and Moores Cancer Center, School of Medicine, University of California San Diego, La Jolla, California 92093
- Program in Bioinformatics and Systems Biology, University of California San Diego, La Jolla, California 92093
| | - Gen-Sheng Feng
- Department of Pathology, and Moores Cancer Center, School of Medicine, University of California San Diego, La Jolla, California 92093
- Program in Bioinformatics and Systems Biology, University of California San Diego, La Jolla, California 92093
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, California 92093
| |
Collapse
|
10
|
Cheng Y, Ouyang W, Liu L, Tang L, Zhang Z, Yue X, Liang L, Hu J, Luo T. Molecular recognition of ITIM/ITSM domains with SHP2 and their allosteric effect. Phys Chem Chem Phys 2024; 26:9155-9169. [PMID: 38165855 DOI: 10.1039/d3cp03923d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Src homology 2-domain-containing tyrosine phosphatase 2 (SHP2) is a non-receptor protein tyrosine phosphatase that is widely expressed in a variety of cells and regulates the immune response of T cells through the PD-1 pathway. However, the activation mechanism and allosteric effects of SHP2 remain unclear, hindering the development of small molecule inhibitors. For the first time, in this study, the complex structure formed by the intact PD-1 tail and SHP2 was modeled. The molecular recognition and conformational changes of inactive/active SHP2 versus ITIM/ITSM were compared based on prolonged MD simulations. The relative flexibility of the two SH2 domains during MD simulations contributes to the recruitment of ITIM/ITSM and supports the subsequent conformational change of SHP2. The binding free energy calculation shows that inactive SHP2 has a higher affinity for ITIM/ITSM than active SHP2, mainly because the former's N-SH2 refers to the α-state. In addition, a significant decrease in the contribution to the binding energy of certain residues (e.g., R32, S34, K35, T42, and K55) of conformationally transformed SHP2 contributes to the above result. These detailed changes during conformational transition will provide theoretical guidance for the molecular design of subsequent novel anticancer drugs.
Collapse
Affiliation(s)
- Yan Cheng
- Breast Disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China.
- Multi-omics Laboratory of Breast Diseases, State Key Laboratory of Biotherapy, National Collaborative, Innovation Center for Biotherapy, West China Hospital, Sichuan University, China
| | - Weiwei Ouyang
- Department of Thoracic Oncology, Affiliated Cancer Hospital, Guizhou Medical University, Guiyang, China
| | - Ling Liu
- Key Laboratory of Medicinal and Edible Plants Resources, Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Lingkai Tang
- Key Laboratory of Medicinal and Edible Plants Resources, Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Zhigang Zhang
- Key Laboratory of Medicinal and Edible Plants Resources, Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Xinru Yue
- Key Laboratory of Medicinal and Edible Plants Resources, Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Li Liang
- Key Laboratory of Medicinal and Edible Plants Resources, Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Jianping Hu
- Key Laboratory of Medicinal and Edible Plants Resources, Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Ting Luo
- Breast Disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China.
- Multi-omics Laboratory of Breast Diseases, State Key Laboratory of Biotherapy, National Collaborative, Innovation Center for Biotherapy, West China Hospital, Sichuan University, China
| |
Collapse
|
11
|
Hsu MF, LeBleu G, Flores L, Parkhurst A, Nagy LE, Haj FG. Hepatic protein tyrosine phosphatase Shp2 disruption mitigates the adverse effects of ethanol in the liver by modulating oxidative stress and ERK signaling. Life Sci 2024; 340:122451. [PMID: 38253311 DOI: 10.1016/j.lfs.2024.122451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024]
Abstract
AIMS Chronic excessive alcohol intake is a significant cause of alcohol-associated liver disease (ALD), a leading contributor to liver-related morbidity and mortality. The Src homology phosphatase 2 (Shp2; encoded by Ptpn11) is a widely expressed protein tyrosine phosphatase that modulates hepatic functions, but its role in ALD is mostly uncharted. MAIN METHODS Herein, we explore the effects of liver-specific Shp2 genetic disruption using the established chronic-plus-binge mouse model of ALD. KEY FINDINGS We report that the hepatic Shp2 disruption had beneficial effects and partially ameliorated ethanol-induced injury, inflammation, and steatosis in the liver. Consistently, Shp2 deficiency was associated with decreased ethanol-evoked activation of extracellular signal-regulated kinase (ERK) and oxidative stress in the liver. Moreover, primary hepatocytes with Shp2 deficiency exhibited similar outcomes to those observed upon Shp2 disruption in vivo, including diminished ethanol-induced ERK activation, inflammation, and oxidative stress. Furthermore, pharmacological inhibition of ERK in primary hepatocytes mimicked the effects of Shp2 deficiency and attenuated oxidative stress caused by ethanol. SIGNIFICANCE Collectively, these findings highlight Shp2 as a modulator of hepatic oxidative stress upon ethanol challenge and suggest the evaluation of this phosphatase as a potential therapeutic target for ALD.
Collapse
Affiliation(s)
- Ming-Fo Hsu
- Department of Nutrition, University of California Davis, Davis, CA 95616, USA.
| | - Grace LeBleu
- Department of Nutrition, University of California Davis, Davis, CA 95616, USA
| | - Lizbeth Flores
- Department of Nutrition, University of California Davis, Davis, CA 95616, USA
| | - Amy Parkhurst
- Department of Nutrition, University of California Davis, Davis, CA 95616, USA
| | - Laura E Nagy
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Fawaz G Haj
- Department of Nutrition, University of California Davis, Davis, CA 95616, USA; Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, University of California Davis, Sacramento, CA 95817, USA.
| |
Collapse
|
12
|
Lan X, Ma J, Huang Z, Xu Y, Hu Y. Akkermansia muciniphila might improve anti-PD-1 therapy against HCC by changing host bile acid metabolism. J Gene Med 2024; 26:e3639. [PMID: 38058259 DOI: 10.1002/jgm.3639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 09/26/2023] [Accepted: 11/01/2023] [Indexed: 12/08/2023] Open
Abstract
PD-1 monoclonal antibodies (mAb) have demonstrated remarkable efficacy in a variety of cancers, including Hepatocellular carcinoma (HCC). However, the patient response rates remain suboptimal, and a significant proportion of initial responders may develop resistance to this therapeutic approach. Akkermansia muciniphila (AKK), a microorganism implicated in multiple human diseases, has been reported to be more abundant in patients who exhibit favorable responses to PD-1mAb. However, the underlying mechanism has yet to be elucidated. In our study, we found that AKK could enhance the efficacy of PD-1mAb against HCC in a tumor-bearing mouse model. It promotes HCC tumor cells apoptosis and raise the CD8+ T proportion in the tumor microenvironment. Additionally, AKK downregulates PD-L1 expression in tumor cells. Furthermore, the analysis of metabonomics demonstrates that AKK induces alterations in the host's bile acid metabolism, leading to a significant increase in serum TUDCA levels. Considering the immunosuppresive roles of TUDCA in HCC development, it is plausible to speculate that AKK may reinforce the immunotherapy of PD-1mAb against HCC through its impact on bile acid metabolism.
Collapse
Affiliation(s)
- Xiucai Lan
- Department of Geriatrics, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaming Ma
- Department of Health-Related Product Assessment, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Zhipeng Huang
- Department of Gastroenterology, First Hospital of Quanzhou affiliated to Fujian Medical University, Quanzhou, China
| | - Yuzhen Xu
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Yaomin Hu
- Department of Geriatrics, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Liu X, Li M, Chen L, Wen F, Zheng S, Ge W. High expression of SHP2 predicts a promising prognosis in colorectal cancer. INDIAN J PATHOL MICR 2024; 67:29-35. [PMID: 38358185 DOI: 10.4103/ijpm.ijpm_894_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Background Src homology 2 domain-containing phosphatase 2 (SHP2) is hyper-activated in some solid tumors. Previous findings suggest that the expression of SHP2 in colorectal cancer (CRC) may be associated with prognosis. However, validation with large sample data is lacking. Materials and Methods: Tissue microarrays containing 860 CRCs and 197 mucosal tissues adjacent to the tumors were constructed. Immunohistochemistry was used to evaluate the expression of SHP2. Differences between SHP2 expression and clinicopathological parameters were evaluated. Kaplan-Meier survival curves and log-rank tests were used to analyze the relationships between SHP2 expression and the overall survival of patients. A Cox proportional hazard regression model was used for univariate and multivariate analyses of prognostic factors. Results SHP2 expression in CRCs tissues was significantly higher than those in adjacent mucosal tissues (P < 0.001). SHP2 expression was related to tumor differentiation, depth of invasion, distant metastasis, vascular tumor thrombus, lymph node metastasis, and TNM classification (P < 0.05). The prognosis of the high-expression group of SHP2 was significantly better than that of the low-expression group (P = 0.008). Univariate analysis showed that the expression of SHP2 was a prognostic factor for CRC (P = 0.008). Multivariate analysis demonstrated that SHP2 remained an independent prognostic factor for CRC (P = 0.033). Conclusion The expression of SHP2 was significantly higher in CRC tissues than in adjacent normal tissues. High expression of SHP2 was associated with a promising outcome, suggesting that SHP2 may be a favorable prognostic indicator of CRC.
Collapse
Affiliation(s)
- Xibo Liu
- Department of Pathology, Shaoxing People's Hospital, Shaoxing, China
| | - Mengyao Li
- Department of Pathology, Shaoxing People's Hospital, Shaoxing, China
| | - Lirong Chen
- Department of Pathology, China National Ministry of Education), The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fei Wen
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shu Zheng
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Weiting Ge
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
14
|
Li YM, He HW, Zhang N. Targeting Protein Phosphatases for the Treatment of Chronic Liver Disease. Curr Drug Targets 2024; 25:171-189. [PMID: 38213163 DOI: 10.2174/0113894501278886231221092522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 01/13/2024]
Abstract
There exists a huge number of patients suffering from chronic liver disease worldwide. As a disease with high incidence and mortality worldwide, strengthening the research on the pathogenesis of chronic liver disease and the development of novel drugs is an important issue related to the health of all human beings. Phosphorylation modification of proteins plays a crucial role in cellular signal transduction, and phosphatases are involved in the development of liver diseases. Therefore, this article summarized the important role of protein phosphatases in chronic liver disease with the aim of facilitating the development of drugs targeting protein phosphatases for the treatment of chronic liver disease.
Collapse
Affiliation(s)
- Yi-Ming Li
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Hong-Wei He
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Na Zhang
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
15
|
Zhang P, Liu W, Wang Y. The mechanisms of tanshinone in the treatment of tumors. Front Pharmacol 2023; 14:1282203. [PMID: 37964867 PMCID: PMC10642231 DOI: 10.3389/fphar.2023.1282203] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/18/2023] [Indexed: 11/16/2023] Open
Abstract
Tanshinone is a lipophilic compound that is present in traditional Chinese medicine and is derived from the roots of Salvia miltiorrhiza (Danshen). It has been proven to be highly effective in combating tumors in various parts of the body, including liver carcinoma, gastric cancer, ovarian cancer, cervix carcinoma, breast cancer, colon cancer, and prostate cancer. Tanshinone can efficiently prevent the reproduction of cancerous cells, induce cell death, and inhibit the spread of cancerous cells, which are mainly involved in the PI3K/Akt signaling pathway, NF-κB pathway, Bcl-2 family, Caspase cascades, MicroRNA, MAPK signaling pathway, p21, STAT3 pathway, miR30b-P53-PTPN11/SHP2 axis, β-catenin, and Skp2. However, the properties and mechanisms of tanshinone's anti-tumor effects remain unclear currently. Thus, this study aims to review the research progress on tumor prevention and mechanisms of tanshinone to gain new perspectives for further development and clinical application of tanshinone.
Collapse
Affiliation(s)
- Pengyu Zhang
- The Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wendi Liu
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuan Wang
- Department of Histology and Embryology, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
16
|
Han T, Chen T, Chen L, Li K, Xiang D, Dou L, Li H, Gu Y. HLF promotes ovarian cancer progression and chemoresistance via regulating Hippo signaling pathway. Cell Death Dis 2023; 14:606. [PMID: 37709768 PMCID: PMC10502110 DOI: 10.1038/s41419-023-06076-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/05/2023] [Accepted: 08/15/2023] [Indexed: 09/16/2023]
Abstract
Hepatic leukemia factor (HLF) is aberrantly expressed in human malignancies. However, the role of HLF in the regulation of ovarian cancer (OC) remains unknown. Herein, we reported that HLF expression was upregulated in OC tissues and ovarian cancer stem cells (CSCs). Functional studies have revealed that HLF regulates OC cell stemness, proliferation, and metastasis. Mechanistically, HLF transcriptionally activated Yes-associated protein 1 (YAP1) expression and subsequently modulated the Hippo signaling pathway. Moreover, we found that miR-520e directly targeted HLF 3'-UTR in OC cells. miR-520e expression was negatively correlated with HLF and YAP1 expression in OC tissues. The combined immunohistochemical (IHC) panels exhibited a better prognostic value for OC patients than any of these components alone. Importantly, the HLF/YAP1 axis determines the response of OC cells to carboplatin treatment and HLF depletion or the YAP1 inhibitor verteporfin abrogated carboplatin resistance. Analysis of patient-derived xenografts (PDXs) further suggested that HLF might predict carboplatin benefits in OC patients. In conclusion, these findings suggest a crucial role of the miR-520e/HLF/YAP1 axis in OC progression and chemoresistance, suggesting potential therapeutic targets for OC.
Collapse
Affiliation(s)
- Tao Han
- Department of Oncology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Tingsong Chen
- Department of Cancer Intervention, Seventh People's Hospital of Shanghai University of TCM, Shanghai, 200001, China
| | - Lujun Chen
- Department of Oncology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China
- Postgraduate College, China Medical University, Shenyang, 110001, China
| | - Kerui Li
- Department of Oncology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Daimin Xiang
- Clinical Cancer Institute, Center for Translational Medicine, Naval Military Medical University, Shanghai, 200433, China
- Department of hepatobiliary surgery, East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Lei Dou
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China.
| | - Hengyu Li
- Department of Breast and Thyroid Surgery, Changhai Hospital, Naval Military Medical University, Shanghai, 200433, China.
| | - Yubei Gu
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
17
|
Zhang J, Liu Y, Wang X, Wang Z, Xing E, Li J, Wang D. Curcumin inhibits proliferation of hepatocellular carcinoma cells by blocking PTPN1 and PTPN11 expression. Oncol Lett 2023; 26:307. [PMID: 37332329 PMCID: PMC10272960 DOI: 10.3892/ol.2023.13893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/04/2023] [Indexed: 06/20/2023] Open
Abstract
The antitumor mechanism of curcumin is unclear, especially in hepatocellular carcinoma (HCC) cells. To clarify the mechanism of action of curcumin in the effective treatment of HCC, the targets of curcumin were screened and validated. Candidate genes of curcumin for HCC were screened using the traditional Chinese medicine systems pharmacology (TCMSP) database and validated using The Cancer Genome Atlas (TCGA) database. The correlation of mRNA expression levels between key candidate genes was identified in the TCGA liver hepatocellular carcinoma (LIHC) dataset. The effects on prognosis were analyzed to identify the target gene of curcumin, which inhibits HCC cell proliferation. Based on the subcutaneous xenograft model of human HCC in nude mice, the expression levels of target proteins were observed using immunohistochemistry. The analysis results of the present study identified the target genes of curcumin, which were obtained by screening the TCSMP database. The protein tyrosine phosphatase non-receptor type 1 (PTPN1) was obtained from TCGA database analysis of the targeted genes. The expression levels of PTPN1 and its homologous sequence genes in TCGA LIHC project was analyzed to identify the potential target gene of curcumin, for use in HCC treatment. Next, xenograft experiments were performed to investigate the therapeutic effects of curcumin in an animal model. Curcumin was demonstrated to inhibit the growth of HCC xenograft tumors in mice. Immunohistochemistry results demonstrated that the protein expression levels of PTPN1 and PTPN11 in the curcumin group were significantly lower compared with those in the control group. In conclusion, these results demonstrated that curcumin inhibits the proliferation of HCC cells by inhibiting the expression of PTPN1 and PTPN11.
Collapse
Affiliation(s)
- Jingru Zhang
- Department of Histology and Embryology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Yang Liu
- Department of Histology and Embryology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Xiaojie Wang
- Quality Department, Shandong Runzhong Pharmaceutical Co., Ltd., Yantai, Shandong 264003, P.R. China
| | - Zhiyi Wang
- Department of Histology and Embryology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Enjia Xing
- Department of Histology and Embryology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Jingmin Li
- Department of Human Anatomy, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Dong Wang
- Department of Histology and Embryology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| |
Collapse
|
18
|
Welsh CL, Allen S, Madan LK. Setting sail: Maneuvering SHP2 activity and its effects in cancer. Adv Cancer Res 2023; 160:17-60. [PMID: 37704288 PMCID: PMC10500121 DOI: 10.1016/bs.acr.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Since the discovery of tyrosine phosphorylation being a critical modulator of cancer signaling, proteins regulating phosphotyrosine levels in cells have fast become targets of therapeutic intervention. The nonreceptor protein tyrosine phosphatase (PTP) coded by the PTPN11 gene "SHP2" integrates phosphotyrosine signaling from growth factor receptors into the RAS/RAF/ERK pathway and is centrally positioned in processes regulating cell development and oncogenic transformation. Dysregulation of SHP2 expression or activity is linked to tumorigenesis and developmental defects. Even as a compelling anti-cancer target, SHP2 was considered "undruggable" for a long time owing to its conserved catalytic PTP domain that evaded drug development. Recently, SHP2 has risen from the "undruggable curse" with the discovery of small molecules that manipulate its intrinsic allostery for effective inhibition. SHP2's unique domain arrangement and conformation(s) allow for a truly novel paradigm of inhibitor development relying on skillful targeting of noncatalytic sites on proteins. In this review we summarize the biological functions, signaling properties, structural attributes, allostery and inhibitors of SHP2.
Collapse
Affiliation(s)
- Colin L Welsh
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Sarah Allen
- Department of Pediatrics, Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC, United States
| | - Lalima K Madan
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC, United States; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
19
|
Chen YL, Hsieh CC, Chu PM, Chen JY, Huang YC, Chen CY. Roles of protein tyrosine phosphatases in hepatocellular carcinoma progression (Review). Oncol Rep 2023; 49:48. [PMID: 36660927 PMCID: PMC9887465 DOI: 10.3892/or.2023.8485] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/15/2022] [Indexed: 01/20/2023] Open
Abstract
Hepatocellular carcinoma (HCC) represents almost 80% of all liver cancers, is the sixth most common cancer and is the second‑highest cause of cancer‑related deaths worldwide. Protein tyrosine phosphatases (PTPs), which are encoded by the largest family of phosphatase genes, play critical roles in cellular responses and are implicated in various signaling pathways. Moreover, PTPs are dysregulated and involved in various cellular processes in numerous cancers, including HCC. Kinases and phosphatases are coordinators that modulate cell activities and regulate signaling responses. There are multiple interacting signaling networks, and coordination of these signaling networks in response to a stimulus determines the physiological outcome. Numerous issues, such as drug resistance and inflammatory reactions in the tumor microenvironment, are implicated in cancer progression, and the role of PTPs in these processes has not been well elucidated. Therefore, the present review focused on discussing the relationship of PTPs with inflammatory cytokines and chemotherapy/targeted drug resistance, providing detailed information on how PTPs can modulate inflammatory reactions and drug resistance to influence progression in HCC.
Collapse
Affiliation(s)
- Yi-Li Chen
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| | - Ching-Chuan Hsieh
- Division of General Surgery, Chang Gung Memorial Hospital, Chiayi 613, Taiwan, R.O.C
| | - Pei-Ming Chu
- Department of Anatomy, School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan, R.O.C
| | - Jing-Yi Chen
- Department of Medical Laboratory Science, College of Medicine, I‑Shou University, Kaohsiung 82445, Taiwan, R.O.C
| | - Yu-Chun Huang
- Aging and Diseases Prevention Research Center, Fooyin University, Kaohsiung 83102, Taiwan, R.O.C
| | - Cheng-Yi Chen
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| |
Collapse
|
20
|
Li Z, Xi J, Li B, Liu Y, Wang G, Yu B, Ma H, Li Z, Zhang Z. SHP-2-induced M2 polarization of tumor associated macrophages via IL-4 regulate colorectal cancer progression. Front Oncol 2023; 13:1027575. [PMID: 36776333 PMCID: PMC9909964 DOI: 10.3389/fonc.2023.1027575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/06/2023] [Indexed: 01/27/2023] Open
Abstract
Objective To explore the effect and molecular mechanism of Src homology region 2 domain-containing protein tyrosine phosphatase-2 (SHP-2) in tumor-associated macrophages (TAMs) repressing the migration and invasion of colorectal cancer (CRC) cells. Methods The relevant data sets of human colon specimens were obtained from GEO database, and then the performed correlation analysis, principal component analysis and differentially expressed gene (DEGs) analysis on the samples were conducted. GO and KEGG enrichment analysis were performed on the common DEGs, and then functional interaction prediction was performed to verify the gene regulatory circuit of SHP-2. Furthermore, western blot was used to detect the effect of low expression of SHP-2 on related proteins, including the markers of promoting M2 polarization and exosome secretion, and keys proteins of the PI3K pathway. The relationship between SHP-2 and PI3K pathway was further verified by adding PI3K inhibitor LY294002. Finally, the effect of SHP-2 on the function of colon cancer cells was confirmed by wound healing assay and Transwell assay. Results Through bioinformatics analysis, SHP-2 was screened as a possible key gene affecting CRC. The low expression of SHP-2 promoted the protein levels of Arginase-1 and IL-10 in IL-4 induced M2 macrophages, while inhibited the protein levels of IL-1β and TNF-α. Meanwhile, low expression of SHP-2 was found to similarly promote the expression of p-PI3K, p-AKT, and the release of exosomes. Interestingly, the promotion was suppressed after the addition of the PI3K inhibitor LY294002. In terms of cellular behavior, wound healing and transwell data showed that low expression of SHP-2 enhanced the migration and invasion abilities of CRC cells. Conclusion The low expression of SHP-2 induced by PHPS1 may regulate M2 polarization of TAMs and release of exosomes through PI3K/AKT pathway, thereby enhancing the migration and invasion ability of CRC cells.
Collapse
Affiliation(s)
- Zhihan Li
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jinchuan Xi
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Baokun Li
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Youqiang Liu
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guiying Wang
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China,Department of Gastrointestinal Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China,*Correspondence: Zhenya Zhang, ; Guiying Wang,
| | - Bin Yu
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hongqing Ma
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhilin Li
- School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Zhenya Zhang
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China,*Correspondence: Zhenya Zhang, ; Guiying Wang,
| |
Collapse
|
21
|
Razi Soofiyani S, Minaei Beirami S, Hosseini K, Mohammadi Nasr M, Ranjbar M, Forouhandeh H, Tarhriz V, Sadeghi M. Revisiting Inhibition Effects of miR-28 as a Metastasis Suppressor in Gastrointestinal Cancers. Microrna 2023; 12:131-142. [PMID: 37073155 DOI: 10.2174/2211536612666230413125126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 11/09/2022] [Accepted: 01/20/2023] [Indexed: 04/20/2023]
Abstract
MicroRNAs are critical epigenetic regulators that can be used as diagnostic, prognostic, and therapeutic biomarkers for the treatment of various diseases, including gastrointestinal cancers, among a variety of cellular and molecular biomarkers. MiRNAs have also shown oncogenic or tumor suppressor roles in tumor tissue and other cell types. Studies showed that the dysregulation of miR-28 is involved in cell growth and metastasis of gastrointestinal cancers. MiR-28 plays a key role in controlling the physiological processes of cancer cells including growth and proliferation, migration, invasion, apoptosis, and metastasis. Therefore, miR-28 expression patterns can be used to distinguish patient subgroups. Based on the previous studies, miR-28 expression can be a suitable biomarker to detect tumor size and predict histological grade metastasis. In this review, we summarize the inhibitory effects of miR-28 as a metastasis suppressor in gastrointestinal cancers. miR-28 plays a role as a tumor suppressor in gastrointestinal cancers by regulating cancer cell growth, cell differentiation, angiogenesis, and metastasis. As a result, using it as a prognostic, diagnostic, and therapeutic biomarker in the treatment of gastrointestinal cancers can be a way to solve the problems in this field.
Collapse
Affiliation(s)
- Saiedeh Razi Soofiyani
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Clinical Research Development Unit, Sina Educational, Research and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sohrab Minaei Beirami
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kamran Hosseini
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Faculty of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mina Mohammadi Nasr
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences. Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Ranjbar
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Haleh Forouhandeh
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadreza Sadeghi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences. Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
22
|
Zhang X, Zhang C, Zhao Q, Wang S, Wang L, Si Y, Su Q, Cheng S, Ding W. Inhibition of Annexin A10 Contributes to ZNF281 Mediated Aggressiveness of Hepatocellular Carcinoma. J Hepatocell Carcinoma 2023; 10:553-571. [PMID: 37041757 PMCID: PMC10083037 DOI: 10.2147/jhc.s400989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/15/2023] [Indexed: 04/13/2023] Open
Abstract
Objective To investigate the involvement and transcriptional targets of zinc finger protein 281 (ZNF281) in the progression of hepatocellular carcinoma (HCC). Methods The expression of ZNF281 in HCC was detected in tissue microarray and cell lines. The role of ZNF281 in aggressiveness of HCC was examined using wound healing, matrigel transwell, pulmonary metastasis model and assays for expression of EMT markers. RNA-seq was used to find potential target gene of ZNF281. Chromatin immunoprecipitation (ChIP) assay and co-immunoprecipitation (Co-IP) were employed to uncover the mechanism of the transcriptional regulation of ZNF281 on the target gene. Results ZNF281 was increased in tumor tissues and positively correlated with vascular invasion in HCC. Knockdown of ZNF281 suppressed the migration and invasion with significant alteration of EMT marker expression in HLE and Huh7 HCC cell lines. RNA-seq screening showed that the tumor suppressor gene Annexin A10 (ANXA10) was a most up-regulated gene in response to ZNF281 depletion and responsible for the attenuation of aggressiveness. Mechanistically, ZNF281 interacted with the ANXA10 promoter region harboring ZNF281 recognition sites, and recruited components of nucleosome remodeling and deacetylation (NuRD) complex. By knocking down such components like HDAC1 or MTA1, ANXA10 was released from transcriptional repression by ZNF281/NuRD, and in turn reversed the EMT, invasion and metastasis driven by ZNF281. Conclusion ZNF281 drives invasion and metastasis of HCC partially through transcriptional repression of tumor suppressor gene ANXA10 by recruiting NuRD complex.
Collapse
Affiliation(s)
- Xialu Zhang
- School of Basic Medical Sciences, Capital Medical University, Beijing, People’s Republic of China
| | - Chenguang Zhang
- School of Basic Medical Sciences, Capital Medical University, Beijing, People’s Republic of China
- Beijing Key Laboratory for Cancer Invasion and Metastasis Mechanism Research, Capital Medical University, Beijing, People’s Republic of China
- Correspondence: Chenguang Zhang; Wei Ding, Email ;
| | - Qingfang Zhao
- School of Basic Medical Sciences, Capital Medical University, Beijing, People’s Republic of China
| | - Shanshan Wang
- Beijing Institute of Hepatology, Beijing You’An Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Liyong Wang
- Core Facilities for Molecular Biology, Capital Medical University, Beijing, People’s Republic of China
| | - Yang Si
- School of Basic Medical Sciences, Capital Medical University, Beijing, People’s Republic of China
| | - Qiang Su
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Shan Cheng
- School of Basic Medical Sciences, Capital Medical University, Beijing, People’s Republic of China
| | - Wei Ding
- School of Basic Medical Sciences, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
23
|
Asmamaw MD, Shi XJ, Zhang LR, Liu HM. A comprehensive review of SHP2 and its role in cancer. Cell Oncol 2022; 45:729-753. [PMID: 36066752 DOI: 10.1007/s13402-022-00698-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2022] [Indexed: 12/26/2022] Open
Abstract
Src homology 2-containing protein tyrosine phosphatase 2 (SHP2) is a non-receptor protein tyrosine phosphatase ubiquitously expressed mainly in the cytoplasm of several tissues. SHP2 modulates diverse cell signaling events that control metabolism, cell growth, differentiation, cell migration, transcription and oncogenic transformation. It interacts with diverse molecules in the cell, and regulates key signaling events including RAS/ERK, PI3K/AKT, JAK/STAT and PD-1 pathways downstream of several receptor tyrosine kinases (RTKs) upon stimulation by growth factors and cytokines. SHP2 acts as both a phosphatase and a scaffold, and plays prominently oncogenic functions but can be tumor suppressor in a context-dependent manner. It typically acts as a positive regulator of RTKs signaling with some inhibitory functions reported as well. SHP2 expression and activity is regulated by such factors as allosteric autoinhibition, microRNAs, ubiquitination and SUMOylation. Dysregulation of SHP2 expression or activity causes many developmental diseases, and hematological and solid tumors. Moreover, upregulated SHP2 expression or activity also decreases sensitivity of cancer cells to anticancer drugs. SHP2 is now considered as a compelling anticancer drug target and several classes of SHP2 inhibitors with different mode of action are developed with some already in clinical trial phases. Moreover, novel SHP2 substrates and functions are rapidly growing both in cell and cancer. In view of this, we comprehensively and thoroughly reviewed literatures about SHP2 regulatory mechanisms, substrates and binding partners, biological functions, roles in human cancers, and different classes of small molecule inhibitors target this oncoprotein in cancer.
Collapse
Affiliation(s)
- Moges Dessale Asmamaw
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory for Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450001, People's Republic of China
| | - Xiao-Jing Shi
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450052, People's Republic of China
| | - Li-Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory for Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450001, People's Republic of China.
| | - Hong-Min Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan Province, China. .,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou, Henan Province, 450001, People's Republic of China.
| |
Collapse
|
24
|
Yan H, Jiang M, Yang F, Tang X, Lin M, Zhou C, Tan Y, Liu D. Ajuforrestin A, an Abietane Diterpenoid from Ajuga ovalifolia var. calanthe, Induces A549 Cell Apoptosis by Targeting SHP2. Molecules 2022; 27:molecules27175469. [PMID: 36080236 PMCID: PMC9457730 DOI: 10.3390/molecules27175469] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
The Src-homology 2 domain-containing phosphatase 2 (SHP2), which is encoded by PTPN11, participates in many cellular signaling pathways and is closely related to various tumorigenesis. Inhibition of the abnormal activity of SHP2 by small molecules is an important part of cancer treatment. Here, three abietane diterpenoids, named compounds 1–3, were isolated from Ajuga ovalifolia var. calantha. Spectroscopic analysis was used to identify the exact structure of the compounds. The enzymatic kinetic experiment and the cellular thermal shift assay showed compound 2 selectively inhibited SHP2 activity in vitro. Molecular docking indicated compound 2 targeted the SHP2 catalytic domain. The predicted pharmacokinetic properties by SwissADME revealed that compound 2 passed the majority of the parameters of common drug discovery rules. Compound 2 restrained A549 proliferation (IC50 = 8.68 ± 0.96 μM), invasion and caused A549 cell apoptosis by inhibiting the SHP2–ERK/AKT signaling pathway. Finally, compound 2 (Ajuforrestin A) is a potent and efficacious SHP2 inhibitor and may be a promising compound for human lung epithelial cancer treatment.
Collapse
Affiliation(s)
- Hongling Yan
- Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Miao Jiang
- Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fujin Yang
- Chongqing Clinical Research Center for Dermatology, Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400011, China
- Chongqing Key Laboratory of Integrative Dermatology Research, Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400011, China
- Key Laboratory of External Therapies of Traditional Chinese Medicine in Eczema, Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400011, China
| | - Xueyong Tang
- Chongqing Clinical Research Center for Dermatology, Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400011, China
- Chongqing Key Laboratory of Integrative Dermatology Research, Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400011, China
- Key Laboratory of External Therapies of Traditional Chinese Medicine in Eczema, Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400011, China
| | - Mao Lin
- Chongqing Clinical Research Center for Dermatology, Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400011, China
- Chongqing Key Laboratory of Integrative Dermatology Research, Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400011, China
- Key Laboratory of External Therapies of Traditional Chinese Medicine in Eczema, Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400011, China
| | - Chunyan Zhou
- General Surgery, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, China
- Correspondence: (C.Z.); (Y.T.); (D.L.)
| | - Yuzhu Tan
- Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Correspondence: (C.Z.); (Y.T.); (D.L.)
| | - Deming Liu
- Chongqing Clinical Research Center for Dermatology, Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400011, China
- Chongqing Key Laboratory of Integrative Dermatology Research, Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400011, China
- Key Laboratory of External Therapies of Traditional Chinese Medicine in Eczema, Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400011, China
- Correspondence: (C.Z.); (Y.T.); (D.L.)
| |
Collapse
|
25
|
Tang Z, Wu S, Zhao P, Wang H, Ni D, Li H, Jiang X, Wu Y, Meng Y, Yao Z, Cai W, Bu W. Chemical Factory-Guaranteed Enhanced Chemodynamic Therapy for Orthotopic Liver Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201232. [PMID: 35712774 PMCID: PMC9376848 DOI: 10.1002/advs.202201232] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/09/2022] [Indexed: 05/05/2023]
Abstract
In the field of nanomedicine, there is a tendency of matching designed nanomaterials with a suitable type of orthotopic cancer model, not just a casual subcutaneous one. Under this condition, knowing the specific features of the chosen cancer model is the priority, then introducing a proper therapy strategy using designed nanomaterials. Here, the Fenton chemistry is combined with zinc peroxide nanoparticles in the treatment of orthotopic liver cancer which has a "chemical factory" including that liver is the main place for iron storage, metabolism, and also the main metabolic sites for the majority of ingested substances, guaranteeing customized and enhanced chemodynamic therapy and normal liver cells protection as well. The good results in vitro and in vivo can set an inspiring example for exploring and utilizing suitable nanomaterials in corresponding cancer models, ensuring well-fitness of nanomaterials for disease and satisfactory therapeutic effect.
Collapse
Affiliation(s)
- Zhongmin Tang
- Tongji University Cancer CenterShanghai Tenth People's HospitalTongji University School of MedicineShanghai200072P. R. China
- Departments of Radiology, Medical Physics, Materials Science & EngineeringPharmaceutical SciencesUniversity of Wisconsin − MadisonMadisonWI53705USA
| | - Shiman Wu
- Department of RadiologyHuashan HospitalFudan UniversityShanghai200040P. R. China
| | - Peiran Zhao
- Department of Materials Science and State Key Laboratory of Molecular Engineering of PolymersFudan University220 Handan RoadShanghai200438P. R. China
| | - Han Wang
- Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghai200240P. R. China
| | - Dalong Ni
- Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghai200240P. R. China
| | - Huiyan Li
- Department of Materials Science and State Key Laboratory of Molecular Engineering of PolymersFudan University220 Handan RoadShanghai200438P. R. China
| | - Xingwu Jiang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of PolymersFudan University220 Handan RoadShanghai200438P. R. China
| | - Yelin Wu
- Tongji University Cancer CenterShanghai Tenth People's HospitalTongji University School of MedicineShanghai200072P. R. China
| | - Yun Meng
- Tongji University Cancer CenterShanghai Tenth People's HospitalTongji University School of MedicineShanghai200072P. R. China
| | - Zhenwei Yao
- Department of RadiologyHuashan HospitalFudan UniversityShanghai200040P. R. China
| | - Weibo Cai
- Departments of Radiology, Medical Physics, Materials Science & EngineeringPharmaceutical SciencesUniversity of Wisconsin − MadisonMadisonWI53705USA
| | - Wenbo Bu
- Tongji University Cancer CenterShanghai Tenth People's HospitalTongji University School of MedicineShanghai200072P. R. China
- Department of Materials Science and State Key Laboratory of Molecular Engineering of PolymersFudan University220 Handan RoadShanghai200438P. R. China
| |
Collapse
|
26
|
Chen M, Wang H, Shi S, Zhang H, Xu S, Jiang Y. miR-6071 inhibits hepatocellular carcinoma progression via targeting PTPN11. Arch Biochem Biophys 2022; 727:109345. [DOI: 10.1016/j.abb.2022.109345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/14/2022] [Accepted: 06/29/2022] [Indexed: 11/02/2022]
|
27
|
Zhou L, Wang QL, Mao LH, Chen SY, Yang ZH, Liu X, Gao YH, Li XQ, Zhou ZH, He S. Hepatocyte-Specific Knock-Out of Nfib Aggravates Hepatocellular Tumorigenesis via Enhancing Urea Cycle. Front Mol Biosci 2022; 9:875324. [PMID: 35655758 PMCID: PMC9152321 DOI: 10.3389/fmolb.2022.875324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/28/2022] [Indexed: 12/23/2022] Open
Abstract
Nuclear Factor I B (NFIB) has been reported to promote tumor growth, metastasis, and liver regeneration, but its mechanism in liver cancer is not fully elucidated. The present study aims to reveal the role of NFIB in hepatocellular carcinogenesis. In our study, we constructed hepatocyte-specific NFIB gene knockout mice with CRISPR/Cas9 technology (Nfib-/-; Alb-cre), and induced liver cancer mouse model by intraperitoneal injection of DEN/CCl4. First, we found that Nfib-/- mice developed more tumor nodules and had heavier livers than wild-type mice. H&E staining indicated that the liver histological severity of Nfib-/- group was more serious than that of WT group. Then we found that the differentially expressed genes in the tumor tissue between Nfib-/- mice and wild type mice were enriched in urea cycle. Furthermore, ASS1 and CPS1, the core enzymes of the urea cycle, were significantly upregulated in Nfib-/- tumors. Subsequently, we validated that the expression of ASS1 and CPS1 increased after knockdown of NFIB by lentivirus in normal hepatocytes and also promoted cell proliferation in vitro. In addition, ChIP assay confirmed that NFIB can bind with promoter region of both ASS1 and CPS1 gene. Our study reveals for the first time that hepatocyte-specific knock-out of Nfib aggravates hepatocellular tumor development by enhancing the urea cycle.
Collapse
Affiliation(s)
- Li Zhou
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qing-Liang Wang
- Department of Pathology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lin-Hong Mao
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Gastroenterology, Chengdu Second People's Hospital, Sichuan, China
| | - Si-Yuan Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zi-Han Yang
- Department of Biomedical Science, City University of Hong Kong, Hong Kong, China
| | - Xue Liu
- Department of Pathology, College of Basic Medicine, Jining Medical University, Jining, China
| | - Yu-Hua Gao
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Xiao-Qin Li
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhi-Hang Zhou
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Song He
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
28
|
Yan X, Yang P, Liu H, Zhao Y, Wu Z, Zhang B. miR-4461 inhibits the progression of Gallbladder carcinoma via regulating EGFR/AKT signaling. Cell Cycle 2022; 21:1166-1177. [PMID: 35196196 PMCID: PMC9103642 DOI: 10.1080/15384101.2022.2042775] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Increasing evidence has demonstrated that microRNAs (miRNAs) participated in the tumorigenesis, progression and recurrence of various malignancies including Gallbladder carcinoma (GBC). miR-4461 was reported to work as a tumor suppressor gene in renal cell carcinoma. However, the role of miR-4461 in GBC remains unknown. Herein, we show that miR-4461 is downregulated in gallbladder cancer stem cells (CSCs). Forced miR-4461 expression attenuates the self-renewal, tumorigenicity of gallbladder CSCs, and inhibits proliferation and metastasis of GBC cells. Conversely, miR-4461 knockdown promotes the self-renewal of gallbladder CSCs, and facilities proliferation and metastasis of GBC cells. Mechanistically, miR-4461 inhibits GBC progression via downregulating EGFR/AKT pathway. Special EGFR siRNA or AKT overexpression virus abolishes the discrepancy of self-renewal, tumorigenesis, growth, and metastasis between miR-4461 overexpression GBC cells and their control cells. In conclusion, miR-4461 suppresses GBC cells self-renewal, tumorigenicity, proliferation, and metastasis by inactivating EGFR/AKT signaling, and may therefore prove to be a potential therapeutic target for GBC patients.
Collapse
Affiliation(s)
- Xingzhou Yan
- Department of Biliary Tract Surgery, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Pinghua Yang
- Department of Biliary Tract Surgery, Third Affiliated Hospital of Second Military Medical University, Shanghai, China,Zhixiong Wu Department of Critical Care Medicine, Huadong Hospital, Shanghai, 200040, China
| | - Hu Liu
- Department of Biliary Tract Surgery, Third Affiliated Hospital of Second Military Medical University, Shanghai, China,CONTACT Baohua Zhang Department of Biliary Surgery, Third Affiliated Hospital of Second Military Medical University, 225 Changhai Road, 200438 Shanghai, China
| | - Yongyang Zhao
- Department of Biliary Tract Surgery, Third Affiliated Hospital of Second Military Medical University, Shanghai, China,Zhixiong Wu Department of Critical Care Medicine, Huadong Hospital, Shanghai, 200040, China
| | - Zhixiong Wu
- Department of Critical Care Medicine, Huadong Hospital, Shanghai, China
| | - Baohua Zhang
- Department of Biliary Tract Surgery, Third Affiliated Hospital of Second Military Medical University, Shanghai, China,CONTACT Baohua Zhang Department of Biliary Surgery, Third Affiliated Hospital of Second Military Medical University, 225 Changhai Road, 200438 Shanghai, China
| |
Collapse
|
29
|
Han T, Zheng H, Zhang J, Yang P, Li H, Cheng Z, Xiang D, Wang R. Downregulation of MUC15 by miR-183-5p.1 promotes liver tumor-initiating cells properties and tumorigenesis via regulating c-MET/PI3K/AKT/SOX2 axis. Cell Death Dis 2022; 13:200. [PMID: 35236826 PMCID: PMC8891362 DOI: 10.1038/s41419-022-04652-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/03/2022] [Accepted: 02/16/2022] [Indexed: 12/11/2022]
Abstract
Mucin 15 (MUC15) is reportedly aberrant in human malignancies, including hepatocellular carcinoma (HCC). However, the role of MUC15 in the regulation of liver tumor-initiating cells (T-ICs) remains unknown. Here, we report that expression of MUC15 is downregulated in liver T-ICs, chemoresistance and recurrent HCC samples. Functional studies reveal that MUC15 inhibits hepatoma cells self-renewal, malignant proliferation, tumorigenicity, and chemoresistance. Mechanistically, MUC15 interacts with c-MET and subsequently inactivates the PI3K/AKT/SOX2 signaling pathway. Moreover, we find that miR-183-5p.1 directly targets MUC15 3′-UTR in liver T-ICs. Coincidentally, SOX2 feedback inhibits MUC15 expression by directly transactivating miR-183-5p.1, thus completing a feedforward regulatory circuit in liver T-ICs. Importantly, MUC15/c-MET/PI3K/AKT/SOX2 axis determines the responses of hepatoma cells to lenvatinib treatment, and MUC15 overexpression abrogated lenvatinib resistance. Analysis of patient cohort, patient-derived tumor organoids and patient-derived xenografts further suggests that the MUC15 may predict lenvatinib benefits in HCC patients. Collectively, our findings suggest the crucial role of the miR-183-5p.1/MUC15/c-MET/PI3K/AKT/SOX2 regulatory circuit in regulating liver T-ICs properties, suggesting potential therapeutic targets for HCC.
Collapse
Affiliation(s)
- Tao Han
- Department of Oncology, The First Affiliated Hospital of China Medical University, 110001, Shenyang, China
| | - Hao Zheng
- Department of Hepatic Surgery, Third Affiliated Hospital of Second Military Medical University, 200438, Shanghai, China.,Key Laboratory of Signaling Regulation and Targeting Therapy of Hepatocellular Carcinoma Ministry of Education, 200438, Shanghai, China.,Shanghai Key Laboratory of Hepatobiliary Tumor Biology, 200438, Shanghai, China.,Department of Reproductive Heredity Center, Changhai Hospital, Second Military Medical University, 200433, Shanghai, People's Republic of China
| | - Jin Zhang
- Department of Hepatic Surgery, Third Affiliated Hospital of Second Military Medical University, 200438, Shanghai, China
| | - Pinghua Yang
- Department of Hepatic Surgery, Third Affiliated Hospital of Second Military Medical University, 200438, Shanghai, China
| | - Hengyu Li
- Department of General Surgery, Changhai Hospital, Second Military Medical University, 200438, Shanghai, China.
| | - Zhangjun Cheng
- Department of Hepato-Pancreato-Biliary Centers, Zhong Da Hospital, School of Medicine, Southeast University, 210009, Nanjing, China.
| | - Daimin Xiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 200127, Shanghai, China.
| | - Ruoyu Wang
- Department of Hepatic Surgery, Third Affiliated Hospital of Second Military Medical University, 200438, Shanghai, China.
| |
Collapse
|
30
|
Chou YT, Bivona TG. Inhibition of SHP2 as an approach to block RAS-driven cancers. Adv Cancer Res 2022; 153:205-236. [PMID: 35101231 DOI: 10.1016/bs.acr.2021.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The non-receptor protein tyrosine phosphatase SHP2 (encoded by PTPN11) is a critical component of RAS/MAPK signaling by acting upstream of RAS to promote oncogenic signaling and tumor growth. Over three decades, SHP2 was considered "undruggable" because enzymatic active-site inhibitors generally showed off-target inhibition of other proteins and low membrane permeability. More recently, allosteric SHP2 inhibitors with striking inhibitory potency have been developed. These small molecules effectively block the signal transduction between receptor tyrosine kinases (RTKs) and RAS/MAPK signaling and show efficacy in preclinical cancer models. Moreover, clinical evaluation of these allosteric SHP2 inhibitors is ongoing. RAS proteins which harbor transforming properties by gain-of-function mutations are present in various cancer types. While inhibitors of KRASG12C show early clinical promise, resistance remains a challenge and other forms of oncogenic RAS remain to be selectively inhibited. Here, we summarize the role of SHP2 in RAS-driven cancers and the therapeutic potential of allosteric SHP2 inhibitors as a strategy to block RAS-driven cancers.
Collapse
Affiliation(s)
- Yu-Ting Chou
- Department of Medicine, Division of Hematology and Oncology, and The Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA, United States
| | - Trever G Bivona
- Department of Medicine, Division of Hematology and Oncology, and The Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA, United States.
| |
Collapse
|
31
|
Ma Y, Li WY, Sun T, Zhang L, Lu XH, Yang B, Wang RL. Structure-based discovery of a specific SHP2 inhibitor with enhanced blood-brain barrier penetration from PubChem database. Bioorg Chem 2022; 121:105648. [PMID: 35180489 DOI: 10.1016/j.bioorg.2022.105648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 11/20/2022]
Abstract
The thiophene [2,3-d]pyrimidine structure-like small molecules were discovered from structure-based virtual screening of 1 billion compounds. Base on enzyme activity assay results, a SHP2-specific molecule inhibitor Comp#2 with IC50 of 1.174 μM, 85-fold more selective for SHP2 than the highly related SHP1 (IC50 > 100 μM). The compound can effectively inhibit SHP2-mediated cell signaling and cancer cell proliferation, including cervix cancer, human pancreatic cancer, large cell lung cancer, and mouse glioma cell. Moreover, the in vivo assay indicated that Comp#2 could inhibit cervix cancer tumors growth in BABL/c mice. This work has shown the specific SHP2 inhibitor can inhibit glioblastoma growth in vivo.
Collapse
Affiliation(s)
- Ying Ma
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Wei-Ya Li
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Ting Sun
- Research Center of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China
| | - Ling Zhang
- School of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China
| | - Xin-Hua Lu
- New Drug Research & Development Center of North China Pharmaceutical Group Corporation, National Microbial Medicine Engineering & Research Center, Hebei Industry Microbial Metabolic Engineering & Technology Research Center, Shijiazhuang, Hebei 050015, China
| | - Bing Yang
- School of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China.
| | - Run-Ling Wang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, People's Republic of China.
| |
Collapse
|
32
|
Prognostic significance of SHP2 (PTPN11) expression in solid tumors: A meta-analysis. PLoS One 2022; 17:e0262931. [PMID: 35061863 PMCID: PMC8782321 DOI: 10.1371/journal.pone.0262931] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/08/2022] [Indexed: 11/19/2022] Open
Abstract
Background SHP2 is a latent biomarker for predicting the survivals of solid tumors. However, the current researches were controversial. Therefore, a meta-analysis is necessary to assess the prognosis of SHP2 on tumor patients. Materials and methods Searched in PubMed, EMBASE and web of science databases for published studies until Jun 20, 2021. A meta-analysis was performed to evaluate the affect of SHP2 in clinical stages, disease-free survival (DFS) and overall survival (OS) in tumor patients. Results This study showed that the expression of SHP2 had no significant correlation with clinical stages (OR: 0.91; 95% CI, 0.60–1.38; P = 0.65), DFS (HR = 0.88; 95%CI: 0.58–1.34; P = 0.56) and OS (HR = 1.07, 95%CI: 0.79–1.45, P = 0.67), but the prognostic effect varied greatly with tumor sites. High SHP2 expression was positively related to early clinical stage in hepatocellular carcinoma, not associated with clinical stage in the most of solid tumors, containing laryngeal carcinoma, pancreatic carcinoma and gastric carcinoma, etc. Higher expression of SHP2 could predict longer DFS in colorectal carcinoma, while predict shorter DFS in hepatocellular carcinoma. No significant difference was observed in DFS for non-small cell lung carcinoma and thyroid carcinoma. Higher SHP2 expression was distinctly related to shorter OS in pancreatic carcinoma and laryngeal carcinoma. The OS of the other solid tumors was not significantly different. Conclusions The prognostic value of SHP2 might not equivalent in different tumors. The prognostic effect of SHP2 is highly influenced by tumor sites.
Collapse
|
33
|
Cheng J, Liang J, Li Y, Gao X, Ji M, Liu M, Tian Y, Feng G, Deng W, Wang H, Kong S, Lu Z. Shp2 in uterine stromal cells critically regulates on time embryo implantation and stromal decidualization by multiple pathways during early pregnancy. PLoS Genet 2022; 18:e1010018. [PMID: 35025868 PMCID: PMC8791483 DOI: 10.1371/journal.pgen.1010018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/26/2022] [Accepted: 01/05/2022] [Indexed: 11/19/2022] Open
Abstract
Approximately 75% of failed pregnancies are considered to be due to embryo implantation failure or defects. Nevertheless, the explicit signaling mechanisms governing this process have not yet been elucidated. Here, we found that conditional deletion of the Shp2 gene in mouse uterine stromal cells deferred embryo implantation and inhibited the decidualization of stromal cells, which led to embryonic developmental delay and to the death of numerous embryos mid-gestation, ultimately reducing female fertility. The absence of Shp2 in stromal cells increased the proliferation of endometrial epithelial cells, thereby disturbing endometrial epithelial remodeling. However, Shp2 deletion impaired the proliferation and polyploidization of stromal cells, which are distinct characteristics of decidualization. In human endometrial stromal cells (hESCs), Shp2 expression gradually increased during the decidualization process. Knockout of Shp2 blocked the decidual differentiation of hESCs, while Shp2 overexpression had the opposite effect. Shp2 knockout inhibited the proliferation of hESCs during decidualization. Whole gene expression profiling analysis of hESCs during the decidualization process showed that Shp2 deficiency disrupted many signaling transduction pathways and gene expression. Analyses of hESCs and mouse uterine tissues confirmed that the signaling pathways extracellular regulated protein kinases (ERK), protein kinase B (AKT), signal transducer and activator of transcription 3 (STAT3) and their downstream transcription factors CCAAT/enhancer binding protein β (C/EBPβ) and Forkhead box transcription factor O1 (FOXO-1) were involved in the Shp2 regulation of decidualization. In summary, these results demonstrate that Shp2 plays a crucial role in stromal decidualization by mediating and coordinating multiple signaling pathways in uterine stromal cells. Our discovery possibly provides a novel key regulator of embryo implantation and novel therapeutic target for pregnancy failure. Embryo implantation includes the establishment of uterine receptivity, blastocyst attachment, and endometrial decidualization. Disorders of this process usually induce pregnancy failure, resulting in women infertility. But the signaling mechanisms governing this process remain unclear. Here, using gene knockout mouse model and human endometrial stromal cells (hESCs), we identified a novel key regulator of embryo implantation, Shp2, which plays a crucial role in stromal decidualization by mediating and coordinating multiple signaling pathways in uterine stromal cells. Shp2 deficiency in mouse uterine stromal cells inhibited the uterine stromal decidualization, disturbing embryo implantation and embryonic development, ultimately reducing female fertility. The absence of Shp2 in hESCs also blocked the decidual differentiation. Our findings not only promote the understanding of peri-implantation biology, but may also provide a critical target for more effectively diagnose and/or treat women with recurrent implantation failure or early pregnancy loss.
Collapse
Affiliation(s)
- Jianghong Cheng
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, China
| | - Jia Liang
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, China
| | - Yingzhe Li
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, China
| | - Xia Gao
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, China
| | - Mengjun Ji
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, China
| | - Mengying Liu
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, China
| | - Yingpu Tian
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, China
| | - Gensheng Feng
- Department of Pathology, Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Wenbo Deng
- Reproductive Medical Centre, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen, Fujian, China
| | - Haibin Wang
- Reproductive Medical Centre, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen, Fujian, China
- * E-mail: (HW); (SK); (ZL)
| | - Shuangbo Kong
- Reproductive Medical Centre, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen, Fujian, China
- * E-mail: (HW); (SK); (ZL)
| | - Zhongxian Lu
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen, Fujian, China
- * E-mail: (HW); (SK); (ZL)
| |
Collapse
|
34
|
Xu C, Li YM, Sun B, Zhong FJ, Yang LY. GNA14's interaction with RACK1 inhibits hepatocellular carcinoma progression through reducing MAPK/JNK and PI3K/AKT signaling pathway. Carcinogenesis 2021; 42:1357-1369. [PMID: 34657150 PMCID: PMC8598382 DOI: 10.1093/carcin/bgab098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/27/2021] [Accepted: 10/15/2021] [Indexed: 12/24/2022] Open
Abstract
Gαq subfamily proteins play critical roles in many biological functions including cardiovascular development, angiogenesis, and tumorigenesis of melanoma. However, the understanding of G Protein Subunit Alpha 14 (GNA14) in diseases, especially in cancers is limited. Here, we revealed that GNA14 was significantly low expression in Human hepatocellular carcinoma (HCC) samples. Low GNA14 expression was correlated with aggressive clinicopathological features. Moreover, the overall survival (OS) and disease-free survival (DFS) of high GNA14 expression HCC patients were much better than low GNA14 expression group. Lentivirus-mediated GNA14 knockdown significantly promoted the growth of liver cancer in vitro and in vivo. However, opposing results were observed when GNA14 is upregulated. Mechanistically, We identified receptor for activated C kinase 1 (RACK1) as a binding partner of GNA14 by co-immunoprecipitation and mass spectrometry (MS). Glutathione-S-transferase (GST) pull-down assay further verified the direct interaction between GNA14 and RACK1. RNA-Seq and loss- and gain-of-function assays also confirmed that GNA14 reduced the activity of both MAPK/JNK and PI3K/AKT signaling pathways through RACK1. GNA14 synergized with U73122 (PLC inhibitor) to enhance this effect. Further studies suggested that GNA14 potentially competed with protein kinase C (PKC) to bind with RACK1, consequently reducing the stability of PKC. Moreover, we also showed that GNA14’supression of p-AKT protein level depended on sufficient RACK1 expression. In conclusion, we indicated a different role of GNA14, which acted as a suppressor inhibiting liver cancer progression through MAPK/JNK and PI3K/AKT signaling pathways. Due to this, GNA14 served as a potentially valuable prognostic biomarker for liver cancer.
Collapse
Affiliation(s)
- Cong Xu
- Liver Cancer Laboratory, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yi-Ming Li
- Liver Cancer Laboratory, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Bo Sun
- Liver Cancer Laboratory, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Fang-Jing Zhong
- Liver Cancer Laboratory, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Lian-Yue Yang
- Liver Cancer Laboratory, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- Department of Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- To whom correspondence should be addressed. Tel: +86-(0)731-84327365; Fax: (0)731-84327618;
| |
Collapse
|
35
|
Desert R, Ge X, Song Z, Han H, Lantvit D, Chen W, Das S, Athavale D, Abraham-Enachescu I, Blajszczak C, Chen Y, Musso O, Guzman G, Hoshida Y, Nieto N. Role of Hepatocyte-Derived Osteopontin in Liver Carcinogenesis. Hepatol Commun 2021; 6:692-709. [PMID: 34730871 PMCID: PMC8948552 DOI: 10.1002/hep4.1845] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/13/2021] [Accepted: 10/02/2021] [Indexed: 12/24/2022] Open
Abstract
Osteopontin (OPN) expression correlates with tumor progression in many cancers, including hepatocellular carcinoma (HCC); however, its role in the onset of HCC remains unclear. We hypothesized that increased hepatocyte‐derived OPN is a driver of hepatocarcinogenesis. Analysis of a tissue microarray of 366 human samples revealed a continuous increase in OPN expression during hepatocarcinogenesis. In patients with cirrhosis, a transcriptome‐based OPN correlation network was associated with HCC incidence along 10 years of follow‐up, together with messenger RNA (mRNA) signatures of carcinogenesis. After diethylnitrosamine (DEN) injection, mice with conditional overexpression of Opn in hepatocytes (OpnHep transgenic [Tg]) showed increased tumor burden. Surprisingly, mice with conditional ablation of Opn in hepatocytes (OpnΔHep) expressed a similar phenotype. The acute response to DEN was reduced in OpnΔHep, which also showed more cancer stem/progenitor cells (CSCs, CD44+AFP+) at 5 months. CSCs from OpnHep Tg mice expressed several mRNA signatures known to promote carcinogenesis, and mRNA signatures from OpnHep Tg mice were associated with poor outcome in human HCC patients. Treatment with rOPN had little effect on CSCs, and their progression to HCC was similar in Opn−/− compared with wild‐type mice. Finally, ablation of Cd44, an OPN receptor, did not reduce tumor burden in Cd44−/−OpnHep Tg mice. Conclusions: Hepatocyte‐derived OPN acts as a tumor suppressor at physiological levels by controlling the acute response to DEN and the presence of CSCs, while induction of OPN is pro‐tumorigenic. This is primarily due to intracellular events rather that by the secretion of the protein and receptor activation.
Collapse
Affiliation(s)
- Romain Desert
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - Xiaodong Ge
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA.,Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zhuolun Song
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - Hui Han
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - Daniel Lantvit
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - Wei Chen
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - Sukanta Das
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - Dipti Athavale
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - Ioana Abraham-Enachescu
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chuck Blajszczak
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - Yu Chen
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - Orlando Musso
- INSERM, University of Rennes, INRA, Institut NuMeCAN (Nutrition Metabolisms and Cancer), Rennes, France
| | - Grace Guzman
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - Yujin Hoshida
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Liver Tumor Translational Research Program, Harold C. Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Natalia Nieto
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA.,Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
36
|
Zhang Y, Zuo Z, Liu B, Yang P, Wu J, Han L, Han T, Chen T. FAT10 promotes hepatocellular carcinoma (HCC) carcinogenesis by mediating P53 degradation and acts as a prognostic indicator of HCC. J Gastrointest Oncol 2021; 12:1823-1837. [PMID: 34532131 DOI: 10.21037/jgo-21-374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/05/2021] [Indexed: 11/06/2022] Open
Abstract
Background With the advancement of hepatocellular carcinoma (HCC) treatment technology, the treatment options for HCC patients have increased. However, due to high heterogeneity, among other reasons, the five-year survival rate of patients is still very low. Currently, gene expression prognostic models can suggest more appropriate strategies for the treatment of HCC. This study investigates the role of FAT10 in hepatocarcinogenesis and its underlying mechanism. Methods The expression of FAT10 was detected by immunohistochemical method using tissue arrays containing 4 specimens of patients with digestive cancer. The expression of FAT10 was determined by a tissue microarray which included 286 pairs of HCC samples and corresponding normal mucosae and was further confirmed by real-time polymerase chain reaction (PCR) and western blot. The Kaplan-Meier survival curve was used to determine the correlation of FAT10 expression with patients' recurrence and overall survival (OS) rate. In vivo, liver fibrosis, cirrhosis, and HCC models were established to assess the FAT10 expression. Moreover, FAT10 over-expressing cell lines were used to determine the molecular mechanism underlying the FAT10-induced cell proliferation and hepatocarcinogenesis by reporter gene measure, real-time PCR, and western blot. Based on TCGA database, signal pathways associated with FAT10 and HCC invasion and metastasis were analyzed by KEGG enrichment analyze. Results Overexpression of FAT10 in HCC was observed in this study compared with its expression in other digestive tumors. Clinicopathological analysis revealed that FAT10 expression levels were closely associated with tumor diameters and poor prognosis of HCC. This study also confirmed through in vivo experiments that the expression of FAT10 in liver fibrosis, cirrhosis, and HCC gradually increases. Further study revealed that forced FAT10 expression enhanced the growth ability of HCC cells and mediated the degradation of the critical anti-cancer protein p53, which led to carcinogenesis. Finally, 9 signal pathways related to HCC metastasis were obtained through bioinformatics analysis. Conclusions FAT10 may act as a proto-oncogene that facilitates HCC carcinogenesis by mediating p53 degradation, and the expression of FAT10 is negatively correlated with the prognosis of HCC patients. FAT10 is expected to become a potential combined target and prognostic warning marker for HCC treatment.
Collapse
Affiliation(s)
- Yue Zhang
- The Second Department of Oncology, the Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhifan Zuo
- China Medical University, General Hospital of Northern Theater Command Training Base for Graduate, Shenyang, China
| | - Bo Liu
- Department of Laboratory Medicine, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Pinghua Yang
- The Fourth Department of Biliary Tract, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Jun Wu
- China Medical University, General Hospital of Northern Theater Command Training Base for Graduate, Shenyang, China
| | - Lei Han
- Department of Hepatobiliary Surgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Tao Han
- Department of Oncology, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Tingsong Chen
- The Second Department of Oncology, the Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
37
|
Qing X, Xu W, Zong J, Du X, Peng H, Zhang Y. Emerging treatment modalities for systemic therapy in hepatocellular carcinoma. Biomark Res 2021; 9:64. [PMID: 34419152 PMCID: PMC8380325 DOI: 10.1186/s40364-021-00319-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/05/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) has long been a major global clinical problem as one of the most common malignant tumours with a high rate of recurrence and mortality. Although potentially curative therapies are available for the early and intermediate stages, the treatment of patients with advanced HCC remains to be resolved. Fortunately, the past few years have shown the emergence of successful systemic therapies to treat HCC. At the molecular level, HCC is a heterogeneous disease, and current research on the molecular characteristics of HCC has revealed numerous therapeutic targets. Targeted agents based on signalling molecules have been successfully supported in clinical trials, and molecular targeted therapy has already become a milestone for disease management in patients with HCC. Immunotherapy, a viable approach for the treatment of HCC, recognizes the antigens expressed by the tumour and treats the tumour using the immune system of the host, making it both selective and specific. In addition, the pipeline for HCC is evolving towards combination therapies with promising clinical outcomes. More drugs designed to focus on specific pathways and immune checkpoints are being developed in the clinic. It has been demonstrated that some drugs can improve the prognosis of patients with HCC in first- or second-line settings, and these drugs have been approved by the Food and Drug Administration or are nearing approval. This review describes targeting pathways and systemic treatment strategies in HCC and summarizes effective targeted and immune-based drugs for patients with HCC and the problems encountered.
Collapse
Affiliation(s)
- Xin Qing
- Department of General Surgery, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
| | - Wenjing Xu
- Department of General Surgery, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
| | - Jingjing Zong
- Department of General Surgery, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
| | - Xuanlong Du
- Department of General Surgery, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
| | - Hao Peng
- Department of General Surgery, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
| | - Yewei Zhang
- Department of General Surgery, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
38
|
Double-edged roles of protein tyrosine phosphatase SHP2 in cancer and its inhibitors in clinical trials. Pharmacol Ther 2021; 230:107966. [PMID: 34403682 DOI: 10.1016/j.pharmthera.2021.107966] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/09/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022]
Abstract
Phosphorylation is a reversible post-translational modification regulated by phosphorylase and dephosphorylase to mediate important cellular events. Src homology-2-containing protein tyrosine phosphatase 2 (SHP2) encoded by PTPN11 is the first identified oncogenic protein in protein tyrosine phosphatases family. Serving as a convergent node, SHP2 is involved in multiple cascade signaling pathways including Ras-Raf-MEK-ERK, PI3K-AKT, JAK-STAT and PD-1/PD-L1 pathways. Especially, the double-edged roles of SHP2 based on the substrate specificity in various biological contexts dramatically increase the effect complexity in different SHP2-associated diseases. Evidences suggest that by collaborating with other mutations in associated pathways, dysregulation of SHP2 contributes to the pathogenesis of different cancers, making SHP2 a promising therapeutic target for cancer treatment. SHP2 can either act as oncogenic factor or tumor suppressor in different diseases, and both the conserved catalytic dephosphorylation mechanism and the unique allosteric regulation mechanism of SHP2 provide opportunities for the development of SHP2 inhibitors and activators. To date, several small-molecule SHP2 inhibitors have advanced into clinical trials for mono- or combined therapy of cancers. Moreover, SHP2 activators and proteolysis-targeting chimera (PROTAC)-based degraders also display therapeutic promise. In this review, we comprehensively summarize the overall structures, regulation mechanisms, double-edged roles of SHP2 in both physiological and carcinogenic pathways, and SHP2 inhibitors in clinical trials. SHP2 activators and degraders are also briefly discussed. This review aims to provide in-depth understanding of the biological roles of SHP2 and highlight therapeutic potential of targeting SHP2.
Collapse
|
39
|
Chen YT, Xiang D, Zhao XY, Chu XY. Upregulation of lncRNA NIFK-AS1 in hepatocellular carcinoma by m 6A methylation promotes disease progression and sorafenib resistance. Hum Cell 2021; 34:1800-1811. [PMID: 34374933 DOI: 10.1007/s13577-021-00587-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/31/2021] [Indexed: 02/07/2023]
Abstract
Long non-coding RNAs (LncRNAs) have recently emerged as vital regulators in the development and progression of hepatocellular carcinoma (HCC), providing new opportunities as novel therapeutic targets. Here we identified the lncRNA NIFK-AS1 as being highly expressed in HCC tissues and cells and showed this up-regulation resulted from METTL3-dependent m6A methylation. Functionally, knockdown of NIFK-AS1 inhibited the proliferation, colony formation, migration, and invasion of HCC cells. Moreover, these effects were elicited though AKT1 and we uncovered a ceRNA network involving an NIFK-AS1/miR-637/AKT1 axis with downstream effects on HCC progression involving regulation of MMP-7 and MMP-9 expression. From the clinical perspective, we showed that knockdown of NIFK-AS1 sensitized HCC cells to sorafenib through the up-regulation of the drug transporters OATP1B1 and OATP1B3. Clinical investigations showed HCC patients with low NIFK-AS1 expression benefited from sorafenib therapy and this phenomenon was reproduced in patient-derived tumor xenograft models (PDX) comparing HCC with low and high expression of NIFK-AS1. Taken together, these results suggest an essential role for NIFK-AS1 in HCC progression and promote NIFK-AS1 as a new therapeutic target and predictor of sorafenib benefit in HCC patients.
Collapse
Affiliation(s)
- Yi-Tian Chen
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Zhongshan East Road 305, Nanjing, 210002, Jiangsu, China
| | - Dan Xiang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Zhongshan East Road 305, Nanjing, 210002, Jiangsu, China
| | - Xiao-Yue Zhao
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Zhongshan East Road 305, Nanjing, 210002, Jiangsu, China
| | - Xiao-Yuan Chu
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Zhongshan East Road 305, Nanjing, 210002, Jiangsu, China.
| |
Collapse
|
40
|
Kakizaki S, Uehara D, Tojima H, Suga T, Yamazaki Y, Sato K, Kubo N, Shirabe K, Yokota T, Shibuya K, Maehara T, Yokoo H, Naganuma A, Uraoka T. The first reported case of Noonan syndrome complicated with hepatocellular carcinoma. Clin Case Rep 2021; 9:e04317. [PMID: 34267897 PMCID: PMC8271263 DOI: 10.1002/ccr3.4317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/11/2021] [Accepted: 04/26/2021] [Indexed: 11/20/2022] Open
Abstract
Noonan syndrome is a genetic multisystem disorder and is associated with mutation of genes encoding the proteins in the RAS-MAPK pathway. We reported the first case of Noonan syndrome complicated with hepatocellular carcinoma.
Collapse
Affiliation(s)
- Satoru Kakizaki
- Department of Gastroenterology and HepatologyGunma University Graduate School of MedicineMaebashiJapan
- Department of Clinical ResearchNational Hospital Organization Takasaki General Medical CenterTakasakiJapan
| | - Daisuke Uehara
- Department of Gastroenterology and HepatologyGunma University Graduate School of MedicineMaebashiJapan
| | - Hiroki Tojima
- Department of Gastroenterology and HepatologyGunma University Graduate School of MedicineMaebashiJapan
| | - Takayoshi Suga
- Department of Gastroenterology and HepatologyGunma University Graduate School of MedicineMaebashiJapan
| | - Yuichi Yamazaki
- Department of Gastroenterology and HepatologyGunma University Graduate School of MedicineMaebashiJapan
| | - Ken Sato
- Department of Gastroenterology and HepatologyGunma University Graduate School of MedicineMaebashiJapan
| | - Norio Kubo
- Department of General Surgical ScienceGunma University Graduate School of MedicineMaebashiJapan
| | - Ken Shirabe
- Department of General Surgical ScienceGunma University Graduate School of MedicineMaebashiJapan
| | - Takayuki Yokota
- Department of Diagnostic Radiology and Nuclear MedicineGunma University Graduate School of MedicineMaebashiJapan
| | - Kei Shibuya
- Gunma University Heavy Ion Medical CenterMaebashiJapan
| | - Tatsurou Maehara
- Department of Human PathologyGunma University Graduate School of MedicineMaebashiJapan
| | - Hideaki Yokoo
- Department of Human PathologyGunma University Graduate School of MedicineMaebashiJapan
| | - Atsushi Naganuma
- Department of GastroenterologyNational Hospital Organization Takasaki General Medical CenterTakasakiJapan
| | - Toshio Uraoka
- Department of Gastroenterology and HepatologyGunma University Graduate School of MedicineMaebashiJapan
| |
Collapse
|
41
|
Kano H, Ichihara E, Watanabe H, Nishii K, Ando C, Nakasuka T, Ninomiya K, Kato Y, Kubo T, Rai K, Ohashi K, Hotta K, Tabata M, Maeda Y, Kiura K. SHP2 Inhibition Enhances the Effects of Tyrosine Kinase Inhibitors in Preclinical Models of Treatment-naïve ALK-, ROS1-, or EGFR-altered Non-small Cell Lung Cancer. Mol Cancer Ther 2021; 20:1653-1662. [PMID: 34158345 DOI: 10.1158/1535-7163.mct-20-0965] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/26/2021] [Accepted: 06/11/2021] [Indexed: 11/16/2022]
Abstract
After molecular-targeted therapy, some cancer cells may remain that are resistant to therapies targeting oncogene alterations, such as those in the genes encoding the EGFR and anaplastic lymphoma kinase (ALK) as well as c-ros oncogene 1 (ROS1). The mechanisms underlying this type of resistance are unknown. In this article, we report the potential role of Src homology 2 domain-containing phosphatase 2 (SHP2) in the residual cells of ALK/ROS1/EGFR-altered non-small cell lung cancer (NSCLC). Molecular-targeted therapies failed to inhibit the ERK signaling pathway in the residual cells, whereas the SHP2 inhibitor SHP099 abolished their remaining ERK activity. SHP099 administered in combination with molecular-targeted therapy resulted in marked growth inhibition of cancer cells both in vitro and in vivo Thus, treatment combining an SHP2 inhibitor and a tyrosine kinase inhibitor may be a promising therapeutic strategy for oncogene-driven NSCLC.
Collapse
Affiliation(s)
- Hirohisa Kano
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Eiki Ichihara
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama, Japan.
| | - Hiromi Watanabe
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuya Nishii
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Chihiro Ando
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Takamasa Nakasuka
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Kiichiro Ninomiya
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yuka Kato
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Toshio Kubo
- Center for Clinical Oncology, Okayama University Hospital, Okayama, Japan
| | - Kammei Rai
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama, Japan
| | - Kadoaki Ohashi
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama, Japan
| | - Katsuyuki Hotta
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Masahiro Tabata
- Center for Clinical Oncology, Okayama University Hospital, Okayama, Japan
| | - Yoshinobu Maeda
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Katsuyuki Kiura
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama, Japan
| |
Collapse
|
42
|
miR-93 regulates liver tumor initiating cells expansion and predicts chemotherapeutic response of patients. Arch Biochem Biophys 2021; 703:108871. [PMID: 33831356 DOI: 10.1016/j.abb.2021.108871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/17/2021] [Accepted: 03/30/2021] [Indexed: 01/27/2023]
Abstract
Tumor initiating cells (T-ICs) play an important role in tumorigenesis, progression, metastasis, recurrence and drug resistance, but the underlying mechanism was not clearly elucidated. In our study, we found that miR-93 was highly expressed in liver T-ICs. Self-renewal and tumorigenesis ability of liver T-ICs were enhanced by miR-93 overexpression and attenuated by miR-93 interference. Mechanically, miR-93 regulated liver T-ICs by binding to 3'-UTR of myotubularin-related protein 3 (MTMR3). In addition, miR-93 was found highly expressed in cisplatin or sorafenib-resistant liver cancer tissues. Interference of miR-93 sensitizes hepatoma cells to cisplatin or sorafenib treatment. Clinical cohort analysis showed that Hepatocellular carcinoma (HCC) patients with low miR-93 were benefit more from TACE or sorafenib treatment. In conclusion, our study demonstrates a new regulation mechanism of liver T-ICs, a new target for HCC, and a biomarker for postoperative TACE or sorafenib.
Collapse
|
43
|
Dong Y, Li F, Wang J, Hu J, Li Z, Gu Y, Feng Y. miR-369 inhibits Liver Cancer progression by targeting ZEB1 pathway and predicts the prognosis of HCC patients. J Cancer 2021; 12:3067-3076. [PMID: 33854606 PMCID: PMC8040887 DOI: 10.7150/jca.54759] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Increasing evidences show that microRNAs (miRNAs) are involved in the regulation of tumorigenesis, progression, recurrence and drug resistance of hepatocellular carcinoma (HCC). miR-369 works as a tumor suppressor in both lung cancer and thyroid cancer. However, the potential biological function of miR-369 in HCC is unknown. Herein, we for first found that miR-369 expression was downregulated in HCC tissues and predicted the poor prognosis of HCC patients. Forced miR-369 expression inhibited the proliferation and metastasis of HCC cells in vitro and in vivo. Mechanically, bioinformatics and luciferase reporter analysis identified Zinc finger E-box binding homeobox 1 (ZEB1) as a direct target of miR-369 in HCC cells. miR-369 overexpressing downregulated the ZEB1 mRNA and protein expression in HCC cells. miR-369 expression was negatively associated with ZEB1 expression in human HCC tissues. More importantly, the ZEB1 siRNA diminished the discrepancy of growth and metastasis capacity between miR-369 overexpression HCC cells and control cells.
Collapse
Affiliation(s)
- Yuwei Dong
- Department of Gastroenterology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University. Shanghai, 200080, China
| | - Fuxia Li
- Department of General Surgery, Cao County People's Hospital, Heze, Shandong province, 274400, China
| | - Junjun Wang
- Department of Gastroenterology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University. Shanghai, 200080, China
| | - Jiangfeng Hu
- Department of Gastroenterology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University. Shanghai, 200080, China
| | - Zhenghong Li
- Department of Gastroenterology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University. Shanghai, 200080, China
| | - Yubei Gu
- Department of Gastroenterology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University. Shanghai, 200025, China
| | - Yun Feng
- Department of Gastroenterology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University. Shanghai, 200080, China
| |
Collapse
|
44
|
Yao H, Yang Z, Lou Y, Huang J, Yang P, Jiang W, Chen S. miR-186 Inhibits Liver Cancer Stem Cells Expansion via Targeting PTPN11. Front Oncol 2021; 11:632976. [PMID: 33816273 PMCID: PMC8012905 DOI: 10.3389/fonc.2021.632976] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/29/2021] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) participated in the regulation of tumorigenesis, progression, metastasis, recurrence and chemo-resistance of cancers. However, the potential function of miRNAs in cancer stem cells (CSCs) or tumor-initiating cells (T-ICs) was not clearly elucidated. In the present study, we found that miR-186 expression was reduced in liver CSCs. Functional studies showed that miR-186 knockdown facilitated liver CSCs self-renewal and tumorigenesis. Conversely, forced miR-186 expression suppressed liver CSCs self-renewal and tumorigenesis. Mechanically, miR-186 downregulated PTPN11 via binding to its 3'-UTR in liver CSCs. The correlation of miR-186 and PTPN11 was confirmed in Hepatocellular carcinoma (HCC) patients' tissues. Further study showed that interference of PTPN11 can abolished the discrepancy between miR-186 mimic and control HCC cells in self-renewal and the proportion of CSCs. Additionally, we found that miR-186 overexpression HCC cells were more sensitive to cisplatin treatment. Clinical cohort analysis showed that HCC patients with high miR-186 were benefited more from transcatheter arterial chemoembolization (TACE) treatment. In conclusion, our study demonstrates a new regulation mechanism of liver CSCs, a new target for HCC, and a biomarker for postoperative TACE.
Collapse
Affiliation(s)
- Haochen Yao
- Department of Emergency Surgery, The First Hospital of Jilin University, Changchun, China
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Ziting Yang
- Department of Emergency, The 964th Hospital of the Chinese People’s Liberation Army, Changchun, China
| | - Yan Lou
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Juanjuan Huang
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Pinghua Yang
- Department of Hepatic Surgery, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Weiqi Jiang
- Department of Hepatic Surgery, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Shuai Chen
- Department of Emergency Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
45
|
Day EK, Zhong Q, Purow B, Lazzara MJ. Data-Driven Computational Modeling Identifies Determinants of Glioblastoma Response to SHP2 Inhibition. Cancer Res 2021; 81:2056-2070. [PMID: 33574084 DOI: 10.1158/0008-5472.can-20-1756] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/09/2020] [Accepted: 02/05/2021] [Indexed: 12/11/2022]
Abstract
Oncogenic protein tyrosine phosphatases have long been viewed as drug targets of interest, and recently developed allosteric inhibitors of SH2 domain-containing phosphatase-2 (SHP2) have entered clinical trials. However, the ability of phosphatases to regulate many targets directly or indirectly and to both promote and antagonize oncogenic signaling may make the efficacy of phosphatase inhibition challenging to predict. Here we explore the consequences of antagonizing SHP2 in glioblastoma, a recalcitrant cancer where SHP2 has been proposed as a useful drug target. Measuring protein phosphorylation and expression in glioblastoma cells across 40 signaling pathway nodes in response to different drugs and for different oxygen tensions revealed that SHP2 antagonism has network-level, context-dependent signaling consequences that affect cell phenotypes (e.g., cell death) in unanticipated ways. To map specific signaling consequences of SHP2 antagonism to phenotypes of interest, a data-driven computational model was constructed based on the paired signaling and phenotype data. Model predictions aided in identifying three signaling processes with implications for treating glioblastoma with SHP2 inhibitors. These included PTEN-dependent DNA damage repair in response to SHP2 inhibition, AKT-mediated bypass resistance in response to chronic SHP2 inhibition, and SHP2 control of hypoxia-inducible factor expression through multiple MAPKs. Model-generated hypotheses were validated in multiple glioblastoma cell lines, in mouse tumor xenografts, and through analysis of The Cancer Genome Atlas data. Collectively, these results suggest that in glioblastoma, SHP2 inhibitors antagonize some signaling processes more effectively than existing kinase inhibitors but can also limit the efficacy of other drugs when used in combination. SIGNIFICANCE: These findings demonstrate that allosteric SHP2 inhibitors have multivariate and context-dependent effects in glioblastoma that may make them useful components of some combination therapies, but not others.
Collapse
Affiliation(s)
- Evan K Day
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Qing Zhong
- Department of Neurology, University of Virginia, Charlottesville, Virginia
| | - Benjamin Purow
- Department of Neurology, University of Virginia, Charlottesville, Virginia
| | - Matthew J Lazzara
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia.
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
46
|
Qu S, Zhang X, Wu Y, Li H, Zhai J, Wu D. miR-361-3p Regulates Liver Tumor-initiating Cells Expansion and Chemo-resistance. J Cancer 2021; 12:1483-1492. [PMID: 33531993 PMCID: PMC7847642 DOI: 10.7150/jca.52395] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence shows that liver tumor-initiating cells (T-ICs) closely associated with the progression, metastasis, recurrence and chemo-resistance of hepatocellular carcinoma (HCC). However, the underlying mechanism for the propagation of liver T-ICs remains unclear. Here we show that miR-361-3p is upregulated in liver T-ICs. Knockdown of miR-361-3p impairs the self-renewal and tumorigenicity liver T-ICs. Conversely, forced miR-361-3p expression enhances the self-renewal and tumorigenicity liver T-ICs. Mechanistically, miR-361-3p directly targets SOX1 via binding its 3'-UTR in liver T-ICs. Moreover, miR-361-3p knockdown hepatoma cells are more sensitive to cisplatin or sorafenib treatment. Clinical cohort analysis demonstrates that miR-361-3p low HCC patients are benefited from TACE (transcatheter arterial chemoembolization) or sorafenib treatment. In conclusion, our findings revealed the crucial role of the miR-361-3p in liver T-IC expansion and TACE or sorafenib response, rendering miR-361-3p an optimal target for the prevention and intervention in HCC.
Collapse
Affiliation(s)
- Shuping Qu
- Department of Hepatic Surgery, Third Affiliated Hospital of Second Military Medical University, Shanghai, 200438, China
| | - Xiaobing Zhang
- Department of Hepatic Surgery, Third Affiliated Hospital of Second Military Medical University, Shanghai, 200438, China
| | - Yue Wu
- Department of Hepatic Surgery, Third Affiliated Hospital of Second Military Medical University, Shanghai, 200438, China
| | - HengYu Li
- Department of General surgery, First Affiliated Hospital of Second Military Medical University, Shanghai, 200433, China
| | - Jian Zhai
- Department of Hepatic Surgery, Third Affiliated Hospital of Second Military Medical University, Shanghai, 200438, China
| | - Dong Wu
- Department of Hepatic Surgery, Third Affiliated Hospital of Second Military Medical University, Shanghai, 200438, China
| |
Collapse
|
47
|
m6A RNA methylation-mediated HNF3γ reduction renders hepatocellular carcinoma dedifferentiation and sorafenib resistance. Signal Transduct Target Ther 2020; 5:296. [PMID: 33361765 PMCID: PMC7762754 DOI: 10.1038/s41392-020-00299-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 07/07/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocyte nuclear factor 3γ (HNF3γ) is a hepatocyte nuclear factor, but its role and clinical significance in hepatocellular carcinoma (HCC) remain unclear. Herein, we report that HNF3γ expression is downregulated in patient HCC and inversely correlated with HCC malignancy and patient survival. Moreover, our data suggested that the HNF3γ reduction in HCC could be mediated by METTL14-dependent m6A methylation of HNF3γ mRNA. HNF3γ expression was increased during hepatic differentiation and decreased in dedifferentiated HCC cells. Interestingly, HNF3γ delivery promoted differentiation of not only HCC cells but also liver CSCs, which led to suppression of HCC growth. Mechanistic analysis suggested an HNF3γ-centered regulatory network that includes essential liver differentiation-associated transcription factors and functional molecules, which could synergistically facilitate HCC cell differentiation. More importantly, enforced HNF3γ expression sensitized HCC cells to sorafenib-induced growth inhibition and cell apoptosis through transactivation of OATP1B1 and OATP1B3 expression, which are major membrane transporters for sorafenib uptake. Clinical investigation showed that patient-derived HCC xenografts with high HNF3γ expression exhibited a sorafenib response and patients with high HCC HNF3γ levels benefited from sorafenib therapy. Together, these results suggest that HNF3γ plays an essential role in HCC differentiation and may serve as a therapeutic target and predictor of sorafenib benefit in patients.
Collapse
|
48
|
Gao J, Wei B, de Assuncao TM, Liu Z, Hu X, Ibrahim S, Cooper SA, Cao S, Shah VH, Kostallari E. Hepatic stellate cell autophagy inhibits extracellular vesicle release to attenuate liver fibrosis. J Hepatol 2020; 73:1144-1154. [PMID: 32389810 PMCID: PMC7572579 DOI: 10.1016/j.jhep.2020.04.044] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Autophagy plays a crucial role in hepatic homeostasis and its deregulation has been associated with chronic liver disease. However, the effect of autophagy on the release of fibrogenic extracellular vesicles (EVs) by platelet-derived growth factor (PDGF)-stimulated hepatic stellate cells (HSCs) remains unknown. Herein, we aimed to elucidate the role of autophagy, specifically relating to fibrogenic EV release, in fibrosis. METHODS In vitro experiments were conducted in primary human and murine HSCs as well as LX2 cells. Small EVs were purified by differential ultracentrifugation. Carbon tetrachloride (CCl4) or bile duct ligation (BDL) were used to induce fibrosis in our mouse model. Liver lysates from patients with cirrhosis or healthy controls were compared by RNA sequencing. RESULTS In vitro, PDGF and its downstream molecule SHP2 (Src homology 2-containing protein tyrosine phosphatase 2) inhibited autophagy and increased HSC-derived EV release. We used this PDGF/SHP2 model to further investigate how autophagy affects fibrogenic EV release. RNA sequencing identified an mTOR (mammalian target of rapamycin) signaling molecule that was regulated by SHP2 and PDGF. Disruption of mTOR signaling abolished PDGF-dependent EV release. Activation of mTOR signaling induced the release of multivesicular body-derived exosomes (by inhibiting autophagy) and microvesicles (by activating ROCK1 signaling). These mTOR-dependent EVs promoted in vitro HSC migration. To assess the importance of this mechanism in vivo, SHP2 was selectively deleted in HSCs, which attenuated CCl4- or BDL-induced liver fibrosis. Furthermore, in the CCl4 model, mice receiving circulating EVs derived from mice with HSC-specific Shp2 deletion had less fibrosis than mice receiving EVs from control mice. Correspondingly, SHP2 was upregulated in patients with liver cirrhosis. CONCLUSION These results demonstrate that autophagy in HSCs attenuates liver fibrosis by inhibiting the release of fibrogenic EVs. LAY SUMMARY During liver fibrosis and cirrhosis, activated hepatic stellate cells (HSCs) are the key cell type responsible for fibrotic tissue deposition. Recently, we demonstrated that activated HSCs release nano-sized vesicles enriched with fibrogenic proteins. In the current study, we unveil the mechanism by which these fibrogenic vesicles are released, moving a step closer to the long-term goal of therapeutically targeting this process.
Collapse
Affiliation(s)
- Jinhang Gao
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN,Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Bo Wei
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN,Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, 610041 China
| | | | - Zhikui Liu
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Xiao Hu
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Samar Ibrahim
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Shawna A. Cooper
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN,Biochemistry and Molecular Biology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN
| | - Sheng Cao
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Vijay H. Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Enis Kostallari
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
49
|
Role of the JAK/STAT Pathway in Cervical Cancer: Its Relationship with HPV E6/E7 Oncoproteins. Cells 2020; 9:cells9102297. [PMID: 33076315 PMCID: PMC7602614 DOI: 10.3390/cells9102297] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
The janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway is associated with the regulation of essential cellular mechanisms, such as proliferation, invasion, survival, inflammation, and immunity. Aberrant JAK/STAT signaling contributes to cancer progression and metastatic development. STAT proteins play an essential role in the development of cervical cancer, and the inhibition of the JAK/STAT pathway may be essential for enhancing tumor cell death. Persistent activation of different STATs is present in a variety of cancers, including cervical cancer, and their overactivation may be associated with a poor prognosis and poor overall survival. The oncoproteins E6 and E7 play a critical role in the progression of cervical cancer and may mediate the activation of the JAK/STAT pathway. Inhibition of STAT proteins appears to show promise for establishing new targets in cancer treatment. The present review summarizes the knowledge about the participation of the different components of the JAK/STAT pathway and the participation of the human papillomavirus (HPV) associated with the process of cellular malignancy.
Collapse
|
50
|
Li J, Zhu Y. Recent Advances in Liver Cancer Stem Cells: Non-coding RNAs, Oncogenes and Oncoproteins. Front Cell Dev Biol 2020; 8:548335. [PMID: 33117795 PMCID: PMC7575754 DOI: 10.3389/fcell.2020.548335] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies worldwide, with high morbidity, relapse, metastasis and mortality rates. Although liver surgical resection, transplantation, chemotherapy, radiotherapy and some molecular targeted therapeutics may prolong the survival of HCC patients to a certain degree, the curative effect is still poor, primarily because of tumor recurrence and the drug resistance of HCC cells. Liver cancer stem cells (LCSCs), also known as liver tumor-initiating cells, represent one small subset of cancer cells that are responsible for disease recurrence, drug resistance and death. Therefore, understanding the regulatory mechanism of LCSCs in HCC is of vital importance. Thus, new studies that present gene regulation strategies to control LCSC differentiation and replication are under development. In this review, we provide an update on the latest advances in experimental studies on non-coding RNAs (ncRNAs), oncogenes and oncoproteins. All the articles addressed the crosstalk between different ncRNAs, oncogenes and oncoproteins, as well as their upstream and downstream products targeting LCSCs. In this review, we summarize three pathways, the Wnt/β-catenin signaling pathway, phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway, and interleukin 6/Janus kinase 2/signal transducer and activator of transcription 3 (IL6/JAK2/STAT3) signaling pathway, and their targeting gene, c-Myc. Furthermore, we conclude that octamer 4 (OCT4) and Nanog are two important functional genes that play a pivotal role in LCSC regulation and HCC prognosis.
Collapse
Affiliation(s)
- Juan Li
- Department of Radiotherapy Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ying Zhu
- Department of Infectious Disease, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Liver Disease Center of Integrated Traditional and Western Medicine, Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|