1
|
Cheng X, Kang L, Liu J, Wang Q, Zhang Z, Zhang L, Xie Y, Chang L, Zeng D, Tian L, Zhang L, Xu P, Li Y. Proteomics and phosphoproteomics revealed dysregulated kinases and potential therapy for liver fibrosis. Mol Cell Proteomics 2025:100991. [PMID: 40368138 DOI: 10.1016/j.mcpro.2025.100991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 04/30/2025] [Accepted: 05/09/2025] [Indexed: 05/16/2025] Open
Abstract
Liver fibrosis is the initial stage of most liver diseases, and it is also a pathological process involving the liver in the late stages of many metabolic diseases. Therefore, it is important to systematically understand the pathological mechanism of liver fibrosis and seek therapeutic approaches for intervention and treatment of liver fibrosis. Disordered proteins and their post-translational modifications, such as phosphorylation, play vital roles in the occurrence and development of liver fibrosis. However, the regulatory mechanisms that govern this process remain poorly understood. In this study, we analyzed and quantified the liver proteome and phosphoproteome of CCl4-induced early liver fibrosis model in mice. Proteomic analysis revealed that the pathways involved in extracellular matrix (ECM) recombination, collagen formation, metabolism and other related disorders, and protein phosphorylation modification pathways were also significantly enriched. In addition, western blotting and phosphoproteomics demonstrated that phosphorylation levels were elevated in the context of liver fibrosis. A total of 13,152 phosphosites were identified, with 952 sites increased while only 156 ones decreased. Furthermore, the upregulated phosphorylation sites, which exhibited no change at the proteome level mainly shared a common [xxxSPxxx] motif. Consequently, the kinases-substrates analysis ascertained the overactive kinases of these up-regulated substrates, which ultimately led to the identification of 13 significantly altered kinases within this dataset. These kinases were mainly catalogued into the STE, CMGC, and CAMK kinase families. Among them, STK4, GSK3α and CDK11B were subsequently validated though cellular and animal experiments, and the results demonstrated that their inhibitors could effectively reduce the activation of hepatic stellate cells and ECM production. These kinases may represent potential therapeutic targets for liver fibrosis, and their inhibitors may serve as promising anti- hepatic fibrosis drugs.
Collapse
Affiliation(s)
- Xinyu Cheng
- Anhui Medical University School of Basic Medicine, Anhui, P. R. China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, P. R. China
| | - Li Kang
- School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China
| | - Jinfang Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, P. R. China; TaiKang Medical School (School of Basic Medical Sciences), Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, P. R. China
| | - Qingye Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, P. R. China
| | - Zhenpeng Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, P. R. China
| | - Li Zhang
- Anhui Medical University School of Basic Medicine, Anhui, P. R. China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, P. R. China
| | - Yuping Xie
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, P. R. China
| | - Lei Chang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, P. R. China
| | - Daobing Zeng
- General Surgery Department, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Lantian Tian
- Department of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, P. R. China
| | - Lingqiang Zhang
- Anhui Medical University School of Basic Medicine, Anhui, P. R. China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, P. R. China.
| | - Ping Xu
- Anhui Medical University School of Basic Medicine, Anhui, P. R. China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, P. R. China; School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China; College of Life Sciences, Hebei University, 071002 Baoding, China; TaiKang Medical School (School of Basic Medical Sciences), Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, P. R. China.
| | - Yanchang Li
- Anhui Medical University School of Basic Medicine, Anhui, P. R. China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, P. R. China; College of Life Sciences, Hebei University, 071002 Baoding, China.
| |
Collapse
|
2
|
Tan Z, Chen L, Ye Z, Lu Q. Xiaohuang Qudan decoction alleviates ANIT-induced cholestatic liver injury by inhibiting the JAK2/STAT3 pathway and regulating TH17/Treg. Chin J Nat Med 2025; 23:457-470. [PMID: 40274348 DOI: 10.1016/s1875-5364(25)60854-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/21/2024] [Accepted: 05/09/2024] [Indexed: 04/26/2025]
Abstract
Xiaohuang Qudan decoction (XHQDD) is a classical traditional Chinese medicine (TCM) formula widely used in the treatment of cholestatic liver injury. Despite its widespread use, the protective mechanism of XHQDD against cholestatic liver injury remains incompletely understood. The aim of this study was to investigate whether XHQDD mediates its beneficial effects by inhibiting the Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathway and regulating TH17/Treg balance. To this end, the researchers used Sprague-Dawley (SD) rats and established a cholestatic liver injury model by oral administration of alpha-naphthylisothiocyanate (ANIT). The experimental group was divided into six groups: Control (CON), ANIT, ursodeoxycholic acid (UDCA), XHQDD-low dose (XHQDD-L) group, XHQDD-medium dose (XHQDD-M) group, and XHQDD-high dose (XHQDD-H) groups. Then, after 7 d of treatment, various tests were performed to verify the results. Firstly, XHQDD and its drug-containing serum were analyzed by ultra-high performance liquid chromatography-mass spectrometry/mass spectrometry (UPLC-MS/MS), and 14 blood-entry components were identified. Then, bile flow was monitored and found to be significantly reduced in the model group, which was significantly reversed in the UDCA and XHQDD groups. To further assess ANIT-induced liver injury, hematoxylin and eosin (H&E) and Sirius red staining, alongside transmission electron microscopy (TEM), were employed to observe liver tissues, revealing hepatocellular injury, cholestasis, and hepatic fibrotic changes. Serum inflammatory factors and liver injury indicators were assessed using enzyme-linked immunosorbent assay (ELISA), indicating an inflammatory state in ANIT-induced liver injury rats. The expression levels of JAK2/STAT3-related genes and proteins in liver and intestinal tissues were measured via quantitative reverse transcription polymerase chain reaction (qRT-PCR), immunohistochemistry, immunofluorescence (IF) staining, and Western blottting (WB) assays. These studies revealed that the inflammatory state of liver-injured rats was inextricably linked to the inflammatory cascade associated with the JAK2/STAT3 pathway and that XHQDD may exert anti-inflammatory efficacy by inhibiting the JAK2/STAT3 pathway. Flow cytometry was used to determine the percentage of T helper 17 (Th17)/regulatory T (Treg) cells in serum and hepatocytes, and it was further found that XHQDD was able to regulate Th17/Treg immune homeostasis in liver-injured rats. The findings suggest that XHQDD markedly alleviates inflammation in ANIT rats, potentially treating cholestasis and liver injury through JAK2/STAT3 inhibition and Th17/Treg balance regulation.
Collapse
Affiliation(s)
- Zhangkui Tan
- Department of Rheumatology and Immunology, General Hospital of Central Theater Command of the People's Liberation Army, Wuhan 430070, China
| | - Lifeng Chen
- Department of Rheumatology and Immunology, General Hospital of Central Theater Command of the People's Liberation Army, Wuhan 430070, China
| | - Zhiqin Ye
- Department of Rheumatology, Hubei Provincial Hospital of Traditional Chinese Medicine, affiliated with Hubei University of Chinese Medicine, Wuhan 430061, China
| | - Qiping Lu
- Department of General Surgery, General Hospital of Central Theater Command of the People's Liberation Army, Wuhan 430070, China.
| |
Collapse
|
3
|
Yang R, Wang X, Yang J, Zhou X, Wu Y, Li Y, Huang Y, Zhang J, Liu P, Yuan M, Tan X, Zheng P, Wu J. Perturbations in the microbiota-gut-brain axis shaped by social status loss. Commun Biol 2025; 8:401. [PMID: 40057654 PMCID: PMC11890786 DOI: 10.1038/s42003-025-07850-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 02/28/2025] [Indexed: 05/13/2025] Open
Abstract
Social status is closely linked to physiological and psychological states. Loss of social dominance can lead to brain disorders such as depression, but the underlying mechanisms remain unclear. The gut microbiota can sense stress and contribute to brain disorders via the microbiota-gut-brain axis (MGBA). Here, using a forced loss paradigm to demote dominant mice to subordinate ranks, we find that stress alters the composition and function of the gut microbiota, increasing Muribaculaceae abundance and enhancing butanoate metabolism, and gut microbial depletion resists forced loss-induced hierarchical demotion and behavioral alteration. Single-nucleus transcriptomic analysis of the prefrontal cortex (PFC) indicates that social status loss primarily affected interneurons, altering GABAergic synaptic transmission. Weighted gene co-expression network analysis (WGCNA) reveals modules linked to forced loss in the gut microbiota, colon, PFC, and PFC interneurons, suggesting changes in the PI3K-Akt signaling pathway and the glutamatergic synapse. Our findings provide evidence for MGBA perturbations induced by social status loss, offering potential intervention targets for related brain disorders.
Collapse
Grants
- 2024MD754023 China Postdoctoral Science Foundation
- 82201688 National Natural Science Foundation of China (National Science Foundation of China)
- 82171523 National Natural Science Foundation of China (National Science Foundation of China)
- 82471545 National Natural Science Foundation of China (National Science Foundation of China)
- The National Natural Science Foundation Project of China (82401784, 32400850, 82401523),the National Key R&D Program of China (STI2030-Major Projects 2021ZD0202400, STI2030-Major Projects 2021ZD0200600), National Reserve Talent Project in the Health and Wellness Sector of Chongqing (HBRC202410, HBRC202417), the Program for Youth Innovation in Future Medicine of Chongqing Medical University, Science and Technology Research Program of Chongqing Municipal Education Commission (Grant No. KJZD-K202400404), the Key Project of the Natural Science Foundation of Chongqing (Chongqing Science and Technology Development Foundation) under Grant No. 2024NSCQ-KJFZZDX0005, the New Chongqing Youth Innovation Talent Project (Life and Health) under Grant No. 2024NSCQ-qncxX0029, Joint Project of Chongqing Health Commission and Science and Technology Bureau (2024QNXM046).
Collapse
Affiliation(s)
- Ruijing Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, China
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China
| | - Xin Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, China
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China
| | - Jie Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, China
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China
| | - Xingyu Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, China
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China
| | - Yiyuan Wu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, China
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China
| | - Yifan Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, China
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China
| | - Yu Huang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, China
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China
| | - Jianping Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, China
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China
| | - Ping Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, China
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China
| | - Minghao Yuan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, China
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China
| | - Xunmin Tan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, China
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China
| | - Peng Zheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, China.
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China.
| | - Jing Wu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, China.
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
4
|
Wang M, Li W, Shao Y, Wang F, Huang Y, Wei C, Li P, Sun K, Yan X, Gou Z. Connexin 43 dephosphorylation mediates the Dchs1/YAP/TEAD signaling pathway to induce cardiac fibrosis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119919. [PMID: 39938686 DOI: 10.1016/j.bbamcr.2025.119919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/14/2025]
Abstract
BACKGROUND The gap junction protein connexin 43 (Cx43) has been implicated in the development of cardiac fibrosis. Our previous findings revealed that Cx43 dephosphorylation at serine 282 (S282) is related to cardiomyocyte apoptosis and arrhythmias in hearts damaged by ischemia/reperfusion. In this study, we investigated the role of Cx43 S282 phosphorylation in cardiac fibrosis. METHODS We used angiotensin II (Ang II) intervention in mice to establish an in vivo cardiac fibrosis model and transforming growth factor β-1 (TGF-β1) intervention in cardiac myofibroblasts to establish an in vitro fibrosis model. The expression of Cx43 S282 phosphorylation was examined in the in vivo and in vitro models. To further confirm the effect of Cx43 S282 phosphorylation on cardiac fibrosis, we transfected cardiac myofibroblasts with lentiviral bodies in vitro, and injected myocardium with adenovirus in vivo to establish the over-expression of phosphorylation of Cx43 S282 locus and mutant groups. We sequenced the mRNA of the in vitro group using gene set enrichment analysis (GSEA) and normalized enrichment scoring (NES) to investigate the signaling pathway by which p282-Cx43 affects myocardial fibrosis (MF). The role of the Hippo signaling pathway in phosphorylation at the Cx43 282 site was further validated. RESULTS In an in vivo and in vitro model of cardiac fibrosis, the level of phosphorylation of Cx43 S282 was reduced. Mutation of Cx43 S282 to a less phosphorylatable form (S282A) resulted in elevated levels of fibrosis markers, suggesting a critical antifibrotic role for phosphorylated Cx43 S282. Increased phosphorylation of Cx43 S282 produced an inhibitory effect on fibrosis. Enrichment analysis of mRNA sequencing in the mutant model group indicated that the Hippo signaling pathway was involved in the fibrosis process. Cx43 S282 phosphorylation increased the expression of Dchs1 gene, which activates the phosphorylation of yes-associated protein (YAP) and inhibits the YAP/TEAD signaling pathway to inhibit fibrosis development. CONCLUSIONS This study suggests that the phosphorylation of Cx43 S282 could be an effective antifibrotic target in cardiac fibroblasts. This indicates a novel mechanism and a molecular target that may hold promise for treating cardiac fibrosis.
Collapse
Affiliation(s)
- Min Wang
- Center for Cardiovascular Disease, Suzhou Key Laboratory of Cardiovascular Disease, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215008, PR China
| | - Wanning Li
- Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Yaqing Shao
- Center for Cardiovascular Disease, Suzhou Key Laboratory of Cardiovascular Disease, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215008, PR China
| | - Feng Wang
- Center for Cardiovascular Disease, Suzhou Key Laboratory of Cardiovascular Disease, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215008, PR China; Department of Pharmacology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215008, PR China
| | - Ying Huang
- Center for Cardiovascular Disease, Suzhou Key Laboratory of Cardiovascular Disease, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215008, PR China
| | - Chenchen Wei
- Center for Cardiovascular Disease, Suzhou Key Laboratory of Cardiovascular Disease, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215008, PR China
| | - Ping Li
- Center for Cardiovascular Disease, Suzhou Key Laboratory of Cardiovascular Disease, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215008, PR China
| | - Kangyun Sun
- Center for Cardiovascular Disease, Suzhou Key Laboratory of Cardiovascular Disease, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215008, PR China
| | - Xinxin Yan
- Center for Cardiovascular Disease, Suzhou Key Laboratory of Cardiovascular Disease, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215008, PR China; Department of Pharmacology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215008, PR China.
| | - Zhongshan Gou
- Center for Cardiovascular Disease, Suzhou Key Laboratory of Cardiovascular Disease, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215008, PR China.
| |
Collapse
|
5
|
Liu L, Zhang D, Fan R, Cheng S, Yang J, Ma L, Ling Z, Zhang Y, Hou J, Wang X, Sun B, Niu J. Serum ECM1 is a promising biomarker for staging and monitoring fibrosis in patients with chronic hepatitis B. SCIENCE CHINA. LIFE SCIENCES 2025; 68:431-440. [PMID: 39348048 DOI: 10.1007/s11427-024-2691-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 07/23/2024] [Indexed: 10/01/2024]
Abstract
It is critical to assess the extent and progression of liver fibrosis for patients to receive suitable treatments, but its diagnostic methods remain unmet. Extracellular matrix protein 1 (ECM1) has previously been reported to be a key factor in the induction and progression of liver fibrosis. However, little is known about the use of ECM1 as a biomarker to evaluate fibrosis. In a CCl4-induced mouse model of liver fibrosis, the present study demonstrated that ECM1 decreased with gradually increasing fibrosis. Using biopsy as a reference, the serum ECM1 levels decreased with increasing fibrosis stage in 247 patients with liver fibrosis, but there were no significant changes between fibrosis stage 2 and stage 0-1. To improve the performance of ECM1, age, platelet count, and ECM1 concentration were combined to calculate an EPA (ECM1-platelet-age) score (ranging from 0 to 10). The areas under the receiver operating characteristic curve of the EPA scores for the detection of F⩾2, F⩾3, and F4 were 0.6801, 0.7377, and 0.8083, respectively, which showed a comparable or significantly greater diagnostic performance for assessing fibrosis than that of the AST/ALT ratio, APRI score, or FIB-4 score. In HBV patients following antiviral treatment, the dynamics of the EPA score depended on the status of liver fibrosis development. The accuracy of the EPA score in predicting fibrosis regression and progression was 66.00% and 71.43%, respectively, while that of the LSM, another useful method for monitoring hepatic fibrosis changes during treatment, was only 52.00% and 7.14%, respectively. Compared with healthy controls, there were lower levels of serum ECM1 in HBV patients and individuals with HCV infection, MAFLD, ALD, PBC, and DILI. These findings suggested that individuals with reduced ECM1 levels may have a risk of developing liver injury, and further examinations or medical care are needed. In conclusion, the ECM1-containing EPA score is a valuable noninvasive test for staging fibrosis and predicting the progression of liver fibrosis. Additionally, ECM1 alone is an indicator for distinguishing patients with liver injury from healthy controls.
Collapse
Affiliation(s)
- Lian Liu
- Shanghai Institute of Biochemistry and Cell Biology, Centre for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Danyan Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Rong Fan
- Department of Infectious Disease, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Shipeng Cheng
- Shanghai Institute of Biochemistry and Cell Biology, Centre for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jichao Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Liyan Ma
- Shanghai Institute of Biochemistry and Cell Biology, Centre for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhiyang Ling
- Shanghai Institute of Biochemistry and Cell Biology, Centre for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Yaguang Zhang
- Med-X Institute, Centre for Immunological and Metabolic Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Jinlin Hou
- Department of Infectious Disease, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Xiaomei Wang
- Hepatology Department, Centre of Infectious Diseases and Pathogen Biology, First Hospital of Jilin University, Changchun, 130021, China.
| | - Bing Sun
- Shanghai Institute of Biochemistry and Cell Biology, Centre for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Junqi Niu
- Hepatology Department, Centre of Infectious Diseases and Pathogen Biology, First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
6
|
Fu L, Yang Q, Han Y, Sun F, Jin J, Wang J. Slit2 Promotes H 2O 2-Induced Lens Epithelial Cells Oxidative Damage and Age-Related Cataract. Curr Eye Res 2025; 50:41-50. [PMID: 39143744 DOI: 10.1080/02713683.2024.2388698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 05/14/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024]
Abstract
PURPOSE To analyze the role of Slit2 in lens epithelial cell oxidative damage and its underlying mechanism. METHODS Human lens epithelial cells (SRA01/04 cells) and rat transparent lens were cultured with H2O2 to establish cell oxidative stress models and rat cataract models. Immunohistochemistry, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blot assays were employed to detect Slit2 levels within age-related cataracts(ARC) lens anterior capsule samples, rat cataract models, and cell oxidative stress models. In this study, qRT-PCR and Western blot assays were performed to derermine E-cadherin, N-cadherin, occludens1(ZO-1), α-SMA(α‑smooth muscle actin), Bcl-2, Bax, p-AKT, and AKT levels. In addition, Flow cytometry were performed to examine reactive oxygen species (ROS) and cell apoptosis. Cell viability, invasion, and migration were detected by CCK8, Transwell, and Wound healing. RESULTS Increased expression of Slit2 was found in ARC lens anterior capsule samples, H2O2-induced rat cataract models, and Human lens epithelial cells (HLECs) oxidative stress models. H2O2 significantly increased cell apoptosis and ROS generation, also accelerating cell migration, invasion, and epithelial-mesenchymal transition (EMT). In addition, H2O2 treatment repressed AKT phosphorylation and cell viability. Knock-down of Slit2 promoted cell viability and AKT phosphorylation levels, as well as repressed cell invasion, migration, apoptosis, ROS production and EMT. CONCLUSION Slit2 promoted lens epithelial cells oxidative stress damage via the AKT signalling pathways, providing a novel insight in ARC treatment.
Collapse
Affiliation(s)
- Lingzhi Fu
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical University, Bengbu, Anhui, China
| | - Qing Yang
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical University, Bengbu, Anhui, China
| | - Yuanyuan Han
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Feng Sun
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Jiacheng Jin
- School of Life Sciences, Bengbu Medical University, Bengbu, Anhui, China
| | - Jianfeng Wang
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| |
Collapse
|
7
|
Cui HS, Zheng YX, Cho YS, Ro YM, Jeon K, Joo SY, Seo CH. Slit1 Promotes Hypertrophic Scar Formation Through the TGF-β Signaling Pathway. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:2051. [PMID: 39768930 PMCID: PMC11678377 DOI: 10.3390/medicina60122051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025]
Abstract
Background and objectives: Slit1 is a secreted protein that is closely related to cell movement and adhesion. Few studies related to fibrosis exist, and the preponderance of current research is confined to the proliferation and differentiation of neural systems. Hypertrophic scars (HTSs) are delineated by an overproduction of the extracellular matrix (ECM) by activated fibroblasts, leading to anomalous fibrosis, which is a severe sequela of burns. However, the functionality of Slit1 in HTS formation remains unknown. We aimed to investigate whether Slit1 regulates fibroblasts through a fibrosis-related mechanism derived from post-burn HTS tissues and normal patient tissues. Methods: Human normal fibroblasts (HNFs) and hypertrophic scar fibroblasts (HTSFs) were extracted from normal skin and post-burn HTS tissues, with settings grouped according to the patient of origin. Cell proliferation was evaluated using a CellTiter-Glo Luminescent Cell Viability Assay Kit. Cell migration experiments were carried out using a μ-Dish insert system. Protein and mRNA expression levels were quantified by Western blot and quantitative real-time polymerase chain reaction. Results: We found increased expressions of Slit1 in HTS tissues and HTSFs compared to normal tissues and HNFs. The treatment of human recombinant Slit1 protein (rSlit1) within HNFs promoted cell proliferation and differentiation, leading to an upregulation in ECM components such as α-SMA, type I and III collagen, and fibronectin. The treatment of rSlit1 in HNFs facilitated cell migration, concurrent with enhanced levels of N-cadherin and vimentin, and a diminished expression of E-cadherin. Treatment with rSlit1 resulted in the phosphorylation of SMAD pathway proteins, including SMAD2, SMAD3, and SMAD1/5/8, and non-SMAD pathway proteins, including TAK1, JNK1, ERK1/2, and p38, in HNFs. Conclusions: Exogenous Slit1 potentiates the epithelial-mesenchymal transition and upregulates SMAD and non-SMAD signaling pathways in HNFs, leading to the development of HTS, suggesting that Slit1 is a promising new target for the treatment of post-burn HTS.
Collapse
Affiliation(s)
- Hui Song Cui
- Burn Institute, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, 94-200 Yeongdeungpo-Dong, Yeongdeungpo-Ku, Seoul 07247, Republic of Korea; (H.S.C.); (Y.X.Z.); (Y.M.R.)
| | - Ya Xin Zheng
- Burn Institute, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, 94-200 Yeongdeungpo-Dong, Yeongdeungpo-Ku, Seoul 07247, Republic of Korea; (H.S.C.); (Y.X.Z.); (Y.M.R.)
| | - Yoon Soo Cho
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, 94-200 Yeongdeungpo-Dong, Yeongdeungpo-Ku, Seoul 07247, Republic of Korea;
| | - Yu Mi Ro
- Burn Institute, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, 94-200 Yeongdeungpo-Dong, Yeongdeungpo-Ku, Seoul 07247, Republic of Korea; (H.S.C.); (Y.X.Z.); (Y.M.R.)
| | - Kibum Jeon
- Department of Laboratory Medicine, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, 94-200 Yeongdeungpo-Dong, Yeongdeungpo-Ku, Seoul 07247, Republic of Korea;
| | - So Young Joo
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, 94-200 Yeongdeungpo-Dong, Yeongdeungpo-Ku, Seoul 07247, Republic of Korea;
| | - Cheong Hoon Seo
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, 94-200 Yeongdeungpo-Dong, Yeongdeungpo-Ku, Seoul 07247, Republic of Korea;
| |
Collapse
|
8
|
Jiang Z, Yang F, Cao H, Xing C, Wang H, Chen J, Hu G, Gao X, Li G, Guo X, Dai X. Deltamethrin exposure caused renal inflammation and renal fibrosis via upregulating endoplasmic reticulum stress-mediated TXNDC5 level in mice. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 206:106180. [PMID: 39672609 DOI: 10.1016/j.pestbp.2024.106180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/09/2024] [Accepted: 10/22/2024] [Indexed: 12/15/2024]
Abstract
Deltamethrin (DLM) is a type II pyrethroid insecticide that is extensively applied to agriculture, veterinary medicine and livestock pest control. Excessive accumulation of DLM in the body can lead to nephrotoxicity, but the precise toxic mechanism remains obscure. Therefore, we established in vivo models of DLM-exposed mice for 30 days and in vitro models of DLM-exposed renal tubular epithelial cells of mice. The results revealed adverse effects on renal function in mice exposed to excessive DLM, manifested as endoplasmic reticulum (ER) swelling, local inflammatory infiltration in renal tissue and increased collagen fibers, suggesting renal inflammation and fibrosis, etc. Subsequently, in vivo experiments, we found that DLM exposure increased expression levels of endoplasmic reticulum stress (ERS)-related factors, significantly upregulated the expression of TXNDC5, and enhanced the colocalization of GRP78 with TXNDC5. Notably, DLM exposure also strengthened the co-localization of TXNDC5 with NF-κB p65 and TGF-β1, upregulated the expression levels of TLR4/MYD88/NF-κB and TGF-β/SMAD2/3 pathways, alongside inflammation and fibrosis-related factors, these changes exhibited a dose-dependent effect. Meanwhile, in vitro experiments, the results of ERS, inflammation, and fibrosis-related factor expression levels were consistent with those observed in vivo. In conclusion, our results demonstrated that TXNDC5 might played a certain role in DLM-induced nephrotoxicity. Specifically, DLM exposure could trigger ERS, increase TXNDC5 expression, and promote TLR4/MYD88/NF-κB and TGF-β/Smad2/3 pathways, leading to renal inflammation and fibrosis in mice. These discoveries not only deepen our understanding of DLM toxicity but also provide valuable avenues for exploring mitigation strategies and therapeutic interventions.
Collapse
Affiliation(s)
- Zhou Jiang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Huating Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Jing Chen
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Xiaona Gao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Guyue Li
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Xueyan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China.
| |
Collapse
|
9
|
Tian C, Deng S, Yang M, Bai B, Pan Y, Xie G, Zhao D, Wei L. Indole-3-carbinol and its main derivative 3,3'-diindolylmethane: Regulatory roles and therapeutic potential in liver diseases. Biomed Pharmacother 2024; 180:117525. [PMID: 39388997 DOI: 10.1016/j.biopha.2024.117525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024] Open
Abstract
Indole-3-carbinol (I3C), a compound found in cruciferous vegetables, has shown significant efficacy in treating both cancerous and non-cancerous diseases. Its primary derivative, 3,3'-diindolylmethane (DIM), formed during digestion, also exhibits similar therapeutic benefits. In liver disorders, I3C and DIM exhibit dual roles by inhibiting and promoting hepatocellular carcinoma (HCC) and providing relief for nonmalignant liver diseases, such as acute liver injury (ALI), hepatic fibrosis, nonalcoholic fatty liver disease (NAFLD), and alcohol-related liver disease (ALD). Mechanistically, I3C and DIM modulate various pathophysiological processes, including cell proliferation, apoptosis, oxidative stress, and lipogenesis. This review aims to enhance researchers' understanding of the regulatory roles of I3C and DIM in these liver diseases and explore the potential of plant-derived substances in liver disease treatment.
Collapse
Affiliation(s)
- Chao Tian
- Hepatopancreatobiliary Center, Ministry of Education Key Laboratory of Digital Intelligence Hepatology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua Medicine of Tsinghua University, Beijing 102218, China
| | - Shizhou Deng
- Hepatopancreatobiliary Center, Ministry of Education Key Laboratory of Digital Intelligence Hepatology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua Medicine of Tsinghua University, Beijing 102218, China; Research and Development Department, Guangdong Longsee Biomedical Corporation, Guangzhou 510700, China
| | - Ming Yang
- Hepatopancreatobiliary Center, Ministry of Education Key Laboratory of Digital Intelligence Hepatology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua Medicine of Tsinghua University, Beijing 102218, China
| | - Baochen Bai
- Department of Cardiology, Peking University People's hospital, Beijing 100044, China
| | - Yi Pan
- Hepatopancreatobiliary Center, Ministry of Education Key Laboratory of Digital Intelligence Hepatology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua Medicine of Tsinghua University, Beijing 102218, China
| | - Gangqiao Xie
- Hepatopancreatobiliary Center, Ministry of Education Key Laboratory of Digital Intelligence Hepatology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua Medicine of Tsinghua University, Beijing 102218, China; Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Dongliang Zhao
- Hepatopancreatobiliary Center, Ministry of Education Key Laboratory of Digital Intelligence Hepatology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua Medicine of Tsinghua University, Beijing 102218, China
| | - Lai Wei
- Hepatopancreatobiliary Center, Ministry of Education Key Laboratory of Digital Intelligence Hepatology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua Medicine of Tsinghua University, Beijing 102218, China.
| |
Collapse
|
10
|
Ouyang H, Wei S, Gao B, Qian X, Chen Y, Lu J, Ding Y, Mao Z, Du Y, Wang W. Delivery of Synthetic Interleukin-22 mRNA to Hepatocytes via Lipid Nanoparticles Alleviates Liver Injury. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401499. [PMID: 39082407 DOI: 10.1002/smll.202401499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Indexed: 11/08/2024]
Abstract
Hepatocellular injury, a pivotal contributor to liver diseases, particularly hepatitis, lacks effective pharmacological treatments. Interleukin-22 (IL-22), crucial for liver cell survival, shows potential in treating liver diseases by regulating repair and regeneration through signal transducer and activator of transcription 3 (STAT3) activation. However, the short half-life and off-target effects limit its clinical applications. To address these issues, lipid nanoparticles are employed to deliver synthetic IL-22 mRNA (IL-22/NP) for in situ IL-22 expression in hepatocytes. The study reveals that IL-22/NP exhibits liver-targeted IL-22 expression, with increased IL-22 levels detected in the liver as early as 3 h postintravenous injection, lasting up to 96 h. Furthermore, IL-22/NP activates STAT3 signaling in an autocrine or paracrine manner to upregulate downstream factors Bcl-xL and CyclinD1, inhibiting hepatocyte apoptosis and promoting cell proliferation. The therapeutic efficacy of IL-22/NP is demonstrated in both chronic and acute liver injury models, suggesting IL-22 mRNA delivery as a promising treatment strategy for hepatitis and liver diseases involving hepatocellular injury.
Collapse
Affiliation(s)
- Hanxiang Ouyang
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, 310058, China
| | - Shenyu Wei
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, 310058, China
| | - Bingqiang Gao
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, 310058, China
| | - Xiaohui Qian
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, 310058, China
| | - Yining Chen
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, 310058, China
| | - Jingxiong Lu
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
- Zhejiang Laboratory, Kechuang Ave., Yuhang District, Hangzhou, 311100, China
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, 310058, China
| | - Zhengwei Mao
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Yang Du
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, 310058, China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
11
|
Matchett KP, Paris J, Teichmann SA, Henderson NC. Spatial genomics: mapping human steatotic liver disease. Nat Rev Gastroenterol Hepatol 2024; 21:646-660. [PMID: 38654090 DOI: 10.1038/s41575-024-00915-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/28/2024] [Indexed: 04/25/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD, formerly known as non-alcoholic fatty liver disease) is a leading cause of chronic liver disease worldwide. MASLD can progress to metabolic dysfunction-associated steatohepatitis (MASH, formerly known as non-alcoholic steatohepatitis) with subsequent liver cirrhosis and hepatocellular carcinoma formation. The advent of current technologies such as single-cell and single-nuclei RNA sequencing have transformed our understanding of the liver in homeostasis and disease. The next frontier is contextualizing this single-cell information in its native spatial orientation. This understanding will markedly accelerate discovery science in hepatology, resulting in a further step-change in our knowledge of liver biology and pathobiology. In this Review, we discuss up-to-date knowledge of MASLD development and progression and how the burgeoning field of spatial genomics is driving exciting new developments in our understanding of human liver disease pathogenesis and therapeutic target identification.
Collapse
Affiliation(s)
- Kylie P Matchett
- Centre for Inflammation Research, Institute for Regeneration and Repair, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Jasmin Paris
- Centre for Inflammation Research, Institute for Regeneration and Repair, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Cambridge, UK
- Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Neil C Henderson
- Centre for Inflammation Research, Institute for Regeneration and Repair, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK.
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
12
|
Lv M, Chen S, Shan M, Si Y, Huang C, Chen J, Gong L. Arctigenin induces activated HSCs quiescence via AMPK-PPARγ pathway to ameliorate liver fibrosis in mice. Eur J Pharmacol 2024; 974:176629. [PMID: 38679116 DOI: 10.1016/j.ejphar.2024.176629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/01/2024]
Abstract
Arctigenin (ATG), a traditional Chinese herbal medicine, is a natural lignan compound extracted from the seeds of burdock (Arctium lappa L, Asteraceae). As a natural product with multiple biological activities, the effect and mechanism of ATG against liver fibrosis are not fully elucidated yet. In current work, we first discovered that ATG could improve CCl4-induced liver injury reflected by lower plasma ALT and AST levels, liver coefficient and pathological scoring of ballooning. Furthermore, it also could reduce the positive areas of Masson, Sirius red and α-SMA staining, inhibit the expression of fibrosis-related genes (Col1a1, Col3a1, Acta2), and decrease the content of hydroxyproline, indicated ATG treatment had benefits in alleviating CCl4-induced liver fibrosis. In vitro, we observed that ATG can inhibit collagen production stimulated by TGF-β1 in LX2 cells. By analysis of the information obtained from SymMap and GeneCards databases and in vitro validation experiments, ATG was proven to be an indirect PPARγ agonist and its effect on collagen production was dependent on PPARγ. Subsequently, we confirmed that ATG activating AMPK was the contributor of its effect on PPARγ and collagen production. Finally, the transformation of activated hepatic stellate cells was determined after treated with ATG, in which ATG treatment could return activated LX2 cells to quiescence because of the elevated quiescent markers and lipid droplets. Our work has highlighted the potential of ATG in the treatment of liver fibrosis and clarified that ATG can activate AMPK/PPARγ pathway to restore the activated hepatic stellate cell to quiescence thereby improving liver fibrosis.
Collapse
Affiliation(s)
- Mengjia Lv
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Shiyi Chen
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Mengwen Shan
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Yuan Si
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Chenggang Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China.
| | - Jing Chen
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China.
| | - Likun Gong
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
13
|
Li Z, Zou W, Jin X, Wang Y. LncRNA FRMD6-AS1/miR-491-5p/USP13 pathway attenuated ferroptosis and contributed to liver fibrosis. ENVIRONMENTAL TOXICOLOGY 2024; 39:3760-3771. [PMID: 38558500 DOI: 10.1002/tox.24220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/17/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
Liver fibrosis is an invertible pathophysiologic process featured by excessive accumulation of extracellular matrix (ECM) which injures liver cells and activates hepatic stellate cells (HSCs). Besides, inducing ferroptosis in activated HSCs can alleviate liver fibrosis. LncRNAs modulate ferroptosis in activated HSCs and ECM deposition in liver fibrosis. However, the role of lncRNA FRMD6-AS1 in liver fibrosis is not discovered. In this study, lncRNA FRMD6-AS1 was dramatically up-regulated in activated HSCs. Knockdown of FRMD6-AS1 markedly increased iron ion, ROS and MDA levels, decreased GSH level, SLC7A11 and GPX4 protein expressions in activated HSCs. In addition, HSCs activation markers α-SMA and COL1α1 expressions were up-regulated in activated HSCs; knockdown of FRMD6-AS1 markedly down-regulated α-SMA and COL1α1 expressions in HSCs. Besides, lncRNA FRMD6-AS1 could interact with miR-491-5p, and negatively modulate miR-491-5p expression. USP13 was a target of miR-491-5p, and could be negatively modulated by miR-491-5p. Moreover, FRMD6-AS1 knockdown increased iron ion and ROS levels, decreased SLC7A11 and GPX4 protein expressions, facilitated HSCs viability, and up-regulated α-SMA and COL1α1 expressions via miR-491-5p/USP13 pathway. Finally, FRMD6-AS1 knockdown restored liver tissue structure and abrogated fibrosis in livers in a CCL4 liver fibrosis mouse model. Hence, lncRNA FRMD6-AS1/miR-491-5p/USP13 pathway repressed ferroptosis, promoted ECM deposition and facilitated liver fibrosis in vitro and in vivo models.
Collapse
Affiliation(s)
- Ziqiang Li
- Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Weilong Zou
- Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xiangren Jin
- Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yang Wang
- Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
14
|
Chen M, Wu GB, Hua S, Zheng L, Fan Q, Luo M. Dibutyl phthalate (DBP) promotes Epithelial-Mesenchymal Transition (EMT) to aggravate liver fibrosis into cirrhosis and portal hypertension (PHT) via ROS/TGF-β1/Snail-1 signalling pathway in adult rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116124. [PMID: 38503108 DOI: 10.1016/j.ecoenv.2024.116124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/08/2024] [Accepted: 02/18/2024] [Indexed: 03/21/2024]
Abstract
OBJECTIVE The primary objective of this study was to investigate the toxicological impact of Dibutyl phthalate (DBP) on the process of liver fibrosis transitioning into cirrhosis and the subsequent development of portal hypertension (PHT) through the mechanism of epithelial-mesenchymal transition (EMT) mediated by the ROS/TGF-β/Snail-1 signaling pathway. METHOD Carbon tetrachloride (CCl4) (1 mg/kg) was introduced in adult rats by oral feeding in CCl4 and CCl4+DBP groups twice a week for 8 weeks, and twice for another 8 week in CCl4 group. DBP was introduced by oral feeding in the CCl4+DBP group twice over the following 8 weeks. We subsequently analyzed hemodynamics measurements and liver cirrhosis degree, hepatic inflammation and liver function in the different groups. EMT related genes expression in rats in the groups of Control, DBP, CCl4 and CCl4+DBP were measured by immunohistochemistry (IHC). Enzyme-linked immunosorbent Assay (ELISA), qRT-PCR, western blot were used to detect the EMT related proteins and mRNA gene expression levels in rats and primary hepatocytes (PHCs). Reactive oxygen species (ROS) were examined with a ROS detection kit. RESULTS The results showed that the CCl4+DBP group had higher portal pressure (PP) and lower mean arterial pressure (MAP) than the other groups. Elevated collagen deposition, profibrotic factor, inflammation, EMT levels were detected in DBP and CCl4+DBP groups. ROS, TGF-β1 and Snail-1 were highly expressed after DBP exposure in vitro. TGF-β1 had the potential to regulate Snail-1, and both of them were subject to regulation by ROS. CONCLUSION DBP could influence the progression of EMT through its toxicological effect by ROS/TGF-β1/Snail-1 signalling pathway, causing cirrhosis and PHT in final. The findings of this research might contribute to a novel comprehension of the underlying toxicological mechanisms and animal model involved in the progression of cirrhosis and PHT, and potentially offered a promising therapeutic target for the treatment of the disease.
Collapse
Affiliation(s)
- Min Chen
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang-Bo Wu
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shan Hua
- Department of Plastic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Lei Zheng
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiang Fan
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Meng Luo
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
15
|
Du X, Jin M, Li R, Zhou F, Sun Y, Mo Q, Song S, Dong N, Duan S, Li M, Lu M, Zhang C, He H, Yang X, Tang C, Li Y. Mechanisms and targeted reversion/prevention of hepatic fibrosis caused by the non-hereditary toxicity of benzo(a)pyrene. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169496. [PMID: 38135085 DOI: 10.1016/j.scitotenv.2023.169496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/21/2023] [Accepted: 12/17/2023] [Indexed: 12/24/2023]
Abstract
The effect of long term exposure to low concentrations of environmental pollutants on hepatic disorders is a major public health concern worldwide. Polycyclic aromatic hydrocarbons (PAHs) are a class of persistent organic pollutants. In recent years, an increasing number of studies have focused on the deleterious effects of low concentrations of PAHs in the initiation or exacerbation of the progression of chronic liver disease. However, the underlying molecular mechanisms and effective intervention methods remain unclear. Here, we found that in hepatocytes, a low concentration of benzo(a)pyrene (B[a]P, an indicator of PAHs) chronic exposure continuously activated 14-3-3η via an epigenetic accumulation of DNA demethylation. As a "switch like" factor, 14-3-3η activated its downstream PI3K/Akt signal, which in turn promoted vascular endothelial growth factor (VEGF) production and secretion. As the characteristic fibrogenic paracrine factor regulated by B[a]P/14-3-3η, VEGF significantly induced the neovascularization and activation of hepatic stellate cells, leading to the development of hepatic fibrosis. Importantly, targeted 14-3-3η by using its specific inhibitor invented by our lab could prevent B[a]P-induced hepatic fibrosis, and could even reverse existent hepatic fibrosis caused by B[a]P. The present study not only revealed novel mechanisms, but also proposed an innovative approach for the targeted reversion/prevention of the harmful effects of exposure to PAHs on chronic liver disease.
Collapse
Affiliation(s)
- Xinru Du
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ming Jin
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ruzhi Li
- The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fei Zhou
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuanze Sun
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qinliang Mo
- The First Affiliated Hospital of Huzhou University, Huzhou, China
| | - Sisi Song
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Na Dong
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shuoke Duan
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Maoxuan Li
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ming Lu
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chi Zhang
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huiwei He
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Xiaojun Yang
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China; Ili & Jiangsu Joint Institute of Health, The Friendship Hospital of Ili Kazakh Autonomous Prefecture, Xinjiang, China.
| | - Chengwu Tang
- The First Affiliated Hospital of Huzhou University, Huzhou, China.
| | - Yuan Li
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
16
|
He C, Gu L, Li A, Li Y, Xiao R, Liao J, Mu J, Gan Y, Peng M, Mohan G, Liu W, Xu L, Guo S. Recombinant Slit2 attenuates tracheal fibroblast activation in benign central airway obstruction by inhibiting the TGF-β1/Smad3 signaling pathway. Mol Cell Probes 2024; 73:101947. [PMID: 38122948 DOI: 10.1016/j.mcp.2023.101947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Airway fibrosis is among the pathological manifestations of benign central airway obstruction noted in the absence of effective treatments and requires new drug targets to be developed. Slit guidance ligand 2-roundabout guidance receptor 1 (Slit2-Robo1) is involved in fibrosis and organ development. However, its significance in airway fibrosis has not yet been reported. The study explored how the recombinant protein Slit2 functions in transforming growth factor-β1 (TGF-β1)-mediated airway fibrosis in vivo and in vitro. In this study, Slit2 expression initially increased in the tracheal granulation tissues of patients with tracheobronchial stenosis but decreased in the fibrotic tissue. In primary rat tracheal fibroblasts (RTFs), recombinant Slit2 inhibited the expression of extracellular matrices such as Timp1, α-SMA, and COL1A2, whereas recombinant TGF-β1 promoted the expression of Robo1, α-SMA, and COL1A2. Slit2 and TGF-β1 played a mutual inhibitory role in RTFs. Slit2 supplementation and Robo1 downregulation inhibited excessive extracellular matrix (ECM) deposition induced by TGF-β1 in RTFs via the TGF-β1/Smad3 pathway. Ultimately, exogenous Slit2 and Robo1 knockdown-mediated attenuation of airway fibrosis were validated in a trauma-induced rat airway obstruction model. These findings demonstrate that recombinant Slit2 alleviated pathologic tracheobronchial healing by attenuating excessive ECM deposition. Slit2-Robo1 is an attractive target for further exploring the mechanisms and treatment of benign central airway obstruction.
Collapse
Affiliation(s)
- Chunyan He
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, 400016, China
| | - Lei Gu
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Anmao Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, 400016, China
| | - Yishi Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, 400016, China
| | - Rui Xiao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, 400016, China
| | - Jiaxin Liao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, 400016, China
| | - Junhao Mu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, 400016, China
| | - Yiling Gan
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, 400016, China
| | - Mingyu Peng
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, 400016, China
| | - Giri Mohan
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, 400016, China
| | - Wei Liu
- Department of Respiratory and Critical Care Medicine, The 900th Hospital of Joint Logistic Support Force, People's Liberation Army, Fujian Medical University, Fuzhou, Fujian, 350025, China
| | - Li Xu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, 400016, China.
| | - Shuliang Guo
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, 400016, China.
| |
Collapse
|
17
|
Liu T, Zhai C, Tian B, Li C, Han S, Wang S, Xuan M, Liu D, Zhao Y, Zhao H, Yu W, Wang J. Downregulation of Roundabout guidance receptor 2 suppresses hepatocellular carcinoma progression by interacting with Y-box binding protein 1. Sci Rep 2024; 14:2588. [PMID: 38297025 PMCID: PMC10830551 DOI: 10.1038/s41598-024-53013-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 01/25/2024] [Indexed: 02/02/2024] Open
Abstract
Roundabout guidance receptor 2 (Robo2) is closely related to malignant tumors such as pancreatic cancer and liver fibrosis, but there is no relevant research on the role of Robo2 in HCC. The study will further explore the function and mechanism of Robo2 and its downstream target genes in HCC. Firstly, Robo2 protein levels in human HCC tissues and paired adjacent normal liver tissues were detected. Then we established HepG2 and Huh7 hepatoma cell lines with knock-down Robo2 by transfection with lentiviral vectors, and examined the occurrence of EMT, proliferation and apoptosis abilities in HCC cells by western blot, flow cytometry, wound healing assay and TUNEL staining. Then we verified the interaction between Robo2 and its target gene by Co-IP and immunofluorescence co-staining, and further explored the mechanism of Robo2 and YB-1 by rescue study. The protein expression level of Robo2 in HCC was considerably higher than that in the normal liver tissues. After successfully constructing hepatoma cells with knock-down Robo2, it was confirmed that down-regulated Robo2 suppressed EMT and proliferation of hepatoma cells, and accelerated the cell apoptosis. High-throughput sequencing and validation experiments verified that YB-1 was the downstream target gene of Robo2, and over-expression of YB-1 could reverse the apoptosis induced by Robo2 down-regulation and its inhibitory effect on EMT and proliferation. Robo2 deficiency inhibits EMT and proliferation of hepatoma cells and augments the cell apoptosis by regulating YB-1, thus inhibits the occurrence of HCC and provides a new strategy for the treatment of HCC.
Collapse
Affiliation(s)
- Ting Liu
- Department of Endoscopy Center, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, 050031, Hebei, China
| | - Congjie Zhai
- Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, 050031, Hebei, China
| | - Bo Tian
- Department of Endoscopy Center, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, 050031, Hebei, China
| | - Chao Li
- Department of Endoscopy Center, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, 050031, Hebei, China
| | - Shuangshuang Han
- Department of Endoscopy Center, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, 050031, Hebei, China
| | - Shihui Wang
- Department of Endoscopy Center, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, 050031, Hebei, China
| | - Mingda Xuan
- Department of Endoscopy Center, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, 050031, Hebei, China
| | - Dehua Liu
- Department of Endoscopy Center, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, 050031, Hebei, China
| | - Yunxia Zhao
- Department of Endoscopy Center, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, 050031, Hebei, China
| | - Hongyan Zhao
- Department of Endoscopy Center, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, 050031, Hebei, China
| | - Weifang Yu
- Department of Endoscopy Center, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, 050031, Hebei, China.
| | - Jia Wang
- Department of Infectious Diseases, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, 050031, Hebei, China.
| |
Collapse
|
18
|
Li XJY, Zhou F, Li YJ, Xue XY, Qu JR, Fan GF, Liu J, Sun R, Wu JZ, Zheng Q, Liu RP. LncRNA H19-EZH2 interaction promotes liver fibrosis via reprogramming H3K27me3 profiles. Acta Pharmacol Sin 2023; 44:2479-2491. [PMID: 37580495 PMCID: PMC10692088 DOI: 10.1038/s41401-023-01145-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/25/2023] [Indexed: 08/16/2023]
Abstract
Liver fibrosis is a wound-healing process characterized by excess formation of extracellular matrix (ECM) from activated hepatic stellate cells (HSCs). Previous studies show that both EZH2, an epigenetic regulator that catalyzes lysine 27 trimethylation on histone 3 (H3K27me3), and long non-coding RNA H19 are highly correlated with fibrogenesis. In the current study, we investigated the underlying mechanisms. Various models of liver fibrosis including Mdr2-/-, bile duct ligation (BDL) and CCl4 mice were adapted. We found that EZH2 was markedly upregulated and correlated with H19 and fibrotic markers expression in these models. Administration of EZH2 inhibitor 3-DZNeP caused significant protective effects in these models. Furthermore, treatment with 3-DZNeP or GSK126 significantly inhibited primary HSC activation and proliferation in TGF-β-treated HSCs and H19-overexpreesing LX2 cells in vivo. Using RNA-pull down assay combined with RNA immunoprecipitation, we demonstrated that H19 could directly bind to EZH2. Integrated analysis of RNA-sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq) further revealed that H19 regulated the reprogramming of EZH2-mediated H3K27me3 profiles, which epigenetically promoted several pathways favoring HSCs activation and proliferation, including epithelial-mesenchymal transition and Wnt/β-catenin signaling. In conclusion, highly expressed H19 in chronic liver diseases promotes fibrogenesis by reprogramming EZH2-mediated epigenetic regulation of HSCs activation. Targeting the H19-EZH2 interaction may serve as a novel therapeutic approach for liver fibrosis.
Collapse
Affiliation(s)
- Xiao-Jiao-Yang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Fei Zhou
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ya-Jing Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiao-Yong Xue
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jiao-Rong Qu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Gui-Fang Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jia Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Rong Sun
- The Second Hospital of Shandong University, Ji-nan, 250033, China
| | - Jian-Zhi Wu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qi Zheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Run-Ping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
19
|
Huo S, Li B, Du J, Zhang X, Zhang J, Wang Q, Song M, Li Y. Dibutyl phthalate induces liver fibrosis via p38MAPK/NF-κB/NLRP3-mediated pyroptosis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165500. [PMID: 37442457 DOI: 10.1016/j.scitotenv.2023.165500] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Dibutyl phthalate (DBP) is one of the most employed plasticizers pervading the environment. DBP is a newly identified global organic pollutant that can activate NLRP3 inflammasomes and induce inflammatory liver injury. However, its hepatotoxicity remains poorly understood. The objective of this investigation was to investigate the probable pathways underlying DBP-induced liver injury. First, C57BL/6N mice were orally administered DBP at 10 and 50 mg/kg B.W. doses for 28 days. The observed results indicated a significant increase in liver collagen deposition and upregulated protein expression of fibrosis markers in mice. In addition, the p38MAPK/NF-κB signaling pathway and pyroptosis-related protein expression were upregulated. To establish a correlation between these changes, we conducted a conditioned medium co-culture of human hepatocellular carcinoma (HepG2) and human hepatic stellate (LX-2) cells. We performed inhibitor interventions to validate the mechanism of DBP-induced liver fibrosis in vitro. After treatment with p38MAPK (SB203580), NF-κB (PDTC), and NLRP3 (MCC950) inhibitors, the activation of LX-2 cells, the p38MAPK/NF-κB signaling pathway and pyroptosis due to DBP were alleviated. Therefore, DBP exposure leads to NLRP3-mediated pyroptosis of hepatocytes via the p38MAPK/NF-κB signaling pathway, activating LX-2 cells and causing liver fibrosis. Our findings offer a conceptual framework to understand the pathological underpinnings of DBP-induced liver injury while proposing novel ideas to prevent and treat DBP hepatotoxicity. Thus, targeting p38MAPK, NF-κB, and NLRP3 may prevent DBP-induced liver fibrosis.
Collapse
Affiliation(s)
- Siming Huo
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Bo Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jiayu Du
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xuliang Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jian Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Qi Wang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Miao Song
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
20
|
Zhang T, Yang F, Dai X, Liao H, Wang H, Peng C, Liu Z, Li Z, Shan J, Cao H. Role of Caveolin-1 on the molybdenum and cadmium exposure induces pulmonary ferroptosis and fibrosis in the sheep. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122207. [PMID: 37467914 DOI: 10.1016/j.envpol.2023.122207] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/23/2023] [Accepted: 07/13/2023] [Indexed: 07/21/2023]
Abstract
Molybdenum (Mo) is an essential trace element that exists in all tissues of the human body, but excessive Mo intake has a toxic effect. Cadmium (Cd) is a widely known and harmful heavy metal that exists in the environment. Although studies on Mo and Cd are available, it is still unknown how the combination of Mo and Cd causes pulmonary injury. Forty-eight sheep that were 2 months old were chosen and randomly separated into four groups as follows: Control group, Mo group, Cd group, and Mo + Cd group. The experiment lasted 50 days. The results showed that Mo and/or Cd caused significant pathological damage and oxidative stress in the lungs of sheep. Moreover, Mo and/or Cd exposure could downregulate the expression levels of xCT (SLC7A11 and SLC3A2), GPX4 and FTH-1 and upregulate the expression levels of PTGS2 and NCOA4, which led to iron overload and ferroptosis. Ferroptosis induced Wnt/β-catenin-mediated fibrosis by elevating the expression levels of Caveolin-1 (CAV-1), Wnt 1, Wnt3a, β-catenin (CTNNB1), TCF4, Cyclin D1, mmp7, α-SMA (ACTA2), Collagen 1 (COL1A1) and Vimentin. These changes were particularly noticeable in the Mo and Cd combination group. In conclusion, these data demonstrated that Mo and/or Cd exposure led to lung ferroptosis by inhibiting the SLC7A11/GSH/GPX4 axis, which in turn increases CAV-1 expression and subsequently activates the Wnt/β-catenin pathway, leading to fibrosis in sheep lungs.
Collapse
Affiliation(s)
- Tao Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China.
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Xueyan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Huan Liao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Huating Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Chengcheng Peng
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Zirui Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Zhiyuan Li
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Jiyi Shan
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China.
| |
Collapse
|
21
|
Jin FC, Chen JJ, Xu QX, Zhou MH, Lin Y, Zhang QW, Zhang CC, Zhang ZG. Kinetin inhibits hepatic stellate cell activation and induces apoptosis via interactions with the TGF-β1/Smad signaling pathway. Toxicol Appl Pharmacol 2023; 475:116655. [PMID: 37579951 DOI: 10.1016/j.taap.2023.116655] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/22/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Hepatic fibrosis is the pathological repair response of the liver to chronic injury; hepatic stellate cell (HSC) activation is the central link in the pathogenesis of hepatic fibrosis. Previously, we showed that kinetin, a plant cytokinin hormone, has a protective effect on CCl4-induced liver injury in mice. However, the role of kinetin in liver fibrosis remains unclear. We aimed to study these protective effects and to determine the mechanisms by which kinetin mediates HSC activation and apoptosis. For this purpose, the human HSC line LX-2 was treated with 10 ng/ml transforming growth factor-β1 (TGF-β1) for 24 h to stimulate activation. We found that treatment with kinetin at the sub-cytotoxic dose of 40 μg/ml for 48 h reduced the expression of the HSC activation marker α-SMA and inhibited the secretion of extracellular matrix proteins. In addition, kinetin was found to inhibit the proliferation and migration of LX-2 cells. We found that kinetin induced apoptosis in LX-2 cells by increasing the level of cleaved-caspase 3 and the Bax-to-Bcl-2 ratio. Interestingly, these effect were not observed in quiescent HSCs, suggesting that they are activation-dependent. Further study showed that kinetin attenuates activation and promotes apoptosis of LX-2 cells in vitro in part by suppressing the TGF-β1/Smad signaling pathway.
Collapse
Affiliation(s)
- Fu-Chang Jin
- Division of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing-Jing Chen
- Division of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Ming-Hui Zhou
- Division of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Division of Gastroenterology, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Yi Lin
- Division of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi-Wei Zhang
- Jianghan University School of Medicine, Wuhan, China
| | - Chang-Chun Zhang
- Wuhan Sixth Hospital Affiliated to Jianghan University, Wuhan, China
| | - Zhen-Gang Zhang
- Division of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
22
|
Yang Q, Tan T, He Q, Guo C, Chen D, Tan Y, Feng J, Song X, Gong T, Li J. Combined Amphiphilic Silybin Meglumine Nanosuspension Effective Against Hepatic Fibrosis in Mice Model. Int J Nanomedicine 2023; 18:5197-5211. [PMID: 37720597 PMCID: PMC10505037 DOI: 10.2147/ijn.s407762] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/06/2023] [Indexed: 09/19/2023] Open
Abstract
Introduction Silybin (SLB) as an effective hepatoprotective phytomedicine has been limited by its hydrophobicity, poor bioavailability and accumulation at lesion sites. Additionally, present drug loading methods are impeded by their low drug loading capacity, potential hazard of materials and poor therapeutic effects. Consequently, there is a pressing need to devise an innovative approach for preparing nanosuspensions loaded with both SLB and Silybin Meglumine salt (SLB-M), as well as to investigate the therapeutic effects of SLB nanosuspensions against hepatic fibrosis. Methods The SLB nanosuspension (NS-SLB) was prepared and further modified with a hyaluronic acid-cholesterol conjugate (NS-SLB-HC) to improve the CD44 targeting proficiency of NS-SLB. To validate the accumulation of CD44 and ensure minimal cytotoxicity, cellular uptake and cytotoxicity assessments were carried out for the nanosuspensions. Western blotting was employed to evaluate the anti-hepatic fibrosis efficacy in LX-2 cells by inhibiting the secretion of collagen I. Hepatic fibrosis mouse models were used to further confirm the effectiveness of NS-SLB and NS-SLB-HC against hepatic fibrosis in vivo. Results Uniform nanosuspensions were prepared through self-assembly, achieving high drug loading rates of 89.44% and 60.67%, respectively. Both SLB nanosuspensions showed minimal cytotoxicity in cellular environments and mitigated hepatic fibrosis in vitro. NS-SLB-HC was demonstrated to target activated hepatic stellate cells by receptor-ligand interaction between HA and CD44. They can reverse hepatic fibrosis in vivo by downregulating TGF-β and inhibiting the secretion of α-SMA and collagen I. Conclusion Designed as a medical excipient analogue, SLB-M was aimed to establish an innovative nanosuspension preparation method, characterized by high drug loading capacity and a notable impact against hepatic fibrosis.
Collapse
Affiliation(s)
- Qin Yang
- School of Pharmacy, North Sichuan Medical College, Nanchong637100, People’s Republic of China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu610041, People’s Republic of China
| | - Tiantian Tan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu610041, People’s Republic of China
| | - Qin He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu610041, People’s Republic of China
| | - Chenqi Guo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu610041, People’s Republic of China
| | - Dan Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu610041, People’s Republic of China
| | - Yulu Tan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu610041, People’s Republic of China
| | - Jiaxing Feng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu610041, People’s Republic of China
| | - Xu Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu610041, People’s Republic of China
| | - Tao Gong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu610041, People’s Republic of China
| | - Jia Li
- West China Hospital of Stomatology, Sichuan University, Chengdu610041, People’s Republic of China
| |
Collapse
|
23
|
Chicherova I, Hernandez C, Mann F, Zoulim F, Parent R. Axon guidance molecules in liver pathology: Journeys on a damaged passport. Liver Int 2023; 43:1850-1864. [PMID: 37402699 DOI: 10.1111/liv.15662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/09/2023] [Accepted: 06/18/2023] [Indexed: 07/06/2023]
Abstract
BACKGROUND AND AIMS The liver is an innervated organ that develops a variety of chronic liver disease (CLD). Axon guidance cues (AGCs), of which ephrins, netrins, semaphorins and slits are the main representative, are secreted or membrane-bound proteins that can attract or repel axons through interactions with their growth cones that contain receptors recognizing these messengers. While fundamentally implicated in the physiological development of the nervous system, the expression of AGCs can also be reinduced under acute or chronic conditions, such as CLD, that necessitate redeployment of neural networks. METHODS This review considers the ad hoc literature through the neglected canonical neural function of these proteins that is also applicable to the diseased liver (and not solely their observed parenchymal impact). RESULTS AGCs impact fibrosis regulation, immune functions, viral/host interactions, angiogenesis, and cell growth, both at the CLD and HCC levels. Special attention has been paid to distinguishing correlative and causal data in such datasets in order to streamline data interpretation. While hepatic mechanistic insights are to date limited, bioinformatic evidence for the identification of AGCs mRNAs positive cells, protein expression, quantitative regulation, and prognostic data have been provided. Liver-pertinent clinical studies based on the US Clinical Trials database are listed. Future research directions derived from AGC targeting are proposed. CONCLUSION This review highlights frequent implication of AGCs in CLD, linking traits of liver disorders and the local autonomic nervous system. Such data should contribute to diversifying current parameters of patient stratification and our understanding of CLD.
Collapse
Affiliation(s)
- Ievgeniia Chicherova
- Cancer Research Centre of Lyon, Inserm Unit 1052, CNRS UMR 5286, University of Lyon, Léon Bérard Anticancer Centre, Lyon, France
| | - Charlotte Hernandez
- Cancer Research Centre of Lyon, Inserm Unit 1052, CNRS UMR 5286, University of Lyon, Léon Bérard Anticancer Centre, Lyon, France
| | - Fanny Mann
- Aix-Marseille University, CNRS, IBDM, Marseille, France
| | - Fabien Zoulim
- Cancer Research Centre of Lyon, Inserm Unit 1052, CNRS UMR 5286, University of Lyon, Léon Bérard Anticancer Centre, Lyon, France
- Hepatogastroenterology Service, Croix-Rousse University Hospital, Hospices Civils de Lyon, Lyon, France
| | - Romain Parent
- Cancer Research Centre of Lyon, Inserm Unit 1052, CNRS UMR 5286, University of Lyon, Léon Bérard Anticancer Centre, Lyon, France
| |
Collapse
|
24
|
Li R, Wang Z, Wang Y, Sun R, Zou B, Tian X, Liu D, Zhao X, Zhou J, Zhao Y, Yao J. SIRT3 regulates mitophagy in liver fibrosis through deacetylation of PINK1/NIPSNAP1. J Cell Physiol 2023; 238:2090-2102. [PMID: 37417912 DOI: 10.1002/jcp.31069] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 07/08/2023]
Abstract
Damaged mitochondria, a key factor in liver fibrosis, can be removed by the mitophagy pathway to maintain homeostasis of the intracellular environment to alleviate the development of fibrosis. PINK1 (PTEN-induced kinase 1) and NIPSNAP1 (nonneuronal SNAP25-like protein 1), which cooperatively regulate mitophagy, have been predicted to include the sites of lysine acetylation related to SIRT3 (mitochondrial deacetylase sirtuin 3). Our study aimed to discuss whether SIRT3 deacetylates PINK1 and NIPSNAP1 to regulate mitophagy in liver fibrosis. Carbon tetrachloride (CCl4 )-induced liver fibrosis as an in vivo model and LX-2 cells as activated cells were used to simulate liver fibrosis. SIRT3 expression was significantly decreased in mice in response to CCl4 , and SIRT3 knockout in vivo significantly deepened the severity of liver fibrosis, as indicated by increased α-SMA and Col1a1 levels both in vivo and in vitro. SIRT3 overexpression decreased α-SMA and Col1a1 levels. Furthermore, SIRT3 significantly regulated mitophagy in liver fibrosis, as demonstrated by LC3-Ⅱ/Ⅰ and p62 expression and colocalization between TOM20 and LAMP1. Importantly, PINK1 and NIPSNAP1 expression was also decreased in liver fibrosis, and PINK1 and NIPSNAP1 overexpression significantly improved mitophagy and attenuated ECM production. Furthermore, after simultaneously interfering with PINK1 or NIPSNAP1 and overexpressing SIRT3, the effect of SIRT3 on improving mitophagy and alleviating liver fibrosis was disrupted. Mechanistically, we show that SIRT3, as a mitochondrial deacetylase, specifically regulates the acetylation of PINK1 and NIPSNAP1 to mediate the mitophagy pathway in liver fibrosis. SIRT3-mediated PINK1 and NIPSNAP1 deacetylation is a novel molecular mechanism in liver fibrosis.
Collapse
Affiliation(s)
- Ruixi Li
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Zhecheng Wang
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Yue Wang
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Ruimin Sun
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Boyang Zou
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Xinyao Tian
- Department of General Surgery, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Deshun Liu
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xuzi Zhao
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Junjun Zhou
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Yan Zhao
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Jihong Yao
- Department of Pharmacology, Dalian Medical University, Dalian, China
| |
Collapse
|
25
|
Gannoun L, De Schrevel C, Belle M, Dauguet N, Achouri Y, Loriot A, Vanderaa C, Cordi S, Dili A, Heremans Y, Rooman I, Leclercq IA, Jacquemin P, Gatto L, Lemaigre FP. Axon guidance genes control hepatic artery development. Development 2023; 150:dev201642. [PMID: 37497580 DOI: 10.1242/dev.201642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023]
Abstract
Earlier data on liver development demonstrated that morphogenesis of the bile duct, portal mesenchyme and hepatic artery is interdependent, yet how this interdependency is orchestrated remains unknown. Here, using 2D and 3D imaging, we first describe how portal mesenchymal cells become organised to form hepatic arteries. Next, we examined intercellular signalling active during portal area development and found that axon guidance genes are dynamically expressed in developing bile ducts and portal mesenchyme. Using tissue-specific gene inactivation in mice, we show that the repulsive guidance molecule BMP co-receptor A (RGMA)/neogenin (NEO1) receptor/ligand pair is dispensable for portal area development, but that deficient roundabout 2 (ROBO2)/SLIT2 signalling in the portal mesenchyme causes reduced maturation of the vascular smooth muscle cells that form the tunica media of the hepatic artery. This arterial anomaly does not impact liver function in homeostatic conditions, but is associated with significant tissular damage following partial hepatectomy. In conclusion, our work identifies new players in development of the liver vasculature in health and liver regeneration.
Collapse
Affiliation(s)
- Lila Gannoun
- de Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 75, Brussels 1200, Belgium
| | - Catalina De Schrevel
- de Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 75, Brussels 1200, Belgium
| | - Morgane Belle
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Department of Development, Rue Moreau 17, Paris 75012, France
| | - Nicolas Dauguet
- Flow cytometry CYTF platform, Université Catholique de Louvain, Brussels 1200, Belgium
| | - Younes Achouri
- Transgene Technology Platform TRSG, Université Catholique de Louvain, Brussels, Avenue Hippocrate 75, Belgium 1200
| | - Axelle Loriot
- de Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 75, Brussels 1200, Belgium
| | - Christophe Vanderaa
- de Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 75, Brussels 1200, Belgium
| | - Sabine Cordi
- de Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 75, Brussels 1200, Belgium
| | - Alexandra Dili
- HPB Surgery Unit, Centre Hospitalier Universitaire UCL Namur, Site Mont-Godinne, Avenue du Dr. Thérasse 1, Yvoir 5530, Belgium
- Laboratory of Hepato-Gastroenterology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, Avenue Mounier 53, Brussels 1200, Belgium
| | - Yves Heremans
- Visual & Spatial Tissue Analysis (VSTA) core facility, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels 1090, Belgium
| | - Ilse Rooman
- Laboratory of Medical and Molecular Oncology, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels 1090, Belgium
| | - Isabelle A Leclercq
- Laboratory of Hepato-Gastroenterology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, Avenue Mounier 53, Brussels 1200, Belgium
| | - Patrick Jacquemin
- de Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 75, Brussels 1200, Belgium
| | - Laurent Gatto
- de Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 75, Brussels 1200, Belgium
| | - Frédéric P Lemaigre
- de Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 75, Brussels 1200, Belgium
| |
Collapse
|
26
|
Feng L, Shu HP, Sun LL, Tu YC, Liao QQ, Yao LJ. Role of the SLIT-ROBO signaling pathway in renal pathophysiology and various renal diseases. Front Physiol 2023; 14:1226341. [PMID: 37497439 PMCID: PMC10366692 DOI: 10.3389/fphys.2023.1226341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 06/30/2023] [Indexed: 07/28/2023] Open
Abstract
SLIT ligand and its receptor ROBO were initially recognized for their role in axon guidance in central nervous system development. In recent years, as research has advanced, the role of the SLIT-ROBO signaling pathway has gradually expanded from axonal repulsion to cell migration, tumor development, angiogenesis, and bone metabolism. As a secreted protein, SLIT regulates various pathophysiological processes in the kidney, such as proinflammatory responses and fibrosis progression. Many studies have shown that SLIT-ROBO is extensively involved in various aspects of kidney development and maintenance of structure and function. The SLIT-ROBO signaling pathway also plays an important role in different types of kidney disease. This article reviews the advances in the study of the SLIT-ROBO pathway in various renal pathophysiological and kidney disorders and proposes new directions for further research in this field.
Collapse
|
27
|
Jiao H, Li S, Tang Q. Amygdalin epimers exert discrepant anti-pulmonary fibrosis activity via inhibiting TGF-β1/Smad2/3 pathway. Pulm Pharmacol Ther 2023:102230. [PMID: 37364767 DOI: 10.1016/j.pupt.2023.102230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/08/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) represents a chronic and progressive tissue repair response that leads to irreversible scarring and lung remodelling. The decoction of bitter almond usually contains amygdalin epimers in traditional clinical application for lung disease. To reveal the differences of cytotoxicity and antifibrotic effect between amygdalin epimers, and potential mechanism is also explored. The cytotoxicity of amygdalin epimers were evaluated with MRC-5 cells in vitro. Their antifibrotic activities were evaluated in bleomycin-induced C57BL/6 mice and TGF-β1-induced MRC-5 cells. Here we demonstrated that L-amygdalin is more toxic of the amygdalin epimers in MRC-5 cells, and D-amygdalin is more effective in anti-pulmonary fibrosis among the amygdalin epimers in bleomycin-induced C57BL/6 mice. Herein, it was observed that D-amygdalin had a stronger inhibitory effect on inflammation than L-amygdalin, and had similar results in inhibiting the mRNA and protein expression levels of fibrosis-related biomarkers. The mechanism of anti-pulmonary fibrosis showed that amygdalin epimers suppressing expression of phosphorylation of Smads2/3, which implying deactivation of the TGF-β1induced Smads2/3 signal pathway. This study evaluates the amygdalin epimers cytotoxicity and antifibrotic effect, and its mechanisms were related to the TGF-β1/Smads2/3 signal pathway. It provides a reference for clinical safety and effectiveness of amygdalin epimers.
Collapse
Affiliation(s)
- Haoyan Jiao
- School of Pharmaceutical Science, Guangdong Food and Drug Vocational College, Guangzhou, China
| | - Shuyu Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Qingfa Tang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
28
|
Bao B, Liu J, Li T, Yang Z, Wang G, Xin J, Bi H, Guo D. Elevated retinal fibrosis in experimental myopia is involved in the activation of the PI3K/AKT/ERK signaling pathway. Arch Biochem Biophys 2023; 743:109663. [PMID: 37290701 DOI: 10.1016/j.abb.2023.109663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/22/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023]
Abstract
OBJECTIVE This study aimed to investigate the regulatory role of the PI3K/AKT/ERK signaling pathway in retinal fibrosis in -6.0 diopter (D) lens-induced myopic (LIM) guinea pigs. METHODS Biological measurements of eye tissues were performed on guinea pigs to obtain their refraction, axial length, retinal thickness, physiological function, and fundus retinal status. In addition, Masson staining and immunohistochemical (IHC) assay were further done to explore the changes in retinal morphology after myopic induction. Meanwhile, hydroxyproline (HYP) content was measured to evaluate the degree of retinal fibrosis. Moreover, the levels of the PI3K/AKT/ERK signaling pathway and fibrosis-related molecules in retinal tissues including matrix metalloproteinase 2(MMP2), collagen type I (Collagen I), and α-smooth muscle actin (α-SMA) were detected by real-time quantitative PCR (qPCR) and Western blot. RESULTS The LIM guinea pigs showed a significant myopic shift in refractive error and an increase in axial length compared with those of the normal control (NC) group. Masson staining, hydroxyproline content determination, and IHC showed an increase in retinal fibrosis. After myopic induction, qPCR and western blot analyses showed that phosphatidylinositol-3-kinase catalytic subunit α (PIK3CA), protein kinase B (AKT), extracellular regulated protein kinase 1/2 (ERK1/2), MMP2, Collagen I, and α-SMA were consistently elevated in the LIM group than those in the NC group. CONCLUSION The PI3K/AKT/ERK signaling pathway was activated in the retinal tissues of myopic guinea pigs, which exaggerated fibrotic lesions and reduced retinal thickness, ultimately leading to retinal physiological dysfunctions in myopic guinea pigs.
Collapse
Affiliation(s)
- Bo Bao
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Jinpeng Liu
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Tuling Li
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Zhaohui Yang
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Guimin Wang
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Jizhao Xin
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Hongsheng Bi
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China.
| | - Dadong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, 250002, China.
| |
Collapse
|
29
|
Kong H, Song Q, Hu W, Guo S, Xiang D, Huang S, Xu X, He J, Pan L, Tao R, Yu H, Huang J. MicroRNA-29a-3p prevents Schistosoma japonicum-induced liver fibrosis by targeting Roundabout homolog 1 in hepatic stellate cells. Parasit Vectors 2023; 16:184. [PMID: 37280619 DOI: 10.1186/s13071-023-05791-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/27/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Schistosomiasis is a serious but neglected parasitic disease in humans that may lead to liver fibrosis and death. Activated hepatic stellate cells (HSCs) are the principal effectors that promote the accumulation of extracellular matrix (ECM) proteins during hepatic fibrosis. Aberrant microRNA-29 expression is involved in the development of fibrotic diseases. However, less is known about the role of miR-29 in Schistosoma japonicum (S. japonicum)-induced hepatic fibrosis. METHODS The levels of microRNA-29a-3p (miR-29a-3p) and Roundabout homolog 1 (Robo1) were examined in liver tissues during S. japonicum infection. The possible involvement of the miR-29a-3p-Robo1 signaling pathway was determined. We used MIR29A conditional knock-in mice and mice injected with an miR-29a-3p agomir to investigate the role of miR-29a-3p in schistosomiasis-induced hepatic fibrosis. The functional contributions of miR-29a-3p-Robo1 signaling in liver fibrosis and HSC activation were investigated using primary mouse HSCs and the human HSC cell line LX-2. RESULTS MiR-29a-3p was downregulated in humans and mice with schistosome-induced fibrosis, and Robo1 was upregulated in liver tissues. The miR-29a-3p targeted Robo1 and negatively regulated its expression. Additionally, the expression level of miR-29a-3p in schistosomiasis patients was highly correlated with the portal vein and spleen thickness diameter, which represent the severity of fibrosis. Furthermore, we demonstrated that efficient and sustained elevation of miR-29a-3p reversed schistosome-induced hepatic fibrosis. Notably, we showed that miR-29a-3p targeted Robo1 in HSCs to prevent the activation of HSCs during infection. CONCLUSIONS Our results provide experimental and clinical evidence that the miR-29a-3p-Robo1 signaling pathway in HSCs plays an important role in the development of hepatic fibrosis. Therefore, our study highlights the potential of miR-29a-3p as a therapeutic intervention for schistosomiasis and other fibrotic diseases.
Collapse
Affiliation(s)
- Hongyan Kong
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiqin Song
- Cancer Institute, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China
| | - Wenjiang Hu
- Department of Gastroenterology, The People's Hospital of Jianshi, Enshi, China
| | - Shusen Guo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dandan Xiang
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuaiwen Huang
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Xu
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinan He
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lanyue Pan
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ran Tao
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haijing Yu
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaquan Huang
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
30
|
Barkin JM, Jin-Smith B, Torok K, Pi L. Significance of CCNs in liver regeneration. J Cell Commun Signal 2023; 17:321-332. [PMID: 37202628 PMCID: PMC10326177 DOI: 10.1007/s12079-023-00762-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/01/2023] [Indexed: 05/20/2023] Open
Abstract
The liver has an inherent regenerative capacity via hepatocyte proliferation after mild-to-modest damage. When hepatocytes exhaust their replicative ability during chronic or severe liver damage, liver progenitor cells (LPC), also termed oval cells (OC) in rodents, are activated in the form of ductular reaction (DR) as an alternative pathway. LPC is often intimately associated with hepatic stellate cells (HSC) activation to promote liver fibrosis. The Cyr61/CTGF/Nov (CCN) protein family consists of six extracellular signaling modulators (CCN1-CCN6) with affinity to a repertoire of receptors, growth factors, and extracellular matrix proteins. Through these interactions, CCN proteins organize microenvironments and modulate cell signalings in a diverse variety of physiopathological processes. In particular, their binding to subtypes of integrin (αvβ5, αvβ3, α6β1, αvβ6, etc.) influences the motility and mobility of macrophages, hepatocytes, HSC, and LPC/OC during liver injury. This paper summarizes the current understanding of the significance of CCN genes in liver regeneration in relation to hepatocyte-driven or LPC/OC-mediated pathways. Publicly available datasets were also searched to compare dynamic levels of CCNs in developing and regenerating livers. These insights not only add to our understanding of the regenerative capability of the liver but also provide potential targets for the pharmacological management of liver repair in the clinical setting. Ccns in liver regeneration Restoring damaged or lost tissues requires robust cell growth and dynamic matrix remodeling. Ccns are matricellular proteins highly capable of influencing cell state and matrix production. Current studies have identified Ccns as active players in liver regeneration. Cell types, modes of action, and mechanisms of Ccn induction may vary depending on liver injuries. Hepatocyte proliferation is a default pathway for liver regeneration following mild-to-modest damages, working in parallel with the transient activation of stromal cells, such as macrophages and hepatic stellate cells (HSC). Liver progenitor cells (LPC), also termed oval cells (OC) in rodents, are activated in the form of ductular reaction (DR) and are associated with sustained fibrosis when hepatocytes lose their proliferative ability in severe or chronic liver damage. Ccns may facilitate both hepatocyte regeneration and LPC/OC repair via various mediators (growth factors, matrix proteins, integrins, etc.) for cell-specific and context-dependent functions.
Collapse
Affiliation(s)
- Joshua M Barkin
- Department of Pathology, Tulane University, New Orleans, LA, USA
| | - Brady Jin-Smith
- Department of Pathology, Tulane University, New Orleans, LA, USA
| | - Kendle Torok
- Department of Pathology, Tulane University, New Orleans, LA, USA
| | - Liya Pi
- Department of Pathology, Tulane University, New Orleans, LA, USA.
- Department of Pathology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, USA.
| |
Collapse
|
31
|
Basha S, Jin-Smith B, Sun C, Pi L. The SLIT/ROBO Pathway in Liver Fibrosis and Cancer. Biomolecules 2023; 13:785. [PMID: 37238655 PMCID: PMC10216401 DOI: 10.3390/biom13050785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Liver fibrosis is a common outcome of most chronic liver insults/injuries that can develop into an irreversible process of cirrhosis and, eventually, liver cancer. In recent years, there has been significant progress in basic and clinical research on liver cancer, leading to the identification of various signaling pathways involved in tumorigenesis and disease progression. Slit glycoprotein (SLIT)1, SLIT2, and SLIT3 are secreted members of a protein family that accelerate positional interactions between cells and their environment during development. These proteins signal through Roundabout receptor (ROBO) receptors (ROBO1, ROBO2, ROBO3, and ROBO4) to achieve their cellular effects. The SLIT and ROBO signaling pathway acts as a neural targeting factor regulating axon guidance, neuronal migration, and axonal remnants in the nervous system. Recent findings suggest that various tumor cells differ in SLIT/ROBO signaling levels and show varying degrees of expression patterns during tumor angiogenesis, cell invasion, metastasis, and infiltration. Emerging roles of the SLIT and ROBO axon-guidance molecules have been discovered in liver fibrosis and cancer development. Herein, we examined the expression patterns of SLIT and ROBO proteins in normal adult livers and two types of liver cancers: hepatocellular carcinoma and cholangiocarcinoma. This review also summarizes the potential therapeutics of this pathway for anti-fibrosis and anti-cancer drug development.
Collapse
Affiliation(s)
| | | | | | - Liya Pi
- Department of Pathology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
| |
Collapse
|
32
|
Liu R, Feng L, Tang S, Liu Y, Yang Q. The impact and mechanism of TET3 overexpression on the progression of hepatic fibrosis. Epigenomics 2023; 15:577-591. [PMID: 37464780 DOI: 10.2217/epi-2023-0146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
Aims: To investigate whether TET3 regulates hepatic stellate cell apoptosis and understand the role of demethylation in hepatic fibrosis (HF). Methods: LX-2T cells were infected with TET3 lentivirus. After TET3 adenovirus infection, the degree of HF in each group was analyzed. Chromatin immunoprecipitation was used to verify the targeting relationship between TET3 and CBP, and finally the expression of various proteins was detected. Results: TET3 overexpression activated the CBP/FOXO1-BIM pathway, increased the expression of apoptotic proteins and accelerated the apoptosis of activated LX-2 cells. The degree of HF was improved in the TET3 upregulation group. Conclusion: TET3 can activate the CBP/FOXO1-BIM pathway to accelerate the apoptosis of activated hepatic stellate cells and ultimately alleviate HF.
Collapse
Affiliation(s)
- Ranyang Liu
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China
- Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guiyang, 550025, China
| | - Linlin Feng
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China
- Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guiyang, 550025, China
- Clinical Laboratory Center, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Shuang Tang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China
- Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guiyang, 550025, China
| | - Yin Liu
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China
- Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guiyang, 550025, China
| | - Qin Yang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China
- Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guiyang, 550025, China
| |
Collapse
|
33
|
Pi L, Sun C, Jn-Simon N, Basha S, Thomas H, Figueroa V, Zarrinpar A, Cao Q, Petersen B. CCN2/CTGF promotes liver fibrosis through crosstalk with the Slit2/Robo signaling. J Cell Commun Signal 2023; 17:137-150. [PMID: 36469291 PMCID: PMC10030765 DOI: 10.1007/s12079-022-00713-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Liver fibrosis is the common outcome of many chronic liver diseases, resulting from altered cell-cell and cell-matrix interactions that promote hepatic stellate cell (HSC) activation and excessive matrix production. This study aimed to investigate functions of cellular communication network factor 2 (CCN2)/Connective tissue growth factor (CTGF), an extracellular signaling modulator of the CYR61/CTGF/Nov (CCN) family, in liver fibrosis. Tamoxifen-inducible conditional knockouts in mice and hepatocyte-specific deletion of this gene in rats were generated using the Cre-lox system. These animals were subjected to peri-central hepatocyte damage caused by carbon tetrachloride. Potential crosstalk of this molecule with a new profibrotic pathway mediated by the Slit2 ligand and Roundabout (Robo) receptors was also examined. We found that Ccn2/Ctgf was highly upregulated in periportal hepatocytes during carbon tetrachloride-induced hepatocyte damage, liver fibrosis and cirrhosis in mice and rats. Overexpression of this molecule was observed in human hepatocellular carcinoma (HCC) that were surrounded with fibrotic cords. Deletion of the Ccn2/Ctgf gene significantly reduced expression of fibrosis-related genes including Slit2, a smooth muscle actin (SMA) and Collagen type I during carbon tetrachloride-induced liver fibrosis in mice and rats. In addition, Ccn2/Ctgf and its truncated mutant carrying the first three domains were able to interact with the 7th -9th epidermal growth factor (EGF) repeats and the C-terminal cysteine knot (CT) motif of Slit2 protein in cultured HSC and fibrotic murine livers. Ectopic expression of Ccn2/Ctgf protein upregulated Slit2, promoted HSC activation, and potentiated fibrotic responses following chronic intoxication by carbon tetrachloride. Moreover, Ccn2/Ctgf and Slit2 synergistically enhanced activation of phosphatidylinositol 3-kinase (PI3K) and AKT in primary HSC, whereas soluble Robo1-Fc chimera protein could inhibit these activities. These observations demonstrate conserved cross-species functions of Ccn2/Ctgf protein in rodent livers. This protein can be induced in hepatocytes and contribute to liver fibrosis. Its novel connection with the Slit2/Robo signaling may have therapeutic implications against fibrosis in chronic liver disease.
Collapse
Affiliation(s)
- Liya Pi
- Department of Pathology, Tulane University, New Orleans, LA, USA.
| | - Chunbao Sun
- Department of Pathology, Tulane University, New Orleans, LA, USA
| | - Natacha Jn-Simon
- Department of Pathology, Tulane University, New Orleans, LA, USA
| | | | - Haven Thomas
- Department of Pathology, Tulane University, New Orleans, LA, USA
| | | | | | - Qi Cao
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bryon Petersen
- Department of Pediatrics, University of Florida, Gainesville, FL, USA
| |
Collapse
|
34
|
Zhang J, Jiang JZ, Xu J, Xu CY, Mao S, Shi Y, Gu W, Zou CF, Zhao YM, Ye L. Identification of Novel Biomarkers for Abdominal Aortic Aneurysm Promoted by Obstructive Sleep Apnea. Ann Vasc Surg 2023; 92:285-293. [PMID: 36739079 DOI: 10.1016/j.avsg.2023.01.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/12/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND We sought to find new biomarkers for abdominal aortic aneurysms (AAA) caused by chronic intermittent hypoxia (CIH). METHODS The AAA mice model was created using Ang II. The mice were divided into normoxic and CIH groups. The structure of AAA was observed using abdominal ultrasonography, Elastica van Gieson (EVG), and hematoxylin and eosin (HE) staining. The expression of ɑ-SMA was investigated using immunohistochemistry. The novel biomarkers were screened using bioinformatics analysis. Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to verify the expression of novel genes in both normal oxygen and CIH. RESULTS CIH appears to cause greater aortic dilation, higher AAA incidence, lower survival rate, thicker vessel wall, and more brittle elastic lamellae when compared to controls. The immunohistochemistry results showed that the expression of ɑ-SMA in the CIH group was reduced significantly. Four novel genes, including Homer2, Robo2, Ehf, and Asic1, were found to be differentially expressed between normal oxygen and CIH using qRT-PCR, indicating the same trend as bioinformatics analysis. CONCLUSIONS We discovered that CIH could hasten the occurrence and progression of AAA. Four genes (Homer2, Robo2, Ehf, and Asic1) may be novel biomarkers for AAA, which could aid in the search for new therapies for patients with AAA caused by CIH.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Respiration, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jian-Zhong Jiang
- Department of Geriatrics, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu, China
| | - Jun Xu
- Department of Respiration, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Chen-Yu Xu
- Department of Respiration, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Shan Mao
- Department of Respiration, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ying Shi
- Department of Respiration, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Wei Gu
- Department of Respiration, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Chun-Fang Zou
- Department of Respiration, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yue-Ming Zhao
- Department of Respiration, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| | - Liang Ye
- Department of Respiration, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
35
|
Zhao R, Zhao H, Guo Q, Mu Y, Zhang J, Su Y, Han Q. Edaravone protects against liver fibrosis progression via decreasing the IL-1β secretion of macrophages. Chem Biol Interact 2022; 368:110251. [PMID: 36343683 DOI: 10.1016/j.cbi.2022.110251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/22/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
Abstract
Edaravone (EDA), a strong novel free radical scavenger, have been demonstrated to exert neurovascular protective effects clinically. Furthermore, EDA can suppress the lung injury, pulmonary fibrosis and skin fibrosis, while the precise effects and mechanisms of EDA on liver injury and fibrosis remain unclear. The effects of EDA on the Thioacetamide (TAA)-induced liver fibrosis were evaluated by sirius red staining, α-SMA immunohistochemistry. The percentages of immune cell subsets were analyzed by flow cytometry. Immunofluorescence assay was performed to identify the fibrotic properties of hepatic stellate cells (HSCs). Western blot and qPCR were used to detect the levels of liver fibrosis-related molecules and IL-1β. EDA displayed a hepatic protective role in TAA-induced chronic liver fibrosis via inhibiting monocyte/macrophages recruitment and IL-1β production of macrophages. Mechanically, EDA inhibited of NF-κB signal pathway and reactive oxygen species (ROS) production in macrophages. Moreover, EDA treatment indirectly suppressed the activation of HSCs by decreasing the IL-1β secretion of macrophages. Together, EDA protects against TAA-induced liver fibrosis via decreasing the IL-1β production of macrophages, thereby providing a feasible solution for clinical treatment of liver fibrosis.
Collapse
Affiliation(s)
- Rongrong Zhao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Huajun Zhao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Quanjuan Guo
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Yongliang Mu
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Yuhang Su
- Department of Emergency Surgery, Qilu Hospital of Shandong University, Jinan, 250012, China.
| | - Qiuju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
36
|
Lei L, Bruneau A, El Mourabit H, Guégan J, Folseraas T, Lemoinne S, Karlsen TH, Hoareau B, Morichon R, Gonzalez-Sanchez E, Goumard C, Ratziu V, Charbord P, Gautheron J, Tacke F, Jaffredo T, Cadoret A, Housset C. Portal fibroblasts with mesenchymal stem cell features form a reservoir of proliferative myofibroblasts in liver fibrosis. Hepatology 2022; 76:1360-1375. [PMID: 35278227 DOI: 10.1002/hep.32456] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIMS In liver fibrosis, myofibroblasts derive from HSCs and as yet undefined mesenchymal cells. We aimed to identify portal mesenchymal progenitors of myofibroblasts. APPROACH AND RESULTS Portal mesenchymal cells were isolated from mouse bilio-vascular tree and analyzed by single-cell RNA-sequencing. Thereby, we uncovered the landscape of portal mesenchymal cells in homeostatic mouse liver. Trajectory analysis enabled inferring a small cell population further defined by surface markers used to isolate it. This population consisted of portal fibroblasts with mesenchymal stem cell features (PMSCs), i.e., high clonogenicity and trilineage differentiation potential, that generated proliferative myofibroblasts, contrasting with nonproliferative HSC-derived myofibroblasts (-MF). Using bulk RNA-sequencing, we built oligogene signatures of the two cell populations that remained discriminant across myofibroblastic differentiation. SLIT2, a prototypical gene of PMSC/PMSC-MF signature, mediated profibrotic and angiogenic effects of these cells, which conditioned medium promoted HSC survival and endothelial cell tubulogenesis. Using PMSC/PMSC-MF 7-gene signature and slit guidance ligand 2 fluorescent in situ hybridization, we showed that PMSCs display a perivascular portal distribution in homeostatic liver and largely expand with fibrosis progression, contributing to the myofibroblast populations that form fibrotic septa, preferentially along neovessels, in murine and human liver disorders, irrespective of etiology. We also unraveled a 6-gene expression signature of HSCs/HSC-MFs that did not vary in these disorders, consistent with their low proliferation rate. CONCLUSIONS PMSCs form a small reservoir of expansive myofibroblasts, which, in interaction with neovessels and HSC-MFs that mainly arise through differentiation from a preexisting pool, underlie the formation of fibrotic septa in all types of liver diseases.
Collapse
Affiliation(s)
- Lin Lei
- Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, INSERM, Paris, France
| | - Alix Bruneau
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Haquima El Mourabit
- Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, INSERM, Paris, France
| | - Justine Guégan
- Institut du Cerveau (ICM), Bioinformatics/Biostatistics iCONICS Facility, Sorbonne Université, INSERM, Paris, France
| | - Trine Folseraas
- Division of Surgery, Inflammatory Medicine and Transplantation, Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Norwegian PSC Research Center, Oslo, Norway
| | - Sara Lemoinne
- Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, INSERM, Paris, France.,Department of Hepatology, Reference Center for Inflammatory Biliary Diseases and Autoimmune Hepatitis (CRMR MIVB-H, ERN RARE-LIVER), Assistance Publique-Hôpitaux de Paris (AP-HP), Saint-Antoine Hospital, Paris, France
| | - Tom Hemming Karlsen
- Division of Surgery, Inflammatory Medicine and Transplantation, Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Norwegian PSC Research Center, Oslo, Norway
| | - Bénédicte Hoareau
- Sorbonne Université, INSERM, UMS Production et Analyse de Données en Sciences de la Vie et en Santé (PASS), Cytométrie Pitié-Salpêtrière (CyPS), Paris, France
| | - Romain Morichon
- Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, INSERM, Paris, France
| | - Ester Gonzalez-Sanchez
- Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, INSERM, Paris, France
| | - Claire Goumard
- Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, INSERM, Paris, France.,Departments of Hepatology, Hepatobiliary Surgery and Liver Transplantation, AP-HP, Sorbonne Université, ICAN, Pitié-Salpêtrière Hospital, Paris, France
| | - Vlad Ratziu
- Departments of Hepatology, Hepatobiliary Surgery and Liver Transplantation, AP-HP, Sorbonne Université, ICAN, Pitié-Salpêtrière Hospital, Paris, France
| | - Pierre Charbord
- Institut de Biologie Paris Seine (IBPS), Laboratoire de Biologie du Développement, Sorbonne Université, CNRS, INSERM, Paris, France
| | - Jérémie Gautheron
- Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, INSERM, Paris, France
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Thierry Jaffredo
- Institut de Biologie Paris Seine (IBPS), Laboratoire de Biologie du Développement, Sorbonne Université, CNRS, INSERM, Paris, France
| | - Axelle Cadoret
- Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, INSERM, Paris, France
| | - Chantal Housset
- Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, INSERM, Paris, France.,Department of Hepatology, Reference Center for Inflammatory Biliary Diseases and Autoimmune Hepatitis (CRMR MIVB-H, ERN RARE-LIVER), Assistance Publique-Hôpitaux de Paris (AP-HP), Saint-Antoine Hospital, Paris, France
| |
Collapse
|
37
|
Deficiency in Inactive Rhomboid Protein2 (iRhom2) Alleviates Alcoholic Liver Fibrosis by Suppressing Inflammation and Oxidative Stress. Int J Mol Sci 2022; 23:ijms23147701. [PMID: 35887045 PMCID: PMC9317380 DOI: 10.3390/ijms23147701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/04/2022] [Accepted: 07/09/2022] [Indexed: 02/01/2023] Open
Abstract
Chronic alcohol exposure can lead to liver pathology relating to inflammation and oxidative stress, which are two of the major factors in the incidence of liver fibrosis and even liver cancer. The underlying molecular mechanisms regarding hepatic lesions associated with alcohol are not fully understood. Considering that the recently identified iRhom2 is a key pathogenic mediator of inflammation, we performed in vitro and in vivo experiments to explore its regulatory role in alcohol-induced liver fibrosis. We found that iRhom2 knockout significantly inhibited alcohol-induced inflammatory responses in vitro, including elevated expressions of inflammatory cytokines (IL-1β, IL-6, IL-18, and TNF-α) and genes associated with inflammatory signaling pathways, such as TACE (tumor necrosis factor-alpha converting enzyme), TNFR1 (tumor necrosis factor receptor 1), and TNFR2, as well as the activation of NF-κB. The in vivo results confirmed that long-term alcohol exposure leads to hepatocyte damage and fibrous accumulation. In this pathological process, the expression of iRhom2 is promoted to activate the TACE/NF-κB signaling pathway, leading to inflammatory responses. Furthermore, the deletion of iRhom2 blocks the TACE/NF-κB signaling pathway and reduces liver damage and fibrosis caused by alcohol. Additionally, the activation of the JNK/Nrf2/HO-1 signaling pathway caused by alcohol exposure was also noted in vitro and in vivo. In the same way, knockout or deleting iRhom2 blocked the JNK/Nrf2/HO-1 signaling pathway to regulate the oxidative stress. Therefore, we contend that iRhom2 is a key regulator that promotes inflammatory responses and regulates oxidative stress in alcoholic liver fibrosis lesions. We posit that iRhom2 is potentially a new therapeutic target for alcoholic liver fibrosis.
Collapse
|
38
|
Lan T, Xu T, Fu Y, Jiang S, Liang X, Yu Z, Pan L, Rong X, Guo J. Fufang Zhenzhu Tiaozhi Capsule Prevents Intestinal Inflammation and Barrier Disruption in Mice With Non-Alcoholic Steatohepatitis. Front Endocrinol (Lausanne) 2022; 13:864703. [PMID: 35784533 PMCID: PMC9243428 DOI: 10.3389/fendo.2022.864703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/10/2022] [Indexed: 11/30/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) has become a major cause of liver transplantation and liver-associated death. Targeting the gut-liver axis is a potential therapy for NASH. The Fufang Zhenzhu Tiaozhi (FTZ) capsule, a traditional Chinese medicine commonly used in clinical practice, has recently emerged as a promising drug candidate for metabolic diseases such as NASH. The present study aimed to investigate whether FTZ exerts an anti-NASH effect by targeting the gut-liver axis. Mice were fed with a high-fat diet (HFD) for 20 weeks to induce NASH. HFD-fed mice were daily intragastrically administrated with FTZ at 10 weeks after tbe initiation of HFD feeding. The mRNA levels of genes associated with the intestinal tight junction, lipid metabolism, and inflammation were determined by the q-PCR assay. Hepatic pathology was evaluated by H&E staining. The gut microbiota was analyzed by 16S rRNA gene sequencing. FTZ attenuated HFD-induced obesity, insulin resistance, and hepatic steatosis in mice. FTZ treatment decreased the elevated levels of serum aminotransferases and liver triglyceride in NASH mice. Furthermore, FTZ treatment reduced hepatic inflammatory cell infiltration and fibrosis in mice. In addition, FTZ attenuated the intestinal inflammatory response and improved intestinal barrier function. Mechanistically, FTZ-treated mice showed a different gut microbiota composition compared with that in HFD-fed mice. Finally, we identified eight differential metabolites that may contribute to the improvement of NASH with FTZ treatment. In summary, FTZ ameliorates NASH by inhibiting gut inflammation, improving intestinal barrier function, and modulating intestinal microbiota composition.
Collapse
Affiliation(s)
- Tian Lan
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou, China
- Guangdong Traditional Chinese Medicine Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| | - Tonghao Xu
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou, China
- Guangdong Traditional Chinese Medicine Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanfang Fu
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou, China
- Guangdong Traditional Chinese Medicine Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shuo Jiang
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou, China
- Guangdong Traditional Chinese Medicine Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaolin Liang
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou, China
- Guangdong Traditional Chinese Medicine Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ze Yu
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou, China
- Guangdong Traditional Chinese Medicine Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| | - Linyu Pan
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou, China
- Guangdong Traditional Chinese Medicine Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xianglu Rong
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou, China
- Guangdong Traditional Chinese Medicine Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiao Guo
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou, China
- Guangdong Traditional Chinese Medicine Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
39
|
Liu Q, Sun Y, Zhu Y, Qiao S, Cai J, Zhang Z. Melatonin relieves liver fibrosis induced by Txnrd3 knockdown and nickel exposure via IRE1/NF-kB/NLRP3 and PERK/TGF-β1 axis activation. Life Sci 2022; 301:120622. [PMID: 35537548 DOI: 10.1016/j.lfs.2022.120622] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 12/20/2022]
Abstract
AIMS Nickel(Ni) accumulates in the environment due to human activities such as electroplating, alloy production, stainless steel, Ni‑cadmium batteries and industrial production. Ni enriched in humans and animals through food chains, poses a serious health threat. Txnrd3, as a member of the thioredoxin reductase family, has long been thought to be testicular specific and involved in sperm maturation. However, its role in liver diseases still unknown. Melatonin exerts its antioxidant effects directly through its ability to clear free radicals and protects the liver from oxidative damage. Hepatic fibrosis with an ever-increasing incidence year by year, is correlating with outcome and risk of hepatocellular carcinoma. MATERIALS AND METHODS In this study, 60 8-week-old male C57BL/6 wild-type mice and 60 Txnrd3-/- mice were randomly divided into three groups, respectively. Control group was gavaged with distilled water, 10 mg/kg NiCl2 in Ni group, Ni + Mel group treated with 2 mg/kg melatonin in the morning, 10 mg/kg NiCl2 in the afternoon, serum and tissue was extracted after 21 days. KEY FINDINGS Results showed that liver function was significantly worse after Ni exposure, morphological and masson staining showed more significant liver fibrosis in Txnrd3-/- mice, damage of organelles in hepatocytes was observed. qPCR and WB results showed activation of the IRE1/Nuclear factor-kappa B/NLRP3 axis during Ni exposure lead to hepatocyte pyroptosis, while upregulation of PERK/TGF-β promoted liver fibrosis process and Txnrd3 knockout exacerbated liver damage during Ni exposure. SIGNIFICANCE The above results will lay the theoretical foundation for the monitoring and clinical treatment of Ni exposure.
Collapse
Affiliation(s)
- Qi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yue Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yue Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Senqiu Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jingzeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
40
|
Zou ML, Teng YY, Chen ZH, Liu SY, Jia Y, Zhang KW, Wu JJ, Yuan ZD, Tang XY, Yu S, Ye JX, Li X, Zhou XJ, Yuan FL. The uPA System Differentially Alters Fibroblast Fate and Profibrotic Ability in Skin Fibrosis. Front Immunol 2022; 13:845956. [PMID: 35371006 PMCID: PMC8966095 DOI: 10.3389/fimmu.2022.845956] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Skin fibrosis is a common pathological feature of various diseases, and few treatment strategies are available because of the molecular pathogenesis is poorly understood. The urokinase-type plasminogen activator (uPA) system is the major serine protease system, and its components uPA, urokinase plasminogen activator receptor (uPAR) and plasminogen activator inhibitor-1(PAI-1) are widely upregulated in fibrotic diseases, including hypertrophic scars, keloids, and scleroderma. Here, we found that the successful binding of uPA and uPAR activates the downstream peroxisome proliferator-activated receptor (PPAR) signalling pathway to reduce the proliferation, migration, and contraction of disease-derived fibroblasts, contributing to the alleviation of skin fibrosis. However, increased or robust upregulation of the inhibitor PAI-1 inhibits these effects, suggesting of the involvement of PAI-1 in skin fibrosis. Subsequent in vivo studies showed that uPAR inhibitors increased skin fibrosis in mouse models, while uPA agonists and PAI-1 inhibitors reversed these effects. Our findings demonstrate a novel role for the uPA system and highlights its relationships with skin fibrosis, thereby suggesting new therapeutic approaches targeting the uPA system.
Collapse
Affiliation(s)
- Ming-Li Zou
- Institute of Integrated Traditional Chinese and Western Medicine, The Affiliated Hospital of Jiangnan University, Wuxi, China.,Wuxi Hospital of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, China
| | - Ying-Ying Teng
- Institute of Integrated Traditional Chinese and Western Medicine, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Zhong-Hua Chen
- Institute of Integrated Traditional Chinese and Western Medicine, The Third Hospital Affiliated to Nantong University, Wuxi, China
| | - Si-Yu Liu
- Wuxi Hospital of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, China
| | - Yuan Jia
- Wuxi Hospital of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, China
| | - Kai-Wen Zhang
- Wuxi Hospital of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, China
| | - Jun-Jie Wu
- Institute of Integrated Traditional Chinese and Western Medicine, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Zheng-Dong Yuan
- Institute of Integrated Traditional Chinese and Western Medicine, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiao-Yu Tang
- Wuxi Hospital of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, China
| | - Shun Yu
- Institute of Integrated Traditional Chinese and Western Medicine, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Jun-Xing Ye
- Institute of Integrated Traditional Chinese and Western Medicine, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xia Li
- Institute of Integrated Traditional Chinese and Western Medicine, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiao-Jin Zhou
- Institute of Integrated Traditional Chinese and Western Medicine, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Feng-Lai Yuan
- Institute of Integrated Traditional Chinese and Western Medicine, The Affiliated Hospital of Jiangnan University, Wuxi, China.,Wuxi Hospital of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, China
| |
Collapse
|
41
|
Shang Q, Yang Y, Li H. LINC01605 knockdown induces apoptosis in human Tenon's capsule fibroblasts by inhibiting autophagy. Exp Ther Med 2022; 23:343. [PMID: 35401799 PMCID: PMC8988162 DOI: 10.3892/etm.2022.11273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 01/25/2022] [Indexed: 11/06/2022] Open
Abstract
Glaucoma is an irreversible disease that causes blindness. Formation of a hypertrophic scar (HS) is the main cause of failure of glaucoma surgery. The long non-coding RNA LINC01605 is closely associated with the formation of HS; however, the function of LINC01605 in the formation and development of HS remains unclear. For this study, firstly, human Tenon's capsule fibroblasts (HTFs) and corneal epithelial cells (control cells) were collected from patients (n=5) with POAG who underwent glaucoma filtration surgery at Fuyang People's Hospital. Immunofluorescence analysis was performed to detect the expression levels of vimentin (one of the main components of medium fiber and plays an important role in the cytoskeleton and motility), keratin (the main component of cytoskeletal proteins) and LC3 (an autophagy marker). In addition, reverse transcription-quantitative PCR analysis was performed to detect LINC01605 expression. Besides, the Cell Counting Kit-8 assay was performed to assess the viability of human Tenon's capsule fibroblasts (HTFs). Next, flow cytometry was performed to detect HTF apoptosis. Furthermore, western blot analysis was performed for Bax, Bcl-2, Pro-caspase-3, cleaved caspase-3, phosphorylated (p-)Smad2, Smad2, α-SMA, MMP9, ATG7, p62, beclin 1, p-AMPK and AMPK in HTFs to determine the mechanism by which LINC01605 regulates the formation and development of HS. Moreover, a Transwell assay was performed to detect the migratory ability of HTFs. The results demonstrated that LINC01605 was significantly upregulated in HS tissues compared with that in normal (control/healthy) tissues. In addition, vimentin was highly expressed in HTFs, whereas keratin was expressed at a low level. Also, in HTFs, LINC01605 knockdown inhibited cell viability by inducing apoptosis, decreasing Smad2 activation and inhibiting autophagy. Furthermore, LINC01605 knockdown significantly inhibited the migratory ability of HTFs. Transfection with LINC01605 small interference RNAs significantly downregulated the expression levels of p-Smad2, α-SMA and MMP9 in HTFs. Furthermore, LINC01605 knockdown notably inhibited the viability and migration, and induced the apoptosis of HTFs, the effects of which were reversed following treatment with TGF-β. Taken together, the results of the present study suggested that LINC01605 knockdown may inhibit the viability of HTFs by inducing the apoptotic pathway. These findings may provide novel directions for the treatment of HS.
Collapse
Affiliation(s)
- Qifei Shang
- Department of Ophthalmology, Fuyang People's Hospital, Hangzhou, Zhejiang 311400, P.R. China
| | - Yanhua Yang
- Department of Ophthalmology, Fuyang People's Hospital, Hangzhou, Zhejiang 311400, P.R. China
| | - Hangzhu Li
- Department of Ophthalmology, Fuyang People's Hospital, Hangzhou, Zhejiang 311400, P.R. China
| |
Collapse
|
42
|
Coll M, Ariño S, Mártinez-Sánchez C, Garcia-Pras E, Gallego J, Moles A, Aguilar-Bravo B, Blaya D, Vallverdú J, Rubio-Tomás T, Lozano JJ, Pose E, Graupera I, Fernández-Vidal A, Pol A, Bataller R, Geng JG, Ginès P, Fernandez M, Sancho-Bru P. Ductular reaction promotes intrahepatic angiogenesis through Slit2-Roundabout 1 signaling. Hepatology 2022; 75:353-368. [PMID: 34490644 PMCID: PMC8766889 DOI: 10.1002/hep.32140] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 07/08/2021] [Accepted: 08/06/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND AIMS Ductular reaction (DR) expands in chronic liver diseases and correlates with disease severity. Besides its potential role in liver regeneration, DR plays a role in the wound-healing response of the liver, promoting periductular fibrosis and inflammatory cell recruitment. However, there is no information regarding its role in intrahepatic angiogenesis. In the current study we investigated the potential contribution of DR cells to hepatic vascular remodeling during chronic liver disease. APPROACH AND RESULTS In mouse models of liver injury, DR cells express genes involved in angiogenesis. Among angiogenesis-related genes, the expression of Slit2 and its receptor Roundabout 1 (Robo1) was localized in DR cells and neoangiogenic vessels, respectively. The angiogenic role of the Slit2-Robo1 pathway in chronic liver disease was confirmed in ROBO1/2-/+ mice treated with 3,5-diethoxycarbonyl-1,4-dihydrocollidine, which displayed reduced intrahepatic neovascular density compared to wild-type mice. However, ROBO1/2 deficiency did not affect angiogenesis in partial hepatectomy. In patients with advanced alcohol-associated disease, angiogenesis was associated with DR, and up-regulation of SLIT2-ROBO1 correlated with DR and disease severity. In vitro, human liver-derived organoids produced SLIT2 and induced tube formation of endothelial cells. CONCLUSIONS Overall, our data indicate that DR expansion promotes angiogenesis through the Slit2-Robo1 pathway and recognize DR cells as key players in the liver wound-healing response.
Collapse
MESH Headings
- Animals
- Blood Vessels/metabolism
- Chronic Disease
- Disease Progression
- Gene Expression
- Gene Ontology
- Hepatitis, Alcoholic/pathology
- Hepatitis, Alcoholic/physiopathology
- Humans
- Intercellular Signaling Peptides and Proteins/genetics
- Intercellular Signaling Peptides and Proteins/metabolism
- Liver/metabolism
- Liver/physiopathology
- Liver Diseases, Alcoholic/genetics
- Liver Diseases, Alcoholic/metabolism
- Liver Diseases, Alcoholic/pathology
- Liver Diseases, Alcoholic/physiopathology
- Mice
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/pathology
- Neovascularization, Physiologic/genetics
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Organoids
- Patient Acuity
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Signal Transduction/genetics
- Stem Cells
- Up-Regulation
- Vascular Remodeling
- Wound Healing
- Roundabout Proteins
Collapse
Affiliation(s)
- Mar Coll
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Medicine department, Faculty of Medicine, University of Barcelona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Catalonia, Spain
| | - Silvia Ariño
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Celia Mártinez-Sánchez
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Ester Garcia-Pras
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Catalonia, Spain
| | - Javier Gallego
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Catalonia, Spain
| | - Anna Moles
- Cell Death and Proliferation, Institute of Biomedical Research of Barcelona, Spanish National Research Council, Barcelona, Catalonia, Spain
- Liver Unit, Hospital Clínic, Barcelona, Catalonia, Spain
| | - Beatriz Aguilar-Bravo
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Delia Blaya
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Julia Vallverdú
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Teresa Rubio-Tomás
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Juan Jose Lozano
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Catalonia, Spain
| | - Elisa Pose
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Catalonia, Spain
- Liver Unit, Hospital Clínic, Barcelona, Catalonia, Spain
| | - Isabel Graupera
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Medicine department, Faculty of Medicine, University of Barcelona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Catalonia, Spain
- Liver Unit, Hospital Clínic, Barcelona, Catalonia, Spain
| | - Andrea Fernández-Vidal
- Cell compartments and Signaling Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Albert Pol
- Cell compartments and Signaling Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Department of Biomedical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Catalonia, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| | - Ramón Bataller
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Jian-Guo Geng
- Department of Biologic and Material Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Pere Ginès
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Medicine department, Faculty of Medicine, University of Barcelona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Catalonia, Spain
- Liver Unit, Hospital Clínic, Barcelona, Catalonia, Spain
| | - Mercedes Fernandez
- Medicine department, Faculty of Medicine, University of Barcelona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Catalonia, Spain
| | - Pau Sancho-Bru
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Medicine department, Faculty of Medicine, University of Barcelona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Catalonia, Spain
| |
Collapse
|
43
|
Song M, Yang C. MiRNAs in liver fibrosis: new targets and opportunities for therapy. Microrna 2022:363-372. [DOI: 10.1016/b978-0-323-89774-7.00005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
44
|
Wang N, Li X, Zhong Z, Qiu Y, Liu S, Wu H, Tang X, Chen C, Fu Y, Chen Q, Guo T, Li J, Zhang S, Zern MA, Ma K, Wang B, Ou Y, Gu W, Cao J, Chen H, Duan Y. 3D hESC exosomes enriched with miR-6766-3p ameliorates liver fibrosis by attenuating activated stellate cells through targeting the TGFβRII-SMADS pathway. J Nanobiotechnology 2021; 19:437. [PMID: 34930304 PMCID: PMC8686281 DOI: 10.1186/s12951-021-01138-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/13/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Exosomes secreted from stem cells exerted salutary effects on the fibrotic liver. Herein, the roles of exosomes derived from human embryonic stem cell (hESC) in anti-fibrosis were extensively investigated. Compared with two-dimensional (2D) culture, the clinical and biological relevance of three-dimensional (3D) cell spheroids were greater because of their higher regeneration potential since they behave more like cells in vivo. In our study, exosomes derived from 3D human embryonic stem cells (hESC) spheroids and the monolayer (2D) hESCs were collected and compared the therapeutic potential for fibrotic liver in vitro and in vivo. RESULTS In vitro, PKH26 labeled-hESC-Exosomes were shown to be internalized and integrated into TGFβ-activated-LX2 cells, and reduced the expression of profibrogenic markers, thereby regulating cellular phenotypes. TPEF imaging indicated that PKH26-labeled-3D-hESC-Exsomes possessed an enhanced capacity to accumulate in the livers and exhibited more dramatic therapeutic potential in the injured livers of fibrosis mouse model. 3D-hESC-Exosomes decreased profibrogenic markers and liver injury markers, and improved the level of liver functioning proteins, eventually restoring liver function of fibrosis mice. miRNA array revealed a significant enrichment of miR-6766-3p in 3D-hESC-Exosomes, moreover, bioinformatics and dual luciferase reporter assay identified and confirmed the TGFβRII gene as the target of miR-6766-3p. Furthermore, the delivery of miR-6766-3p into activated-LX2 cells decreased cell proliferation, chemotaxis and profibrotic effects, and further investigation demonstrated that the expression of target gene TGFβRII and its downstream SMADs proteins, especially phosphorylated protein p-SMAD2/3 was also notably down-regulated by miR-6766-3p. These findings unveiled that miR-6766-3p in 3D-hESC-Exosomes inactivated SMADs signaling by inhibiting TGFβRII expression, consequently attenuating stellate cell activation and suppressing liver fibrosis. CONCLUSIONS Our results showed that miR-6766-3p in the 3D-hESC-Exosomes inactivates smads signaling by restraining TGFβRII expression, attenuated LX2 cell activation and suppressed liver fibrosis, suggesting that 3D-hESC-Exosome enriched-miR-6766-3p is a novel anti-fibrotic therapeutics for treating chronic liver disease. These results also proposed a significant strategy that 3D-Exo could be used as natural nanoparticles to rescue liver injury via delivering antifibrotic miR-6766-3p.
Collapse
Affiliation(s)
- Ning Wang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006, People's Republic of China
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, No.382 Waihuan East Road, Suite 406, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China
| | - Xiajing Li
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, No.382 Waihuan East Road, Suite 406, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China
- School of Medicine, South China University of Technology, Guangzhou, 510180, People's Republic of China
| | - Zhiyong Zhong
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006, People's Republic of China
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, No.382 Waihuan East Road, Suite 406, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China
| | - Yaqi Qiu
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, No.382 Waihuan East Road, Suite 406, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China
| | - Shoupei Liu
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, No.382 Waihuan East Road, Suite 406, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China
| | - Haibin Wu
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, No.382 Waihuan East Road, Suite 406, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China
| | - Xianglian Tang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006, People's Republic of China
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, No.382 Waihuan East Road, Suite 406, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China
| | - Chuxin Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Yingjie Fu
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, No.382 Waihuan East Road, Suite 406, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China
| | - Qicong Chen
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006, People's Republic of China
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, No.382 Waihuan East Road, Suite 406, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China
| | - Tingting Guo
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, No.382 Waihuan East Road, Suite 406, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shuai Zhang
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No.1 Panfu Road, Guangzhou, 510180, People's Republic of China
| | - Mark A Zern
- Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA, 95817, USA
| | - Keqiang Ma
- Department of Hepatobiliary Pancreatic Surgery, Huadu District People's Hospital of Guangzhou, Guangzhou, 510800, People's Republic of China
| | - Bailin Wang
- Department of General Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, 510220, People's Republic of China
| | - Yimeng Ou
- Department of General Surgery, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, People's Republic of China
| | - Weili Gu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No.1 Panfu Road, Guangzhou, 510180, People's Republic of China.
| | - Jie Cao
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No.1 Panfu Road, Guangzhou, 510180, People's Republic of China.
| | - Honglin Chen
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, No.382 Waihuan East Road, Suite 406, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, People's Republic of China.
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, People's Republic of China.
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, People's Republic of China.
- Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, People's Republic of China.
| | - Yuyou Duan
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, No.382 Waihuan East Road, Suite 406, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, People's Republic of China.
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, People's Republic of China.
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, People's Republic of China.
- Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
45
|
Wang Z, Yang X, Gui S, Yang F, Cao Z, Cheng R, Xia X, Li C. The Roles and Mechanisms of lncRNAs in Liver Fibrosis. Front Pharmacol 2021; 12:779606. [PMID: 34899344 PMCID: PMC8652206 DOI: 10.3389/fphar.2021.779606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) can potentially regulate all aspects of cellular activity including differentiation and development, metabolism, proliferation, apoptosis, and activation, and benefited from advances in transcriptomic and genomic research techniques and database management technologies, its functions and mechanisms in physiological and pathological states have been widely reported. Liver fibrosis is typically characterized by a reversible wound healing response, often accompanied by an excessive accumulation of extracellular matrix. In recent years, a range of lncRNAs have been investigated and found to be involved in several cellular-level regulatory processes as competing endogenous RNAs (ceRNAs) that play an important role in the development of liver fibrosis. A variety of lncRNAs have also been shown to contribute to the altered cell cycle, proliferation profile associated with the accelerated development of liver fibrosis. This review aims to discuss the functions and mechanisms of lncRNAs in the development and regression of liver fibrosis, to explore the major lncRNAs involved in the signaling pathways regulating liver fibrosis, to elucidate the mechanisms mediated by lncRNA dysregulation and to provide new diagnostic and therapeutic strategies for liver fibrosis.
Collapse
Affiliation(s)
- Zhifa Wang
- Department of Rehabilitation Medicine, Chaohu Hospital of Anhui Medical University, Hefei Anhui, China
| | - Xiaoke Yang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Siyu Gui
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fan Yang
- The First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Zhuo Cao
- The First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Rong Cheng
- Department of Gastroenterology, Anhui Provincial Children's Hospital, Hefei, China
| | - Xiaowei Xia
- Department of Gastroenterology, Anhui Provincial Children's Hospital, Hefei, China
| | - Chuanying Li
- Department of Gastroenterology, Anhui Provincial Children's Hospital, Hefei, China
| |
Collapse
|
46
|
Liu JW, Liu HT, Chen L. The Therapeutic Role of Slit2 in Anti-fibrosis, Anti-inflammation and Anti-oxidative Stress in Rats with Coronary Heart Disease. Cardiovasc Toxicol 2021; 21:973-983. [PMID: 34410632 DOI: 10.1007/s12012-021-09688-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/05/2021] [Indexed: 11/28/2022]
Abstract
To investigate the efficacy of Slit2 in the rats with coronary heart disease (CHD). CHD model were constructed by feeding high-fat food and injecting with pituitrin in rat, followed by recombinant Slit2 treatment, and then the cardiac function was evaluated by echocardiography, and the indicators concerning the cardiomyocyte injury markers and lipoprotein status and oxidative stress were measured. The Slit2 expression in the heart tissues was identified by immunofluorescence. Enzyme-linked immunosorbent assay (ELISA) was carried out to detect inflammatory cytokines, H2DCFDA staining to determine the ROS generation in heart tissues, Masson trichrome staining to observe myocardial fibrosis, and qRT-PCR and Western blotting to detect gene and protein expressions. Slit2 decreased the levels of LDH, CK-MB, cTnI, TG, TC and LDL-C and increased HDL-C level in CHD rats. In the normal heart tissues, Slit2 expression was significantly lower in cardiomyocytes than cardiac fibroblasts. Furthermore, the expressions of VCAM-1, ICAM-1, fibronectin and TGF-β1 were increased in the heart tissues of CHD rats with the obvious myocardial fibrosis, which were dose-dependently reversed by recombinant Slit2. In addition, recombinant Slit2 also dose-dependently increased the activity of NO, SOD, CAT and GSH-Px, and decreased TNF-α, IL-6, MCP-1, MDA and ROS in CHD rats. Slit2 was downregulated in myocardial tissue and plasma of CHD rats. Recombinant Slit2, by regulating the level of blood lipid, can relieve the myocardial fibrosis, inflammation and oxidative stress in CHD.
Collapse
Affiliation(s)
- Ji-Wei Liu
- Heart Function Examination Room, Jingzhou Central Hospital, Hubei, China
| | - Hai-Tao Liu
- Department of Cardiovascular Medicine, Binzhou People's Hospital, Shandong, China
| | - Lin Chen
- Department of Cardiology, the People's Hospital of Rizhao, No. 126, Tai'an Road, Rizhao, 276826, China.
| |
Collapse
|
47
|
Liu T, Chen S, Xie X, Liu H, Wang Y, Qi S, Shi L, Zhou X, Zhang J, Wang S, Wang Y, Chen S, Dou S, Jiang X, Cui R, Jiang H. Soluble TREM-1, as a new ligand for the membrane receptor Robo2, promotes hepatic stellate cells activation and liver fibrosis. J Cell Mol Med 2021; 25:11113-11127. [PMID: 34750987 PMCID: PMC8650037 DOI: 10.1111/jcmm.17033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/22/2021] [Accepted: 10/09/2021] [Indexed: 12/12/2022] Open
Abstract
Triggering receptor expressed on myeloid cells‐1 (TREM‐1) exists in two forms: a transmembrane form and a soluble form (sTREM‐1). The levels of sTREM‐1 are elevated in supernatants of activated HSCs. However, the role of sTREM‐1 in HSC activation and liver fibrosis remains undefined. Previous studies have primarily focused on the transmembrane form of TREM‐1; we innovatively observed the function of sTREM‐1 as a ligand in liver fibrosis and screened its receptor. Here, recombinant sTREM‐1 was used as a stimulator which induced HSC activation and further aggravated liver fibrosis. Then, screening for sTREM‐1 interacting membrane receptors was performed using pull‐down assay followed by mass spectrometry, and the membrane receptor roundabout guidance receptor 2 (Robo2) was identified as a candidate receptor for sTREM‐1. The interaction between sTREM‐1 and Robo2 was verified by pull‐down and immunofluorescence. The role of Robo2 on sTREM‐1‐induced HSC activation and its downstream signal pathways was assessed by knockdown of Robo2 in LX‐2 cells. Furthermore, HSC‐specific knockdown of Robo2 was achieved in a mouse model of liver fibrosis by using a recombinant adeno‐associated virus (AAV) vector to confirm the role of the receptor, and we proved that Robo2 knockdown inhibited the activation of HSC and liver fibrosis, which also led to the inactivation of Smad2/3 and PI3K/Akt pathways in sTREM‐1‐induced HSC activation and liver fibrosis. In conclusion, sTREM‐1 acts as a new ligand of Robo2; the binding of sTREM‐1 to Robo2 initiates the activation of the downstream Smad2/3 and PI3K/Akt signalling pathways, thereby promoting HSC activation and liver fibrosis.
Collapse
Affiliation(s)
- Ting Liu
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, Shijiazhuang, Hebei, China
| | - Shujia Chen
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, Shijiazhuang, Hebei, China.,Department of Gastroenterology, Shijiazhuang People's Hospital, Shijiazhuang, Hebei, China
| | - Xiaoli Xie
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, Shijiazhuang, Hebei, China
| | - Hongqun Liu
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, Shijiazhuang, Hebei, China
| | - Yongjuan Wang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, Shijiazhuang, Hebei, China
| | - Shengbin Qi
- Department of General Surgery, Shijiazhuang People's Hospital, Shijiazhuang, Hebei, China
| | - Linping Shi
- Department of Gastroenterology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Xue Zhou
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, Shijiazhuang, Hebei, China
| | - Jiuna Zhang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, Shijiazhuang, Hebei, China
| | - Shuling Wang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, Shijiazhuang, Hebei, China
| | - Yijun Wang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, Shijiazhuang, Hebei, China
| | - Shengxiong Chen
- Department of Hepatobiliary Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shiying Dou
- Department of infectious diseases, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaoyu Jiang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, Shijiazhuang, Hebei, China
| | - Ruolin Cui
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, Shijiazhuang, Hebei, China
| | - Huiqing Jiang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, Shijiazhuang, Hebei, China
| |
Collapse
|
48
|
Zhai R, Feng L, Zhang Y, Liu W, Li S, Hu Z. Combined Transcriptomic and Lipidomic Analysis Reveals Dysregulated Genes Expression and Lipid Metabolism Profiles in the Early Stage of Fatty Liver Disease in Rats. Front Nutr 2021; 8:733197. [PMID: 34604283 PMCID: PMC8484319 DOI: 10.3389/fnut.2021.733197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/20/2021] [Indexed: 12/25/2022] Open
Abstract
Non-alcoholic fatty liver disease develops from simple steatosis to non-alcoholic steatohepatitis (NASH), which then potentially develops into liver cirrhosis. It is a serious threat to human health. Therefore, investigating the formation and development mechanism of non-alcoholic fatty liver disease (NAFLD) is of great significance. Herein, an early model of NAFLD was successfully established by feeding rats with a high-fat and choline-deficient diet. Liver tissue samples were obtained from rats in the fatty liver model group (NAFL) and normal diet control group (CON). Afterward, transcriptome and lipidomic analysis was performed. Transcriptome results revealed that 178 differentially expressed genes were detected in NAFL and CON groups. Out of which, 105 genes were up-regulated, 73 genes were downregulated, and 8 pathways were significantly enriched. A total of 982 metabolites were detected in lipidomic analysis. Out of which 474 metabolites were significantly different, 273 were up-regulated, 201 were downregulated, and 7 pathways were significantly enriched. Based on the joint analysis, 3 common enrichment pathways were found, including cholesterol metabolism and fat digestion and absorption metabolic pathways. Overall, in the early stage of NAFLD, a small number of genetic changes caused a strong response to lipid components. The strongest reflection was glycerides and glycerophospholipids. A significant increase in fatty acid uptake accompanied by cholesterol metabolism is the most prominent metabolic feature of the liver in the early stage of NAFLD. In the early stage of fatty liver, the liver had shown the characteristics of NASH.
Collapse
Affiliation(s)
- Ruina Zhai
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Lei Feng
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Yu Zhang
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Wei Liu
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhiyong Hu
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| |
Collapse
|
49
|
Tosti L, Hang Y, Debnath O, Tiesmeyer S, Trefzer T, Steiger K, Ten FW, Lukassen S, Ballke S, Kühl AA, Spieckermann S, Bottino R, Ishaque N, Weichert W, Kim SK, Eils R, Conrad C. Single-Nucleus and In Situ RNA-Sequencing Reveal Cell Topographies in the Human Pancreas. Gastroenterology 2021; 160:1330-1344.e11. [PMID: 33212097 DOI: 10.1053/j.gastro.2020.11.010] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Molecular evidence of cellular heterogeneity in the human exocrine pancreas has not been yet established because of the local concentration and cascade of hydrolytic enzymes that can rapidly degrade cells and RNA upon pancreatic resection. We sought to better understand the heterogeneity and cellular composition of the pancreas in neonates and adults in healthy and diseased conditions using single-cell sequencing approaches. METHODS We innovated single-nucleus RNA-sequencing protocols and profiled more than 120,000 cells from pancreata of adult and neonatal human donors. We validated the single-nucleus findings using RNA fluorescence in situ hybridization, in situ sequencing, and computational approaches. RESULTS We created the first comprehensive atlas of human pancreas cells including epithelial and nonepithelial constituents, and uncovered 3 distinct acinar cell types, with possible implications for homeostatic and inflammatory processes of the pancreas. The comparison with neonatal single-nucleus sequencing data showed a different cellular composition of the endocrine tissue, highlighting the tissue dynamics occurring during development. By applying spatial cartography, involving cell proximity mapping through in situ sequencing, we found evidence of specific cell type neighborhoods, dynamic topographies in the endocrine and exocrine pancreas, and principles of morphologic organization of the organ. Furthermore, similar analyses in chronic pancreatitis biopsy samples showed the presence of acinar-REG+ cells, a reciprocal association between macrophages and activated stellate cells, and a new potential role of tuft cells in this disease. CONCLUSIONS Our human pancreas cell atlas can be interrogated to understand pancreatic cell biology and provides a crucial reference set for comparisons with diseased tissue samples to map the cellular foundations of pancreatic diseases.
Collapse
Affiliation(s)
- Luca Tosti
- Center for Digital Health, Berlin Institute of Health and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Yan Hang
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, California
| | - Olivia Debnath
- Center for Digital Health, Berlin Institute of Health and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sebastian Tiesmeyer
- Center for Digital Health, Berlin Institute of Health and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Timo Trefzer
- Center for Digital Health, Berlin Institute of Health and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Katja Steiger
- Institute of Pathology, Technische Universität München, Munich, Germany
| | - Foo Wei Ten
- Center for Digital Health, Berlin Institute of Health and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sören Lukassen
- Center for Digital Health, Berlin Institute of Health and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Simone Ballke
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, California
| | - Anja A Kühl
- iPATH.Berlin, Berlin Institute of Health and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Simone Spieckermann
- iPATH.Berlin, Berlin Institute of Health and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Rita Bottino
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, Pennsylvania
| | - Naveed Ishaque
- Center for Digital Health, Berlin Institute of Health and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Wilko Weichert
- Institute of Pathology, Technische Universität München, Munich, Germany
| | - Seung K Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, California; Department of Medicine, Endocrinology Division, Stanford University School of Medicine, Stanford, California.
| | - Roland Eils
- Center for Digital Health, Berlin Institute of Health and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany; Health Data Science Unit, Medical Faculty and BioQuant, University of Heidelberg, Heidelberg, Germany.
| | - Christian Conrad
- Center for Digital Health, Berlin Institute of Health and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
50
|
Kang R, Tian W, Cao W, Sun Y, Zhang HN, Feng YD, Li C, Li ZZ, Li XQ. Ligustroflavone ameliorates CCl 4-induced liver fibrosis through down-regulating the TGF-β/Smad signaling pathway. Chin J Nat Med 2021; 19:170-180. [PMID: 33781450 DOI: 10.1016/s1875-5364(21)60018-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Indexed: 01/20/2023]
Abstract
Liver fibrosis is a pathological process characterized by excess deposition of extracellular matrix (ECM) that are mainly derived from activated hepatic stellate cells. Previous studies suggested that ligustroflavone (LF) was an ingredient of Ligustrum lucidum Ait. with activities of anti-inflammation and anti-oxidation. In this study, we investigated whether LF had any effect on liver fibrosis. In our study, we established a mouse model of carbon tetrachloride (CCl4)-induced liver fibrosis and used TGF-β1-stimulated human hepatic stellate cell line (LX-2) to explore the effect of LF and associated underlying mechanism. LF was used in vivo with low dose (L-LF, 5 mg·kg-1, i.p., 3 times each week) and high dose (H-LF, 20 mg·kg-1, i.p., 3 times each week) and in vitro (25 μmol·L-1). Histopathological and biochemical assays investigations showed that LF delayed the formation of liver fibrosis; decreased AST, ALT activities and increased Alb activity in serum; decreased MDA level, Hyp content and increased GSH-Px concentration, SOD activity in liver tissues. Moreover, immunohistochemical, immunofluorescent and Western blot results showed that LF reduced the expressions of hepatic stellate cells specific marker proteins, including collagen I and α-SMA in vivo and in vitro. In addition, LF markedly suppressed TGF-β1-upregulated protein expressions of TβR I, TβR II, P-Smad2, P-Smad3 and Smad4 in LX-2 cells. Taken together, these findings demonstrated LF could decrease histopathological lesions, ameliorate oxidative injury, attenuate CCl4-induced liver fibrosis, which may be associated with down-regulating the TGF-β/Smad signaling pathway.
Collapse
Affiliation(s)
- Rong Kang
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an 710032, China; Department of Natural Medicine and Institute of Materia Medica, Fourth Military Medical University, Xi'an 710032, China
| | - Wen Tian
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Wei Cao
- Department of Natural Medicine and Institute of Materia Medica, Fourth Military Medical University, Xi'an 710032, China; Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling 712000, China
| | - Yang Sun
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Hui-Nan Zhang
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Ying-Da Feng
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Chen Li
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Ze-Zhi Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling 712000, China
| | - Xiao-Qiang Li
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|