1
|
Lyu X, Sze KMF, Lee JMF, Husain A, Tian L, Imbeaud S, Zucman-Rossi J, Ng IOL, Ho DWH. Disparity landscapes of viral-induced structural variations in HCC: Mechanistic characterization and functional implications. Hepatology 2025; 81:1805-1821. [PMID: 39270063 PMCID: PMC12077337 DOI: 10.1097/hep.0000000000001087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND AND AIMS HCC is the most common type of primary liver cancer and is a common malignancy worldwide. About half of all new liver cancers worldwide each year occur in China, including Hong Kong, due to a high prevalence of HBV infection. HBV DNA integrates into the human genome, disrupting the endogenous tumor suppressors/regulatory genes or enhancing the activity of proto-oncogenes. It would be useful to examine the different NGS-based databases to provide a more unbiased and comprehensive survey of HBV integration. APPROACH AND RESULTS We aimed to take advantage of publicly available data sets of different regional cohorts to determine the disparity landscapes of integration events among sample cohorts, tissue types, chromosomal positions, individual host, and viral genes, as well as genic locations. By comparing HCC tumors with non tumorous livers, the landscape of HBV integration was delineated in gene-independent and gene-dependent manners. Moreover, we performed mechanistic investigations on how HBV-TERT integration led to TERT activation and derived a score to predict patients' prognostication according to their clonal disparity landscape of HBV integration. CONCLUSIONS Our study uncovered the different levels of clonal enrichment of HBV integration and identified mechanistic insights and prognostic biomarkers. This strengthens our understanding of HBV-associated hepatocarcinogenesis.
Collapse
Affiliation(s)
- Xueying Lyu
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Hong Kong
| | - Karen Man-Fong Sze
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Hong Kong
| | - Joyce Man-Fong Lee
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Hong Kong
| | - Abdullah Husain
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Hong Kong
| | - Lu Tian
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Hong Kong
| | - Sandrine Imbeaud
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, Paris, France
- FunGeST lab, Equipe Labellisée Ligue Nationale Contre le Cancer, Labex Onco-Immunology, Institute du Cancer Paris CARPEM, AP-HP, Paris, France
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, Paris, France
- FunGeST lab, Equipe Labellisée Ligue Nationale Contre le Cancer, Labex Onco-Immunology, Institute du Cancer Paris CARPEM, AP-HP, Paris, France
| | - Irene Oi-Lin Ng
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Hong Kong
| | - Daniel Wai-Hung Ho
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Hong Kong
| |
Collapse
|
2
|
Wu L, Yang Z, Zheng M. Biogenesis of serum HBV RNA and clinical phenomena of serum HBV RNA in chronic hepatitis B patients before and after receiving nucleos(t)ide analogues therapy. J Viral Hepat 2024; 31:255-265. [PMID: 38332479 DOI: 10.1111/jvh.13926] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/20/2023] [Accepted: 01/17/2024] [Indexed: 02/10/2024]
Abstract
There are estimated 300 million people afflicted with chronic hepatitis B (CHB) worldwide. The risk of liver cirrhosis and hepatocellular carcinoma (HCC) increases considerably with chronic hepatitis B infection. While current therapeutics are effective in controlling hepatitis B virus (HBV) infection and disease progression, a cure for HBV infection remains unattainable due to an intranuclear replicative intermediate known as covalently closed circular DNA (cccDNA). It has recently been shown that serum HBV RNA is a non-invasive biomarker that reflects cccDNA transcriptional activity. This review provides a comprehensive overview and the latest updates on the molecular characteristics and clinical significance of serum HBV RNA, such as species of serum HBV RNA, forms of serum HBV RNA carriers and predictive value for relapses in CHB patients after nucleos(t)ide analogues (NAs) discontinuation and development of liver fibrosis and HCC. Furthermore, we summarize standardized assays for testing serum HBV RNA, the dynamic changes of serum HBV RNA levels in treatment-naïve CHB patients and those under NAs therapy, as well as the host and viral influencing factors of serum HBV RNA levels. Finally, we discuss the future perspectives in studies of serum HBV RNA.
Collapse
Affiliation(s)
- Liandong Wu
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhenggang Yang
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Min Zheng
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Gao N, Guan G, Xu G, Wu H, Xie C, Mo Z, Deng H, Xiao S, Deng Z, Peng L, Lu F, Zhao Q, Gao Z. Integrated HBV DNA and cccDNA maintain transcriptional activity in intrahepatic HBsAg-positive patients with functional cure following PEG-IFN-based therapy. Aliment Pharmacol Ther 2023; 58:1086-1098. [PMID: 37644711 DOI: 10.1111/apt.17670] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/04/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Hepatitis B surface antigen (HBsAg) seroclearance marks regression of hepatitis B virus (HBV) infection. However, more than one-fifth of patients with functional cure following pegylated interferon-based therapy may experience HBsAg seroreversion. The mechanisms causing the HBV relapse remain unclear. AIM To investigate the level and origin of HBV transcripts in patients with functional cure and their role in predicting relapse. METHODS Liver tissue obtained from patients with functional cure, as well as uncured and treatment-naïve HBeAg-negative patients with chronic hepatitis B (CHB) were analysed for intrahepatic HBV markers. HBV capture and RNA sequencing were used to detect HBV integration and chimeric transcripts. RESULTS Covalently closed circular DNA (cccDNA) levels and the proportion of HBsAg-positive hepatocytes in functionally cured patients were significantly lower than those in uncured and treatment-naïve HBeAg-negative patients. Integrated HBV DNA and chimeric transcripts declined in functionally cured patients compared to uncured patients. HBsAg-positive hepatocytes present in 25.5% of functionally cured patients, while intrahepatic HBV RNA remained in 72.2%. The levels of intrahepatic HBV RNA, integrated HBV DNA, and chimeric transcripts were higher in functionally cured patients with intrahepatic HBsAg than in those without. The residual intrahepatic HBsAg in functionally cured patients was mainly derived from transcriptionally active integrated HBV DNA; meanwhile, trace transcriptional activity of cccDNA could also remain. Two out of four functionally cured patients with intrahepatic HBsAg and trace active cccDNA experienced HBV relapse. CONCLUSION Integrated HBV DNA and cccDNA maintain transcriptional activity and maybe involved in HBsAg seroreversion in intrahepatic HBsAg-positive patients with functional cure and linked to virological relapse.
Collapse
Affiliation(s)
- Na Gao
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Guiwen Guan
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Ganlin Xu
- South China Institute of Biomedicine, Guangzhou, Guangdong, China
| | - Haishi Wu
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Chan Xie
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhishuo Mo
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Hong Deng
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shuying Xiao
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | | | - Liang Peng
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Fengmin Lu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Qiyi Zhao
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Zhiliang Gao
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Li Y, Gan L, Lu M, Zhang X, Tong X, Qi D, Zhao Y, Ye X. HBx downregulated decorin and decorin-derived peptides inhibit the proliferation and tumorigenicity of hepatocellular carcinoma cells. FASEB J 2023; 37:e22871. [PMID: 36929160 DOI: 10.1096/fj.202200999rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 02/03/2023] [Accepted: 03/01/2023] [Indexed: 03/18/2023]
Abstract
Hepatitis B virus (HBV) is one of the important risk factors in inducing the occurrence and development of liver cancer, while the mechanism has not been fully clarified. In this study, we found decorin (DCN) was significantly reduced in HBV transgenic cell line HepG2-4D14 compared to HepG2. The data from hepatocellular carcinoma (HCC) patients indicated that the level of DCN mRNA was significantly lower in tumor tissues than healthy control and positively correlated with the survival of HCC patients. We revealed that HBV HBx can inhibit the transcription of DCN by blocking p53 activity. Functional analysis demonstrated that overexpression of DCN substantially inhibits the proliferation of HCC cells, while knockdown of DCN enhances the proliferation of HCC cells. It is known that DCN could competitively bind to c-Met to inhibit HGF/c-Met signaling pathway to inhibit the development of HCC. Therefore, we screened the novel antitumor peptides derived from DCN based on the sequence of DCN and the complex structure of HGF/c-Met with virtual screening and identified a set of DCN-derived peptides (DCN-Ps) which may competitively bind to c-Met. We found that 5 of peptides can reduce the proliferation and migration of HepG2 cells significantly. Among them, DCN-P#3 can inhibit the growth of HCC cells both in vitro and in vivo. In conclusion, we discovered that HBV HBx downregulates the expression of DCN, which in turn promotes the proliferation of hepatocytes and the development of HCC. We identified DCN-derived antitumor peptides which provides the candidates for developing novel drugs against HCC.
Collapse
Affiliation(s)
- Yong Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Lipeng Gan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Min Lu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaodan Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaomei Tong
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Dandan Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Yan Zhao
- Department of General Surgery, Strategic Support Force Medical Center, Beijing, China
| | - Xin Ye
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Xu C, Cheng S, Chen K, Song Q, Liu C, Fan C, Zhang R, Zhu Q, Wu Z, Wang Y, Fan J, Zheng H, Lu L, Chen T, Zhao H, Jiao Y, Qu C. Sex Differences in Genomic Features of Hepatitis B-Associated Hepatocellular Carcinoma With Distinct Antitumor Immunity. Cell Mol Gastroenterol Hepatol 2022; 15:327-354. [PMID: 36272708 PMCID: PMC9772570 DOI: 10.1016/j.jcmgh.2022.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND & AIMS Aflatoxin exposure increases the risk for hepatocellular carcinoma (HCC) in hepatitis B virus (HBV)-infected individuals, particularly males. We investigated sex-based differences in the HCC genome and antitumor immunity. METHODS Whole-genome, whole-exome, and RNA sequencing were performed on 101 HCC patient samples (47 males, 54 females) that resulted from HBV infection and aflatoxin exposure from Qidong. Androgen on the expression of aflatoxin metabolism-related genes and nonhomologous DNA end joining (NHEJ) factors were examined in HBV-positive HCC cell lines, and further tested in tumor-bearing syngeneic mice. RESULTS Qidong HCC differed between males and females in genomic landscape and transcriptional dysfunction pathways. Compared with females, males expressed higher levels of aflatoxin metabolism-related genes, such as AHR and CYP1A1, and lower levels of NHEJ factors, such as XRCC4, LIG4, and MRE11, showed a signature of up-regulated type I interferon signaling/response and repressed antitumor immunity. Treatment with AFB1 in HBV-positive cells, the addition of 2 nmol/L testosterone to cultures significantly increased the expression of aflatoxin metabolism-related genes, but reduced NHEJ factors, resulting in more nuclear DNA leakage into cytosol to activate cGAS-STING. In syngeneic tumor-bearing mice that were administrated tamoxifen daily via oral gavage, favorable androgen signaling repressed NHEJ factor expression and activated cGAS-STING in tumors, increasing T-cell infiltration and improving anti-programmed cell death protein 1 treatment effect. CONCLUSIONS Androgen signaling in the context of genotoxic stress repressed DNA damage repair. The alteration caused more nuclear DNA leakage into cytosol to activate the cGAS-STING pathway, which increased T-cell infiltration into tumor mass and improved anti-programmed cell death protein 1 immunotherapy in HCCs.
Collapse
Affiliation(s)
- Chungui Xu
- State Key Lab of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; Immunology Department, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Shaoyan Cheng
- State Key Lab of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; Immunology Department, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Kun Chen
- State Key Lab of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; Immunology Department, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Qianqian Song
- State Key Lab of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Chang Liu
- State Key Lab of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; Immunology Department, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Chunsun Fan
- Qidong Liver Cancer Institute, Qidong People's Hospital, Qidong, Jiangsu Province, China
| | - Ruochan Zhang
- State Key Lab of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; Immunology Department, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Qing Zhu
- State Key Lab of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zhiyuan Wu
- State Key Lab of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; Immunology Department, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yuting Wang
- State Key Lab of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; Immunology Department, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jian Fan
- Qidong Liver Cancer Institute, Qidong People's Hospital, Qidong, Jiangsu Province, China
| | - Hongwei Zheng
- Qidong Liver Cancer Institute, Qidong People's Hospital, Qidong, Jiangsu Province, China
| | - Lingling Lu
- Qidong Liver Cancer Institute, Qidong People's Hospital, Qidong, Jiangsu Province, China
| | - Taoyang Chen
- Qidong Liver Cancer Institute, Qidong People's Hospital, Qidong, Jiangsu Province, China
| | - Hong Zhao
- State Key Lab of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; Department of Hepatobiliary Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| | - Yuchen Jiao
- State Key Lab of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| | - Chunfeng Qu
- State Key Lab of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; Immunology Department, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| |
Collapse
|
6
|
Screening of the Key Genes for the Progression of Liver Cirrhosis to Hepatocellular Carcinoma Based on Bioinformatics. JOURNAL OF ONCOLOGY 2022; 2022:2515513. [PMID: 36199789 PMCID: PMC9529408 DOI: 10.1155/2022/2515513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022]
Abstract
Hepatocellular carcinoma (HCC), which is among the most globally prevalent cancers, is strongly associated with liver cirrhosis. Using a bioinformatics approach, we have identified and investigated the hub genes responsible for the progression of cirrhosis into HCC. We analyzed the Gene Expression Omnibus (GEO) microarray datasets, GSE25097 and GSE17549, to identify differentially expressed genes (DEGs) in these two conditions and also performed protein-protein interaction (PPI) network analysis. STRING database and Cytoscape software were used to analyze the modules and locate hub genes following which the connections between hub genes and the transition from cirrhosis to HCC, progression of HCC, and prognosis of HCC were investigated. We used the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis to detect the molecular mechanisms underlying the action of the primary hub genes. In all, 239 DEGs were obtained, with 94 of them showing evidence of upregulation and 145 showing evidence of downregulation in HCC tissues as compared to cirrhotic liver tissues. We identified six hub genes, namely, BUB1B, NUSAP1, TTK, HMMR, CCNA2, and KIF2C, which were upregulated and had a high diagnostic value for HCC. Besides, these six hub genes were positively related to immune cell infiltration. Since these genes may play a direct role in the progression of cirrhosis to HCC, they can be considered as potential novel molecular indicators for the onset and development of HCC.
Collapse
|
7
|
Dong R, Zhang B, Zhang X. Liver organoids: an in vitro 3D model for liver cancer study. Cell Biosci 2022; 12:152. [PMID: 36085085 PMCID: PMC9463833 DOI: 10.1186/s13578-022-00890-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/28/2022] [Indexed: 11/21/2022] Open
Abstract
Primary liver cancer (PLC) is the second leading cause of cancer mortality worldwide, and its morbidity unceasingly increases these years. Hepatitis B virus (HBV) infection accounted for approximately 50% of hepatocellular carcinoma (HCC) cases globally in 2015. Due to the lack of an effective model to study HBV-associated liver carcinogenesis, research has made slow progress. Organoid, an in vitro 3D model which maintains self-organization, has recently emerged as a powerful tool to investigate human diseases. In this review, we first summarize the categories and development of liver organoids. Then, we mainly focus on the functions of culture medium components and applications of organoids for HBV infection and HBV-associated liver cancer studies. Finally, we provide insights into a potential patient-derived organoid model from those infected with HBV based on our study, as well as the limitations and future applications of organoids in liver cancer research.
Collapse
|
8
|
Bousali M, Karamitros T. Hepatitis B Virus Integration into Transcriptionally Active Loci and HBV-Associated Hepatocellular Carcinoma. Microorganisms 2022; 10:microorganisms10020253. [PMID: 35208708 PMCID: PMC8879149 DOI: 10.3390/microorganisms10020253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/10/2022] [Accepted: 01/20/2022] [Indexed: 11/16/2022] Open
Abstract
Hepatitis B Virus (HBV) DNA integrations into the human genome are considered major causative factors to HBV-associated hepatocellular carcinoma development. In the present study, we investigated whether HBV preferentially integrates parts of its genome in specific genes and evaluated the contribution of the integrations in HCC development per gene. We applied dedicated in-house developed pipelines on all of the available HBV DNA integration data and performed a statistical analysis to identify genes that could be characterized as hotspots of integrations, along with the evaluation of their association with HBV-HCC. Our results suggest that 15 genes are recurrently affected by HBV integrations and they are significantly associated with HBV-HCC. Further studies that focus on HBV integrations disrupting these genes are mandatory in order to understand the role of HBV integrations in clonal advantage gain and oncogenesis promotion, as well as to determine whether inhibition of the HBV-disrupted genes can provide a therapy strategy for HBV-HCC.
Collapse
Affiliation(s)
- Maria Bousali
- Bioinformatics and Applied Genomics Unit, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece;
| | - Timokratis Karamitros
- Bioinformatics and Applied Genomics Unit, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece;
- Laboratory of Medical Microbiology, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece
- Correspondence: ; Tel.: +30-210-6478871
| |
Collapse
|
9
|
Tan AT, Bertoletti A. HBV-HCC treatment with mRNA electroporated HBV-TCR T cells. IMMUNOTHERAPY ADVANCES 2021; 2:ltab026. [PMID: 35919490 PMCID: PMC9327102 DOI: 10.1093/immadv/ltab026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/22/2021] [Indexed: 11/28/2022] Open
Abstract
Hepatocellular carcinoma is a significant global health challenge with steadily increasing incidence in the East Asia region. While both Hepatitis C and B virus infections account for the majority of HCC cases, the advent of potent antivirals against HCV infection has biased the aetiology towards chronic HBV infection that at the moment remains without an effective cure. For this reason, HBV-HCC remains a persistent global problem. Treatment options for intermediate to advanced stages of HBV-HCC remain limited, hence novel therapeutic strategies are required to fulfil this medical need. Following the considerable success of adoptive T-cell immunotherapy against B-cell malignancies, it is conceivable to envision whether the same could be achieved against HBV-HCC. In this review, we describe the development of T-cell therapy strategies for HBV-HCC and discuss the safety and the efficacy of the strategies in terms of the direct killing of tumour cells and the other alterations possibly induced by the action of the T cells.
Collapse
Affiliation(s)
- Anthony T Tan
- Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Antonio Bertoletti
- Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
- Singapore Immunology Network, Agency for Science and Technology (A∗STAR), Singapore
| |
Collapse
|
10
|
Tan AT, Meng F, Jin J, Zhang JY, Wang SY, Shi L, Shi M, Li Y, Xie Y, Liu LM, Zhou CB, Chua A, Ho ZZ, Luan J, Zhao J, Li J, Wai LE, Koh S, Wang T, Bertoletti A, Wang FS. Immunological alterations after immunotherapy with short lived HBV-TCR T cells associates with long-term treatment response in HBV-HCC. Hepatol Commun 2021; 6:841-854. [PMID: 34935312 PMCID: PMC8948543 DOI: 10.1002/hep4.1857] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 12/19/2022] Open
Abstract
The application of hepatitis B virus (HBV)–T‐cell receptor (TCR) T‐cell immunotherapy in patients with HBV‐related hepatocellular carcinoma (HBV‐HCC) has been apathetic, as the expression of HBV antigens by both normal HBV‐infected hepatocytes and HCC cells with HBV‐DNA integration increases the risk of on‐target off‐tumor severe liver inflammatory events. To increase the safety of this immunotherapeutic approach, we developed messenger RNA (mRNA) HBV‐TCR‐redirected T cells that—due to the transient nature of mRNA—are functionally short lived and can be infused in escalating doses. The safety of this approach and its clinical potential against primary HBV‐HCC have never been analyzed in human trials; thus, we studied the clinical and immunological parameters of 8 patients with chronic HBV infection and diffuse nonoperable HBV‐HCC treated at weekly intervals with escalating doses (1 × 104, 1 × 105, 1 × 106, and 5 × 106 TCR+ T cells/kg body weight) of T cells modified with HBV‐TCR encoding mRNA. The treatment was well tolerated with no severe systemic inflammatory events, cytokine storm, or neurotoxicity observed in any of these patients throughout treatment. Instead, we observed a destruction of the tumor lesion or a prolonged stable disease in 3 of 8 patients. Importantly, the patients without clinically relevant reductions of HCC did not display any detectable peripheral blood immunological alterations. In contrast, signs of transient localized liver inflammation, activation of the T‐cell compartment, and/or elevations of serum chemokine (C‐X‐C motif) ligand (CXCL) 9 and CXCL10 levels were detected in patients with long‐term clinical benefit. Conclusion: We show that despite the reduced in vivo half‐life (3‐4 days), adoptive transfer of mRNA HBV‐TCR T cells into patients with HBV‐HCC show long‐term clinical benefit that was associated with transient immunological alterations.
Collapse
Affiliation(s)
| | - Fanping Meng
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Jiehua Jin
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Ji-Yuan Zhang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Si-Yu Wang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Lei Shi
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Ming Shi
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yuanyuan Li
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yunbo Xie
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Li-Min Liu
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Chun-Bao Zhou
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | | | | | - Junqing Luan
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Jinfang Zhao
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Jing Li
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Lu-En Wai
- Lion TCR Pte Ltd., Singapore.,Singapore Immunology Network, Agency for Science and Technology (A*STAR), Singapore
| | - Sarene Koh
- Lion TCR Pte Ltd., Singapore.,Singapore Immunology Network, Agency for Science and Technology (A*STAR), Singapore
| | | | - Antonio Bertoletti
- Emerging Infectious Diseases, Duke-NUS Medical School, Singapore.,Singapore Immunology Network, Agency for Science and Technology (A*STAR), Singapore
| | - Fu-Sheng Wang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center, The Fifth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
11
|
Immunotherapy of HBV-related advanced hepatocellular carcinoma with short-term HBV-specific TCR expressed T cells: results of dose escalation, phase I trial. Hepatol Int 2021; 15:1402-1412. [PMID: 34850325 PMCID: PMC8651587 DOI: 10.1007/s12072-021-10250-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022]
Abstract
Background & aims Immunotherapy with hepatitis B virus (HBV)-specific TCR redirected T (HBV-TCR-T) cells in HBV-related hepatocellular carcinoma (HBV-HCC) patients after liver transplantation was reported to be safe and had potential therapeutic efficacy. We aim to investigate the safety of HBV-TCR-T-cell immunotherapy in advanced HBV-HCC patients who had not met the criteria for liver transplantation. Methods We enrolled eight patients with advanced HBV-HCC and adoptively transferred short-lived autologous T cells expressing HBV-specific TCR to perform an open-label, phase 1 dose-escalation study (NCT03899415). The primary endpoint was to evaluate the safety of HBV-TCR-T-cell therapy according to National Cancer Institute Common Terminology Criteria for Adverse Events (version 4.03) during the dose-escalation process. The secondary endpoint was to assess the efficacy of HBV-TCR-T-cell therapy by evaluating the anti-tumor responses using RECIST criteria (version 1.1) and the overall survival. Results Adverse events were observed in two participants among the 8 patients enrolled. Only one patient experienced a Grade 3 liver-related adverse event after receiving a dose of 1 × 105 HBV-TCR-T cells/kg, then normalized without interventions with immunosuppressive agents. Among the patients, one achieved a partial response lasting for 27.7 months. Importantly, most of the patients exhibited a reduction or stabilization of circulating HBsAg and HBV DNA levels after HBV-TCR-T-cell infusion, indicating the on-target effects. Conclusions The adoptive transfer of HBV-TCR-T cells into advanced HBV-HCC patients were generally safe and well-tolerated. Observations of clinical efficacy support the continued development and eventual application of this treatment strategy in patients with advanced HBV-related HCC. Clinical trials registration This study was registered at ClinicalTrials.gov (NCT03899415).
Collapse
|
12
|
Chen X, Zhang M, Li N, Pu R, Wu T, Ding Y, Cai P, Zhang H, Zhao J, Yin J, Cao G. Nucleotide variants in hepatitis B virus preS region predict the recurrence of hepatocellular carcinoma. Aging (Albany NY) 2021; 13:22256-22275. [PMID: 34534105 PMCID: PMC8507287 DOI: 10.18632/aging.203531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/03/2021] [Indexed: 02/07/2023]
Abstract
Background: Hepatitis B virus (HBV) variants in the preS region have been associated with hepatocellular carcinoma (HCC). However, the effect of the preS variants on HCC prognosis remains largely unknown. We aimed to identify the preS variants that reliably predict postoperative prognosis in HCC. Methods: RNA-seq data of 203 HCC patients retrieved from public database were screened for the preS variants related to HCC prognosis. The variants in the sera and tumors were then validated in our prospective cohort enrolling 103 HBV-associated HCC patients. Results: By analyzing prognosis-related gene sets in the RNA-seq data, 12 HBV preS variants were associated with HCC recurrence. Of those, G40C and C147T in the sera predicted an unfavorable recurrence-free survival in our cohort (hazard ratio [HR]=2.18, 95% confidence interval [CI]=1.37-3.47, p=0.001 for G40C; HR=1.84, 95% CI=1.15-2.92, p=0.012 for C147T). G40C and C147T were significantly associated with microscopic vascular invasion, larger tumor size, and abnormal liver function. Multivariate Cox regression analysis showed that G40C significantly increased the risk of HCC recurrence in patients with postoperative antiviral treatment. The HCC prognosis-prediction model consisting of α-fetoprotein and G40C in the sera achieved the best performance (sensitivity=0.80, specificity=0.70, and area under the curve=0.79). Functional analysis indicated that these two variants were associated with cell proliferation, chromosome instability, carcinogenesis, metastasis, and anticancer drug resistance. Conclusions: G40C and C147T are serological biomarkers for HCC prognosis and the prognostic model consisting of serological α-fetoprotein and G40C achieved the best performance in predicting postoperative prognosis.
Collapse
Affiliation(s)
- Xi Chen
- Department of Epidemiology, Faculty of Navy Medicine, Second Military Medical University, Shanghai, China
| | - Minfeng Zhang
- Department of Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Nan Li
- Department of Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Rui Pu
- Department of Epidemiology, Faculty of Navy Medicine, Second Military Medical University, Shanghai, China
| | - Ting Wu
- Department of Epidemiology, Faculty of Navy Medicine, Second Military Medical University, Shanghai, China
| | - Yibo Ding
- Department of Epidemiology, Faculty of Navy Medicine, Second Military Medical University, Shanghai, China
| | - Peng Cai
- Department of Epidemiology, Faculty of Navy Medicine, Second Military Medical University, Shanghai, China
| | - Hongwei Zhang
- Department of Epidemiology, Faculty of Navy Medicine, Second Military Medical University, Shanghai, China
| | - Jun Zhao
- Department of Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Jianhua Yin
- Department of Epidemiology, Faculty of Navy Medicine, Second Military Medical University, Shanghai, China
| | - Guangwen Cao
- Department of Epidemiology, Faculty of Navy Medicine, Second Military Medical University, Shanghai, China
| |
Collapse
|
13
|
Bousali M, Papatheodoridis G, Paraskevis D, Karamitros T. Hepatitis B Virus DNA Integration, Chronic Infections and Hepatocellular Carcinoma. Microorganisms 2021; 9:1787. [PMID: 34442866 PMCID: PMC8398950 DOI: 10.3390/microorganisms9081787] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 12/16/2022] Open
Abstract
Hepatitis B Virus (HBV) is an Old World virus with a high mutation rate, which puts its origins in Africa alongside the origins of Homo sapiens, and is a member of the Hepadnaviridae family that is characterized by a unique viral replication cycle. It targets human hepatocytes and can lead to chronic HBV infection either after acute infection via horizontal transmission usually during infancy or childhood or via maternal-fetal transmission. HBV has been found in ~85% of HBV-related Hepatocellular Carcinomas (HCC), and it can integrate the whole or part of its genome into the host genomic DNA. The molecular mechanisms involved in the HBV DNA integration is not yet clear; thus, multiple models have been described with respect to either the relaxed-circular DNA (rcDNA) or the double-stranded linear DNA (dslDNA) of HBV. Various genes have been found to be affected by HBV DNA integration, including cell-proliferation-related genes, oncogenes and long non-coding RNA genes (lincRNAs). The present review summarizes the advances in the research of HBV DNA integration, focusing on the evolutionary and molecular side of the integration events along with the arising clinical aspects in the light of WHO's commitment to eliminate HBV and viral hepatitis by 2030.
Collapse
Affiliation(s)
- Maria Bousali
- Bioinformatics and Applied Genomics Unit, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece;
| | - George Papatheodoridis
- Department of Gastroenterology, “Laiko” General Hospital of Athens, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Dimitrios Paraskevis
- Department of Hygiene Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Timokratis Karamitros
- Bioinformatics and Applied Genomics Unit, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece;
- Laboratory of Medical Microbiology, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece
| |
Collapse
|
14
|
Non-terminally exhausted tumor-resident memory HBV-specific T cell responses correlate with relapse-free survival in hepatocellular carcinoma. Immunity 2021; 54:1825-1840.e7. [DOI: 10.1016/j.immuni.2021.06.013] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/18/2021] [Accepted: 06/18/2021] [Indexed: 02/07/2023]
|
15
|
Chen P, Fang QX, Chen DB, Chen HS. Neoantigen vaccine: An emerging immunotherapy for hepatocellular carcinoma. World J Gastrointest Oncol 2021. [DOI: 10.4251/wjgo.v13.i7.498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
16
|
Chen P, Fang QX, Chen DB, Chen HS. Neoantigen vaccine: An emerging immunotherapy for hepatocellular carcinoma. World J Gastrointest Oncol 2021; 13:673-683. [PMID: 34322196 PMCID: PMC8299936 DOI: 10.4251/wjgo.v13.i7.673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/06/2021] [Accepted: 06/17/2021] [Indexed: 02/06/2023] Open
Abstract
Tumor-specific neoantigens, which are expressed on tumor cells, can induce an effective antitumor cytotoxic T-cell response and mediate tumor regression. Among tumor immunotherapies, neoantigen vaccines are in early human clinical trials and have demonstrated substantial efficiency. Compared with more neoantigens in melanoma, the paucity and inefficient identification of effective neoantigens in hepatocellular carcinoma (HCC) remain enormous challenges in effectively treating this malignancy. In this review, we highlight the current development of HCC neoantigens in its generation, screening, and identification. We also discuss the possibility that there are more effective neoantigens in hepatitis B virus (HBV)-related HCC than in non-HBV-related HCC. In addition, since HCC is an immunosuppressive tumor, strategies that reverse immunosuppression and enhance the immune response should be considered for the practical exploitation of HCC neoantigens. In summary, this review offers some strategies to solve existing problems in HCC neoantigen research and provide further insights for immunotherapy.
Collapse
Affiliation(s)
- Pu Chen
- Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Disease, Peking University People’s Hospital, Beijing 100044, China
| | - Qiong-Xuan Fang
- Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Disease, Peking University People’s Hospital, Beijing 100044, China
| | - Dong-Bo Chen
- Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Disease, Peking University People’s Hospital, Beijing 100044, China
| | - Hong-Song Chen
- Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Disease, Peking University People’s Hospital, Beijing 100044, China
| |
Collapse
|
17
|
Single-cell RNA sequencing shows the immunosuppressive landscape and tumor heterogeneity of HBV-associated hepatocellular carcinoma. Nat Commun 2021. [PMID: 34140495 DOI: 10.1038/s41467-021-24010-1.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Interaction between tumor cells and immune cells in the tumor microenvironment is important in cancer development. Immune cells interact with the tumor cells to shape this process. Here, we use single-cell RNA sequencing analysis to delineate the immune landscape and tumor heterogeneity in a cohort of patients with HBV-associated human hepatocellular carcinoma (HCC). We found that tumor-associated macrophages suppress tumor T cell infiltration and TIGIT-NECTIN2 interaction regulates the immunosuppressive environment. The cell state transition of immune cells towards a more immunosuppressive and exhaustive status exemplifies the overall cancer-promoting immunocellular landscape. Furthermore, the heterogeneity of global molecular profiles reveals co-existence of intra-tumoral and inter-tumoral heterogeneity, but is more apparent in the latter. This analysis of the immunosuppressive landscape and intercellular interactions provides mechanistic information for the design of efficacious immune-oncology treatments in hepatocellular carcinoma.
Collapse
|
18
|
Ho DWH, Tsui YM, Chan LK, Sze KMF, Zhang X, Cheu JWS, Chiu YT, Lee JMF, Chan ACY, Cheung ETY, Yau DTW, Chia NH, Lo ILO, Sham PC, Cheung TT, Wong CCL, Ng IOL. Single-cell RNA sequencing shows the immunosuppressive landscape and tumor heterogeneity of HBV-associated hepatocellular carcinoma. Nat Commun 2021; 12:3684. [PMID: 34140495 PMCID: PMC8211687 DOI: 10.1038/s41467-021-24010-1] [Citation(s) in RCA: 192] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 05/28/2021] [Indexed: 02/06/2023] Open
Abstract
Interaction between tumor cells and immune cells in the tumor microenvironment is important in cancer development. Immune cells interact with the tumor cells to shape this process. Here, we use single-cell RNA sequencing analysis to delineate the immune landscape and tumor heterogeneity in a cohort of patients with HBV-associated human hepatocellular carcinoma (HCC). We found that tumor-associated macrophages suppress tumor T cell infiltration and TIGIT-NECTIN2 interaction regulates the immunosuppressive environment. The cell state transition of immune cells towards a more immunosuppressive and exhaustive status exemplifies the overall cancer-promoting immunocellular landscape. Furthermore, the heterogeneity of global molecular profiles reveals co-existence of intra-tumoral and inter-tumoral heterogeneity, but is more apparent in the latter. This analysis of the immunosuppressive landscape and intercellular interactions provides mechanistic information for the design of efficacious immune-oncology treatments in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Daniel Wai-Hung Ho
- Department of Pathology, The University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China.
| | - Yu-Man Tsui
- Department of Pathology, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Lo-Kong Chan
- Department of Pathology, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Karen Man-Fong Sze
- Department of Pathology, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Xin Zhang
- Department of Pathology, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | | | - Yung-Tuen Chiu
- Department of Pathology, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Joyce Man-Fong Lee
- Department of Pathology, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Albert Chi-Yan Chan
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | | | | | - Nam-Hung Chia
- Department of Surgery, Queen Elizabeth Hospital, Hong Kong, China
| | - Irene Lai-Oi Lo
- Department of Surgery, Queen Elizabeth Hospital, Hong Kong, China
| | - Pak-Chung Sham
- Department of Psychiatry, The University of Hong Kong, Hong Kong, China
| | - Tan-To Cheung
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Carmen Chak-Lui Wong
- Department of Pathology, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Irene Oi-Lin Ng
- Department of Pathology, The University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
19
|
Caruso S, O'Brien DR, Cleary SP, Roberts LR, Zucman-Rossi J. Genetics of Hepatocellular Carcinoma: Approaches to Explore Molecular Diversity. Hepatology 2021; 73 Suppl 1:14-26. [PMID: 32463918 DOI: 10.1002/hep.31394] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Stefano Caruso
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Université Paris 13, Functional Genomics of Solid Tumors Laboratory, Paris, France
| | - Daniel R O'Brien
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine and Science, Rochester, MN
| | - Sean P Cleary
- Division of Hepatobiliary and Pancreatic Surgery, Mayo Clinic College of Medicine and Science, Rochester, MN
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Université Paris 13, Functional Genomics of Solid Tumors Laboratory, Paris, France.,European Hospital Georges Pompidou, AP-HP, Paris, France
| |
Collapse
|
20
|
Ringlander J, Skoglund C, Prakash K, Andersson ME, Larsson SB, Tang KW, Rydell GE, Abrahamsson S, Castedal M, Norder H, Hellstrand K, Lindh M. Deep sequencing of liver explant transcriptomes reveals extensive expression from integrated hepatitis B virus DNA. J Viral Hepat 2020; 27:1162-1170. [PMID: 32592629 DOI: 10.1111/jvh.13356] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/09/2020] [Accepted: 06/15/2020] [Indexed: 12/20/2022]
Abstract
Hepatitis B virus (HBV) is a major cause of hepatocellular carcinoma (HCC). Integration of HBV DNA into the human genome may contribute to oncogenesis and to the production of the hepatitis B surface antigen (HBsAg). Whether integrations contribute to HBsAg levels in the blood is poorly known. Here, we characterize the HBV RNA profile of HBV integrations in liver tissue in patients with chronic HBV infection, with or without concurrent hepatitis D infection, by transcriptome deep sequencing. Transcriptomes were determined in liver tissue by deep sequencing providing 200 million reads per sample. Integration points were identified using a bioinformatic pipeline. Explanted liver tissue from five patients with end-stage liver disease caused by HBV or HBV/HDV was studied along with publicly available transcriptomes from 21 patients. Almost all HBV RNA profiles were devoid of reads in the core and the 3' redundancy (nt 1830-1927) regions, and contained a large number of chimeric viral/human reads. Hence, HBV transcripts from integrated HBV DNA rather than from covalently closed circular HBV DNA (cccDNA) predominated in late-stage HBV infection, in particular in cases with hepatitis D virus co-infection. The findings support the suggestion that integrated HBV DNA can be a significant source of HBsAg in humans.
Collapse
Affiliation(s)
- Johan Ringlander
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Catarina Skoglund
- The Transplant Institute, Department of Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden.,Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kasthuri Prakash
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maria E Andersson
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Simon B Larsson
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ka-Wei Tang
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Gustaf E Rydell
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sanna Abrahamsson
- Bioinformatics Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maria Castedal
- The Transplant Institute, Department of Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden.,Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Heléne Norder
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kristoffer Hellstrand
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Magnus Lindh
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
21
|
Zhang L, Makamure J, Zhao D, Liu Y, Guo X, Zheng C, Liang B. Bioinformatics analysis reveals meaningful markers and outcome predictors in HBV-associated hepatocellular carcinoma. Exp Ther Med 2020; 20:427-435. [PMID: 32537007 PMCID: PMC7281962 DOI: 10.3892/etm.2020.8722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 12/05/2019] [Indexed: 12/18/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of malignant neoplasm of the liver with high morbidity and mortality. Extensive research into the pathology of HCC has been performed; however, the molecular mechanisms underlying the development of hepatitis B virus-associated HCC have remained elusive. Thus, the present study aimed to identify critical genes and pathways associated with the development and progression of HCC. The expression profiles of the GSE121248 dataset were downloaded from the Gene Expression Omnibus database and the differentially expressed genes (DEGs) were identified. Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genome (KEGG) analyses were performed by using the Database for Annotation, Visualization and Integrated Discovery. Subsequently, protein-protein interaction (PPI) networks were constructed for detecting hub genes. In the present study, 1,153 DEGs (777 upregulated and 376 downregulated genes) were identified and the PPI network yielded 15 hub genes. GO analysis revealed that the DEGs were primarily enriched in ‘protein binding’, ‘cytoplasm’ and ‘extracellular exosome’. KEGG analysis indicated that DEGs were accumulated in ‘metabolic pathways’, ‘chemical carcinogenesis’ and ‘fatty acid degradation’. After constructing the PPI network, cyclin-dependent kinase 1, cyclin B1, cyclin A2, mitotic arrest deficient 2 like 1, cyclin B2, DNA topoisomerase IIα, budding uninhibited by benzimidazoles (BUB)1, TTK protein kinase, non-SMC condensin I complex subunit G, NDC80 kinetochore complex component, aurora kinase A, kinesin family member 11, cell division cycle 20, BUB1B and abnormal spindle microtubule assembly were identified as hub genes based on the high degree of connectivity by using Cytoscape software. In addition, overall survival (OS) and disease-free survival (DFS) analyses were performed using the Gene Expression Profiling Interactive Analysis online database, which revealed that the increased expression of all hub genes were associated with poorer OS and DFS outcomes. Receiver operating characteristic curves were constructed using GraphPad prism 7.0 software. The results confirmed that 15 hub genes were able to distinguish HCC form normal tissues. Furthermore, the expression levels of three key genes were analyzed in tumor and normal samples of the Human Protein Atlas database. The present results may provide further insight into the underlying mechanisms of HCC and potential therapeutic targets for the treatment of this disease.
Collapse
Affiliation(s)
- Lijie Zhang
- Department of Radiology, Hubei Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Joyman Makamure
- Department of Radiology, Hubei Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Dan Zhao
- Department of Radiology, Hubei Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yiming Liu
- Department of Radiology, Hubei Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xiaopeng Guo
- Department of Radiology, Hubei Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Chuansheng Zheng
- Department of Radiology, Hubei Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Bin Liang
- Department of Radiology, Hubei Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
22
|
Tan AT, Schreiber S. Adoptive T-cell therapy for HBV-associated HCC and HBV infection. Antiviral Res 2020; 176:104748. [DOI: 10.1016/j.antiviral.2020.104748] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 02/07/2023]
|
23
|
Wong DKH, Cheng SCY, Mak LLY, To EWP, Lo RCL, Cheung TT, Seto WK, Fung J, Man K, Lai CL, Yuen MF. Among Patients with Undetectable Hepatitis B Surface Antigen and Hepatocellular Carcinoma, a High Proportion Has Integration of HBV DNA into Hepatocyte DNA and No Cirrhosis. Clin Gastroenterol Hepatol 2020; 18:449-456. [PMID: 31252193 DOI: 10.1016/j.cgh.2019.06.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/03/2019] [Accepted: 06/16/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS In some individuals with undetectable serum levels of hepatitis B surface antigen (HBsAg), hepatitis B virus (HBV) DNA can still be detected in serum or hepatocytes and HBV replicates at low levels-this is called occult HBV infection (OBI). OBI has been associated with increased risk of hepatocellular carcinoma (HCC). We investigated the incidence of OBI in patients with HCC and other liver diseases. We also investigated whether, in patients with OBI and HCC, HBV DNA has integrated into the DNA of hepatocytes. METHODS We collected clinical information and liver tissues from 110 HBsAg-negative patients (90 with HCC and 20 without HCC; median ages at surgical resection and biopsy collection, 64.1 and 48.6 years, respectively) who underwent liver resection or liver biopsy from November 2002 through July 2017 in Hong Kong. HBV DNA and covalently closed circular DNA (cccDNA) were analyzed and quantified by PCR in liver tissues. Integration of HBV DNA into the DNA of liver cells was detected by Alu-PCR. RESULTS Of the 90 HBsAg-negative patients with HCC, 18 had alcoholic liver disease (20%), 14 had non-alcoholic fatty liver disease or steatohepatitis (16%), 2 had primary biliary cholangitis, 2 had recurrent pyogenic cholangitis, 1 had autoimmune hepatitis, and 53 had none of these (59%). Among the 20 patients without HCC, 7 had non-alcoholic fatty liver disease or steatohepatitis, 7 had primary biliary cholangitis, and 6 had autoimmune hepatitis. OBI was detected in 62/90 patients with HCC (69%) and 3/20 patients without HCC (15%) (P < .0001). cccDNA was detectable in liver cells of 29 patients with HCC and OBI (47%) and HBV DNA had integrated into DNA of liver cells of 43 patients with HCC and OBI (69%); cccDNA and integrated HBV DNA were not detected in the 3 patients who had OBI without HCC. There were 29 patients with integration of HBV DNA among 33 patients with undetectable cccDNA in liver tissues (88%) and 14 patients with integration of HBV DNA among the 29 patients with cccDNA in liver tissues (48%) (P = .001). HBV DNA was found to integrate near genes associated with hepatocarcinogenesis, such as those encoding telomerase reverse transcriptase, lysine methyltransferase 2B, and cyclin A2. Among the 43 patients with integration of HBV DNA, 39 (91%) did not have cirrhosis. CONCLUSIONS In an analysis of clinical data and liver tissues from 90 HBsAg-negative patients with HCC, we found that almost 70% had OBI, of whom 70% had integration of HBV DNA into liver cell DNA; 90% of these patients did not have cirrhosis. HBV DNA integrated near hepatic oncogenes; these integrations might promote development of liver cancer.
Collapse
Affiliation(s)
- Danny Ka-Ho Wong
- Department of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China; State Key Laboratory of Liver Research, University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - Serene Ching Yan Cheng
- Department of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - Loey Lung-Yi Mak
- Department of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - Elvis Wai-Pan To
- Department of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - Regina Cheuk-Lam Lo
- State Key Laboratory of Liver Research, University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China; Department of Pathology, University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - Tan-To Cheung
- State Key Laboratory of Liver Research, University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China; Department of Surgery, University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - Wai-Kay Seto
- Department of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China; State Key Laboratory of Liver Research, University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - James Fung
- Department of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China; State Key Laboratory of Liver Research, University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - Kwan Man
- State Key Laboratory of Liver Research, University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China; Department of Surgery, University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - Ching-Lung Lai
- Department of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China; State Key Laboratory of Liver Research, University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - Man-Fung Yuen
- Department of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China; State Key Laboratory of Liver Research, University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China.
| |
Collapse
|
24
|
Wu M, Mei F, Liu W, Jiang J. Comprehensive characterization of tumor infiltrating natural killer cells and clinical significance in hepatocellular carcinoma based on gene expression profiles. Biomed Pharmacother 2019; 121:109637. [PMID: 31810126 DOI: 10.1016/j.biopha.2019.109637] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 02/06/2023] Open
Abstract
Natural Killer (NK) cells are effector lymphocytes involved in tumor immunosurveillance, however, the specific mechanism in hepatocellular carcinoma (HCC) has not been well understood. In the present study, we estimated the relative abundances of NK cells in HCC using gene expression data, and found that NK cell abundance was lower in HCC tissues than in the adjacent normal tissues. With the common HCC subclasses, we also found that three HCC subclasses had distinct abundances of NK cells. Moreover, we also found strong association between NK cell abundances and genes encoding immune checkpoint proteins, such as KLRD1, CD96, TIGIT, CD86, HAVCR2, PDCD1 (PD-1), HLA-E, CD274 (PD-L1), and CTLA4, among which, KLRD1 vs. HLA-E, CD274 vs. PDCD1, and CTLA4 vs. CD86 were three pairs of receptors and ligands. Furthermore, we investigated the clinical significance of NK cell activities in HCC, and found that the NK cell abundances were highly associated with the response to sorafinib, and higher NK cell abundances may prolong both the recurrence-free and overall survival of HCC patients. In summary, the present study not only improved our understanding of the potential tumor immune evasion mechanism of NK cells in HCC, but also proposed the potential clinical application of NK activities in HCC treatment and risk assessment.
Collapse
Affiliation(s)
- Mei Wu
- Department of Gastroenterology, the First People's Hospital of Jingmen, Jingmen, Hubei, China
| | - Fang Mei
- Department of Cardiology, the First People's Hospital of Jingmen, Jingmen, Hubei, China
| | - Weishuo Liu
- Department of Pathology of the First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Jianwei Jiang
- Department of General Surgery, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, China.
| |
Collapse
|
25
|
Tatsuno K, Midorikawa Y, Takayama T, Yamamoto S, Nagae G, Moriyama M, Nakagawa H, Koike K, Moriya K, Aburatani H. Impact of AAV2 and Hepatitis B Virus Integration Into Genome on Development of Hepatocellular Carcinoma in Patients with Prior Hepatitis B Virus Infection. Clin Cancer Res 2019; 25:6217-6227. [PMID: 31320595 DOI: 10.1158/1078-0432.ccr-18-4041] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/29/2019] [Accepted: 07/11/2019] [Indexed: 12/31/2022]
Abstract
PURPOSE Hepatitis B viral (HBV) DNA is frequently integrated into the genomes of hepatocellular carcinoma (HCC) in patients with chronic HBV infection (chronic HBV, hereafter), whereas the frequency of HBV integration in patients after the disappearance of HBV (prior HBV, hereafter) has yet to be determined. This study aimed to detect integration of HBV and adeno-associated virus type 2 (AAV2) into the human genome as a possible oncogenic event. EXPERIMENTAL DESIGN Virome capture sequencing was performed, using HCC and liver samples obtained from 243 patients, including 73 with prior HBV without hepatitis C viral (HCV) infection and 81 with chronic HBV. RESULTS Clonal HBV integration events were identified in 11 (15.0%) cases of prior HBV without HCV and 61 (75.3%) cases of chronic HBV (P < 0.001). Several driver genes were commonly targeted by HBV, leading to transcriptional activation of these genes; TERT [four (5.4%) vs. 15 (18.5%)], KMT2B [two (2.7%) vs. five (6.1%)], CCNE1 [zero vs. one (1.2%)], CCNA2 [zero vs. one (1.2%)]. Conversely, CCNE1 and CCNA2 were, respectively, targeted by AAV2 only in prior HBV. In liver samples, HBV genome recurrently integrated into fibrosis-related genes FN1, HS6ST3, KNG1, and ROCK1 in chronic HBV. There was not history of alcohol abuse and 3 patients with a history of nucleoside analogue treatment for HBV in 8 prior HBV with driver gene integration. CONCLUSIONS Despite the seroclearance of hepatitis B surface antigen, HBV or AAV2 integration in prior HBV was not rare; therefore, such patients are at risk of developing HCC.
Collapse
Affiliation(s)
- Kenji Tatsuno
- Genome Science Division, RCAST, University of Tokyo, Tokyo, Japan
| | - Yutaka Midorikawa
- Genome Science Division, RCAST, University of Tokyo, Tokyo, Japan. .,Department of Digestive Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Tadatoshi Takayama
- Department of Digestive Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Shogo Yamamoto
- Genome Science Division, RCAST, University of Tokyo, Tokyo, Japan
| | - Genta Nagae
- Genome Science Division, RCAST, University of Tokyo, Tokyo, Japan
| | - Mitsuhiko Moriyama
- Department of Gastroenterology and Hepatology, Nihon University School of Medicine, Tokyo, Japan
| | - Hayato Nakagawa
- Department of Gastroenterology, University of Tokyo, Tokyo, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, University of Tokyo, Tokyo, Japan
| | - Kyoji Moriya
- Department of Infectious Diseases, University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
26
|
Wu HY, Peng ZG, He RQ, Luo B, Ma J, Hu XH, Dang YW, Chen G, Pan SL. Prognostic index of aberrant mRNA splicing profiling acts as a predictive indicator for hepatocellular carcinoma based on TCGA SpliceSeq data. Int J Oncol 2019; 55:425-438. [PMID: 31268164 PMCID: PMC6615926 DOI: 10.3892/ijo.2019.4834] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/10/2019] [Indexed: 12/14/2022] Open
Abstract
Alternative splicing in tumor cells may be used as a molecular marker for the differential diagnosis of certain tumor types and assessment of prognosis. The aim of the present study was to investigate the associations among alternative splicing events, splicing factors, and the survival of patients with hepatocellular carcinoma (HCC). The alternative splicing event profiles of 371 patients with HCC were downloaded from The Cancer Genome Atlas (TCGA) SpliceSeq data, and the percent-splice-in value for each splicing event was calculated. The association between alternative splicing events and overall survival was evaluated. The most significant prognosis-related splicing events were used to build up a prognostic index (PI). A total of 3,082 survival-associated alternative splicing events were detected in HCC. The final PI based on all of the most significant candidate alternative splicing events exhibited better performance in distinguishing good or poor survival in patients compared to the PI based on a single type of splicing event. Receiver operating characteristic curves confirmed the high efficiency of the PI in predicting the survival of HCC patients, with an area under the curve of 0.914. The overexpression of 32 prognosis-related splicing factor genes could also predict poor prognosis in patients with HCC. In conclusion, the constructed computational prognostic model based on HCC-specific alternative splicing events may be used as a molecular marker for the prognosis of HCC.
Collapse
Affiliation(s)
- Hua-Yu Wu
- Department of Pathophysiology, School of Pre‑clinical Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Zhi-Gang Peng
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Rong-Quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Bin Luo
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jie Ma
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiao-Hua Hu
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yi-Wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Shang-Ling Pan
- Department of Pathophysiology, School of Pre‑clinical Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
27
|
Tan AT, Yang N, Lee Krishnamoorthy T, Oei V, Chua A, Zhao X, Tan HS, Chia A, Le Bert N, Low D, Tan HK, Kumar R, Irani FG, Ho ZZ, Zhang Q, Guccione E, Wai LE, Koh S, Hwang W, Chow WC, Bertoletti A. Use of Expression Profiles of HBV-DNA Integrated Into Genomes of Hepatocellular Carcinoma Cells to Select T Cells for Immunotherapy. Gastroenterology 2019; 156:1862-1876.e9. [PMID: 30711630 DOI: 10.1053/j.gastro.2019.01.251] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/26/2018] [Accepted: 01/17/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Hepatocellular carcinoma (HCC) is often associated with hepatitis B virus (HBV) infection. Cells of most HBV-related HCCs contain HBV-DNA fragments that do not encode entire HBV antigens. We investigated whether these integrated HBV-DNA fragments encode epitopes that are recognized by T cells and whether their presence in HCCs can be used to select HBV-specific T-cell receptors (TCRs) for immunotherapy. METHODS HCC cells negative for HBV antigens, based on immunohistochemistry, were analyzed for the presence of HBV messenger RNAs (mRNAs) by real-time polymerase chain reaction, sequencing, and Nanostring approaches. We tested the ability of HBV mRNA-positive HCC cells to generate epitopes that are recognized by T cells using HBV-specific T cells and TCR-like antibodies. We then analyzed HBV gene expression profiles of primary HCCs and metastases from 2 patients with HCC recurrence after liver transplantation. Using the HBV-transcript profiles, we selected, from a library of TCRs previously characterized from patients with self-limited HBV infection, the TCR specific for the HBV epitope encoded by the detected HBV mRNA. Autologous T cells were engineered to express the selected TCRs, through electroporation of mRNA into cells, and these TCR T cells were adoptively transferred to the patients in increasing numbers (1 × 104-10 × 106 TCR+ T cells/kg) weekly for 112 days or 1 year. We monitored patients' liver function, serum levels of cytokines, and standard blood parameters. Antitumor efficacy was assessed based on serum levels of alpha fetoprotein and computed tomography of metastases. RESULTS HCC cells that did not express whole HBV antigens contained short HBV mRNAs, which encode epitopes that are recognized by and activate HBV-specific T cells. Autologous T cells engineered to express TCRs specific for epitopes expressed from HBV-DNA in patients' metastases were given to 2 patients without notable adverse events. The cells did not affect liver function over a 1-year period. In 1 patient, 5 of 6 pulmonary metastases decreased in volume during the 1-year period of T-cell administration. CONCLUSIONS HCC cells contain short segments of integrated HBV-DNA that encodes epitopes that are recognized by and activate T cells. HBV transcriptomes of these cells could be used to engineer T cells for personalized immunotherapy. This approach might be used to treat a wider population of patients with HBV-associated HCC.
Collapse
Affiliation(s)
| | - Ninghan Yang
- Genome Institute of Singapore, Agency for Science and Technology (A*STAR), Singapore
| | | | - Vincent Oei
- Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | | | | | | | - Adeline Chia
- Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Nina Le Bert
- Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Diana Low
- Institute of Molecular and Cell Biology, Agency for Science and Technology (A*STAR), Singapore
| | - Hiang Keat Tan
- Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore
| | - Rajneesh Kumar
- Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore
| | - Farah Gillan Irani
- Department of Vascular and Interventional Radiology, Singapore General Hospital, Singapore
| | | | - Qi Zhang
- Department of Biotherapy, The Third Affiliated Hospital of Sun Yat-Sen University, Guandong, China
| | - Ernesto Guccione
- Institute of Molecular and Cell Biology, Agency for Science and Technology (A*STAR), Singapore
| | - Lu-En Wai
- Lion TCR Pte Ltd, Singapore; Singapore Immunology Network, Agency for Science and Technology (A*STAR), Singapore
| | - Sarene Koh
- Lion TCR Pte Ltd, Singapore; Singapore Immunology Network, Agency for Science and Technology (A*STAR), Singapore
| | - William Hwang
- Department of Haematology, Singapore General Hospital, Singapore
| | - Wan Cheng Chow
- Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore
| | - Antonio Bertoletti
- Emerging Infectious Diseases, Duke-NUS Medical School, Singapore; Singapore Immunology Network, Agency for Science and Technology (A*STAR), Singapore.
| |
Collapse
|
28
|
Ma W, Ho DWH, Sze KMF, Tsui YM, Chan LK, Lee JMF, Ng IOL. APOBEC3B promotes hepatocarcinogenesis and metastasis through novel deaminase-independent activity. Mol Carcinog 2019; 58:643-653. [PMID: 30575099 DOI: 10.1002/mc.22956] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 12/04/2018] [Accepted: 12/15/2018] [Indexed: 01/31/2023]
Abstract
Cytidine deaminase APOBEC3B (A3B) is known to play important roles in creating de novo genomic C-to-T mutations in cancers and contribute to induction of genomic instability. Our study evaluated the roles of A3B in the progression and metastasis of human hepatocellular carcinoma (HCC). Using whole-transcriptome and whole-exome sequencing, and quantitative PCR, we found that A3B was overexpressed in human HCCs and A3B expression was significantly correlated with the proportion of genomic C-to-A and G-to-T mutations. Upon clinicopathological correlation, higher A3B expression was associated with more aggressive tumor behavior. Wild-type A3B (wt-A3B) overexpression in HCC cells promoted cell proliferation, and cell migratory and invasive abilities in vitro, and tumorigenicity and metastasis in vivo. On the other hand, knockdown of A3B suppressed cell proliferation, migratory, and invasive abilities of HCC cells with high endogenous A3B level. However, to our surprise, overexpression of A3B deaminase-dead double mutant (E68A/E255Q) led to similar results as wt-A3B in HCC. Furthermore, overexpression of wt-A3B and mutant A3B both enhanced cell cycle progression in HCC cells. Altogether, our data demonstrated a novel deaminase-independent role of A3B in contributing to HCC tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Wei Ma
- Department of Pathology, The University of Hong Kong, Pokfulam, Hong Kong.,State Key Laboratory for Liver Research, The University of Hong Kong, Pokfulam, Hong Kong
| | - Daniel W-H Ho
- Department of Pathology, The University of Hong Kong, Pokfulam, Hong Kong.,State Key Laboratory for Liver Research, The University of Hong Kong, Pokfulam, Hong Kong
| | - Karen M-F Sze
- Department of Pathology, The University of Hong Kong, Pokfulam, Hong Kong.,State Key Laboratory for Liver Research, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yu-Man Tsui
- Department of Pathology, The University of Hong Kong, Pokfulam, Hong Kong.,State Key Laboratory for Liver Research, The University of Hong Kong, Pokfulam, Hong Kong
| | - Lo-Kong Chan
- Department of Pathology, The University of Hong Kong, Pokfulam, Hong Kong.,State Key Laboratory for Liver Research, The University of Hong Kong, Pokfulam, Hong Kong
| | - Joyce M-F Lee
- Department of Pathology, The University of Hong Kong, Pokfulam, Hong Kong.,State Key Laboratory for Liver Research, The University of Hong Kong, Pokfulam, Hong Kong
| | - Irene O-L Ng
- Department of Pathology, The University of Hong Kong, Pokfulam, Hong Kong.,State Key Laboratory for Liver Research, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
29
|
Kostyusheva A, Kostyushev D, Brezgin S, Volchkova E, Chulanov V. Clinical Implications of Hepatitis B Virus RNA and Covalently Closed Circular DNA in Monitoring Patients with Chronic Hepatitis B Today with a Gaze into the Future: The Field Is Unprepared for a Sterilizing Cure. Genes (Basel) 2018; 9:E483. [PMID: 30301171 PMCID: PMC6210151 DOI: 10.3390/genes9100483] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 09/30/2018] [Accepted: 10/03/2018] [Indexed: 12/12/2022] Open
Abstract
. Chronic hepatitis B virus (HBV) infection has long remained a critical global health issue. Covalently closed circular DNA (cccDNA) is a persistent form of the HBV genome that maintains HBV chronicity. Decades of extensive research resulted in the two therapeutic options currently available: nucleot(s)ide analogs and interferon (IFN) therapy. A plethora of reliable markers to monitor HBV patients has been established, including the recently discovered encapsidated pregenomic RNA in serum, which can be used to determine treatment end-points and to predict the susceptibility of patients to IFN. Additionally, HBV RNA splice variants and cccDNA and its epigenetic modifications are associated with the clinical course and risks of hepatocellular carcinoma (HCC) and liver fibrosis. However, new antivirals, including CRISPR/Cas9, APOBEC-mediated degradation of cccDNA, and T-cell therapies aim at completely eliminating HBV, and it is clear that the diagnostic arsenal for defining the long-awaited sterilizing cure is missing. In this review, we discuss the currently available tools for detecting and measuring HBV RNAs and cccDNA, as well as the state-of-the-art in clinical implications of these markers, and debate needs and goals within the context of the sterilizing cure that is soon to come.
Collapse
Affiliation(s)
| | | | - Sergey Brezgin
- Central Research Institute of Epidemiology, Moscow, 111123, Russia.
- National Research Centre, Institute of Immunology, Federal Medical Biological Agency, Moscow, 115478, Russia.
| | - Elena Volchkova
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, 119146, Russia.
| | - Vladimir Chulanov
- Central Research Institute of Epidemiology, Moscow, 111123, Russia.
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, 119146, Russia.
| |
Collapse
|
30
|
Lee WY, Bachtiar M, Choo CCS, Lee CG. Comprehensive review of Hepatitis B Virus-associated hepatocellular carcinoma research through text mining and big data analytics. Biol Rev Camb Philos Soc 2018; 94:353-367. [PMID: 30105774 DOI: 10.1111/brv.12457] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/19/2018] [Accepted: 07/24/2018] [Indexed: 02/06/2023]
Abstract
PubMed was text mined to glean insights into the role of Hepatitis B virus (HBV) in hepatocellular carcinoma (HCC) from the massive number of publications (9249) available to date. Reports from ∼70 countries identified >1300 human genes associated with either the Core, Surface or X gene in HBV-associated HCC. One hundred and forty-three of these host genes, which can potentially yield 1180 biomolecular interactions, each were reported in at least three different publications to be associated with the same HBV. These 143 genes function in 137 pathways, involved mainly in the cell cycle, apoptosis, inflammation and signalling. Fourteen of these molecules, primarily transcriptional regulators or kinases, play roles in several pathways pertinent to the hallmarks of cancers. 'Chronic' was the most frequent word used across the 9249 abstracts. A key event in chronic HBV infection is the integration of HBV into the host genome. The advent of cost-effective, next-generation sequencing technology facilitated the employment of big-data analytics comprehensively to characterize HBV-host integration within HCC patients. A total of 5331 integration events were reported across seven publications, with most of these integrations observed between the Core/X gene and the introns of genes. Nearly one-quarter of the intergenic integrations are within repeats, especially long interspersed nuclear elements (LINE) repeats. Integrations within 13 genes were each reported by at least three different studies. The human gene with the most HBV integrations observed is the TERT gene where a total of 224 integrations, primarily at its promoter and within the tumour tissue, were reported by six of seven publications. This unique review, which employs state-of-the-art text-mining and data-analytics tools, represents the most complete, systematic and comprehensive review of nearly all the publications associated with HBV-associated HCC research. It provides important resources to either focus future research or develop therapeutic strategies to target key molecules reported to play important roles in key pathways of HCC, through the systematic analyses of the commonly reported molecules associated with the various HBV genes in HCC, including information about the interactions amongst these commonly reported molecules, the pathways in which they reside as well as detailed information regarding the viral and host genes associated with HBV integration in HCC patients. Hence this review, which highlights pathways and key human genes associated with HBV in HCC, may facilitate the deeper elucidation of the role of HBV in hepato-carcinogenesis, potentially leading to timely intervention against this deadly disease.
Collapse
Affiliation(s)
- Wai Yeow Lee
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Maulana Bachtiar
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore.,Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610, Singapore
| | - Cheryl C S Choo
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, 119077, Singapore.,Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610, Singapore
| | - Caroline G Lee
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, 119077, Singapore.,Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610, Singapore.,Duke-National University of Singapore Graduate Medical School, Singapore, 169547, Singapore
| |
Collapse
|
31
|
Sekiba K, Otsuka M, Ohno M, Yamagami M, Kishikawa T, Suzuki T, Ishibashi R, Seimiya T, Tanaka E, Koike K. Hepatitis B virus pathogenesis: Fresh insights into hepatitis B virus RNA. World J Gastroenterol 2018; 24:2261-2268. [PMID: 29881235 PMCID: PMC5989240 DOI: 10.3748/wjg.v24.i21.2261] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) is still a worldwide health concern. While divergent factors are involved in its pathogenesis, it is now clear that HBV RNAs, principally templates for viral proteins and viral DNAs, have diverse biological functions involved in HBV pathogenesis. These functions include viral replication, hepatic fibrosis and hepatocarcinogenesis. Depending on the sequence similarities, HBV RNAs may act as sponges for host miRNAs and may deregulate miRNA functions, possibly leading to pathological consequences. Some parts of the HBV RNA molecule may function as viral-derived miRNA, which regulates viral replication. HBV DNA can integrate into the host genomic DNA and produce novel viral-host fusion RNA, which may have pathological functions. To date, elimination of HBV-derived covalently closed circular DNA has not been achieved. However, RNA transcription silencing may be an alternative practical approach to treat HBV-induced pathogenesis. A full understanding of HBV RNA transcription and the biological functions of HBV RNA may open a new avenue for the development of novel HBV therapeutics.
Collapse
Affiliation(s)
- Kazuma Sekiba
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Motoyuki Otsuka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Motoko Ohno
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Mari Yamagami
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Takahiro Kishikawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Tatsunori Suzuki
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Rei Ishibashi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Takahiro Seimiya
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Eri Tanaka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| |
Collapse
|
32
|
Nakagawa H, Fujita M, Fujimoto A. Genome sequencing analysis of liver cancer for precision medicine. Semin Cancer Biol 2018; 55:120-127. [PMID: 29605648 DOI: 10.1016/j.semcancer.2018.03.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/19/2018] [Accepted: 03/28/2018] [Indexed: 02/07/2023]
Abstract
Liver cancer is the third leading cause of cancer-related death worldwide. Some thousands of liver cancer genome have been sequenced globally so far and most of driver genes/mutations with high frequency are established in liver cancer, including Wnt/β-catenin pathway, TP53/cell-cycle pathways, telomere maintenance, and chromatin regulators. HBV integration into cancer-related genes is also a driver event in hepatocarcinogenesis. These genes are affected by structural variants, copy-number alterations and virus integrations as well as point mutations. Etiological factors of liver cancer is most understood among common cancers, such as hepatitis, aflatoxin, alcohol, and metabolic diseases, and mutational signatures of liver cancer can provide evidence of the association between specific etiological factors and mutational signatures. Molecular classifications based on somatic mutations profiles, RNA expression profiles, and DNA methylation profiles are related with patient prognosis. For precision medicine, several actionable mutations with solid evidence such as targets of multi-kinase inhibitors is observed in liver cancer, but there is few molecular target therapy so far. It is possible that rare actionable mutations in liver cancer can guide other specific molecular therapy and immune therapy.
Collapse
Affiliation(s)
- Hidewaki Nakagawa
- Laboratory for Cancer Genomics, RIKEN Center of Integrative Medical Sciences, Tokyo 108-8639, Japan.
| | - Masashi Fujita
- Laboratory for Cancer Genomics, RIKEN Center of Integrative Medical Sciences, Tokyo 108-8639, Japan
| | - Akihiro Fujimoto
- Laboratory for Cancer Genomics, RIKEN Center of Integrative Medical Sciences, Tokyo 108-8639, Japan; Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| |
Collapse
|
33
|
Non-coding RNAs in hepatocellular carcinoma: molecular functions and pathological implications. Nat Rev Gastroenterol Hepatol 2018; 15:137-151. [PMID: 29317776 DOI: 10.1038/nrgastro.2017.169] [Citation(s) in RCA: 340] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is a leading lethal malignancy worldwide. However, the molecular mechanisms underlying liver carcinogenesis remain poorly understood. Over the past two decades, overwhelming evidence has demonstrated the regulatory roles of different classes of non-coding RNAs (ncRNAs) in liver carcinogenesis related to a number of aetiologies, including HBV, HCV and NAFLD. Among the ncRNAs, microRNAs, which belong to a distinct class of small ncRNAs, have been proven to play a crucial role in the post-transcriptional regulation of gene expression. Deregulation of microRNAs has been broadly implicated in the inactivation of tumour-suppressor genes and activation of oncogenes in HCC. Modern high-throughput sequencing analyses have unprecedentedly identified a very large number of non-coding transcripts. Divergent groups of long ncRNAs have been implicated in liver carcinogenesis through interactions with DNA, RNA or proteins. Overall, ncRNAs represent a burgeoning field of cancer research, and we are only beginning to understand the importance and complicity of the ncRNAs in liver carcinogenesis. In this Review, we summarize the common deregulation of small and long ncRNAs in human HCC. We also comprehensively review the pathological roles of ncRNAs in liver carcinogenesis, epithelial-to-mesenchymal transition and HCC metastasis and discuss the potential applications of ncRNAs as diagnostic tools and therapeutic targets in human HCC.
Collapse
|
34
|
Yoo S, Wang W, Wang Q, Fiel MI, Lee E, Hiotis SP, Zhu J. A pilot systematic genomic comparison of recurrence risks of hepatitis B virus-associated hepatocellular carcinoma with low- and high-degree liver fibrosis. BMC Med 2017; 15:214. [PMID: 29212479 PMCID: PMC5719570 DOI: 10.1186/s12916-017-0973-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/08/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Chronic hepatitis B virus (HBV) infection leads to liver fibrosis, which is a major risk factor in hepatocellular carcinoma (HCC) and an independent risk factor of recurrence after HCC tumor resection. The HBV genome can be inserted into the human genome, and chronic inflammation may trigger somatic mutations. However, how HBV integration and other genomic changes contribute to the risk of tumor recurrence with regards to the different degree of liver fibrosis is not clearly understood. METHODS We sequenced mRNAs of 21 pairs of tumor and distant non-neoplastic liver tissues of HBV-HCC patients and performed comprehensive genomic analyses of our RNAseq data and public available HBV-HCC sequencing data. RESULTS We developed a robust pipeline for sensitively identifying HBV integration sites based on sequencing data. Simulations showed that our method outperformed existing methods. Applying it to our data, 374 and 106 HBV host genes were identified in non-neoplastic liver and tumor tissues, respectively. When applying it to other RNA sequencing datasets, consistently more HBV integrations were identified in non-neoplastic liver than in tumor tissues. HBV host genes identified in non-neoplastic liver samples significantly overlapped with known tumor suppressor genes. More significant enrichment of tumor suppressor genes was observed among HBV host genes identified from patients with tumor recurrence, indicating the potential risk of tumor recurrence driven by HBV integration in non-neoplastic liver tissues. We also compared SNPs of each sample with SNPs in a cancer census database and inferred samples' pathogenic SNP loads. Pathogenic SNP loads in non-neoplastic liver tissues were consistently higher than those in normal liver tissues. Additionally, HBV host genes identified in non-neoplastic liver tissues significantly overlapped with pathogenic somatic mutations, suggesting that HBV integration and somatic mutations targeting the same set of genes are important to tumorigenesis. HBV integrations and pathogenic mutations showed distinct patterns between low and high liver fibrosis patients with regards to tumor recurrence. CONCLUSIONS The results suggest that HBV integrations and pathogenic SNPs in non-neoplastic tissues are important for tumorigenesis and different recurrence risk models are needed for patients with low and high degrees of liver fibrosis.
Collapse
Affiliation(s)
- Seungyeul Yoo
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Wenhui Wang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Qin Wang
- Department of Surgery, Division of Surgical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M Isabel Fiel
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eunjee Lee
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Sema4, a Mount Sinai venture, Stamford, CT, USA
| | - Spiros P Hiotis
- Department of Surgery, Division of Surgical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Jun Zhu
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Sema4, a Mount Sinai venture, Stamford, CT, USA.
| |
Collapse
|