1
|
Tsao HE, Ho M. Structural Features of Glypicans and their Impact on Wnt Signaling in Cancer. PROTEOGLYCAN RESEARCH 2025; 3:e70029. [PMID: 40416340 PMCID: PMC12101617 DOI: 10.1002/pgr2.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Accepted: 04/30/2025] [Indexed: 05/27/2025]
Abstract
Glypicans (GPCs) are a family of cell surface proteoglycans involved in multiple signaling pathways that regulate cell fate and proliferation. They share a characteristic structure composed of a core protein with two or more heparan sulfate chains and a glycosyl-phosphatidylinositol anchor that attaches them to the cell membrane. Aberrant expression of certain glypicans such as GPC1, GPC2, and GPC3 has been found in multiple types of cancer and causes the dysregulation of Wnt, hedgehog, and other signaling pathways, making them emerging targets for cancer immunotherapy. The molecular mechanism by which glypicans interact with signaling factors will provide insights for the development of cancer therapeutics. However, the structural complexes of human glypicans with Wnt and other key signaling factors remain unsolved. In this brief review, we analyze the current protein structural evidence for glypicans, with an emphasis on their interaction with Wnt, in an effort to provide insights to understand the molecular mechanisms by which glypicans play positive or negative roles in Wnt signaling in cancer and to discuss their translational potentials.
Collapse
Affiliation(s)
- Hsi-En Tsao
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, United States of America
| | - Mitchell Ho
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, United States of America
| |
Collapse
|
2
|
Suzuki H, Mishra S, Paul S, Hoshida Y. Molecular and immune landscape of hepatocellular carcinoma for therapeutic development. JOURNAL OF LIVER CANCER 2025; 25:9-18. [PMID: 39639434 PMCID: PMC7617546 DOI: 10.17998/jlc.2024.12.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide, with an estimated 750,000 deaths in 2022. Recent emergence of molecular targeted agents and immune checkpoint inhibitors and their combination therapies have been transforming HCC care, but their prognostic impact in advanced-stage disease remains unsatisfactory. In addition, their application to early-stage disease is still an unmet need. Omics profiling studies have elucidated recurrent and heterogeneously present molecular aberrations involved in pro-cancer tumor (immune) microenvironment that may guide therapeutic strategies. Recurrent aberrations such somatic mutations in TERT promoter and TP53 have been regarded undruggable, but recent studies have suggested that these may serve as new classes of therapeutic targets. HCC markers such as alpha-fetoprotein, glypican-3, and epithelial cell adhesion molecule have also been explored as therapeutic targets. These molecular features may be utilized as biomarkers to guide the application of new approaches as companion biomarkers to maximize therapeutic benefits in patients who are likely to benefit from the therapies, while minimizing unnecessary harm in patients who will not respond. The explosive number of new agents in the pipelines have posed challenges in their clinical testing. Novel clinical trial designs guided by predictive biomarkers have been proposed to enable their efficient and cost-effective evaluation. These new developments collectively facilitate clinical translation of personalized molecular-targeted therapies in HCC and substantially improve prognosis of HCC patients.
Collapse
Affiliation(s)
- Hiroyuki Suzuki
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sumit Mishra
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Subhojit Paul
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yujin Hoshida
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
3
|
Dhanasekaran R, Suzuki H, Lemaitre L, Kubota N, Hoshida Y. Molecular and immune landscape of hepatocellular carcinoma to guide therapeutic decision-making. Hepatology 2025; 81:1038-1057. [PMID: 37300379 PMCID: PMC10713867 DOI: 10.1097/hep.0000000000000513] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/12/2023] [Indexed: 06/12/2023]
Abstract
Liver cancer, primarily HCC, exhibits highly heterogeneous histological and molecular aberrations across tumors and within individual tumor nodules. Such intertumor and intratumor heterogeneities may lead to diversity in the natural history of disease progression and various clinical disparities across the patients. Recently developed multimodality, single-cell, and spatial omics profiling technologies have enabled interrogation of the intertumor/intratumor heterogeneity in the cancer cells and the tumor immune microenvironment. These features may influence the natural history and efficacy of emerging therapies targeting novel molecular and immune pathways, some of which had been deemed undruggable. Thus, comprehensive characterization of the heterogeneities at various levels may facilitate the discovery of biomarkers that enable personalized and rational treatment decisions, and optimize treatment efficacy while minimizing the risk of adverse effects. Such companion biomarkers will also refine HCC treatment algorithms across disease stages for cost-effective patient management by optimizing the allocation of limited medical resources. Despite this promise, the complexity of the intertumor/intratumor heterogeneity and ever-expanding inventory of therapeutic agents and regimens have made clinical evaluation and translation of biomarkers increasingly challenging. To address this issue, novel clinical trial designs have been proposed and incorporated into recent studies. In this review, we discuss the latest findings in the molecular and immune landscape of HCC for their potential and utility as biomarkers, the framework of evaluation and clinical application of predictive/prognostic biomarkers, and ongoing biomarker-guided therapeutic clinical trials. These new developments may revolutionize patient care and substantially impact the still dismal HCC mortality.
Collapse
Affiliation(s)
| | - Hiroyuki Suzuki
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Fukuoka
| | - Lea Lemaitre
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, California
| | - Naoto Kubota
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yujin Hoshida
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
4
|
Sun R, Wu C, Gou Y, Zhao Y, Huang P. Advancements in second-line treatment research for hepatocellular carcinoma. Clin Transl Oncol 2025; 27:837-857. [PMID: 39162977 DOI: 10.1007/s12094-024-03653-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/29/2024] [Indexed: 08/21/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors, characterized by high incidence and mortality rates. Due to its insidious onset, most patients are diagnosed at an advanced stage, often missing the opportunity for surgical resection. Consequently, systemic treatments play a pivotal role. In recent years, an increasing number of drugs have been approved for first-line systemic treatment of HCC. However, their efficacy is limited, and some patients develop drug resistance after a period of treatment. For such patients, there is currently a lack of standard second-line systemic treatment options. This review summarizes the latest advancements in second-line systemic treatment research for HCC patients who have developed resistance to various first-line systemic treatments, aiming to provide more rational and personalized second-line treatment strategies.
Collapse
Affiliation(s)
- Ruirui Sun
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, No.1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400000, China
| | - Chenrui Wu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, No.1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400000, China
| | - Yang Gou
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, No.1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400000, China
| | - Yaowu Zhao
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, No.1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400000, China
| | - Ping Huang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, No.1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400000, China.
| |
Collapse
|
5
|
Mossenta M, Argenziano M, Capolla S, Busato D, Durigutto P, Mangogna A, Polano M, Sblattero D, Cavalli R, Macor P, Toffoli G, Dal Bo M. Idarubicin-loaded chitosan nanobubbles to improve survival and decrease drug side effects in hepatocellular carcinoma. Nanomedicine (Lond) 2025; 20:255-270. [PMID: 39815170 PMCID: PMC11792799 DOI: 10.1080/17435889.2025.2452154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Drug delivery strategies using chitosan nanobubbles (CS-NBs) could be used to reduce drug side effects and improve outcomes in hepatocellular carcinoma (HCC) treatment. To enhance their action, a targeting agent, such as the humanized anti-GPC3 antibody GC33 (condrituzumab), could be attached to their surface. Here, we investigated the use of idarubicin-loaded CS-NBs for HCC treatment and a GC33-derived minibody (that we named 4A1) to enhance CS-NB delivery. METHODS Various CS-NB formulations were prepared with or without 4A1 conjugation and idarubicin loading. RESULTS CS-NBs had a positive charge and a diameter of about 360 nm. In in-vitro experiments using the HCC-like HUH7 cell line, CS-NBs showed a cytotoxic effect once loaded with idarubicin. In-vivo biodistribution in HUH7 tumor-bearing xenograft mice demonstrated that CS-NBs can accumulate in the tumor mass. This effect was enhanced by 4A1 conjugation (p = 0.0317). In HUH7 tumor-bearing xenograft mice, CS-NBs loaded with idarubicin and conjugated or not conjugated with 4A1 were both able to slow tumor growth, to increase mouse survival time compared to free idarubicin (p = 0.00044 and 0.0018, respectively) as well as to reduce drug side effects. CONCLUSIONS CS-NBs loaded with idarubicin can be a useful drug delivery strategy for HCC treatment.
Collapse
Affiliation(s)
- Monica Mossenta
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Monica Argenziano
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Sara Capolla
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
| | - Davide Busato
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Paolo Durigutto
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Alessandro Mangogna
- Department of Life Sciences, University of Trieste, Trieste, Italy
- Institute of Pathological Anatomy, Department of Medicine, University of Udine, Udine, Italy
| | - Maurizio Polano
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
| | | | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Paolo Macor
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
| |
Collapse
|
6
|
Yang L, Pham K, Xi Y, Wu Q, Liu D, Robertson KD, Liu C. Exploring Glypican-3 targeted CAR-NK treatment and potential therapy resistance in hepatocellular carcinoma. PLoS One 2025; 20:e0317401. [PMID: 39841705 PMCID: PMC11753693 DOI: 10.1371/journal.pone.0317401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 12/27/2024] [Indexed: 01/24/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent form of primary liver cancer and the second leading cause of cancer-related mortality globally. Despite advancements in current HCC treatment, it remains a malignancy with poor prognosis. Therefore, developing novel treatment options for patients with HCC is urgently needed. Chimeric antigen receptor (CAR)-modified natural killer (NK) cells have demonstrated potent anti-tumor effects, making them as a promising immunotherapy strategy for cancer treatment. Glypican-3 (GPC3), a cell surface oncofetal glycoprotein, is highly expressed in most HCC tissues, but not in normal tissues, and functions as a key driver of carcinogenesis. Given its high expression level on the cell surface, GPC3 is considered as an attractive immunotherapy target for HCC. In this study, two GPC3-specific CAR-NK cells, NK92MI/HN3 and NK92MI/HS20, were established using NK92MI cells, a modified IL-2-independent NK cell line. These cell lines were engineered with third generation GPC3-specific CARs, and their activities were subsequently evaluated in the treatment of HCC. We found that NK92MI/HN3 cells, rather than NK92MI/HS20 cells, exhibited a significant cytotoxicity effect against GPC3+ HepG2 cells in vitro and efficiently suppressed tumor growth in a xenograft model using NSG mice. In addition, irradiated NK92MI/HN3 cells displayed similar anti-tumor efficacy to unirradiated NK92MI/HN3 cells. Furthermore, we observed that NK92MI/HN3 cells showed higher killing activity against the GPC3 isoform 2 overexpression cell line (Sk-Hep1-v2) than those with GPC3 isoform 1 overexpression cell line (Sk-Hep1-v1). This suggest that the presence of different GPC3 isoforms in HCC may impact the cytotoxicity activity of NK92MI/HN3 cells and potentially influence therapeutic outcomes. These findings highlight the effective anti-HCC effects of NK92MI/HN3 cells and reveal the role of GPC3 isoforms in influencing therapy outcomes, suggesting that isoform analysis should be considered to optimize CAR-NK therapies to improve patient outcomes.
Collapse
MESH Headings
- Glypicans/immunology
- Glypicans/metabolism
- Glypicans/antagonists & inhibitors
- Carcinoma, Hepatocellular/therapy
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/pathology
- Liver Neoplasms/therapy
- Liver Neoplasms/immunology
- Liver Neoplasms/pathology
- Humans
- Animals
- Killer Cells, Natural/immunology
- Killer Cells, Natural/transplantation
- Killer Cells, Natural/metabolism
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Mice
- Cell Line, Tumor
- Xenograft Model Antitumor Assays
- Immunotherapy, Adoptive/methods
Collapse
Affiliation(s)
- Lei Yang
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, Connecticut, United States of America
| | - Kien Pham
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, Connecticut, United States of America
| | - Yibo Xi
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, Connecticut, United States of America
| | - Qunfeng Wu
- Department of Pathology and Laboratory Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Dongfang Liu
- Department of Pathology and Laboratory Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Keith D. Robertson
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Chen Liu
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
7
|
Eghbali S, Heumann TR. Next-Generation Immunotherapy for Hepatocellular Carcinoma: Mechanisms of Resistance and Novel Treatment Approaches. Cancers (Basel) 2025; 17:236. [PMID: 39858016 PMCID: PMC11764197 DOI: 10.3390/cancers17020236] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/10/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide, and, with only 15-20% of HCC patients being suitable for potentially curative treatments, the vast majority of patients with HCC ultimately require systemic therapy. For decades, the choice of effective systemic therapy for HCC remained sparse. In recent years, after the combination of atezolizumab and bevacizumab demonstrated superior overall survival over the first-line standard, sorafenib, there has been a major therapeutic paradigm shift to immunotherapy-based regimens for HCC. While representing a great leap forward for the treatment of this cancer, the reality is that less than one-third of patients achieve an objective response to immune checkpoint inhibitor-based therapy, so there remains a significant clinical need for further therapeutic optimization. In this review, we provide an overview of the current landscape of immunotherapy for unresectable HCC and delve into the tumor intrinsic and extrinsic mechanisms of resistance to established immunotherapies with a focus on novel therapeutic targets with strong translational potential. Following this, we spotlight emerging immunotherapy approaches and notable clinical trials aiming to optimize immunotherapy efficacy in HCC that include novel immune checkpoint inhibitors, tumor microenvironment modulators, targeted delivery systems, and locoregional interventions.
Collapse
Affiliation(s)
- Shabnam Eghbali
- Division of Internal Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Thatcher Ross Heumann
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Ingram Cancer Center, Nashville, TN 37232, USA
| |
Collapse
|
8
|
Rismani E, Hossein-Khannazer N, Hassan M, Shams E, Najimi M, Vosough M. Targeting glypican 3 by immunotoxins: the promise of immunotherapy in hepatocellular carcinoma. Expert Opin Ther Targets 2025; 29:59-73. [PMID: 39985417 DOI: 10.1080/14728222.2025.2471581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/21/2025] [Accepted: 02/20/2025] [Indexed: 02/24/2025]
Abstract
INTRODUCTION Tumor cell's resistance, high recurrence rate, and low overall survival rate have made hepatocellular carcinoma (HCC) a major health concern. The combination of advanced targeted therapies such as immunotherapy, with conventional treatments has gained traction for application on HCC. Immunotoxins (ITs) represent a category of biomolecules that combine the targeted affinity of antibodies with the cytotoxic properties of toxins. AREAS COVERED This study highlights Glypican3 (GPC3) as a potential candidate for targeted therapeutic interventions using ITs. It presents a comprehensive overview of the advantages and challenges associated with these modalities, and their promising outcomes in HCC treatment. A systematic literature review was conducted using PubMed, Web of Science and Scopus from 2015 to 2024. EXPERT OPINION Despite potential applicability, many concerns should be addressed before the employment of GPC3-based ITs. These include improving efficient penetration of ITs into the solid tumors, considering neutralizing antibodies against the drugs, and enhancing serum half-life of ITs. Furthermore, the ITs potential in eliminating cancer stem cells (CSCs) and residual tumor cells is discussed. The ability to target CSCs can significantly reduce the likelihood of recurrence and improve overall survival rate. This could make ITs a pivotal component in the future of HCC treatment.
Collapse
Affiliation(s)
- Elham Rismani
- Molecular Medicine Department, Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Nikoo Hossein-Khannazer
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Elahe Shams
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Massoud Vosough
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Cellular and Molecular Biology, Faculty of Sciences and Advanced Technology in Biology, University of Science and Culture, Tehran, Iran
| |
Collapse
|
9
|
Li Z, Mo C, Li C, Wang Q, Huang S, Huang Y, Liang Y. Gallium-68 Labeled Positron Emission Computed Tomography Tracer Targeting Glypican-3 with High Contrast for Hepatocellular Carcinoma Imaging. ACS Pharmacol Transl Sci 2024; 7:4021-4031. [PMID: 39698271 PMCID: PMC11651169 DOI: 10.1021/acsptsci.4c00504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/20/2024]
Abstract
Hepatocellular carcinoma (HCC) represents the predominant form of primary liver cancer, yet early, precise, and noninvasive detection continues to pose a considerable clinical challenge. Glypican-3 (GPC3), a membrane-bound proteoglycan, is markedly overexpressed in most HCC cases, while exhibiting low expression in normal and hepatitis-affected liver tissues. Given its crucial role in malignant transformation and tumor progression, GPC3 emerges as a compelling target for imaging. In this study, we developed and evaluated 2 68Ga-labeled GPC3-targeted positron emission tomography (PET) probes, each incorporating either polyethylene glycol (PEG) or 4-(p-methylphenyl)butanoic acid (an albumin-binding moiety). Comparative analyses revealed that 68Ga-ALB-GBP, which includes the albumin-binding moiety, exhibited superior in vivo stability, enhanced tumor uptake, and an improved tumor-to-liver ratio relative to 68Ga-PEG2-GBP in subcutaneous HCC mouse models. Micro-PET/computed tomography imaging of orthotopic liver cancer with 68Ga-ALB-GBP demonstrated a tumor-to-liver ratio of 2.29 ± 0.13 and a tumor-to-muscle ratio of 13.03 ± 1.63 at 3 h postinjection, outperforming the performance of the clinically used 18F-fluorodeoxyglucose PET imaging. These findings suggest that 68Ga-ALB-GBP is a promising diagnostic tool for HCC and a strong candidate for clinical translation with potential utility in both diagnostic and therapeutic settings. Moreover, the incorporation of an albumin-binding moiety into PET tracers significantly extends blood circulation time, thereby enhancing bioavailability and facilitating high-contrast PET imaging.
Collapse
Affiliation(s)
- Zhongjing Li
- Department
of Nuclear Medicine, National Cancer Center/National Clinical Research
Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union
Medical College, Shenzhen 518116, China
| | - Chunwei Mo
- Department
of Nuclear Medicine, Nanfang Hospital, GDMPA Key Laboratory for Quality
Control and Evaluation of Radiopharmaceuticals, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Chengzhe Li
- Department
of Nuclear Medicine, National Cancer Center/National Clinical Research
Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union
Medical College, Shenzhen 518116, China
| | - Qiong Wang
- Department
of Nuclear Medicine, National Cancer Center/National Clinical Research
Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union
Medical College, Shenzhen 518116, China
| | - Size Huang
- Department
of Nuclear Medicine, National Cancer Center/National Clinical Research
Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union
Medical College, Shenzhen 518116, China
| | - Yong Huang
- Department
of Nuclear Medicine, National Cancer Center/National Clinical Research
Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union
Medical College, Shenzhen 518116, China
| | - Ying Liang
- Department
of Nuclear Medicine, National Cancer Center/National Clinical Research
Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union
Medical College, Shenzhen 518116, China
| |
Collapse
|
10
|
Couzinet A, Suzuki T, Nakatsura T. Progress and challenges in glypican-3 targeting for hepatocellular carcinoma therapy. Expert Opin Ther Targets 2024; 28:895-909. [PMID: 39428649 DOI: 10.1080/14728222.2024.2416975] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024]
Abstract
INTRODUCTION Glypican-3 (GPC3) is a cell membrane-anchored heparan sulfate proteoglycan that has recently garnered attention as a cancer antigen owing to its high expression in numerous cancers, particularly hepatocellular carcinoma (HCC), and to limited expression in adult normal tissue. AREAS COVERED Here, we propose the potential of GPC3 as a cancer antigen based on our experience with the GPC3 peptide vaccine against HCC, having developed a vaccine that progressed from preclinical studies to first-in-human clinical trials. In this review, we present a summary of the current status and future prospects of immunotherapies targeting GPC3 by focusing on clinical trials; peptide vaccines, mRNA vaccines, antibody therapy, and chimeric antigen receptor/T-cell receptor - T-cell therapy and discuss additional strategies for effectively eliminating HCC through immunotherapy. EXPERT OPINION GPC3 is an ideal cancer antigen for HCC immunotherapy. In resectable HCC, immunotherapies that leverage physiological immune surveillance, immune checkpoint inhibitors, and GPC3-target cancer vaccines appear promising in preventing recurrence and could be considered as a prophylactic adjuvant therapy. However, in advanced HCC, clinical trials have not demonstrated sufficient anti-tumor efficacy, in contrast with preclinical studies. Reverse translation, bedside-to-bench research, is crucial to identify the factors that have hindered GPC3 target immunotherapies.
Collapse
Affiliation(s)
- Arnaud Couzinet
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Toshihiro Suzuki
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Tetsuya Nakatsura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| |
Collapse
|
11
|
Chan YT, Zhang C, Wu J, Lu P, Xu L, Yuan H, Feng Y, Chen ZS, Wang N. Biomarkers for diagnosis and therapeutic options in hepatocellular carcinoma. Mol Cancer 2024; 23:189. [PMID: 39242496 PMCID: PMC11378508 DOI: 10.1186/s12943-024-02101-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/23/2024] [Indexed: 09/09/2024] Open
Abstract
Liver cancer is a global health challenge, causing a significant social-economic burden. Hepatocellular carcinoma (HCC) is the predominant type of primary liver cancer, which is highly heterogeneous in terms of molecular and cellular signatures. Early-stage or small tumors are typically treated with surgery or ablation. Currently, chemotherapies and immunotherapies are the best treatments for unresectable tumors or advanced HCC. However, drug response and acquired resistance are not predictable with the existing systematic guidelines regarding mutation patterns and molecular biomarkers, resulting in sub-optimal treatment outcomes for many patients with atypical molecular profiles. With advanced technological platforms, valuable information such as tumor genetic alterations, epigenetic data, and tumor microenvironments can be obtained from liquid biopsy. The inter- and intra-tumoral heterogeneity of HCC are illustrated, and these collective data provide solid evidence in the decision-making process of treatment regimens. This article reviews the current understanding of HCC detection methods and aims to update the development of HCC surveillance using liquid biopsy. Recent critical findings on the molecular basis, epigenetic profiles, circulating tumor cells, circulating DNAs, and omics studies are elaborated for HCC diagnosis. Besides, biomarkers related to the choice of therapeutic options are discussed. Some notable recent clinical trials working on targeted therapies are also highlighted. Insights are provided to translate the knowledge into potential biomarkers for detection and diagnosis, prognosis, treatment response, and drug resistance indicators in clinical practice.
Collapse
Affiliation(s)
- Yau-Tuen Chan
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Cheng Zhang
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Junyu Wu
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Pengde Lu
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Lin Xu
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Hongchao Yuan
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Zhe-Sheng Chen
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439, USA.
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.
| |
Collapse
|
12
|
Guan L, Wu S, Zhu Q, He X, Li X, Song G, Zhang L, Yin X. GPC3-targeted CAR-M cells exhibit potent antitumor activity against hepatocellular carcinoma. Biochem Biophys Rep 2024; 39:101741. [PMID: 38881757 PMCID: PMC11176667 DOI: 10.1016/j.bbrep.2024.101741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/10/2024] [Accepted: 05/23/2024] [Indexed: 06/18/2024] Open
Abstract
Chimeric antigen receptor (CAR)-modified macrophages are a promising treatment for solid tumor. So far the potential effects of CAR-M cell therapy have rarely been investigated in hepatocellular carcinoma (HCC). Glypican-3 (GPC3) is a biomarker for a variety of malignancies, including liver cancer, which is not expressed in most adult tissues. Thus, it is an ideal target for the treatment of HCC. In this study, we engineered mouse macrophage cells with CAR targeting GPC3 and explored its therapeutic potential in HCC. First, we generated a chimeric adenoviral vector (Ad5f35) delivering an anti-GPC3 CAR, Ad5f35-anti-GPC3-CAR, which using the CAR construct containing the scFv targeting GPC3 and CD3ζ intracellular domain. Phagocytosis and killing effect indicated that macrophages transduced with Ad5f35-anti-GPC3-CAR (GPC3 CAR-Ms) exhibited antigen-specific phagocytosis and tumor cell clearance in vitro, and GPC3 CAR-Ms showed significant tumor-killing effects and promoted expression of pro-inflammatory (M1) cytokines and chemokines. In 3D NACs-origami spheroid model of HCC, CAR-Ms were further demonstrated to have a significant tumor killing effect. Together, our study provides a new strategy for the treatment of HCC through CAR-M cells targeting GPC3, which provides a basis for the research and treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Lili Guan
- Applied Biology Laboratory, College of Environmental and Safety Engineering, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Shanshan Wu
- Applied Biology Laboratory, College of Environmental and Safety Engineering, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Qinyao Zhu
- Applied Biology Laboratory, College of Environmental and Safety Engineering, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Xiaofang He
- PuHeng Biotechnology (Suzhou) Co., Ltd, Suzhou, 215000, China
| | - Xuelong Li
- Applied Biology Laboratory, College of Environmental and Safety Engineering, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Guangqi Song
- PuHeng Biotechnology (Suzhou) Co., Ltd, Suzhou, 215000, China
| | - Luo Zhang
- Research Center of Bioengineering, The Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, 100853, China
| | - Xiushan Yin
- Applied Biology Laboratory, College of Environmental and Safety Engineering, Shenyang University of Chemical Technology, Shenyang, 110142, China
- Suzhou RocRock No.1 Biotechnology Co., Ltd, Suzhou, 215000, China
| |
Collapse
|
13
|
Rossari F, Foti S, Camera S, Persano M, Casadei-Gardini A, Rimini M. Treatment options for advanced hepatocellular carcinoma: the potential of biologics. Expert Opin Biol Ther 2024; 24:455-470. [PMID: 38913107 DOI: 10.1080/14712598.2024.2363234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/30/2024] [Indexed: 06/25/2024]
Abstract
INTRODUCTION Advanced hepatocellular carcinoma (HCC) represents a significant global health burden, whose treatment has been recently revolutionized by the advent of biologic treatments. Despite that, innovative therapeutic regimens and approaches, especially immune-based, remain to be explored aiming at extending the therapeutic benefits to a wider population of patients. AREAS COVERED This review comprehensively discusses the evolving landscape of biological treatment modalities for advanced HCC, including immune checkpoint inhibitors, antiangiogenic monoclonal antibodies, tumor-targeting monoclonal antibodies either naked or drug-conjugated, therapeutic vaccines, oncolytic viruses, adoptive cell therapies, and cytokine-based therapies. Key clinical trials and preclinical studies are examined, highlighting the actual or potential impact of these interventions in reshaping treatment paradigms for HCC. EXPERT OPINION Tailored and rational combination strategies, leveraging the synergistic effects of different modalities, represent a promising approach to maximize treatment efficacy in advanced HCC, which should aim at conversion endpoints to increase the fraction of patients eligible for curative approaches. The identification of predictive biomarkers holds the key to optimizing patient selection and improving therapeutic outcomes.
Collapse
Affiliation(s)
- Federico Rossari
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Silvia Foti
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Silvia Camera
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Mara Persano
- Medical Oncology, University and University Hospital of Cagliari, Cagliari, Italy
| | - Andrea Casadei-Gardini
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Margherita Rimini
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| |
Collapse
|
14
|
Lu LL, Xiao SX, Lin ZY, Bai JJ, Li W, Song ZQ, Zhou YH, Lu B, Wu WZ. GPC3-IL7-CCL19-CAR-T primes immune microenvironment reconstitution for hepatocellular carcinoma therapy. Cell Biol Toxicol 2023; 39:3101-3119. [PMID: 37853185 DOI: 10.1007/s10565-023-09821-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/13/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-T-cell therapy is a revolutionary treatment that has become a mainstay of advanced cancer treatment. Conventional glypican-3 (GPC3)-CAR-T cells have not produced ideal clinical outcomes in advanced hepatocellular carcinoma (HCC), and the mechanism is unclear. This study aims to investigate the clinical utility of novel GPC3-7-19-CAR-T cells constructed by our team and to explore the mechanisms underlying their antitumor effects. METHODS We engineered a novel GPC3-targeting CAR including an anti-GPC3 scFv, CD3ζ, CD28 and 4-1BB that induces co-expression of IL-7 at a moderate level (500 pg/mL) and CCL19 at a high level (15000 pg /mL) and transduced it into human T cells. In vitro, cell killing efficacy was validated by the xCELLigence RTCA system, LDH nonradioactive cytotoxicity assay and was confirmed in primary HCC organoid models employing a 3D microfluid chip. In vivo, the antitumor capacity was assessed in a humanized NSG mouse xenograft model. Finally, we initiated a phase I clinical trial to evaluate the safety and effect of GPC3-7-19-CAR-T cells in the clinic. RESULTS GPC3-7-19-CAR-T cells had 1.5-2 times higher killing efficiency than GPC3-CAR-T cells. The tumor formation rates in GPC3-7-19-CAR-T cells treated model were reduced (3/5vs.5/5), and the average tumor volumes were 0.74 cm3 ± 1.17 vs. 0.34 cm3 ± 0.25. Of note, increased proportion of CD4+ TEM and CD8+ TCM cells was infiltrated in GPC3-7-19-CAR-T cells group. GPC3-7-19-CAR-T cells obviously reversed the immunosuppressive tumor microenvironment (TME) by reducing polymorphonuclear (PMN)-myeloid-derived suppressor cells (MDSCs) and regulatory T (Treg) cells infiltration and recruiting more dendritic cells (DCs) to HCC xenograft tumor tissues. In one patient with advanced HCC, GPC3-7-19-CAR-T-cell treatment resulted in tumor reduction 56 days after intravenous infusion. CONCLUSIONS In conclusion, GPC3-7-19-CAR-T cells achieved antitumor effects superior to those of conventional GPC3-CAR-T cells by reconstructing the TME induced by the dominant CD4+ TEM and CD8+ TCM cell subsets. Most importantly, GPC3-7-19-CAR-T cells exhibited good safety and antitumor efficacy in HCC patients in the clinic. ► Novel GPC3-7-19-CAR-T cells designed with mediate level of IL-7 secretion and high level of CCL19 secretion, which could recruit more mature DCs to assist killing on GPC3+HCCs. ►DC cells recruited by CCL19 could interact with CD4+ T cells and promote the differentiation of CD4+TEFF cells into CD4+TEM and CD8+TCM subsets, leading a better anti-tumor effect on GPC3+HCCs. ►Compared with conventional GPC3-CAR-T, GPC3-7-CCL19-CAR-T cells could reverse tumor immunosuppressive microenvironment by reducing PMN-MDSC and Treg cell infiltration.
Collapse
Affiliation(s)
- Li-Li Lu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China
- Clinical Center for Biotherapy, Zhongshan Hospital, Shanghai, 200032, China
| | - Shu-Xiu Xiao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China
- Clinical Center for Biotherapy, Zhongshan Hospital, Shanghai, 200032, China
| | - Zhi-Yuan Lin
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jin-Jin Bai
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China
- Clinical Center for Biotherapy, Zhongshan Hospital, Shanghai, 200032, China
| | - Wei Li
- Department of Medical Oncology, Fudan University, Shanghai, 200032, China
| | - Zheng-Qing Song
- Department of Medical Oncology, Fudan University, Shanghai, 200032, China
| | - Yu-Hong Zhou
- Department of Medical Oncology, Fudan University, Shanghai, 200032, China
| | - Bin Lu
- Department of Biochemical Pharmacy School of Pharmacy, Naval Medical University, Shanghai, 200433, China.
| | - Wei-Zhong Wu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China.
| |
Collapse
|
15
|
Requeijo C, Bracchiglione J, Meza N, Acosta-Dighero R, Salazar J, Santero M, Meade AG, Quintana MJ, Rodríguez-Grijalva G, Selva A, Solà I, Urrútia G, Bonfill Cosp X, On behalf of Appropriateness of Systemic Oncological Treatments for Advanced Cancer (ASTAC) Research Group. Anticancer Drugs Compared to No Anticancer Drugs in Patients with Advanced Hepatobiliary Cancer: A Mapping Review and Evidence Gap Map. Clin Epidemiol 2023; 15:1069-1085. [PMID: 38025841 PMCID: PMC10644842 DOI: 10.2147/clep.s431498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/14/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Despite being commonly recommended, the impact of anticancer drugs (ACDs) on patient-important outcomes beyond survival for advanced hepatobiliary cancers (HBCs) may not have been sufficiently assessed. We aim to identify and map the evidence regarding ACDs versus best supportive care (BSC) for advanced HBCs, considering patient-centered outcomes. Methods In this mapping review, we included systematic reviews, randomized controlled trials, quasi-experimental, and observational studies comparing ACDs (chemotherapy, immunotherapy, biological/targeted therapy) versus BSC for advanced HBCs. We searched MEDLINE (PubMed), EMBASE (Ovid), Cochrane Library, Epistemonikos, PROSPERO and clinicaltrials.gov for eligible studies. Two reviewers performed the screening and data extraction processes. We developed evidence maps for each type of cancer. Results We included 87 studies (60 for advanced liver cancer and 27 for gallbladder or bile duct cancers). Most of the evidence favored ACDs for survival outcomes, and BSC for toxicity. We identified several evidence gaps for non-survival outcomes, including quality of life or quality of end-of-life care. Discussion Patient-important outcomes beyond survival in advanced HBCs are insufficiently assessed by the available evidence. Future studies need to address these gaps to better inform decision-making processes.
Collapse
Affiliation(s)
- Carolina Requeijo
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Javier Bracchiglione
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
- Interdisciplinary Centre for Health Studies (CIESAL), Valparaiso University, Viña del Mar, Chile
- CIBER of Epidemiology and Public Health (CIBERESP), Barcelona, Spain
| | - Nicolás Meza
- Interdisciplinary Centre for Health Studies (CIESAL), Valparaiso University, Viña del Mar, Chile
| | - Roberto Acosta-Dighero
- Interdisciplinary Centre for Health Studies (CIESAL), Valparaiso University, Viña del Mar, Chile
| | - Josefina Salazar
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Marilina Santero
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Adriana-G Meade
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - María Jesús Quintana
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Barcelona, Spain
- Autonomous University of Barcelona, Barcelona, Spain
| | | | - Anna Selva
- CIBER of Epidemiology and Public Health (CIBERESP), Barcelona, Spain
- Clinical Epidemiology and Cancer Screening, Parc Taulí Hospital Universitari, Parc Taulí Research and Innovation Institute Foundation (I3PT-CERCA), Autonomous University of Barcelona, Sabadell, Spain
| | - Ivan Solà
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Barcelona, Spain
| | - Gerard Urrútia
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Barcelona, Spain
| | - Xavier Bonfill Cosp
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Barcelona, Spain
- Autonomous University of Barcelona, Barcelona, Spain
| | - On behalf of Appropriateness of Systemic Oncological Treatments for Advanced Cancer (ASTAC) Research Group
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
- Interdisciplinary Centre for Health Studies (CIESAL), Valparaiso University, Viña del Mar, Chile
- CIBER of Epidemiology and Public Health (CIBERESP), Barcelona, Spain
- Autonomous University of Barcelona, Barcelona, Spain
- Clinical Epidemiology and Cancer Screening, Parc Taulí Hospital Universitari, Parc Taulí Research and Innovation Institute Foundation (I3PT-CERCA), Autonomous University of Barcelona, Sabadell, Spain
| |
Collapse
|
16
|
Liu Q, Song Q, Luo C, Wei J, Xu Y, Zhao L, Wang Y. A novel bispecific antibody as an immunotherapeutic agent in hepatocellular carcinoma. Mol Immunol 2023; 162:125-132. [PMID: 37677989 DOI: 10.1016/j.molimm.2023.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/04/2023] [Accepted: 08/20/2023] [Indexed: 09/09/2023]
Abstract
Hepatocellular carcinoma (HCC) remains one of the most common and highly fatal malignancies in humans worldwide with increasing prevalence and limited therapeutic options. For many decades, many researchers have attempted to find effective curative methods for HCC and great strides have been made. GPC3 is overexpressed in HCC, but not in normal liver, making it a rational immunotherapeutic target for HCC. GC33, a humanized mAb directed against GPC3, is a safe and well-tolerated therapy choice for patients with HCC, which tested in a phase I trial in advanced HCC patients. Phase II trials of GC33 to evaluate its efficacy and safety in advanced or metastatic HCC, showed no significant differences in overall survival and progression-free survival compared with the placebo. Retrospective analysis indicates that high drug exposure and high CD16 expression may contribute to the clinical efficacy of GC33. Chugai Pharmaceutical has restarted its Phase I trial of GC33, continuing to explore its clinical value targeting GPC3 in solid tumors. To enhance the antitumor potency of GC33, we designed a GPC3/CD16A bispecific antibody (QDEB). In this study, we obtained QDEB at high purity and assessed its effectiveness in the therapy of HCC compared with GC33. In vitro cytotoxicity assays and in vivo experiments demonstrated that QDEB could enhance anti-tumor efficacy compared with GC33. CD16A activation and increased cytokines release were associated with higher anti-tumor activity. In conclusion, this bispecific antibody may possibly help develop new therapeutic strategies for HCC and develop new treatment options in the future.
Collapse
Affiliation(s)
- Qingxia Liu
- Department of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China; Sanhome R&D Centre, Nanjing Sanhome Pharmaceutical Co., Ltd., Nanjing 221116, PR China
| | - Qifeng Song
- Sanhome R&D Centre, Nanjing Sanhome Pharmaceutical Co., Ltd., Nanjing 221116, PR China
| | - Cheng Luo
- Sanhome R&D Centre, Nanjing Sanhome Pharmaceutical Co., Ltd., Nanjing 221116, PR China
| | - Jian Wei
- Sanhome R&D Centre, Nanjing Sanhome Pharmaceutical Co., Ltd., Nanjing 221116, PR China
| | - Yao Xu
- Sanhome R&D Centre, Nanjing Sanhome Pharmaceutical Co., Ltd., Nanjing 221116, PR China
| | - Liwen Zhao
- Sanhome R&D Centre, Nanjing Sanhome Pharmaceutical Co., Ltd., Nanjing 221116, PR China
| | - Yong Wang
- Department of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China; Sanhome R&D Centre, Nanjing Sanhome Pharmaceutical Co., Ltd., Nanjing 221116, PR China.
| |
Collapse
|
17
|
Donne R, Lujambio A. The liver cancer immune microenvironment: Therapeutic implications for hepatocellular carcinoma. Hepatology 2023; 77:1773-1796. [PMID: 35989535 PMCID: PMC9941399 DOI: 10.1002/hep.32740] [Citation(s) in RCA: 297] [Impact Index Per Article: 148.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 07/26/2022] [Accepted: 08/18/2022] [Indexed: 12/19/2022]
Abstract
The liver is the sixth most common site of primary cancer in humans and the fourth leading cause of cancer-related death in the world. Hepatocellular carcinoma (HCC) accounts for 90% of liver cancers. HCC is a prevalent disease with a progression that is modulated by the immune system. Half of the patients with HCC receive systemic therapies, traditionally sorafenib or lenvatinib, as a first-line therapy. In the last few years, immune-checkpoint inhibitors (ICIs) have revolutionized cancer therapy and have gained an increased interest in the treatment of HCC. In 2020, the combination of atezolizumab (anti-programmed death-ligand 1) and bevacizumab (anti-vascular endothelial growth factor) improved overall survival over sorafenib, resulting in Food and Drug Administration (FDA) approval as a first-line treatment for patients with advanced HCC. Despite these major advances, a better molecular and cellular characterization of the tumor microenvironment is still needed because it has a crucial role in the development and progression of HCC. Inflamed (hot) and noninflamed (cold) HCC tumors and genomic signatures have been associated with response to ICIs. However, there are no additional biomarkers to guide clinical decision-making. Other immune-targeting strategies, such as adoptive T-cell transfer, vaccination, and virotherapy, are currently under development. This review provides an overview on the HCC immune microenvironment, different cellular players, current available immunotherapies, and potential immunotherapy modalities.
Collapse
Affiliation(s)
- Romain Donne
- Department of Oncological Sciences , Icahn School of Medicine at Mount Sinai , New York , New York , USA
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai , Tisch Cancer Institute , New York , New York , USA
- Icahn School of Medicine at Mount Sinai , The Precision Immunology Institute , New York , New York , USA
| | - Amaia Lujambio
- Department of Oncological Sciences , Icahn School of Medicine at Mount Sinai , New York , New York , USA
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai , Tisch Cancer Institute , New York , New York , USA
- Icahn School of Medicine at Mount Sinai , The Precision Immunology Institute , New York , New York , USA
- Graduate School of Biomedical Sciences , Icahn School of Medicine at Mount Sinai , New York , New York , USA
| |
Collapse
|
18
|
Yang J, Wang Z, Mo C, Luo H, Li S, Mo Q, Qin Y, Yang F, Li X. An inorganic-organic-polymeric nanovehicle for targeting delivery of doxorubicin: Rational assembly, pH-stimulus release, and dual hyperthermia/chemotherapy of hepatocellular carcinoma. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 241:112682. [PMID: 36871489 DOI: 10.1016/j.jphotobiol.2023.112682] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/17/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023]
Abstract
Efficiently synergistic therapy of hepatocellular carcinoma (HCC) by chemotherapeutic drug and photothermal agent remains a considerable challenge. Here, we report a nanodrug that integrates specific hepatoma-targeted delivery, pH-triggered drug release, and cooperative photothermal-chemotherapy function. By grafting the easily self-assembled CuS@polydopamine (CuS@PDA) nanocapsulation with polyacrylic acid (PAA), an inorganic-organic-polymeric hybrid nanovehicle was developed as a dual photothermal agent and carrier for loading antitumor drug-doxorubicin (DOX) through electrostatic adsorption and chemical linking antibody against GPC3 commonly overexpressed in HCC, resulting in the nanodrug, CuS@PDA/PAA/DOX/GPC3. The multifunctional nanovehicle had excellent biocompatibility, stability, and high photothermal conversion efficiency, due to the rationally designed binary CuS@PDA photothermal agent. The 72-h accumulative drug release in pH 5.5 tumor microenvironment can reach up to 84%, far higher than 15% measured in pH 7.4 condition. Notably, in contrast to the merely 20% survival rate of H9c2 and HL-7702 cells exposed to free DOX, their viabilities in the nanodrug circumstance can maintain 54% and 66%, respectively, suggesting the abated toxicity to the normal cell lines. When exposed to the hepatoma-targeting nanodrug, the viability of HepG2 cells was found to be 36%, which further drastically declined to 10% plus 808-nm NIR irradiation. Moreover, the nanodrug is potent to cause tumor ablation in HCC-modeled mice, and the therapeutic efficacy can be greatly enhanced under NIR stimulus. Histology analyses reveal that the nanodrug can effectively alleviate the chemical damage to heart and liver, as compared to free DOX. This work thus offers a facile strategy for design of targeting anti-HCC nanodrug toward combined photothermal-chemotherapy.
Collapse
Affiliation(s)
- Jianying Yang
- Key Laboratory of Micro-Nano Bioanalysis and Drug Screening of Guangxi Higher Education, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China
| | - Zhao Wang
- Key Laboratory of Micro-Nano Bioanalysis and Drug Screening of Guangxi Higher Education, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China
| | - Chunhong Mo
- Key Laboratory of Micro-Nano Bioanalysis and Drug Screening of Guangxi Higher Education, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China
| | - Haikun Luo
- Key Laboratory of Micro-Nano Bioanalysis and Drug Screening of Guangxi Higher Education, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China
| | - Shuting Li
- Key Laboratory of Micro-Nano Bioanalysis and Drug Screening of Guangxi Higher Education, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China
| | - Qian Mo
- Key Laboratory of Micro-Nano Bioanalysis and Drug Screening of Guangxi Higher Education, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China
| | - You Qin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
| | - Fan Yang
- Key Laboratory of Micro-Nano Bioanalysis and Drug Screening of Guangxi Higher Education, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China; State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China; Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China.
| | - Xinchun Li
- Key Laboratory of Micro-Nano Bioanalysis and Drug Screening of Guangxi Higher Education, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China; State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China; Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China.
| |
Collapse
|
19
|
Murugan C, Lee H, Park S. Tumor-targeted molybdenum disulfide@barium titanate core-shell nanomedicine for dual photothermal and chemotherapy of triple-negative breast cancer cells. J Mater Chem B 2023; 11:1044-1056. [PMID: 36606505 DOI: 10.1039/d2tb02382b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Combinational therapy can improve the effectiveness of cancer treatment by overcoming individual therapy shortcomings, leading to accelerated cancer cell apoptosis. Combinational cancer therapy is attained by a single nanosystem with multiple physicochemical properties providing an efficient synergistic therapy against cancer cells. Herein, we report a folate receptor-targeting dual-therapeutic (photothermal and chemotherapy) core-shell nanoparticle (CSNP) exhibiting a molybdenum disulfide core with a barium titanate shell (MoS2@BT) to improve therapeutic efficacy against triple-negative breast cancer (TNBC) MDA-MB-231 cells. A simple hydrothermal approach was used to achieve the MoS2@BT CSNPs, and their diameter was calculated to be approximately 180 ± 25 nm. In addition to improving the photothermal efficiency and stability of the MoS2@BT CSNPs, their surface was functionalized with polydopamine (PDA) and subsequently modified with folic acid (FA) to achieve enhanced tumour-targeting CSNPs, named MoS2@BT-PDA-FA (MBPF). Then, gemcitabine (Gem) was loaded into the MBPF, and its loading and releasing efficacy were calculated to be 17.5 wt% and 64.5 ± 3%, respectively. Moreover, the photothermal conversion efficiency (PCE) of MBPF was estimated to be 35.3%, and it also showed better biocompatibility, which was determined by an MTT assay. The MBPF significantly increased the ambient temperature to 56.3 °C and triggered Gem release inside the TNBC cells when exposed to a near-infrared (NIR) laser (808 nm, 1.5 W cm-2, 5 min). Notably, the MoS2@BT-based nanosystem was used as a photothermal agent and a therapeutic drug-loading container for combating TNBC cells. Benefiting from the combined therapy, MBPF reduced TNBC cell viability to 81.3% due to its efficient synergistic effects. Thus, the proposed tumour-targeting MoS2@BT CSNP exhibits high drug loading, better biocompatibility, and improved anticancer efficacy toward TNBC cells due to its dual therapeutic approach in a single system, which opens up a new approach for dual cancer therapy.
Collapse
Affiliation(s)
- Chandran Murugan
- Department of Robotics and Mechatronics Engineering, Multiscale Biomedical Robotics Laboratory, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
| | - Hyoryong Lee
- Department of Robotics and Mechatronics Engineering, Multiscale Biomedical Robotics Laboratory, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
| | - Sukho Park
- Department of Robotics and Mechatronics Engineering, Multiscale Biomedical Robotics Laboratory, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
| |
Collapse
|
20
|
Bracchiglione J, Rodríguez-Grijalva G, Requeijo C, Santero M, Salazar J, Salas-Gama K, Meade AG, Antequera A, Auladell-Rispau A, Quintana MJ, Solà I, Urrútia G, Acosta-Dighero R, Bonfill Cosp X. Systemic Oncological Treatments versus Supportive Care for Patients with Advanced Hepatobiliary Cancers: An Overview of Systematic Reviews. Cancers (Basel) 2023; 15:cancers15030766. [PMID: 36765723 PMCID: PMC9913533 DOI: 10.3390/cancers15030766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The trade-off between systemic oncological treatments (SOTs) and UPSC in patients with primary advanced hepatobiliary cancers (HBCs) is not clear in terms of patient-centred outcomes beyond survival. This overview aims to assess the effectiveness of SOTs (chemotherapy, immunotherapy and targeted/biological therapies) versus UPSC in advanced HBCs. METHODS We searched for systematic reviews (SRs) in PubMed, EMBASE, the Cochrane Library, Epistemonikos and PROSPERO. Two authors assessed eligibility independently and performed data extraction. We estimated the quality of SRs and the overlap of primary studies, performed de novo meta-analyses and assessed the certainty of evidence for each outcome. RESULTS We included 18 SRs, most of which were of low quality and highly overlapped. For advanced hepatocellular carcinoma, SOTs showed better overall survival (HR = 0.62, 95% CI 0.55-0.77, high certainty for first-line therapy; HR = 0.85, 95% CI 0.79-0.92, moderate certainty for second-line therapy) with higher toxicity (RR = 1.18, 95% CI 0.87-1.60, very low certainty for first-line therapy; RR = 1.58, 95% CI 1.28-1.96, low certainty for second-line therapy). Survival was also better for SOTs in advanced gallbladder cancer. No outcomes beyond survival and toxicity could be meta-analysed. CONCLUSION SOTs in advanced HBCs tend to improve survival at the expense of greater toxicity. Future research should inform other patient-important outcomes to guide clinical decision making.
Collapse
Affiliation(s)
- Javier Bracchiglione
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Interdisciplinary Centre for Health Studies (CIESAL), Universidad de Valparaíso, Viña del Mar 46383, Chile
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | - Gerardo Rodríguez-Grijalva
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
| | - Carolina Requeijo
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Correspondence:
| | - Marilina Santero
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
| | - Josefina Salazar
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
| | - Karla Salas-Gama
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Quality, Process and Innovation Direction, Valld’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Adriana-Gabriela Meade
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
| | - Alba Antequera
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
| | - Ariadna Auladell-Rispau
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
| | - María Jesús Quintana
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Departament de Pediatria, d’Obstetrícia i Ginecologia, i Medicina Preventiva i Salut Pública, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Ivan Solà
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Departament de Pediatria, d’Obstetrícia i Ginecologia, i Medicina Preventiva i Salut Pública, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Gerard Urrútia
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Departament de Pediatria, d’Obstetrícia i Ginecologia, i Medicina Preventiva i Salut Pública, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Roberto Acosta-Dighero
- Interdisciplinary Centre for Health Studies (CIESAL), Universidad de Valparaíso, Viña del Mar 46383, Chile
| | - Xavier Bonfill Cosp
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Departament de Pediatria, d’Obstetrícia i Ginecologia, i Medicina Preventiva i Salut Pública, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
21
|
Therapeutic Adenovirus Vaccine Combined Immunization with IL-12 Induces Potent CD8 + T Cell Anti-Tumor Immunity in Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14184512. [PMID: 36139670 PMCID: PMC9497125 DOI: 10.3390/cancers14184512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/03/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Hepatocellular carcinoma is a kind of tumor with a high malignant degree and mortality rate, and there is no effective treatment method. Currently, immunotherapy has shown good prospects in treating hepatocellular carcinoma. As an important approach of immunotherapy, the vaccine has become an attractive method for tumor treatment. This study developed an adenovirus vaccine containing tumor antigen glypican-3 and adjuvant interleukin 12. The subcutaneous tumor model was intramuscularly immunized three times with vaccines at a ten-day interval. Compared with the control group, the proliferation of CD 8+ T cell, the induction of multifunctional CD 8+ T cell and dendritic cells, and cytotoxic T lymphocyte activity were significantly increased in the combined immunization group, and the growth of tumor was inhibited obviously. The therapeutic effect of the vaccine of glypican-3 and interleukin 12 mainly depends on the anti-tumor effect of CD 8+ T cells mediated by dendritic cells. Likewise, this vaccine also showed a good therapeutic effect in the lung metastasis model of hepatocellular carcinoma. Therefore, the adenovirus vaccine of glypican-3 and interleukin 12 might become a potential way to treat hepatocellular carcinoma. Abstract Hepatocellular carcinoma (HCC) is one of the cancers with the highest morbidity and mortality in the world. However, clinical progress in the treatment of HCC has not shown a satisfactory therapeutic effect. Here, we have developed a novel strategy to treat HCC with an adenovirus (Ad)-based vaccine, which contains a specific antigen glypican-3 (GPC3) and an immunostimulatory cytokine IL-12. In the subcutaneous tumor model, Ad-IL-12/GPC3 vaccine was injected into muscles three times to evaluate its therapeutic effect. Compared with the control immunization group, the Ad-IL-12/GPC3 immunization group showed a significant tumor growth inhibition effect, which was confirmed by the reduced tumor volume and the increased tumor inhibition. Ad-IL-12/GPC3 co-immunization promoted the induction and maturation of CD11c+ or CD8+CD11c+ DCs and increased the number of tumor-infiltrating CD8+ T cells. Furthermore, in the Ad-IL-12/GPC3 group, the proliferation of CD8+ T cells, the induction of multifunctional CD8+ T cells, and CTL activity were significantly increased. Interestingly, the deletion of CD8+ T cells abolished tumor growth inhibition by Ad-IL-12/GPC3 treatment, suggesting that CD8+ T cell immune responses were required to eliminate the tumor. Likewise, Ad-IL-12/GPC3 vaccine also effectively inhibited lung tumor growth or metastasis by enhancing CD8+ DCs-mediated multifunctional CD8+ T cell immune responses in the lung metastasis model. Therefore, these results indicate that IL-12 combined with Ad-GPC3 vaccine co-immunization might provide a promising therapeutic strategy for HCC patients.
Collapse
|
22
|
Mossenta M, Busato D, Dal Bo M, Macor P, Toffoli G. Novel Nanotechnology Approaches to Overcome Drug Resistance in the Treatment of Hepatocellular Carcinoma: Glypican 3 as a Useful Target for Innovative Therapies. Int J Mol Sci 2022; 23:10038. [PMID: 36077433 PMCID: PMC9456072 DOI: 10.3390/ijms231710038] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the second most lethal tumor, with a 5-year survival rate of 18%. Early stage HCC is potentially treatable by therapies with curative intent, whereas chemoembolization/radioembolization and systemic therapies are the only therapeutic options for intermediate or advanced HCC. Drug resistance is a critical obstacle in the treatment of HCC that could be overcome by the use of targeted nanoparticle-based therapies directed towards specific tumor-associated antigens (TAAs) to improve drug delivery. Glypican 3 (GPC3) is a member of the glypican family, heparan sulfate proteoglycans bound to the cell surface via a glycosylphosphatidylinositol anchor. The high levels of GPC3 detected in HCC and the absence or very low levels in normal and non-malignant liver make GPC3 a promising TAA candidate for targeted nanoparticle-based therapies. The use of nanoparticles conjugated with anti-GPC3 agents may improve drug delivery, leading to a reduction in severe side effects caused by chemotherapy and increased drug release at the tumor site. In this review, we describe the main clinical features of HCC and the common treatment approaches. We propose the proteoglycan GPC3 as a useful TAA for targeted therapies. Finally, we describe nanotechnology approaches for anti-GPC3 drug delivery systems based on NPs for HCC treatment.
Collapse
Affiliation(s)
- Monica Mossenta
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Davide Busato
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Paolo Macor
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| |
Collapse
|
23
|
Kines RC, Schiller JT. Harnessing Human Papillomavirus' Natural Tropism to Target Tumors. Viruses 2022; 14:1656. [PMID: 36016277 PMCID: PMC9413966 DOI: 10.3390/v14081656] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 02/06/2023] Open
Abstract
Human papillomaviruses (HPV) are small non-enveloped DNA tumor viruses established as the primary etiological agent for the development of cervical cancer. Decades of research have elucidated HPV's primary attachment factor to be heparan sulfate proteoglycans (HSPG). Importantly, wounding and exposure of the epithelial basement membrane was found to be pivotal for efficient attachment and infection of HPV in vivo. Sulfation patterns on HSPG's become modified at the site of wounds as they serve an important role promoting tissue healing, cell proliferation and neovascularization and it is these modifications recognized by HPV. Analogous HSPG modification patterns can be found on tumor cells as they too require the aforementioned processes to grow and metastasize. Although targeting tumor associated HSPG is not a novel concept, the use of HPV to target and treat tumors has only been realized in recent years. The work herein describes how decades of basic HPV research has culminated in the rational design of an HPV-based virus-like infrared light activated dye conjugate for the treatment of choroidal melanoma.
Collapse
Affiliation(s)
| | - John T. Schiller
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA;
| |
Collapse
|
24
|
Brown ZJ, Hewitt DB, Pawlik TM. Experimental drug treatments for hepatocellular carcinoma: Clinical trial failures 2015 to 2021. Expert Opin Investig Drugs 2022; 31:693-706. [PMID: 35580650 DOI: 10.1080/13543784.2022.2079491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is a major health problem worldwide with limited systemic therapy options. Since the approval of sorafenib in 2008, no systemic therapy has provided a sustained/robust/survival benefit for patients with advanced HCC until recently. Many initially promising therapies have been trialed, but survival outcomes remained stagnant. As such, knowledge concerning previous treatment failures may help guide further areas of study, as well inform future therapeutic approaches. AREA COVERED This article reviews recent advances in the treatment of HCC. Despite some recent success, many systemic and locoregional therapies have failed to produce significant improvements in outcome. These treatment failures are examined and insight into pathways for future success are discussed. EXPERT OPINION Combination atezolizumab and bevacizumab has changed the landscape of systemic treatment for patients with HCC when it became the first therapy after demonstrating improve outcomes over sorafenib. Clinical trials in patients with advanced HCC have inherent difficulty with challenges to determine if a patient's declining liver function is secondary to disease progression, worsening cirrhosis, or drug toxicity, which may skew results. As we gain more knowledge of underlying genetic alterations behind the pathophysiology of the development of HCC, molecular markers may be identified to assist in predicting which patients would respond to a specific therapy.
Collapse
|
25
|
Zheng X, Liu X, Lei Y, Wang G, Liu M. Glypican-3: A Novel and Promising Target for the Treatment of Hepatocellular Carcinoma. Front Oncol 2022; 12:824208. [PMID: 35251989 PMCID: PMC8889910 DOI: 10.3389/fonc.2022.824208] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/18/2022] [Indexed: 02/05/2023] Open
Abstract
Glypican-3 (GPC3) is a membrane-associated proteoglycan that is specifically up-regulated in hepatocellular carcinoma (HCC) although rarely or not expressed in normal liver tissues, making it a perfect diagnostic and treatment target for HCC. Several GPC3-based clinical trials are ongoing and recently several innovative GPC3-targeted therapeutic methods have emerged with exciting results, including GPC3 vaccine, anti-GPC3 immunotoxin, combined therapy with immune checkpoint blockades (ICBs), and chimeric antigen receptor (CAR) T or NK cells. Here, we review the value of GPC3 in the diagnosis and prognosis of HCC, together with its signaling pathways, with a specific focus on GPC3-targeted treatments of HCC and some prospects for the future GPC3-based therapeutic strategies in HCC.
Collapse
Affiliation(s)
- Xiufeng Zheng
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Xun Liu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Yanna Lei
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Gang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Ming Liu
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
26
|
Makkouk A, Yang XC, Barca T, Lucas A, Turkoz M, Wong JTS, Nishimoto KP, Brodey MM, Tabrizizad M, Gundurao SRY, Bai L, Bhat A, An Z, Abbot S, Satpayev D, Aftab BT, Herrman M. Off-the-shelf Vδ1 gamma delta T cells engineered with glypican-3 (GPC-3)-specific chimeric antigen receptor (CAR) and soluble IL-15 display robust antitumor efficacy against hepatocellular carcinoma. J Immunother Cancer 2021; 9:jitc-2021-003441. [PMID: 34916256 PMCID: PMC8679077 DOI: 10.1136/jitc-2021-003441] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Glypican-3 (GPC-3) is an oncofetal protein that is highly expressed in various solid tumors, but rarely expressed in healthy adult tissues and represents a rational target of particular relevance in hepatocellular carcinoma (HCC). Autologous chimeric antigen receptor (CAR) αβ T cell therapies have established significant clinical benefit in hematologic malignancies, although efficacy in solid tumors has been limited due to several challenges including T cell homing, target antigen heterogeneity, and immunosuppressive tumor microenvironments. Gamma delta (γδ) T cells are highly cytolytic effectors that can recognize and kill tumor cells through major histocompatibility complex (MHC)-independent antigens upregulated under stress. The Vδ1 subset is preferentially localized in peripheral tissue and engineering with CARs to further enhance intrinsic antitumor activity represents an attractive approach to overcome challenges for conventional T cell therapies in solid tumors. Allogeneic Vδ1 CAR T cell therapy may also overcome other hurdles faced by allogeneic αβ T cell therapy, including graft-versus-host disease (GvHD). METHODS We developed the first example of allogeneic CAR Vδ1 T cells that have been expanded from peripheral blood mononuclear cells (PBMCs) and genetically modified to express a 4-1BB/CD3z CAR against GPC-3. The CAR construct (GPC-3.CAR/secreted interleukin-15 (sIL)-15) additionally encodes a constitutively-secreted form of IL-15, which we hypothesized could sustain proliferation and antitumor activity of intratumoral Vδ1 T cells expressing GPC-3.CAR. RESULTS GPC-3.CAR/sIL-15 Vδ1 T cells expanded from PBMCs on average 20,000-fold and routinely reached >80% purity. Expanded Vδ1 T cells showed a primarily naïve-like memory phenotype with limited exhaustion marker expression and displayed robust in vitro proliferation, cytokine production, and cytotoxic activity against HCC cell lines expressing low (PLC/PRF/5) and high (HepG2) GPC-3 levels. In a subcutaneous HepG2 mouse model in immunodeficient NSG mice, GPC-3.CAR/sIL-15 Vδ1 T cells primarily accumulated and proliferated in the tumor, and a single dose efficiently controlled tumor growth without evidence of xenogeneic GvHD. Importantly, compared with GPC-3.CAR Vδ1 T cells lacking sIL-15, GPC-3.CAR/sIL-15 Vδ1 T cells displayed greater proliferation and resulted in enhanced therapeutic activity. CONCLUSIONS Expanded Vδ1 T cells engineered with a GPC-3 CAR and sIL-15 represent a promising platform warranting further clinical evaluation as an off-the-shelf treatment of HCC and potentially other GPC-3-expressing solid tumors.
Collapse
Affiliation(s)
| | | | - Taylor Barca
- Adicet Therapeutics, Menlo Park, California, USA
| | | | | | | | | | | | | | | | - Lu Bai
- Adicet Therapeutics, Menlo Park, California, USA
| | - Arun Bhat
- Adicet Therapeutics, Menlo Park, California, USA
| | - Zili An
- Adicet Therapeutics, Menlo Park, California, USA
| | | | | | | | | |
Collapse
|
27
|
Filippi L, Braat AJ. Theragnostics in primary and secondary liver tumors: the need for a personalized approach. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2021; 65:353-370. [PMID: 34881847 DOI: 10.23736/s1824-4785.21.03407-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Primary and secondary hepatic tumors have a dramatic impact in oncology. Despite many advances in diagnosis and therapy, the management of hepatic malignancies is still challenging, ranging from various loco-regional approaches to system therapies. In this scenario, theragnostic approaches, based on the administration of a radiopharmaceuticals' pair, the first labeled with a radionuclide suitable for the diagnostic phase and the second one bound to radionuclide emitting particles for therapy, is gaining more and more importance. Selective internal radiation therapy (SIRT) with microspheres labeled with 90Y or 166Ho is widely used as a loco-regional treatment for primary and secondary hepatic tumors. While 166Ho presents both gamma and beta emission and can be therefore considered a real "theragnostic" agent, for 90Y-microspheres theragnostic approach is realized at the diagnostic phase through the utilization of macroaggregates of human albumin, labeled with 99mTc as "biosimilar" agent respect to microspheres. The aim of the present review was to cover theragnostic applications of 90Y/166Ho-labeled microspheres in clinical practice. Furthermore, we report the preliminary data concerning the potential role of some emerging theragnostic biomarkers for hepatocellular carcinoma, such as glypican-3 (GPC3) and prostate specific membrane antigen (PSMA).
Collapse
Affiliation(s)
- Luca Filippi
- Department of Nuclear Medicine, Santa Maria Goretti Hospital, Latina, Italy -
| | - Arthur J Braat
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
28
|
Nie JH, Yang T, Li H, Ye HS, Zhong GQ, Li TT, Zhang C, Huang WH, Xiao J, Li Z, He JL, Du BL, Zhang Y, Liu J. Identification of GPC3 mutation and upregulation in a multidrug resistant osteosarcoma and its spheroids as therapeutic target. J Bone Oncol 2021; 30:100391. [PMID: 34611509 PMCID: PMC8476350 DOI: 10.1016/j.jbo.2021.100391] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/26/2021] [Accepted: 09/10/2021] [Indexed: 11/15/2022] Open
Abstract
GPC3 mutation in primary osteosarcoma becomes abundant in its metastasis. Mutant GPC3 is over-produced in metastatic spheroids with multidrug resistance. Anti-GPC3 antibody effectively commits metastatic spheroids to apoptosis. GPC3 would be a promising therapeutic target of osteosarcomas.
Background Drug resistance and the lack of molecular therapeutic target are the main challenges in the management of osteosarcomas (OSs). Identification of novel genetic alteration(s) related with OS recurrence and chemotherapeutic resistance would be of scientific and clinical significance. Methods To identify potential genetic alterations related with OS recurrence and chemotherapeutic resistance, the biopsies of a 20-year-old male osteosarcoma patient were collected at primary site (p-OS) and from its metastatic tumor (m-OS) formed after 5 months of adjuvant chemotherapy. Both OS specimens were subjected to cancer-targeted next generation sequencing (NGS) and their cell suspensions were cultured under three-dimensional condition to establish spheroid therapeutic model. Transcript-oriented Sanger sequencing for GPC3, the detected mutated gene, was performed on RNA samples of p-OS and m-OS tissues and spheroids. The effects of anti-GPC3 antibody and its combination with cisplatin on m-OS spheroids were elucidated. Results NGS revealed 4 mutations (GPC3, SOX10, MDM4 and MAPK8) and 6 amplifications (MDM2, CDK4, CCND3, RUNX2, GLI1 and FRS2) in p-OS, and 3 mutations (GPC3, SOX10 and EGF) and 10 amplifications (CDK4, CCND3, MDM2, RUNX2, GLI1, FRS2, CARD11, RAC1, SLC16A7 and PMS2) in m-OS. Among those alterations, the mutation abundance of GPC3 was the highest (56.49%) in p-OS and showed 1.54 times increase in m-OS. GPC3 transcript-oriented Sanger sequencing confirmed the mutation at 1046 in Exon 4, and immunohistochemical staining showed increased GPC3 production in m-OS tissues and its spheroids. EdU cell proliferation and Calcein/PI cell viability assays revealed that of the anti-OS first line drugs (doxorubicin, cisplatin, methotrexate, ifosfamide and carboplatin), 10 μM carboplatin exerted the best inhibitory effects on the p-OS but not the m-OS spheroids. 2 μg/mL anti-GPC3 antibody effectively committed m-OS spheroids to death by itself (76.43%) or in combination with cisplatin (92.93%). Conclusion This study demonstrates increased abundance and up-regulated expression of mutant GPC3 in metastatic osteosarcoma and its spheroids with multidrug resistance. As GPC3-targeting therapy has been used to treat hepatocellular carcinomas and it is also effective to OS PDSs, GPC3 would be a novel prognostic parameter and therapeutic target of osteosarcomas.
Collapse
Key Words
- Anti-GPC3 targeted therapy
- CBP, carboplatin
- CDDP, cisplatin
- DOX, doxorubicin
- FFPE, formalin-fixed, paraffin- embedded
- GPC3 mutation
- GPC3-Ab, anti-GPC3 antibody
- Gene upregulation
- H/E, hematoxylin and eosin
- IHC, immunohistochemistry
- MA, mutation abundance
- MSS, microsatellite stable
- MTX, methotrexate
- Multidrug resistance
- NAC, neoadjuvant chemotherapy
- NGS, next generation sequencing
- Next generation sequencing
- OS, osteosarcoma
- Osteosarcoma
- PDS, patient-derived spheroids
- Patient-derived spheroids
- SNV, single-nucleotide variant
- m-OS, metastatic osteosarcoma
- p-OS, primary osteosarcoma
Collapse
Affiliation(s)
- Jun-Hua Nie
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Tao Yang
- Department of Orthopedic Oncology, Guangdong Provincial People's Hospital Affiliated to South China University of Technology School of Medicine, Guangzhou 510030, China
| | - Hong Li
- Jingkeson BioMed Laboratory, Guangzhou Jingke Institute of Life Sciences, Guangzhou 510005, China
| | - Hai-Shan Ye
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Guo-Qing Zhong
- Department of Orthopedic Oncology, Guangdong Provincial People's Hospital Affiliated to South China University of Technology School of Medicine, Guangzhou 510030, China
| | - Ting-Ting Li
- Jingkeson BioMed Laboratory, Guangzhou Jingke Institute of Life Sciences, Guangzhou 510005, China
| | - Chi Zhang
- Department of Orthopedic Oncology, Guangdong Provincial People's Hospital Affiliated to South China University of Technology School of Medicine, Guangzhou 510030, China
| | - Wen-Han Huang
- Department of Orthopedic Oncology, Guangdong Provincial People's Hospital Affiliated to South China University of Technology School of Medicine, Guangzhou 510030, China
| | - Jin Xiao
- Department of Orthopedic Oncology, Guangdong Provincial People's Hospital Affiliated to South China University of Technology School of Medicine, Guangzhou 510030, China
| | - Zhi Li
- Department of Pathology, Guangdong Provincial People's Hospital Affiliated to South China University of Technology School of Medicine, Guangzhou 510030, China
| | - Jian-Li He
- Jingkeson BioMed Laboratory, Guangzhou Jingke Institute of Life Sciences, Guangzhou 510005, China
| | - Bo-Le Du
- Jingkeson BioMed Laboratory, Guangzhou Jingke Institute of Life Sciences, Guangzhou 510005, China
| | - Yu Zhang
- Department of Orthopedic Oncology, Guangdong Provincial People's Hospital Affiliated to South China University of Technology School of Medicine, Guangzhou 510030, China
| | - Jia Liu
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
29
|
Chen J, Wang J, Xie F. Comparative efficacy and safety for second-line treatment with ramucirumab, regorafenib, and cabozantinib in patients with advanced hepatocellular carcinoma progressed on sorafenib treatment: A network meta-analysis. Medicine (Baltimore) 2021; 100:e27013. [PMID: 34559096 PMCID: PMC8462645 DOI: 10.1097/md.0000000000027013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 12/22/2020] [Accepted: 08/05/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The present network meta-analysis was conducted to perform an indirect comparison among ramucirumab, regorafenib, and cabozantinib in patients with advanced hepatocellular carcinoma (HCC) progressed on sorafenib treatment. METHODS A systematic review through Medline, Embase, and Cochrane library was developed, with eligible randomized clinical trials been included. Hazard ratios (HRs) including progression-free survival (PFS), overall survival (OS), odds ratios of disease control rate (DCR), objective response rate (ORR), and adverse events were compared indirectly with network meta-analysis using random model in software STATA version 13.0. RESULTS A total of 4 randomized clinical trials including 2137 patients met the eligibility criteria and enrolled. Indirect comparisons showed that there was no statistical difference observed in the indirect comparison of PFS, OS, ORR, or DCR among agents of regorafenib, cabozantinib, and ramucirumab in advanced HCC patients with elevated α-fetoprotein (AFP) (400 ng/mL or higher). However, in patients with low-level AFP (lower than 400 ng/mL), regorafenib was the only agent associated with significant superiority in OS, compared with placebo (hazard ratio 0.67, 95% CI, 0.50-0.90). CONCLUSIONS The present network meta-analysis revealed that there might be no statistical difference observed in the indirect comparison of PFS, OS, ORR, or DCR among regorafenib, cabozantinib, or ramucirumab in advanced HCC patients with elevated AFP (400 ng/mL or higher). However, in patients with low-level AFP (lower than 400 ng/mL), regorafenib might be associated with significant superiority in OS, compared to placebo, which need further investigation in clinical practice.
Collapse
Affiliation(s)
- Jianxin Chen
- Department of Medical Oncology, Quzhou People′s Hospital, Quzhou, Zhejiang, China
| | - Junhui Wang
- Department of Radiation Oncology, Quzhou People′s Hospital, Quzhou, Zhejiang, China
| | - Fangwei Xie
- Department of Oncology, the 900th Hospital of Joint Logistics Support Forces of Chinese PLA, Fuzhou, China
| |
Collapse
|
30
|
Montella L, Sarno F, Ambrosino A, Facchini S, D’Antò M, Laterza MM, Fasano M, Quarata E, Ranucci RAN, Altucci L, Berretta M, Facchini G. The Role of Immunotherapy in a Tolerogenic Environment: Current and Future Perspectives for Hepatocellular Carcinoma. Cells 2021; 10:1909. [PMID: 34440678 PMCID: PMC8393830 DOI: 10.3390/cells10081909] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022] Open
Abstract
In contrast to several tumors whose prognoses are radically affected by novel immunotherapeutic approaches and/or targeted therapies, the outcomes of advanced hepatocellular carcinoma (HCC) remain poor. The underlying cirrhosis that is frequently associated with it complicates medical treatment and often determines survival. The landscape of HCC treatment had included sorafenib as the only drug available for ten years, until 2018, when lenvatinib was approved for treatment. The second-line systemic treatments available for hepatocellular carcinoma include regorafenib, cabozantinib, ramucirumab, and, more recently, immune checkpoint inhibitors. However, the median survival remains below 15 months. The results obtained in clinics should be interpreted whilst considering the peculiar role of the liver as an immune organ. A healthy liver microenvironment ordinarily experiences stimulation by gut-derived antigens. This setup elucidates the response to chronic inflammation and the altered balance between tolerance and immune response in HCC development. This paper provides an overview of the mechanisms involved in HCC pathogenesis, with a special focus on the immune implications, along with current and future clinical perspectives.
Collapse
Affiliation(s)
- Liliana Montella
- ASL NA2 NORD, Oncology Operative Unit, “Santa Maria delle Grazie” Hospital, 80078 Pozzuoli, Italy; (M.M.L.); (E.Q.)
| | - Federica Sarno
- Precision Medicine Department, “Luigi Vanvitelli” University of Campania, 80138 Naples, Italy; (F.S.); (L.A.)
| | - Annamaria Ambrosino
- ASL NA2 NORD, Internal Medicine Operative Unit, “Santa Maria delle Grazie” Hospital, 80078 Pozzuoli, Italy; (A.A.); (M.D.); (R.A.N.R.)
| | - Sergio Facchini
- Department of Precision Medicine, Division of Medical Oncology, “Luigi Vanvitelli” University of Campania, 80131 Naples, Italy; (S.F.); (M.F.)
| | - Maria D’Antò
- ASL NA2 NORD, Internal Medicine Operative Unit, “Santa Maria delle Grazie” Hospital, 80078 Pozzuoli, Italy; (A.A.); (M.D.); (R.A.N.R.)
| | - Maria Maddalena Laterza
- ASL NA2 NORD, Oncology Operative Unit, “Santa Maria delle Grazie” Hospital, 80078 Pozzuoli, Italy; (M.M.L.); (E.Q.)
| | - Morena Fasano
- Department of Precision Medicine, Division of Medical Oncology, “Luigi Vanvitelli” University of Campania, 80131 Naples, Italy; (S.F.); (M.F.)
| | - Ermelinda Quarata
- ASL NA2 NORD, Oncology Operative Unit, “Santa Maria delle Grazie” Hospital, 80078 Pozzuoli, Italy; (M.M.L.); (E.Q.)
| | - Raffaele Angelo Nicola Ranucci
- ASL NA2 NORD, Internal Medicine Operative Unit, “Santa Maria delle Grazie” Hospital, 80078 Pozzuoli, Italy; (A.A.); (M.D.); (R.A.N.R.)
| | - Lucia Altucci
- Precision Medicine Department, “Luigi Vanvitelli” University of Campania, 80138 Naples, Italy; (F.S.); (L.A.)
| | - Massimiliano Berretta
- Department of Clinical and Experimental Medicine, University of Messina, 98121 Messina, Italy;
| | - Gaetano Facchini
- ASL NA2 NORD, Oncology Operative Unit, “Santa Maria delle Grazie” Hospital, 80078 Pozzuoli, Italy; (M.M.L.); (E.Q.)
| |
Collapse
|
31
|
Yao HP, Zhao H, Hudson R, Tong XM, Wang MH. Duocarmycin-based antibody-drug conjugates as an emerging biotherapeutic entity for targeted cancer therapy: Pharmaceutical strategy and clinical progress. Drug Discov Today 2021; 26:1857-1874. [PMID: 34224904 DOI: 10.1016/j.drudis.2021.06.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/15/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023]
Abstract
Duocarmycins are a class of DNA minor-groove-binding alkylating molecules. For the past decade, various duocarmycin analogues have been used as payloads in the development of antibody-drug conjugates (ADCs). Currently, more than 15 duocarmycin-based ADCs have been studied preclinically, and some of them such as SYD985 have been granted Fast-Track Designation status. Nevertheless, progress in duocarmycin-based ADCs also faces challenges, with setbacks including the termination of BMS-936561/MDX-1203. In this review, we discuss issues associated with the efficacy, pharmacokinetic profile, and toxicological activity of these biotherapeutics. Furthermore, we summarize the latest advances in duocarmycin-based ADCs that have different target specificities and linker chemistries. Evidence from preclinical and clinical studies has indicated that duocarmycin-based ADCs are promising biotherapeutics for oncological application in the future.
Collapse
Affiliation(s)
- Hang-Ping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; National Clinical Research Center for Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Hui Zhao
- Office of Scientific Research, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Rachel Hudson
- Cancer Biology Research Center, Texas Tech University Health Sciences Center, Amarillo, TX, USA; Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Xiang-Min Tong
- Department of Hematology, Zhejiang Provincial People's Hospital and People's Hospital of Hangzhou Medical College, Hangzhou, China.
| | - Ming-Hai Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; National Clinical Research Center for Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Biology Research Center, Texas Tech University Health Sciences Center, Amarillo, TX, USA; Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA.
| |
Collapse
|
32
|
Solimando AG, Susca N, Argentiero A, Brunetti O, Leone P, De Re V, Fasano R, Krebs M, Petracci E, Azzali I, Nanni O, Silvestris N, Vacca A, Racanelli V. Second-line treatments for Advanced Hepatocellular Carcinoma: A Systematic Review and Bayesian Network Meta-analysis. Clin Exp Med 2021; 22:65-74. [PMID: 34146196 PMCID: PMC8863772 DOI: 10.1007/s10238-021-00727-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/24/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND & AIMS A plethora of second-line therapies have been recently introduced for hepatocellular carcinoma (HCC) treatment with promising results. A meta-analysis of second-line treatments for HCC has been performed to better tailor their use based on improved patient stratification and to identify the best available option. METHODS Pubmed, Scopus, Web of Science, and ClinicalTrials.gov were searched for randomized controlled trials evaluating second-line treatment for advanced HCC in patients already treated with sorafenib. The primary outcome was overall survival (OS). Secondary outcomes were progression-free survival (PFS) and drug withdrawal due to adverse events. Network meta-analyses were performed considering placebo as the basis for comparison in efficacy and safety analyses. Subgroup stratification considered gender, age, sorafenib-responsiveness and drug tolerability, viral infection, macrovascular invasion, HCC extrahepatic spread, performance status, and alpha-fetoprotein levels. RESULTS Fourteen phase II or III randomized controlled trials, involving 5,488 patients and 12 regimens, were included in the analysis. Regorafenib (hazard ratio (HR) = 0.63, 95% confidence interval (CI) = 0.50-0.79), cabozantinib (HR = 0.76, 95% CI = 0.63-0.92), and ramucirumab (HR = 0.82, 95% CI = 0.70-0.76) significantly prolonged OS compared with placebo. Cabozantinib (HR = 0.44, 95% CI = 0.36-0.52), regorafenib (HR = 0.46, 95% CI = 0.37-0.56), ramucirumab (HR = 0.54, 95% CI = 0.43-0.68), brivanib (HR = 0.56, 95% CI = 0.42-0.76), S-1 (HR = 0.60, 95% CI = 0.46-0.77), axitinib (HR = 0.62, 95% CI = 0.44-0.87), and pembrolizumab (HR = 0.72, 95% CI = 0.57-0.90) significantly improved PFS compared with placebo. None of the compared drugs deemed undoubtedly superior after having performed a patients' stratification. CONCLUSIONS The results of this network meta-analysis suggest the use of regorafenib and cabozantinib as second-line treatments in HCC.
Collapse
Affiliation(s)
- Antonio Giovanni Solimando
- Guido Baccelli Unit of Internal Medicine, Department of Biomedical Sciences and Human Oncology, School of Medicine, Aldo Moro University of Bari, Bari, Italy.,IRCCS Istituto Tumori Giovanni Paolo II of Bari, Bari, Italy
| | - Nicola Susca
- Guido Baccelli Unit of Internal Medicine, Department of Biomedical Sciences and Human Oncology, School of Medicine, Aldo Moro University of Bari, Bari, Italy
| | | | - Oronzo Brunetti
- IRCCS Istituto Tumori Giovanni Paolo II of Bari, Bari, Italy
| | - Patrizia Leone
- Guido Baccelli Unit of Internal Medicine, Department of Biomedical Sciences and Human Oncology, School of Medicine, Aldo Moro University of Bari, Bari, Italy
| | - Valli De Re
- Bio-Proteomics Facility, Department of Translational Research, Centro Di Riferimento Oncologico Di Aviano (CRO) IRCCS, Aviano, Italy
| | - Rossella Fasano
- IRCCS Istituto Tumori Giovanni Paolo II of Bari, Bari, Italy.,Department of Biomedical Sciences and Human Oncology, School of Medicine, Aldo Moro University of Bari, Bari, Italy
| | - Markus Krebs
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Würzburg, Germany
| | - Elisabetta Petracci
- Unit of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo Per Lo Studio E La Cura Dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Irene Azzali
- Unit of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo Per Lo Studio E La Cura Dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Oriana Nanni
- Unit of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo Per Lo Studio E La Cura Dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Nicola Silvestris
- IRCCS Istituto Tumori Giovanni Paolo II of Bari, Bari, Italy. .,Department of Biomedical Sciences and Human Oncology, School of Medicine, Aldo Moro University of Bari, Bari, Italy.
| | - Angelo Vacca
- Guido Baccelli Unit of Internal Medicine, Department of Biomedical Sciences and Human Oncology, School of Medicine, Aldo Moro University of Bari, Bari, Italy
| | - Vito Racanelli
- Guido Baccelli Unit of Internal Medicine, Department of Biomedical Sciences and Human Oncology, School of Medicine, Aldo Moro University of Bari, Bari, Italy.
| |
Collapse
|
33
|
Chen Z, Dong R. Advances in the conventional clinical treatment for hepatoblastoma and therapeutic innovation. WORLD JOURNAL OF PEDIATRIC SURGERY 2021; 4:e000220. [DOI: 10.1136/wjps-2020-000220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 05/21/2021] [Indexed: 11/03/2022] Open
Abstract
BackgroundHepatoblastoma (HB) is a rare malignancy usually occurring in children under 3 years old. With advancements in surgical techniques and molecular biology, new treatments have been developed.Data resourcesThe recent literatures on new treatments, molecular mechanisms and clinical trials for HB were searched and reviewed.ResultsSurgical resection remains the main option for treatment of HB. Although complete resection is recommended, a resection with microscopical positive margins (R1) may have similar 5-year overall survival and 5-year event-free survival (EFS) rates after cisplatin chemotherapy and the control of metastasis, as only once described so far. Indocyanine green-guided surgery can help achieve precise resection. Additionally, associating liver partition and portal vein ligation for staged hepatectomy can rapidly increase future liver remnant volume compared with portal vein ligation or embolization. Cisplatin-containing chemotherapies slightly differ among the guidelines from the International Childhood Liver Tumors Strategy Group (SIOPEL), Children’s Oncology Group (COG) and Chinese Anti-Cancer Association Pediatric Committee (CCCG), and the 3-year EFS rate of patients in SIOPEL and CCCG studies was recently shown to be higher than that in COG studies. Liver transplantation is an option for patients with unresectable HB, and successful cases of autologous liver transplantation have been reported. In addition, effective inhibitors of important targets, such as the mTOR (mammalian target of rapamycin) inhibitor rapamycin, β-catenin inhibitor celecoxib and EpCAM (epithelial cell adhesion molecule) inhibitor catumaxomab, have been demonstrated to reduce the activity of HB cells and to control metastasis in experimental research and clinical trials.ConclusionThese advances in surgical and medical treatment provide better outcomes for children with HB, and identifying novel targets may lead to the development of future targeted therapies and immunotherapies.
Collapse
|
34
|
Abosalema H, Mahgoub S, Emara M, Kotb N, Soror S. Interrupted crosstalk between natural killer cells and anti-epidermal growth factor receptor: a possible role in hepatocellular carcinoma treatment failure. Curr Cancer Drug Targets 2021; 21:601-607. [PMID: 34011259 DOI: 10.2174/1568009621666210519105203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 11/22/2022]
Abstract
Hepatocellular carcinoma (HCC) is a major health problem worldwide. Most patients are diagnosed for the first time at late stages; this leads to a very poor prognosis. It is challenging to discover strategies for treatment at these advanced stages. Recently, monoclonal antibodies (mAbs) targeting specific cellular signaling pathways in HCC have been developed. Unfortunately, they still have a low survival rate, and some of them failed clinically to produce effective responses even if they showed very good results against HCC in preclinical studies. This review focuses on and discusses the possible causes for the failure of mAbs, precisely anti-Epidermal Growth Factor Receptor (EGFR) mAb and the crosstalk between this mAb and patients' NK cells.
Collapse
Affiliation(s)
- Hadeer Abosalema
- Deputy of Technical Mmanager, Biotechnology Unit, Egyptian Drug Authority (EDA), Giza, 12654, Egypt
| | - Shahenda Mahgoub
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Ein-Helwan, Helwan, Cairo,11795, Egypt
| | - Mohamed Emara
- Department of Microbiology and Immunology, Faculty of Pharmacy, Helwan University, Ein-Helwan, Helwan, Cairo,11795, Egypt
| | - Nahla Kotb
- Manager of Blood Derivative Unite, Egyptian Drug Authority (EDA), 12654, Egypt
| | - Sameh Soror
- Department of Biochemistry and molecular biology, Faculty of Pharmacy, Helwan University, Ein-Helwan, Helwan, Cairo,11795, Egypt
| |
Collapse
|
35
|
Gallage S, García-Beccaria M, Szydlowska M, Rahbari M, Mohr R, Tacke F, Heikenwalder M. The therapeutic landscape of hepatocellular carcinoma. MED 2021; 2:505-552. [PMID: 35590232 DOI: 10.1016/j.medj.2021.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/23/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023]
|
36
|
Radiomics, Radiogenomics, and Next-Generation Molecular Imaging to Augment Diagnosis of Hepatocellular Carcinoma. ACTA ACUST UNITED AC 2021; 26:108-115. [PMID: 32205534 DOI: 10.1097/ppo.0000000000000435] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ultrasound, computed tomography, magnetic resonance imaging, and [F]F-fluorodeoxyglucose positron emission tomography are invaluable in the clinical evaluation of human cancers. Radiomics and radiogenomics tools may allow clinicians to standardize interpretation of these conventional imaging modalities, while better linking radiographic hallmarks to disease biology and prognosis. These advances, coupled with next-generation positron emission tomography imaging tracers capable of providing biologically relevant tumor information, may further expand the tools available in our armamentarium against human cancers. We present current imaging methods and explore emerging research that may improve diagnosis and monitoring of local, oligometastatic, and disseminated cancers exhibiting heterogeneous uptake of [F]F-fluorodeoxyglucose, using hepatocellular carcinoma as an example.
Collapse
|
37
|
Development of a Tetravalent T-Cell Engaging Bispecific Antibody Against Glypican-3 for Hepatocellular Carcinoma. J Immunother 2021; 44:106-113. [PMID: 33239522 DOI: 10.1097/cji.0000000000000349] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/23/2020] [Indexed: 01/10/2023]
Abstract
Cancer therapies benefit from accelerated development of biotechnology, and many immunotherapeutic strategies spring up including vaccines, the immune checkpoint blockade, chimeric antigen receptor T cells, and bispecific antibodies (BsAbs). Glypican-3 (GPC3) is a member of the heparan sulfate proteoglycan family of proteins and is highly expressed in hepatocellular carcinoma (HCC) cell membranes. Here, the authors describe a new tetravalent BsAb h8B-BsAb targeting GPC3 and CD3 antigens and studied its antitumor activities against HCC. h8B-BsAb was designed based on immunoglobulin G with a fragment variable fused to the light chain, whose biophysical stabilities including degradation resistance and thermostability were improved by introducing disulfide bonds. In vitro activity of h8B-BsAb showed potent T-cell recruitment and activation for HCC cell lysis by the presence of peripheral blood mononuclear cells, but no specific killing in GPC3-negative cells. In HCC xenograft mouse studies, h8B-BsAb induced robust regression of tumors. In summary, we engineered a highly stable and efficacious BsAb as a potential candidate for HCC treatment.
Collapse
|
38
|
Gerlza T, Trojacher C, Kitic N, Adage T, Kungl AJ. Development of Molecules Antagonizing Heparan Sulfate Proteoglycans. Semin Thromb Hemost 2021; 47:316-332. [PMID: 33794555 DOI: 10.1055/s-0041-1725067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Heparan sulfate proteoglycans (HSPGs) occur in almost every tissue of the human body and consist of a protein core, with covalently attached glycosaminoglycan polysaccharide chains. These glycosaminoglycans are characterized by their polyanionic nature, due to sulfate and carboxyl groups, which are distributed along the chain. These chains can be modified by different enzymes at varying positions, which leads to huge diversity of possible structures with the complexity further increased by varying chain lengths. According to their location, HSPGs are divided into different families, the membrane bound, the secreted extracellular matrix, and the secretory vesicle family. As members of the extracellular matrix, they take part in cell-cell communication processes on many levels and with different degrees of involvement. Of particular therapeutic interest is their role in cancer and inflammation as well as in infectious diseases. In this review, we give an overview of the current status of medical approaches to antagonize HSPG function in pathology.
Collapse
Affiliation(s)
- Tanja Gerlza
- Karl-Franzens University Graz, Institute of Pharmaceutical Sciences, Graz, Austria
| | - Christina Trojacher
- Karl-Franzens University Graz, Institute of Pharmaceutical Sciences, Graz, Austria
| | - Nikola Kitic
- Karl-Franzens University Graz, Institute of Pharmaceutical Sciences, Graz, Austria
| | | | - Andreas J Kungl
- Karl-Franzens University Graz, Institute of Pharmaceutical Sciences, Graz, Austria.,Antagonis Biotherapeutics GmbH, Graz, Austria
| |
Collapse
|
39
|
Giraud J, Chalopin D, Blanc JF, Saleh M. Hepatocellular Carcinoma Immune Landscape and the Potential of Immunotherapies. Front Immunol 2021; 12:655697. [PMID: 33815418 PMCID: PMC8012774 DOI: 10.3389/fimmu.2021.655697] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common liver tumor and among the deadliest cancers worldwide. Advanced HCC overall survival is meager and has not improved over the last decade despite approval of several tyrosine kinase inhibitors (TKi) for first and second-line treatments. The recent approval of immune checkpoint inhibitors (ICI) has revolutionized HCC palliative care. Unfortunately, the majority of HCC patients fail to respond to these therapies. Here, we elaborate on the immune landscapes of the normal and cirrhotic livers and of the unique HCC tumor microenvironment. We describe the molecular and immunological classifications of HCC, discuss the role of specific immune cell subsets in this cancer, with a focus on myeloid cells and pathways in anti-tumor immunity, tumor promotion and immune evasion. We also describe the challenges and opportunities of immunotherapies in HCC and discuss new avenues based on harnessing the anti-tumor activity of myeloid, NK and γδ T cells, vaccines, chimeric antigen receptors (CAR)-T or -NK cells, oncolytic viruses, and combination therapies.
Collapse
Affiliation(s)
- Julie Giraud
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, Bordeaux, France
| | | | - Jean-Frédéric Blanc
- University of Bordeaux, INSERM UMR 1053, Bordeaux, France
- Department of Oncology, CHU Bordeaux, Haut Leveque Hospital, Pessac, France
| | - Maya Saleh
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, Bordeaux, France
- Department of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
40
|
Merle P. The New Immuno-Oncology-Based Therapies and Their Perspectives in Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:cancers13020238. [PMID: 33440630 PMCID: PMC7826922 DOI: 10.3390/cancers13020238] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/03/2021] [Accepted: 01/07/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Hepatocellular carcinoma is a frequent and poor prognosis tumor, with most patients facing up, soon or later, to systemic therapies. So far, systemic therapies based on tyrosine kinase inhibitor monotherapies have been of modest benefit. The aim of this review article was to characterize the profile of efficacy and safety of immuno-oncology-based monotherapies that failed to demonstrate significant benefit, for comparison with the immuno-oncology-based combinational strategies. One of them has proven its drastic benefit in phase-3, whereas others have only shown promising data in phase-1/2, although the corresponding phase-3 results are pending. We showed that objective response rates and duration of response are important parameters for increased median overall survival and long survivals. We also pointed out that, being aware that there is an urgent unmet need for biomarkers, the pattern of safety and quality of life will guide the physician for the choice on the possible future combinations. Abstract Hepatocellular carcinoma is a poor prognosis tumor. Systemic therapies are frequently used due to frequent recurrences after surgical or radiologic treatments. Anti-angiogenic tyrosine kinase inhibitors have shown efficacy in monotherapy, but with very low rates of long survival and exceptional recovery. Immuno-oncology based on immune checkpoint inhibitors has revolutionized the systemic therapies since showing long survival rates without any tumor progression or recurrence for some patients in partial or complete response, and possibly for some patients in stable disease. However, the rate of responders under immuno-oncology monotherapy is too low to increase significantly the median overall survival of the treated patients. The immuno-oncology-based combinations with different types of immune checkpoint inhibitors (PD-1/PD-L1 and CTLA-4 inhibitors such as nivolumab, pembrolizumab, atezolizumab, durvalumab, ipilimumab, tremelimumab), or the association of immune checkpoint inhibitors plus anti-angiogenic agents (bevacizumab, lenvatinib, cabozantinib), have led to a breakthrough in the treatment of hepatocellular carcinoma. Indeed, the first phase-3 trial, combining atezolizumab with bevacizumab, has dramatically changed the outcome of patients. Data from several other types of combinations assessed in phase-3 trials are pending, and if positive, will drastically arm the physicians to efficiently treat the patients, and disrupt the current algorithm of hepatocellular carcinoma treatment.
Collapse
Affiliation(s)
- Philippe Merle
- Centre de Recherche sur le Cancer de Lyon (CRCL), Hepatology and Gastroenterology Unit, Croix-Rousse Hospital, Hospices Civils de Lyon and INSERM U1052, Epigenetics and Epigenomics of Hepatocellular Carcinoma (EpiHep), 69004 Lyon, France
| |
Collapse
|
41
|
Du K, Li Y, Liu J, Chen W, Wei Z, Luo Y, Liu H, Qi Y, Wang F, Sui J. A bispecific antibody targeting GPC3 and CD47 induced enhanced antitumor efficacy against dual antigen-expressing HCC. Mol Ther 2021; 29:1572-1584. [PMID: 33429083 DOI: 10.1016/j.ymthe.2021.01.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/23/2020] [Accepted: 01/02/2021] [Indexed: 02/08/2023] Open
Abstract
Glypican-3 (GPC3) is a well-characterized hepatocellular carcinoma (HCC)-associated antigen, yet anti-GPC3 therapies have achieved only minimal clinical progress. CD47 is a ubiquitously expressed innate immune checkpoint that promotes evasion of tumors from immune surveillance. Given both the specific expression of GPC3 in HCC and the known phagocytosis inhibitory effect of CD47 in liver cancer, we hypothesized that a bispecific antibody (BsAb) that co-engages with GPC3 and CD47 may offer excellent antitumor efficacy with minimal toxicity. Here, we generated a novel BsAb: GPC3/CD47 biAb. With the use of both in vitro and in vivo assays, we found that GPC3/CD47 biAb exerts strong antitumor activity preferentially against dual antigen-expressing tumor cells. In hCD47/human signal regulatory protein alpha (hCD47/hSIRPα) humanized mice, GPC3/CD47 biAb had an extended serum half-life without causing systemic toxicity. Importantly, GPC3/CD47 biAb induced enhanced Fc-mediated effector functions to dual antigen-expressing HCC cells in vitro, and both macrophages and neutrophils are required for its strong efficacy against xenograft HCC tumors. Notably, GPC3/CD47 biAb outperformed monotherapies and a combination therapy with anti-CD47 and anti-GPC3 monoclonal antibodies (mAbs) in a xenograft HCC model. Our study illustrates a strategy for improving HCC treatment by boosting innate immune responses and presents new insights to inform antibody design for the future development of innovative immune therapies.
Collapse
Affiliation(s)
- Kaixin Du
- School of Life Sciences, Beijing Normal University, Beijing 100875, China; National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Yulu Li
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China; PTN Joint Graduate Program, School of Life Sciences, Peking University, Beijing 100871, China
| | - Juan Liu
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Wei Chen
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Zhizhong Wei
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China; PTN Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yong Luo
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Huisi Liu
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Yonghe Qi
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Fengchao Wang
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
| | - Jianhua Sui
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China.
| |
Collapse
|
42
|
Progression-Free Survival Early Assessment Is a Robust Surrogate Endpoint of Overall Survival in Immunotherapy Trials of Hepatocellular Carcinoma. Cancers (Basel) 2020; 13:cancers13010090. [PMID: 33396833 PMCID: PMC7796103 DOI: 10.3390/cancers13010090] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/21/2020] [Accepted: 12/26/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Radiology-based outcomes, such as progression-free survival (PFS) and objective response rate (ORR), are used as surrogate endpoints in oncology trials. We aimed to assess the surrogacy relationship of PFS with overall survival (OS) in clinical trials of systemic therapies targeting advanced hepatocellular carcinoma (HCC) by novel meta-regression methods. METHODS A search of databases (PubMed, American Society of Clinical Oncology (ASCO), and European Society for Medical Oncology (ESMO) Meeting Libraries, Clinicaltrials.gov) for trials of systemic therapies for advanced HCC reporting both OS and PFS was performed. Individual patient data were extracted from PFS and OS Kaplan-Meier curves. Summary median PFS and OS data were obtained from random-effect model. The surrogate relationships of median PFS, first quartile (Q1), third quartile (Q3), and restricted mean survival time (RMST) for OS were evaluated by the coefficient of determination R2. Heterogeneity was explored by meta-regression. RESULTS We identified 49 trials, 11 assessing immune-checkpoint inhibitors (ICIs) and 38 multikinase inhibitors (MKIs). Overall, the correlation between median PFS and median OS was weak (R2 = 0.20. 95% Confidence Intervals [CI]-0.02;0.42). Surrogacy robustness varied between treatment classes and PFS endpoints. In ICI trials only, the correlations between Q1-PFS and Q1-OS and between 12-month PFS-RMST and 12-month OS-RMST were high (R2 = 0.89, 95%CI 0.78-0.98, and 0.80, 95% CI 0.63-0.96, respectively). Interaction p-values obtained by meta-regression confirmed the robustness of results. CONCLUSIONS In trials of systemic therapies for advanced HCC, the surrogate relationship of PFS with OS is highly variable depending on treatment class (ICI or MKI) and evaluation time-point. In ICI trials, Q1-PFS and 12-month PFS-RMST are robust surrogate endpoints for OS.
Collapse
|
43
|
Bell MM, Gutsche NT, King AP, Baidoo KE, Kelada OJ, Choyke PL, Escorcia FE. Glypican-3-Targeted Alpha Particle Therapy for Hepatocellular Carcinoma. Molecules 2020; 26:molecules26010004. [PMID: 33374953 PMCID: PMC7792624 DOI: 10.3390/molecules26010004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022] Open
Abstract
Glypican-3 (GPC3) is expressed in 75% of hepatocellular carcinoma (HCC), but not normal liver, making it a promising HCC therapeutic target. GC33 is a full-length humanized monoclonal IgG1 specific to GPC3 that can localize to HCC in vivo. GC33 alone failed to demonstrate therapeutic efficacy when evaluated in patients with HCC; however, we posit that cytotoxic functionalization of the antibody with therapeutic radionuclides, may be warranted. Alpha particles, which are emitted by radioisotopes such as Actinium-225 (Ac-225) exhibit high linear energy transfer and short pathlength that, when targeted to tumors, can effectively kill cancer and limit bystander cytotoxicity. Macropa, an 18-member heterocyclic crown ether, can stably chelate Ac-225 at room temperature. Here, we synthesized and evaluated the efficacy of [225Ac]Ac–Macropa–GC33 in mice engrafted with the GPC3-expressing human liver cancer cell line HepG2. Following a pilot dose-finding study, mice (n = 10 per group) were treated with (1) PBS, (2) mass-equivalent unmodified GC33, (3) 18.5 kBq [225Ac]Ac–Macropa–IgG1 (isotype control), (4) 9.25 kBq [225Ac]Ac–Macropa–GC33, and (5) 18.5 kBq [225Ac]Ac–Macropa–GC33. While significant toxicity was observed in all groups receiving radioconjugates, the 9.25 kBq [225Ac]Ac–Macropa–GC33 group demonstrated a modest survival advantage compared to PBS (p = 0.0012) and 18.5 kBq [225Ac]Ac–IgG1 (p = 0.0412). Hematological analysis demonstrated a marked, rapid reduction in white blood cells in all radioconjugate-treated groups compared to the PBS and unmodified GC33 control groups. Our studies highlight a significant disadvantage of using directly-labeled biomolecules with long blood circulation times for TAT. Strategies to mitigate such treatment toxicity include dose fractionation, pretargeting, and using smaller targeting ligands.
Collapse
Affiliation(s)
- Meghan M. Bell
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA; (M.M.B.); (N.T.G.); (A.P.K.); (K.E.B.); (O.J.K.); (P.L.C.)
| | - Nicholas T. Gutsche
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA; (M.M.B.); (N.T.G.); (A.P.K.); (K.E.B.); (O.J.K.); (P.L.C.)
| | - A. Paden King
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA; (M.M.B.); (N.T.G.); (A.P.K.); (K.E.B.); (O.J.K.); (P.L.C.)
| | - Kwamena E. Baidoo
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA; (M.M.B.); (N.T.G.); (A.P.K.); (K.E.B.); (O.J.K.); (P.L.C.)
| | - Olivia J. Kelada
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA; (M.M.B.); (N.T.G.); (A.P.K.); (K.E.B.); (O.J.K.); (P.L.C.)
- In Vivo Imaging, Discovery and Analytics, PerkinElmer Inc., Hopkinton, MA 01748, USA
| | - Peter L. Choyke
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA; (M.M.B.); (N.T.G.); (A.P.K.); (K.E.B.); (O.J.K.); (P.L.C.)
| | - Freddy E. Escorcia
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA; (M.M.B.); (N.T.G.); (A.P.K.); (K.E.B.); (O.J.K.); (P.L.C.)
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA
- Correspondence: ; Tel.: +1-240-858-3062
| |
Collapse
|
44
|
Hepatocellular carcinoma immunotherapy: The impact of epigenetic drugs and the gut microbiome. LIVER RESEARCH 2020; 4:191-198. [PMID: 33343967 PMCID: PMC7746137 DOI: 10.1016/j.livres.2020.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The incidence of hepatocellular carcinoma (HCC) has been increasing for decades. This disease has now risen to become the sixth most common malignancy overall, while ranking as the third most frequent cause of cancer mortality. While several surgical interventions and loco-regional treatment options are available, up to 80% of patients present with advanced disease not amenable to standard therapies. Indeed, traditional cytotoxic chemotherapeutic agents are notoriously ineffective and essentially play no role in the management of affected patients. This has led to an enormous need for more effective systemic therapeutic options. In recent years, immunotherapy has emerged as a potentially viable and exciting new alternative for the treatment of HCC. Although the current immunotherapeutic options remain imperfect, various strategies can be employed to further improve their efficacy. New findings have revealed epigenetic modulation can be effective as a new approach for improving HCC immunotherapy. Studying the gut microbiome (gut-liver axis) can also be an interesting subject in this regard. Here, we explore the latest insights into the role of immunotherapy treatmenting HCC, both mono and in combination with other agents. We also focus on the impact of epigenetic drugs and the microbiome in the overall effectiveness of HCC immunotherapy.
Collapse
|
45
|
Yu L, Yang X, Huang N, Wu M, Sun H, He Q, Lang Q, Zou X, Liu Z, Wang J, Ge L. Generation of fully human anti-GPC3 antibodies with high-affinity recognition of GPC3 positive tumors. Invest New Drugs 2020; 39:615-626. [PMID: 33215325 DOI: 10.1007/s10637-020-01033-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/11/2020] [Indexed: 10/23/2022]
Abstract
The acceleration of therapeutic antibody development has been motivated by the benefit to and their demand for human health. In particular, humanized transgenic antibody discovery platforms, combined with immunization, hybridoma fusion and/or single cell DNA sequencing are the most reliable and rapid methods for mining the human monoclonal antibodies. Human GPC3 protein is an oncofetal antigen, and it is highly expressed in most hepatocellular carcinomas and some types of squamous cell carcinomas. Currently, no fully human anti-GPC3 therapeutic antibodies have been reported and evaluated in extensive tumor tissues. Here, we utilized a new humanized transgenic mouse antibody discovery platform (CAMouse) that contains large V(D)J -regions and human gamma-constant regions of human immunoglobulin in authentic configurations to generate fully human anti-GPC3 antibodies. Our experiments resulted in four anti-GPC3 antibodies with high-specific binding and cytotoxicity to GPC3 positive cancer cells, and the antibody affinities are in the nanomolar range. Immunohistochemistry analysis demonstrated that these antibodies can recognize GPC3 protein on many types of solid tumors. In summary, the human anti-human GPC3 monoclonal antibodies described here are leading candidates for further preclinical studies of cancer therapy, further, the CAMouse platform is a robust tool for human therapeutic antibody discovery.
Collapse
Affiliation(s)
- Lin Yu
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), College of Bioengineering, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, China
| | - Xi Yang
- Chongqing Academy of Animal Sciences, No.51 Changlong Street, Rongchang District, Chongqing, 402460, China.,Chongqing Engineering Technology Research Center for Medical Animal Resources Development and Application, Chongqing, 402460, China
| | - Nan Huang
- Chongqing Academy of Animal Sciences, No.51 Changlong Street, Rongchang District, Chongqing, 402460, China.,Chongqing Engineering Technology Research Center for Medical Animal Resources Development and Application, Chongqing, 402460, China
| | - Meng Wu
- Chongqing Academy of Animal Sciences, No.51 Changlong Street, Rongchang District, Chongqing, 402460, China.,Chongqing Engineering Technology Research Center for Medical Animal Resources Development and Application, Chongqing, 402460, China
| | - Heng Sun
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), College of Bioengineering, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, China
| | - Qilin He
- Chongqing Academy of Animal Sciences, No.51 Changlong Street, Rongchang District, Chongqing, 402460, China.,Chongqing Engineering Technology Research Center for Medical Animal Resources Development and Application, Chongqing, 402460, China
| | - Qiaoli Lang
- Chongqing Academy of Animal Sciences, No.51 Changlong Street, Rongchang District, Chongqing, 402460, China.,Chongqing Engineering Technology Research Center for Medical Animal Resources Development and Application, Chongqing, 402460, China
| | - Xiangang Zou
- Chongqing CAMAB Biotech Ltd., Chongqing, 402460, China
| | - Zuohua Liu
- Chongqing Academy of Animal Sciences, No.51 Changlong Street, Rongchang District, Chongqing, 402460, China.,Chongqing Engineering Technology Research Center for Medical Animal Resources Development and Application, Chongqing, 402460, China
| | - Jianhua Wang
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), College of Bioengineering, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, China.
| | - Liangpeng Ge
- Chongqing Academy of Animal Sciences, No.51 Changlong Street, Rongchang District, Chongqing, 402460, China. .,Chongqing Engineering Technology Research Center for Medical Animal Resources Development and Application, Chongqing, 402460, China. .,Chongqing CAMAB Biotech Ltd., Chongqing, 402460, China.
| |
Collapse
|
46
|
Chow AKM, Yau SWL, Ng L. Novel molecular targets in hepatocellular carcinoma. World J Clin Oncol 2020; 11:589-605. [PMID: 32879846 PMCID: PMC7443834 DOI: 10.5306/wjco.v11.i8.589] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/04/2020] [Accepted: 06/20/2020] [Indexed: 02/06/2023] Open
Abstract
Globally, hepatocellular carcinoma (HCC) is a leading cause of cancer and cancer-related deaths. The therapeutic efficacy of locoregional and systemic treatment in patients with advanced HCC remains low, which results in a poor prognosis. The development of sorafenib for the treatment of HCC has resulted in a new era of molecular targeted therapy for this disease. However, the median overall survival was reported to be barely higher in the sorafenib treatment group than in the control group. Hence, in this review we describe the importance of developing more effective targeted therapies for the management of advanced HCC. Recent investigations of molecular signaling pathways in several cancers have provided some insights into developing molecular therapies that target critical members of these signaling pathways. Proteins involved in the Hedgehog and Notch signaling pathways, Polo-like kinase 1, arginine, histone deacetylases and Glypican-3 can be potential targets in the treatment of HCC. Monotherapy has limited therapeutic efficacy due to the development of inhibitory feedback mechanisms and induction of chemoresistance. Thus, emphasis is now on the development of personalized and combination molecular targeted therapies that can serve as ideal therapeutic strategies for improved management of HCC.
Collapse
Affiliation(s)
- Ariel Ka-Man Chow
- School of Nursing and Health Studies, The Open University of Hong Kong, Hong Kong, China
| | - Simon Wing-Lung Yau
- School of Nursing and Health Studies, The Open University of Hong Kong, Hong Kong, China
| | - Lui Ng
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
47
|
Dal Bo M, De Mattia E, Baboci L, Mezzalira S, Cecchin E, Assaraf YG, Toffoli G. New insights into the pharmacological, immunological, and CAR-T-cell approaches in the treatment of hepatocellular carcinoma. Drug Resist Updat 2020; 51:100702. [DOI: 10.1016/j.drup.2020.100702] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/06/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023]
|
48
|
Shi D, Shi Y, Kaseb AO, Qi X, Zhang Y, Chi J, Lu Q, Gao H, Jiang H, Wang H, Yuan D, Ma H, Wang H, Li Z, Zhai B. Chimeric Antigen Receptor-Glypican-3 T-Cell Therapy for Advanced Hepatocellular Carcinoma: Results of Phase I Trials. Clin Cancer Res 2020; 26:3979-3989. [PMID: 32371538 DOI: 10.1158/1078-0432.ccr-19-3259] [Citation(s) in RCA: 230] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/17/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE Our preclinical studies demonstrated the potential of chimeric antigen receptor (CAR)-glypican-3 (GPC3) T-cell therapy for hepatocellular carcinoma (HCC). We report herein the first published results of CAR-GPC3 T-cell therapy for HCC. PATIENTS AND METHODS In two prospective phase I studies, adult patients with advanced GPC3+ HCC (Child-Pugh A) received autologous CAR-GPC3 T-cell therapy following cyclophosphamide- and fludarabine-induced lymphodepletion. The primary objective was to assess the treatment's safety. Adverse events were graded using the Common Terminology Criteria for Adverse Events (version 4.03). Tumor responses were evaluated using the RECIST (version 1.1). RESULTS A total of 13 patients received a median of 19.9 × 108 CAR-GPC3 T cells by a data cutoff date of July 24, 2019. We observed pyrexia, decreased lymphocyte count, and cytokine release syndrome (CRS) in 13, 12, and nine patients, respectively. CRS (grade 1/2) was reversible in eight patients. One patient experienced grade 5 CRS. No patients had grade 3/4 neurotoxicity. The overall survival rates at 3 years, 1 year, and 6 months were 10.5%, 42.0%, and 50.3%, respectively, according to the Kaplan-Meier method. We confirmed two partial responses. One patient with sustained stable disease was alive after 44.2 months. CAR T-cell expansion tended to be positively associated with tumor response. CONCLUSIONS This report demonstrated the initial safety profile of CAR-GPC3 T-cell therapy. We observed early signs of antitumor activity of CAR-GPC3 T cells in patients with advanced HCC.
Collapse
Affiliation(s)
- Donghua Shi
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaoping Shi
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ahmed O Kaseb
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xingxing Qi
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Zhang
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiachang Chi
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Lu
- Department of Radiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Hua Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | - Hong Ma
- CARsgen Therapeutics Corp., Houston, Texas
| | - Hongyang Wang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgical Hospital, Second Military Medical University, Shanghai, China
| | - Zonghai Li
- CARsgen Therapeutics Ltd., Shanghai, China. .,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Zhai
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
49
|
Yu L, Yang X, Huang N, Lang QL, He QL, Jian-Hua W, Liang-Peng G. A novel targeted GPC3/CD3 bispecific antibody for the treatment hepatocellular carcinoma. Cancer Biol Ther 2020; 21:597-603. [PMID: 32240054 DOI: 10.1080/15384047.2020.1743158] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequent primary liver cancer but has shown limited success to date in the treatment of advanced stage. Recruitment of T cells for cancer treatment is a rapidly growing strategy in immunotherapy such as chimeric antigen receptor T cells and bispecific antibodies. However, unwanted aggregations, structural instability or short serum half-life are major challenges of bispecific antibodies. Here, we developed a new format of T cell-redirecting antibody that is bispecific for membrane proteoglycans GPC3 of HCC and the T-cell-specific antigen CD3, which demonstrated to be favorable stability and productivity. Cross-linking of T cells with GPC3 positive tumor cells by the anti-GPC3/CD3 bispecific antibody-mediated potent GPC3-dependent and concentration-dependent cytotoxicity in vitro. Administration of the bispecific antibody with different concentrations in murine xenograft models of human HCC significantly inhibited tumor growth. In addition, no effects on tumor growth were observed in the absence of human effector cells or the bispecific antibody. Taken together, the anti-GPC3/CD3 bispecific antibody might be a potential therapeutic treatment for HCC.
Collapse
Affiliation(s)
- Lin Yu
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), College of Bioengineering, Chongqing University , Chongqing, China
| | - Xi Yang
- Department of Bioengineering, Chongqing Academy of Animal Sciences , Chongqing, China.,Key Laboratory of Pig Industry Sciences, Ministry of Agriculture , Chongqing, China.,Department of Bioengineering, Chongqing Key Laboratory of Pig Industry Sciences , Chongqing, China.,Department of Bioengineering, Chongqing Engineering Technology Research Center for Medical Animal Resources Development and Application , Chongqing, China
| | - Nan Huang
- Department of Bioengineering, Chongqing Academy of Animal Sciences , Chongqing, China.,Key Laboratory of Pig Industry Sciences, Ministry of Agriculture , Chongqing, China.,Department of Bioengineering, Chongqing Key Laboratory of Pig Industry Sciences , Chongqing, China.,Department of Bioengineering, Chongqing Engineering Technology Research Center for Medical Animal Resources Development and Application , Chongqing, China
| | - Qiao-Li Lang
- Department of Bioengineering, Chongqing Academy of Animal Sciences , Chongqing, China.,Key Laboratory of Pig Industry Sciences, Ministry of Agriculture , Chongqing, China.,Department of Bioengineering, Chongqing Key Laboratory of Pig Industry Sciences , Chongqing, China.,Department of Bioengineering, Chongqing Engineering Technology Research Center for Medical Animal Resources Development and Application , Chongqing, China
| | - Qi-Lin He
- Department of Bioengineering, Chongqing Academy of Animal Sciences , Chongqing, China.,Key Laboratory of Pig Industry Sciences, Ministry of Agriculture , Chongqing, China.,Department of Bioengineering, Chongqing Key Laboratory of Pig Industry Sciences , Chongqing, China.,Department of Bioengineering, Chongqing Engineering Technology Research Center for Medical Animal Resources Development and Application , Chongqing, China
| | - Wang Jian-Hua
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), College of Bioengineering, Chongqing University , Chongqing, China
| | - Ge Liang-Peng
- Department of Bioengineering, Chongqing Academy of Animal Sciences , Chongqing, China.,Key Laboratory of Pig Industry Sciences, Ministry of Agriculture , Chongqing, China.,Department of Bioengineering, Chongqing Key Laboratory of Pig Industry Sciences , Chongqing, China.,Department of Bioengineering, Chongqing Engineering Technology Research Center for Medical Animal Resources Development and Application , Chongqing, China
| |
Collapse
|
50
|
Guo M, Zhang H, Zheng J, Liu Y. Glypican-3: A New Target for Diagnosis and Treatment of Hepatocellular Carcinoma. J Cancer 2020; 11:2008-2021. [PMID: 32127929 PMCID: PMC7052944 DOI: 10.7150/jca.39972] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/04/2020] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is the second leading cause of cancer-related deaths worldwide, and hepatocellular carcinoma is the most common type. The pathogenesis of hepatocellular carcinoma is concealed, its progress is rapid, its prognosis is poor, and the mortality rate is high. Therefore, novel molecular targets for hepatocellular carcinoma early diagnosis and development of targeted therapy are critically needed. Glypican-3, a cell-surface glycoproteins in which heparan sulfate glycosaminoglycan chains are covalently linked to a protein core, is overexpressed in HCC tissues but not in the healthy adult liver. Thus, Glypican-3 is becoming a promising candidate for liver cancer diagnosis and immunotherapy. Up to now, Glypican-3 has been a reliable immunohistochemical marker for hepatocellular carcinoma diagnosis, and soluble Glypican-3 in serum has becoming a promising marker for liquid biopsy. Moreover, various immunotherapies targeting Glypican-3 have been developed, including Glypican-3 vaccines, anti- Glypican-3 immunotoxin and chimeric-antigen-receptor modified cells. In this review, we summarize and analyze the structure and physicochemical properties of Glypican-3 molecules, then review their biological functions and applications in clinical diagnosis, and explore the diagnosis and treatment strategies based on Glypican-3.
Collapse
Affiliation(s)
- Meng Guo
- National Key Laboratory of Medical Immunology &Institute of Immunology, Second Military Medical University, Shanghai, China
- Institute of Organ Transplantation, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Hailing Zhang
- Department of Neurology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jianming Zheng
- Department of Pathology ,Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yangfang Liu
- Department of Pathology ,Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|