1
|
Zhang H, Zhang L, Zhao X, Ma Y, Sun D, Bai Y, Liu W, Liang X, Liang H. Folic Acid Prevents High-Fat Diet-Induced Postpartum Weight Retention in Rats, Which Is Associated with a Reduction in Endoplasmic Reticulum Stress-Mediated Hepatic Lipogenesis. Nutrients 2024; 16:4377. [PMID: 39770997 PMCID: PMC11676124 DOI: 10.3390/nu16244377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Proactively preventing postpartum weight retention (PPWR) is one of the effective intervention strategies to reduce the occurrence of obesity in women. Population studies have shown that serum folate levels are closely related to body weight. The regulation of folic acid on lipid metabolism has been fully confirmed in both in vivo and in vitro studies. For many years, folic acid supplementation has been widely used in periconceptional women due to its role in preventing fetal neural tube defects. However, whether folic acid supplementation prior to and throughout pregnancy exerts preventive effects on PPWR remains uncertain. This study aims to investigate the preventive effect of folic acid on PPWR in rats and further explore the underlying mechanisms. METHODS In this study, pregnant rats were administered one of the dietary schedules: control diet (CON), high-fat diet (HF), control diet combined with folic acid (FA) and high-fat diet combined with folic acid (HF + FA). RESULTS We discovered that folic acid supplementation inhibited high-fat diet-induced elevations in body weight, visceral fat weight, liver weight, hepatic lipid levels and serum lipid levels at 1 week post-weaning (PW). Western blot analysis showed that folic acid supplementation inhibited the expression of endoplasmic reticulum (ER) stress-specific proteins including GRP78, PERK, eIF2α, IRE1α, XBP1 and ATF6, subsequently decreasing the expression of proteins related to lipid synthesis including SREBP-1c, ACC1 and FAS. CONCLUSIONS In conclusion, folic acid supplementation prior to and throughout pregnancy exerts preventive effects on high-fat diet-induced PPWR in rats, and the mechanism is associated with the inhibition of ER stress-mediated lipogenesis signaling pathways in the liver. Folic acid supplementation may serve as a potential strategy for preventing PPWR. In the future, the effectiveness of folic acid in PPWR prevention can be further verified by population studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hui Liang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (H.Z.); (L.Z.); (X.Z.); (Y.M.); (D.S.); (Y.B.); (W.L.); (X.L.)
| |
Collapse
|
2
|
García-García L, Gómez-Oliver F, Fernández de la Rosa R, Pozo MÁ. Dantrolene paradoxically exacerbates short-term brain glucose hypometabolism, hippocampal damage and neuroinflammation induced by status epilepticus in the rat lithium-pilocarpine model. Eur J Pharmacol 2024; 985:177073. [PMID: 39481630 DOI: 10.1016/j.ejphar.2024.177073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/23/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Status epilepticus (SE) is a neurologic emergency characterized by prolonged or rapidly recurring seizures. Increased intracellular calcium concentration ([Ca2+]i) occurring after SE is a key mediator of excitotoxicity that contributes to the brain damage associated with the development of epilepsy. Accumulated evidence indicates that dantrolene, a ryanodine receptor (RyR) blocker may have protective effects against the SE-induced damage. We evaluated whether dantrolene (10 mg/kg, i.p.) administered twice, 5 min and 24 h after the lithium-pilocarpine-induced SE in rats, had neuroprotective effects. Dantrolene by itself had no effects on control rats. However, it exacerbated the signs of damage in rats that underwent SE, increasing brain glucose hypometabolism as measured by PET neuroimaging 3 days after SE. Likewise, the neurohistochemical studies revealed that dantrolene aggravated signs of hippocampal neurodegeneration, neuronal death and microglia-induced neuroinflammation. Besides, the damaging effects were reflected by severe body weight loss. Overall, our results point towards a deleterious effect of dantrolene in the lithium-pilocarpine-induced SE model. Nonetheless, our results are in opposition to the reported neuroprotective effects of dantrolene. Whether the mechanisms underlying [Ca2+]i increase might significantly differ depending on the particularities of the model of epilepsy used and general experimental conditions need further studies. Besides, it is yet to be determined which isoform of RyRs significantly contributes to Ca2+-induced excitotoxicity in the lithium-pilocarpine SE rat model.
Collapse
Affiliation(s)
- Luis García-García
- Department of Pharmacology, Pharmacognosy and Botany. Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain; Brain Mapping Unit, Instituto Pluridisciplinar, Complutense University of Madrid, Madrid, Spain; Health Research Institute, Hospital Clínico San Carlos (IdISSC), Madrid, Spain.
| | - Francisca Gómez-Oliver
- Department of Pharmacology, Pharmacognosy and Botany. Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain; Brain Mapping Unit, Instituto Pluridisciplinar, Complutense University of Madrid, Madrid, Spain; Health Research Institute, Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Rubén Fernández de la Rosa
- Brain Mapping Unit, Instituto Pluridisciplinar, Complutense University of Madrid, Madrid, Spain; ICTS Bioimagen Complutense (BIOIMAC), Complutense University of Madrid, Madrid, Spain
| | - Miguel Ángel Pozo
- Brain Mapping Unit, Instituto Pluridisciplinar, Complutense University of Madrid, Madrid, Spain; Department of Physiology, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain; Health Research Institute, Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| |
Collapse
|
3
|
Dossat AM, Trychta KA, Glotfelty EJ, Hinkle JJ, Fortuno LV, Gore LN, Richie CT, Harvey BK. Excitotoxic glutamate levels cause the secretion of resident endoplasmic reticulum proteins. J Neurochem 2024; 168:2461-2478. [PMID: 38491746 PMCID: PMC11401966 DOI: 10.1111/jnc.16093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 02/09/2024] [Accepted: 02/23/2024] [Indexed: 03/18/2024]
Abstract
Dysregulation of synaptic glutamate levels can lead to excitotoxicity such as that observed in stroke, traumatic brain injury, and epilepsy. The role of increased intracellular calcium (Ca2+) in the development of excitotoxicity is well established. However, less is known regarding the impact of glutamate on endoplasmic reticulum (ER)-Ca2+-mediated processes such as proteostasis. To investigate this, we expressed a secreted ER Ca2+ modulated protein (SERCaMP) in primary cortical neurons to monitor exodosis, a phenomenon whereby ER calcium depletion causes the secretion of ER-resident proteins that perform essential functions to the ER and the cell. Activation of glutamatergic receptors (GluRs) led to an increase in SERCaMP secretion indicating that normally ER-resident proteins are being secreted in a manner consistent with ER Ca2+ depletion. Antagonism of ER Ca2+ channels attenuated the effects of glutamate and GluR agonists on SERCaMP release. We also demonstrate that endogenous proteins containing an ER retention/retrieval sequence (ERS) are secreted in response to GluR activation supporting that neuronal activation by glutamate promotes ER exodosis. Ectopic expression of KDEL receptors attenuated the secretion of ERS-containing proteins caused by GluR agonists. Taken together, our data indicate that excessive GluR activation causes disruption of neuronal proteostasis by triggering the secretion of ER-resident proteins through ER Ca2+ depletion and describes a new facet of excitotoxicity.
Collapse
Affiliation(s)
- Amanda M. Dossat
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland, 21224
| | - Kathleen A. Trychta
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland, 21224
| | - Elliot J. Glotfelty
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland, 21224
| | - Joshua J. Hinkle
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland, 21224
| | - Lowella V. Fortuno
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland, 21224
| | - Lana N. Gore
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland, 21224
| | - Christopher T. Richie
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland, 21224
| | - Brandon K. Harvey
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland, 21224
| |
Collapse
|
4
|
Huang H, Wang Q, Tan J, Zeng C, Wang J, Huang J, Hu Y, Wu Q, Wu X, Liu C, Ye X, Fan Y, Sun W, Guo Z, Peng L, Zou L, Xiang D, Song Y, Zheng X, Wan Y. Quinoa greens as a novel plant food: a review of its nutritional composition, functional activities, and food applications. Crit Rev Food Sci Nutr 2024:1-21. [PMID: 38993144 DOI: 10.1080/10408398.2024.2370483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Quinoa (Chenopodium quinoa Willd) is widely regarded as a versatile pseudo-cereal native to the Andes Mountains in South America. It has gained global recognition as a superfood due to its rich nutritional profile. While quinoa grains are well-known, there is an undiscovered potential in quinoa greens, such as sprouts, leaves, and microgreens. These verdant parts of quinoa are rich in a diverse array of essential nutrients and bioactive compounds, including proteins, amino acids, bioactive proteins, peptides, polyphenols, and flavonoids. They have powerful antioxidant properties, combat cancer, and help prevent diabetes. Quinoa greens offer comparable or even superior benefits when compared to other sprouts and leafy greens, yet they have not gained widespread recognition. Limited research exists on the nutritional composition and biological activities of quinoa greens, underscoring the necessity for thorough systematic reviews in this field. This review paper aims to highlight the nutritional value, bioactivity, and health potential of quinoa greens, as well as explore their possibilities within the food sector. The goal is to generate interest within the research community and promote further exploration and wider utilization of quinoa greens in diets. This focus may lead to new opportunities for enhancing health and well-being through innovative dietary approaches.
Collapse
Affiliation(s)
- Huange Huang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Qiang Wang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Jianxin Tan
- Institute of Agriculture, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lasa, China
| | - Chunxiang Zeng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Junying Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jingwei Huang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Qi Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Xiaoyong Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Changying Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Xueling Ye
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yu Fan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Wenjun Sun
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Zhanbin Guo
- College of Agronomy, Inner Mongolia Agricultural University, Inner Mongolia, China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Dabing Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yu Song
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Xiaoqin Zheng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yan Wan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| |
Collapse
|
5
|
Ai X, Lin R, Ali Z, Zhu Q, Ding L, Shi H, Hong M. Seasonal changes in hepatic lipid metabolism and apoptosis in Chinese soft-shelled turtle (Pelodiscus sinensis). Comp Biochem Physiol C Toxicol Pharmacol 2024; 280:109883. [PMID: 38437998 DOI: 10.1016/j.cbpc.2024.109883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/22/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024]
Abstract
Chinese soft-shelled turtle (Pelodiscus sinensis) hibernates without eating and drinking when the ambient temperature is very low. To better understand the characteristics of energy utilization during hibernation, the turtles in the physiological phases of summer active (SA), Pre-Hibernation (Pre-H), Mid-Hibernation (Mid-H) and early arousal (EA) were sampled. The results showed that the levels of serum triglyceride and hepatic lipid droplet were markedly increased in Pre-H and decreased in Mid-H compared with that in SA, indicating that P. sinensis experiences lipid accumulation in Pre-H and lipid is the predominant energy reserve during hibernation. The mRNA expression levels of genes (FABP and CPT-2) involved in lipolysis and lipid oxidation were up-regulated in Mid-H, while the genes related to lipid synthesis (FAS, ACSL-1, ACC, elovl5, and SCD1) were inhibited in Mid-H. Meanwhile, the mRNA expression levels of endoplasmic reticulum stress marker gene Bip and key genes (ATF4, ATF6, and IRE1α) involving the unfolded protein response were significantly increased in Mid-H and EA. Also, the expression levels of genes (ASK1, JNK1, and Bax) associated with cell apoptosis increased in Mid-H and EA, however, the expression of Bcl2 was inhibited in Mid-H. Therefore, hibernation can cause endoplasmic reticulum stress and apoptosis. The findings will provide a theoretical framework for an animal's cold adaptation and offer insights into preventing and managing metabolic syndrome.
Collapse
Affiliation(s)
- Xiaoqi Ai
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Rui Lin
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Zeeshan Ali
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Qingjun Zhu
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Li Ding
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China.
| | - Haitao Shi
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Meiling Hong
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China.
| |
Collapse
|
6
|
Yuvaraj S, Vasudevan V, Puhari SSM, Sasikumar S, Ramprasath T, Selvi MS, Selvam GS. Chrysin reduces heart endoplasmic reticulum stress-induced apoptosis by inhibiting PERK and Caspase 3-7 in high-fat diet-fed rats. Mol Biol Rep 2024; 51:678. [PMID: 38796673 DOI: 10.1007/s11033-024-09612-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/03/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Chrysin (Chy) is a naturally occurring flavonoid found in fruits, vegetables, honey, propolis, and many plant extracts that has shown notable medicinal value. Chy exhibits diverse pharmacological properties, including anti-oxidative, anti-inflammatory, anti-apoptotic, anti-cholesteremic, and cardioprotective. However, the influence of Chy in mitigating high-fat diet (HFD)-induced ER stress of rat myocardium remains unknown. PURPOSE The current work intended to determine the therapeutic potential of Chy against HFD-induced endoplasmic stress-mediated apoptosis. METHODS To evaluate the therapeutic value of Chy in HFD-induced endoplasmic stress-mediated apoptosis in the myocardium; The male wistar rats were divided into different groups; control, HFD control, HFD fed followed by Chy-treated and HFD fed followed by atorvastatin (Atv) treated rats. RESULTS When compared to the control group, the HFD-fed rats had significantly higher levels of marker enzymes such as CK-NAC and ALP, as well as lipid peroxidation and lipid profile (TC, TG, LDL, and VLDL). Chy therapy greatly reversed these marker enzymes and the lipid profile. qRT-PCR Studies showed that Chy supplementation considerably improved Nrf2 and its target genes. In addition, Chy lowered the expression of PERK, CHOP, ATF6, GRP78, and Caspase-3 genes in the heart tissue of HFD-fed rats. Immunohistochemistry results demonstrated that Chy substantially enhanced the Nrf2 and reduced PERK and Caspase3-7 protein expression in HFD-fed rats. CONCLUSION The current study concluded that Chy may mediate the cardioprotective effect by activating Nrf2 and inhibiting PERK signaling pathway against ER stress-mediated apoptosis induced by HFD. Therefore, supplementation with Chy could serve as a promising therapeutic target against HFD-induced ER stress-mediated cardiac complication.
Collapse
Affiliation(s)
- Subramani Yuvaraj
- Molecular Cardiology Unit, Department of Biochemistry, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Varadaraj Vasudevan
- Molecular Cardiology Unit, Department of Biochemistry, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Shanavas Syed Mohamed Puhari
- Molecular Cardiology Unit, Department of Biochemistry, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Sunderasan Sasikumar
- Molecular Cardiology Unit, Department of Biochemistry, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Tharmarajan Ramprasath
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, USA
| | - Mariaraj Sivakumar Selvi
- Molecular Cardiology Unit, Department of Biochemistry, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Govindan Sadasivam Selvam
- Molecular Cardiology Unit, Department of Biochemistry, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India.
| |
Collapse
|
7
|
Zhang R, Zhang Q, Cui Z, Huang B, Ma H. Dimethyl fumarate restores Ca 2+ dyshomeostasis through activation of the SIRT1 signal to treat nonalcoholic fatty liver disease. Life Sci 2024; 341:122505. [PMID: 38364937 DOI: 10.1016/j.lfs.2024.122505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by an excessive lipid accumulation in the liver, with a global prevalence of approximately 25 %. While early-stage steatosis is reversible and can be intervened upon, it has the potential to progress to some serious complications, including cirrhosis and even liver cancer. Dimethyl fumarate (DMF), a derivative of fumaric acid shows promise in intervening in certain diseases. However, the precise effect and underlying mechanism of DMF on hepatic steatosis remain unclear. In this study, we demonstrated that DMF mitigates hepatic steatosis in mice subjected to high-fat/high-cholesterol (HFHC) diets. Meanwhile, our in vivo and in vitro results showed that DMF relieves lipid accumulation, oxidative stress, and endoplasmic reticulum (ER) stress. Mechanically, our findings revealed that the effect of DMF on reducing lipid accumulation is linked to the restoration of Ca2+ homeostasis. Furthermore, we found that activation of the SIRT1 signal by DMF plays an important role in correcting the mishandling of the Ca2+ signal, and knockdown of SIRT1 expression reverses the beneficial role of DMF PA-incubated AML12 cells. In conclusion, our results suggested DMF's amelioration of hepatic steatosis is related to the activation of SIRT1-mediated Ca2+ signaling.
Collapse
Affiliation(s)
- Rui Zhang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Quanwei Zhang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - ZiYi Cui
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - BenZeng Huang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Haitian Ma
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
8
|
Wu L, An R, Lan T, Tang Z, Xu Y, Peng X, Pang J, Sun W, Shi B, Tang Q, Xi Y, Li W, Sun Z. Isocaloric diets with varying protein levels affected energy metabolism in young adult Sprague-Dawley rats via modifying the gut microbes: A lipid imbalance was brought on by a diet with a particularly high protein content. J Nutr Biochem 2024; 124:109534. [PMID: 37977404 DOI: 10.1016/j.jnutbio.2023.109534] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/05/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
Protein is the most important macro-nutrient when it comes to maximizing health, body composition, muscle growth, and recovery of body tissue. In recent years, it has been found that protein also plays an important role in metabolism and gut microbiota. This study was performed to investigate the effects of an isocaloric diet with different crude protein contents on the energy metabolism of Sprague-Dawley (SD) rats. Results revealed that compared with the 20% crude protein (CP; control) diet, the 38% CP diet improved serum parameters that are associated with dyslipidemia and glucose metabolic disorders in SD rats, whereas the 50% CP diet increased liver injury indicators and fatty acid synthesis-related genes and protein expression in the liver. Compared with the control diet, the 14% CP diet increased the abundance of colonic short-chain fatty acid-producing bacteria (Lachnospiraceae_NK4A136_group and Ruminiclostridium_9) and promoted colonic microbial cysteine and methionine metabolism, the 38% CP diet up-regulated colonic microbial lysine biosynthesis and degradation pathways, and the 50% CP diet down-regulated colonic mucosal cholesterol metabolism. Furthermore, the increase of multiple colonic enteropathogenic bacteria in the 50% CP group was associated with higher palmitic acid and stearic acid concentrations in the colonic microbes and lower cholesterol and arachidonic acid concentrations in the colonic mucosa. These findings revealed that the 14% CP and 38% CP diets improved rats' energy metabolism, while the 50% CP diet was accompanied by lipid metabolism imbalances and an increase in the abundance of multiple enteropathogenic bacteria.
Collapse
Affiliation(s)
- Liuting Wu
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, P.R. China
| | - Rui An
- Sichuan Academy of Animal Science, Chengdu, P.R. China
| | - Tianyi Lan
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, P.R. China
| | - Zhiru Tang
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, P.R. China
| | - Yetong Xu
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, P.R. China
| | - Xie Peng
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, P.R. China
| | - Jiaman Pang
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, P.R. China
| | - Weizhong Sun
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, P.R. China
| | - Baoshi Shi
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, P.R. China
| | - Qingsong Tang
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, P.R. China
| | - Yuyue Xi
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, P.R. China
| | - Wenxue Li
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, P.R. China
| | - Zhihong Sun
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, P.R. China.
| |
Collapse
|
9
|
Kwon C, Cho W, Choi SW, Oh H, Abd El-Aty AM, Gecili I, Jeong JH, Jung TW. DEL-1: a promising treatment for AMD-associated ER stress in retinal pigment epithelial cells. J Transl Med 2024; 22:38. [PMID: 38195611 PMCID: PMC10775473 DOI: 10.1186/s12967-024-04858-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/04/2024] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Age-related macular degeneration (AMD) is an irreversible eye disease that can cause blurred vision. Regular exercise has been suggested as a therapeutic strategy for treating AMD, but how exercise improves AMD is not yet understood. This study investigated the protective effects of developmental endothelial locus-1 (DEL-1), a myokine upregulated during exercise, on endoplasmic reticulum (ER) stress-induced injury in retinal pigment epithelial cells. METHODS We evaluated the levels of AMPK phosphorylation, autophagy markers, and ER stress markers in DEL-1-treated human retinal pigment epithelial cells (hRPE) using Western blotting. We also performed cell viability, caspase 3 activity assays, and autophagosome staining. RESULTS Our findings showed that treatment with recombinant DEL-1 dose-dependently reduced the impairment of cell viability and caspase 3 activity in tunicamycin-treated hRPE cells. DEL-1 treatment also alleviated tunicamycin-induced ER stress markers and VEGF expression. Moreover, AMPK phosphorylation and autophagy markers were increased in hRPE cells in the presence of DEL-1. However, the effects of DEL-1 on ER stress, VEGF expression, and apoptosis in tunicamycin-treated hRPE cells were reduced by AMPK siRNA or 3-methyladenine (3-MA), an autophagy inhibitor. CONCLUSIONS Our study suggests that DEL-1, a myokine, may have potential as a treatment strategy for AMD by attenuating ER stress-induced injury in retinal pigment epithelial cells.
Collapse
Affiliation(s)
| | - Wonjun Cho
- Department of Pharmacology, College of Medicine, Chung-Ang University, 221, Heuksuk-dong, Dongjak-gu, Seoul, 156-756, Republic of Korea
| | - Sung Woo Choi
- Department of Pharmacology, College of Medicine, Chung-Ang University, 221, Heuksuk-dong, Dongjak-gu, Seoul, 156-756, Republic of Korea
| | - Heeseung Oh
- Department of Pharmacology, College of Medicine, Chung-Ang University, 221, Heuksuk-dong, Dongjak-gu, Seoul, 156-756, Republic of Korea
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240, Erzurum, Türkiye
| | - Ibrahim Gecili
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240, Erzurum, Türkiye
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, 221, Heuksuk-dong, Dongjak-gu, Seoul, 156-756, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Tae Woo Jung
- Department of Pharmacology, College of Medicine, Chung-Ang University, 221, Heuksuk-dong, Dongjak-gu, Seoul, 156-756, Republic of Korea.
| |
Collapse
|
10
|
Ceylani T, Önlü H, Keskin S, Allahverdi H, Teker HT. SCD Probiotics mitigate cafeteria diet-induced liver damage in Wistar rats during development. J Gastroenterol Hepatol 2023; 38:2142-2151. [PMID: 37963489 DOI: 10.1111/jgh.16395] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/03/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND AND AIM The liver plays a critical role in metabolic homeostasis, and its health is often compromised by poor dietary habits. This study aimed to investigate the therapeutic potential of SCD Probiotics in mitigating adverse liver effects induced by a cafeteria diet in male Wistar rats during their developmental period. METHODS Four groups of seven male Wistar rats each were subjected to different dietary regimens from day 21 (weaning) to day 56. The groups were as follows: a control group on normal feed; a probiotic-supplemented group on normal feed; a group on a cafeteria diet mixed with normal feed; and a group on a cafeteria diet mixed with normal feed, supplemented with SCD Probiotics. Liver health was assessed using Fourier transform infrared spectroscopy and histopathological evaluations. RESULTS Rats on the cafeteria diet exhibited significant disruptions in lipid, protein, cholesterol, triglyceride levels, and glycogen/phosphate content. Histopathological abnormalities such as lymphocytic infiltration, steatosis, and necrosis were also observed. However, SCD Probiotics supplementation led to notable improvements in the liver's biomolecular composition and mitigated histopathological abnormalities. Serum liver enzyme levels (AST, ALT, ALP, and LDH) also showed beneficial effects, while serum albumin levels remained stable. CONCLUSIONS SCD Probiotics demonstrated a promising potential to counteract the adverse liver effects induced by a cafeteria diet in male Wistar rats. The study revealed significant improvements in biomolecular composition, histopathology, and serum enzyme levels. However, these findings are preliminary and necessitate further in vivo studies and clinical trials for validation.
Collapse
Affiliation(s)
- Taha Ceylani
- Department of Molecular Biology and Genetics, Muş Alparslan University, Muş, Turkey
- Department of Food Quality Control and Analysis, Muş Alparslan University, Muş, Turkey
| | - Harun Önlü
- Department of Molecular Biology and Genetics, Muş Alparslan University, Muş, Turkey
- Department of Food Quality Control and Analysis, Muş Alparslan University, Muş, Turkey
| | - Seda Keskin
- Department of Histology and Embryology, Van Yuzuncu Yil University, Van, Turkey
| | - Hüseyin Allahverdi
- Department of Molecular Biology and Genetics, Muş Alparslan University, Muş, Turkey
| | - Hikmet Taner Teker
- Department of Medical Biology and Genetics, Ankara Medipol University, Ankara, Turkey
| |
Collapse
|
11
|
Svarcbahs R, Blossom SM, Baffoe-Bonnie HS, Trychta KA, Greer LK, Pickel J, Henderson MJ, Harvey BK. A transgenic mouse line for assaying tissue-specific changes in endoplasmic reticulum proteostasis. Transgenic Res 2023; 32:209-221. [PMID: 37133648 PMCID: PMC10195735 DOI: 10.1007/s11248-023-00349-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/17/2023] [Indexed: 05/04/2023]
Abstract
Maintenance of calcium homeostasis is important for proper endoplasmic reticulum (ER) function. When cellular stress conditions deplete the high concentration of calcium in the ER, ER-resident proteins are secreted into the extracellular space in a process called exodosis. Monitoring exodosis provides insight into changes in ER homeostasis and proteostasis resulting from cellular stress associated with ER calcium dysregulation. To monitor cell-type specific exodosis in the intact animal, we created a transgenic mouse line with a Gaussia luciferase (GLuc)-based, secreted ER calcium-modulated protein, SERCaMP, preceded by a LoxP-STOP-LoxP (LSL) sequence. The Cre-dependent LSL-SERCaMP mice were crossed with albumin (Alb)-Cre and dopamine transporter (DAT)-Cre mouse lines. GLuc-SERCaMP expression was characterized in mouse organs and extracellular fluids, and the secretion of GLuc-SERCaMP in response to cellular stress was monitored following pharmacological depletion of ER calcium. In LSL-SERCaMP × Alb-Cre mice, robust GLuc activity was observed only in the liver and blood, whereas in LSL-SERCaMP × DAT-Cre mice, GLuc activity was seen in midbrain dopaminergic neurons and tissue samples innervated by dopaminergic projections. After calcium depletion, we saw increased GLuc signal in the plasma and cerebrospinal fluid collected from the Alb-Cre and DAT-Cre crosses, respectively. This mouse model can be used to investigate the secretion of ER-resident proteins from specific cell and tissue types during disease pathogenesis and may aid in the identification of therapeutics and biomarkers of disease.
Collapse
Affiliation(s)
- Reinis Svarcbahs
- Cellular Stress and Inflammation Section, Intramural Research Program, National Institute On Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Sarah M Blossom
- Cellular Stress and Inflammation Section, Intramural Research Program, National Institute On Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Helena S Baffoe-Bonnie
- Cellular Stress and Inflammation Section, Intramural Research Program, National Institute On Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Kathleen A Trychta
- Cellular Stress and Inflammation Section, Intramural Research Program, National Institute On Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Lacey K Greer
- Cellular Stress and Inflammation Section, Intramural Research Program, National Institute On Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - James Pickel
- Transgenic Technology Core, Intramural Research Program, National Institute of Mental Health, Bethesda, MD, 20892, USA
| | - Mark J Henderson
- Cellular Stress and Inflammation Section, Intramural Research Program, National Institute On Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Brandon K Harvey
- Cellular Stress and Inflammation Section, Intramural Research Program, National Institute On Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA.
| |
Collapse
|
12
|
Wu KJ, Hung TW, Wang YS, Chen YH, Bae EK, Yu SJ. Prosaposin PS18 reduces dopaminergic neurodegeneration in a 6-hydroxydopamine rat model of Parkinson's disease. Sci Rep 2023; 13:8148. [PMID: 37208379 DOI: 10.1038/s41598-023-35274-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023] Open
Abstract
Saposin and its precursor prosaposin are endogenous proteins with neurotrophic and anti-apoptotic properties. Prosaposin or its analog prosaposin-derived 18-mer peptide (PS18) reduced neuronal damage in hippocampus and apoptosis in stroke brain. Its role in Parkinson's disease (PD) has not been well characterized. This study aimed to examine the physiological role of PS18 in 6-hydroxydopamine (6-OHDA) cellular and animal models of PD. We found that PS18 significantly antagonized 6-OHDA -mediated dopaminergic neuronal loss and TUNEL in rat primary dopaminergic neuronal culture. In SH-SY5Y cells overexpressing the secreted ER calcium-monitoring proteins, we found that PS18 significantly reduced thapsigargin and 6-OHDA-mediated ER stress. The expression of prosaposin and the protective effect of PS18 were next examined in hemiparkinsonian rats. 6-OHDA was unilaterally administered to striatum. The expression of prosaposin was transiently upregulated in striatum on D3 (day 3) after lesioning and returned below the basal level on D29. The 6-OHDA-lesioned rats developed bradykinesia and an increase in methamphetamine-mediated rotation, which was antagonized by PS18. Brain tissues were collected for Western blot, immunohistochemistry, and qRTPCR analysis. Tyrosine hydroxylase immunoreactivity was significantly reduced while the expressions of PERK, ATF6, CHOP, and BiP were upregulated in the lesioned nigra; these responses were significantly antagonized by PS18. Taken together, our data support that PS18 is neuroprotective in cellular and animal models of PD. The mechanisms of protection may involve anti-ER stress.
Collapse
Affiliation(s)
- Kuo-Jen Wu
- Center for Neuropsychiatric Research, National Health Research Institutes, 35 Keyan Road, Zhunan, 35053, Miaoli, Taiwan
| | - Tsai-Wei Hung
- Center for Neuropsychiatric Research, National Health Research Institutes, 35 Keyan Road, Zhunan, 35053, Miaoli, Taiwan
| | - Yu-Syuan Wang
- Center for Neuropsychiatric Research, National Health Research Institutes, 35 Keyan Road, Zhunan, 35053, Miaoli, Taiwan
| | - Yun-Hsiang Chen
- Department of Life Science, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Eun-Kyung Bae
- Center for Neuropsychiatric Research, National Health Research Institutes, 35 Keyan Road, Zhunan, 35053, Miaoli, Taiwan
| | - Seong-Jin Yu
- Center for Neuropsychiatric Research, National Health Research Institutes, 35 Keyan Road, Zhunan, 35053, Miaoli, Taiwan.
| |
Collapse
|
13
|
Griffin H, Sullivan SC, Barger SW, Phelan KD, Baldini G. Liraglutide Counteracts Endoplasmic Reticulum Stress in Palmitate-Treated Hypothalamic Neurons without Restoring Mitochondrial Homeostasis. Int J Mol Sci 2022; 24:ijms24010629. [PMID: 36614074 PMCID: PMC9820707 DOI: 10.3390/ijms24010629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
One feature of high-fat diet-induced neurodegeneration in the hypothalamus is an increased level of palmitate, which is associated with endoplasmic reticulum (ER) stress, loss of CoxIV, mitochondrial fragmentation, and decreased abundance of MC4R. To determine whether antidiabetic drugs protect against ER and/or mitochondrial dysfunction by lipid stress, hypothalamic neurons derived from pre-adult mice and neuronal Neuro2A cells were exposed to elevated palmitate. In the hypothalamic neurons, palmitate exposure increased expression of ER resident proteins, including that of SERCA2, indicating ER stress. Liraglutide reverted such altered ER proteostasis, while metformin only normalized SERCA2 expression. In Neuro2A cells liraglutide, but not metformin, also blunted dilation of the ER induced by palmitate treatment, and enhanced abundance and expression of MC4R at the cell surface. Thus, liraglutide counteracts, more effectively than metformin, altered ER proteostasis, morphology, and folding capacity in neurons exposed to fat. In palmitate-treated hypothalamic neurons, mitochondrial fragmentation took place together with loss of CoxIV and decreased mitochondrial membrane potential (MMP). Metformin, but not liraglutide, reverted mitochondrial fragmentation, and both liraglutide and metformin did not protect against either loss of CoxIV abundance or MMP. Thus, ER recovery from lipid stress can take place in hypothalamic neurons in the absence of recovered mitochondrial homeostasis.
Collapse
Affiliation(s)
- Haven Griffin
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Sarah C. Sullivan
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Steven W. Barger
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Kevin D. Phelan
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Giulia Baldini
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Correspondence:
| |
Collapse
|
14
|
Jäntti MH, Jackson SN, Kuhn J, Parkkinen I, Sree S, Hinkle JJ, Jokitalo E, Deterding LJ, Harvey BK. Palmitate and thapsigargin have contrasting effects on ER membrane lipid composition and ER proteostasis in neuronal cells. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159219. [PMID: 35981704 PMCID: PMC9452468 DOI: 10.1016/j.bbalip.2022.159219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/21/2022] [Accepted: 08/10/2022] [Indexed: 11/25/2022]
Abstract
The endoplasmic reticulum (ER) is an organelle that performs several key functions such as protein synthesis and folding, lipid metabolism and calcium homeostasis. When these functions are disrupted, such as upon protein misfolding, ER stress occurs. ER stress can trigger adaptive responses to restore proper functioning such as activation of the unfolded protein response (UPR). In certain cells, the free fatty acid palmitate has been shown to induce the UPR. Here, we examined the effects of palmitate on UPR gene expression in a human neuronal cell line and compared it with thapsigargin, a known depletor of ER calcium and trigger of the UPR. We used a Gaussia luciferase-based reporter to assess how palmitate treatment affects ER proteostasis and calcium homeostasis in the cells. We also investigated how ER calcium depletion by thapsigargin affects lipid membrane composition by performing mass spectrometry on subcellular fractions and compared this to palmitate. Surprisingly, palmitate treatment did not activate UPR despite prominent changes to membrane phospholipids. Conversely, thapsigargin induced a strong UPR, but did not significantly change the membrane lipid composition in subcellular fractions. In summary, our data demonstrate that changes in membrane lipid composition and disturbances in ER calcium homeostasis have a minimal influence on each other in neuronal cells. These data provide new insight into the adaptive interplay of lipid homeostasis and proteostasis in the cell.
Collapse
Affiliation(s)
- Maria H Jäntti
- Molecular Mechanisms of Cellular Stress and Inflammation, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, USA.
| | - Shelley N Jackson
- Translational Analytical Core, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, USA
| | - Jeffrey Kuhn
- Mass Spectrometry Research and Support Group, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| | - Ilmari Parkkinen
- Neuroscience Center, Helsinki Institute for Life Science, University of Helsinki, Haartmaninkatu 8, 00014 Helsinki, Finland
| | - Sreesha Sree
- Cell and Tissue Dynamics Research Programme, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Finland
| | - Joshua J Hinkle
- Molecular Mechanisms of Cellular Stress and Inflammation, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, USA
| | - Eija Jokitalo
- Cell and Tissue Dynamics Research Programme, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Finland
| | - Leesa J Deterding
- Mass Spectrometry Research and Support Group, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| | - Brandon K Harvey
- Molecular Mechanisms of Cellular Stress and Inflammation, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, USA.
| |
Collapse
|
15
|
Sahin K, Orhan C, Kucuk O, Tuzcu M, Sahin N, Ozercan IH, Sylla S, Ojalvo SP, Komorowski JR. Effects of magnesium picolinate, zinc picolinate, and selenomethionine co-supplementation on reproductive hormones, and glucose and lipid metabolism-related protein expressions in male rats fed a high-fat diet. FOOD CHEMISTRY. MOLECULAR SCIENCES 2022; 4:100081. [PMID: 35415682 PMCID: PMC8991512 DOI: 10.1016/j.fochms.2022.100081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/17/2022] [Accepted: 01/22/2022] [Indexed: 01/01/2023]
Abstract
This study aimed to examine the impacts of the magnesium picolinate (MgPic), zinc picolinate (ZnPic), and selenomethionine (SeMet) alone or as a combination on blood metabolites, oxidative enzymes, reproductive hormones, and glucose and lipid metabolism-related protein expressions in Wistar rats fed a high-fed diet (HFD). The rats were fed either a control, HFD, or HFD supplemented with a single (MgPic, ZnPic, SeMet) or two or three organic mineral combinations. Body weights, visceral fat, serum glucose, insulin, total cholesterol, triglycerides, leptin, malondialdehyde (MDA) concentrations as well as liver sterol regulatory element-binding protein-1c (SREBP-1c), liver X receptor alpha (LXRα), ATP citrate lyase (ACLY), fatty acid synthase (FAS), and nuclear factor kappa B (NF-κB) levels increased, while serum testosterone, follicle-stimulating hormone (FSH), luteinizing hormone (LH), sex hormone-binding globulin (SHBG), and insulin-like growth factor (IGF-1) concentrations along with liver nuclear factor erythroid 2-related factor 2 (Nrf2) levels declined in HFD rats (P < 0.05). Supplementing each organic mineral, but particularly the combination of HFD + MgPic + ZnPic + SeMet reversed the responses with various degrees. None of the organic elements alone or as a combination of two exerted a prominent effect on parameters measured. Although not additive or synergistic, the combination of all organic minerals added to HFD (HFD + MgPic + ZnPic + SeMet) provided the greatest responses.
Collapse
Affiliation(s)
- Kazim Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Cemal Orhan
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Osman Kucuk
- Department of Animal Nutrition, School of Veterinary Medicine, Erciyes University, 38039 Kayseri, Turkey
| | - Mehmet Tuzcu
- Department of Biology, Faculty of Science, Firat University, Elazig, Turkey
| | - Nurhan Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Ibrahim H Ozercan
- Department of Pathology, School of Medicine, Firat University, 23119 Elazig, Turkey
| | - Sarah Sylla
- Research and Development, Nutrition 21, Harrison, NY 10577, USA
| | - Sara P Ojalvo
- Research and Development, Nutrition 21, Harrison, NY 10577, USA
| | | |
Collapse
|
16
|
Greer LK, Meilleur KG, Harvey BK, Wires ES. Identification of ER/SR resident proteins as biomarkers for ER/SR calcium depletion in skeletal muscle cells. Orphanet J Rare Dis 2022; 17:225. [PMID: 35698232 PMCID: PMC9195201 DOI: 10.1186/s13023-022-02368-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aberrations to endoplasmic/sarcoplasmic reticulum (ER/SR) calcium concentration can result in the departure of endogenous proteins in a phenomenon termed exodosis. Redistribution of the ER/SR proteome can have deleterious effects to cell function and cell viability, often contributing to disease pathogenesis. Many proteins prone to exodosis reside in the ER/SR via an ER retention/retrieval sequence (ERS) and are involved in protein folding, protein modification, and protein trafficking. While the consequences of their extracellular presence have yet to be fully delineated, the proteins that have undergone exodosis may be useful for biomarker development. Skeletal muscle cells rely upon tightly coordinated ER/SR calcium release for muscle contractions, and perturbations to calcium homeostasis can result in myopathies. Ryanodine receptor type-1 (RYR1) is a calcium release channel located in the SR. Mutations to the RYR1 gene can compromise calcium homeostasis leading to a vast range of clinical phenotypes encompassing hypotonia, myalgia, respiratory insufficiency, ophthalmoplegia, fatigue and malignant hyperthermia (MH). There are currently no FDA approved treatments for RYR1-related myopathies (RYR1-RM). RESULTS Here we examine the exodosis profile of skeletal muscle cells following ER/SR calcium depletion. Proteomic analysis identified 4,465 extracellular proteins following ER/SR calcium depletion with 1,280 proteins significantly different than vehicle. A total of 54 ERS proteins were identified and 33 ERS proteins significantly increased following ER/SR calcium depletion. Specifically, ERS protein, mesencephalic astrocyte-derived neurotrophic factor (MANF), was elevated following calcium depletion, making it a potential biomarker candidate for human samples. Despite no significant elevation of MANF in plasma levels among healthy volunteers and RYR1-RM individuals, MANF plasma levels positively correlated with age in RYR1-RM individuals, presenting a potential biomarker of disease progression. Selenoprotein N (SEPN1) was also detected only in extracellular samples following ER/SR calcium depletion. This protein is integral to calcium handling and SEPN1 variants have a causal role in SEPN1-related myopathies (SEPN1-RM). Extracellular presence of ER/SR membrane proteins may provide new insight into proteomic alterations extending beyond ERS proteins. Pre-treatment of skeletal muscle cells with bromocriptine, an FDA approved drug recently found to have anti-exodosis effects, curbed exodosis of ER/SR resident proteins. CONCLUSION Changes to the extracellular content caused by intracellular calcium dysregulation presents an opportunity for biomarker development and drug discovery.
Collapse
Affiliation(s)
- Lacey K Greer
- National Institute On Drug Abuse, 251 Bayview Blvd, Baltimore, MD, 21224, USA
| | | | - Brandon K Harvey
- National Institute On Drug Abuse, 251 Bayview Blvd, Baltimore, MD, 21224, USA.
| | - Emily S Wires
- National Institute On Drug Abuse, 251 Bayview Blvd, Baltimore, MD, 21224, USA.
| |
Collapse
|
17
|
Gansemer ER, Rutkowski DT. Pathways Linking Nicotinamide Adenine Dinucleotide Phosphate Production to Endoplasmic Reticulum Protein Oxidation and Stress. Front Mol Biosci 2022; 9:858142. [PMID: 35601828 PMCID: PMC9114485 DOI: 10.3389/fmolb.2022.858142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
The endoplasmic reticulum (ER) lumen is highly oxidizing compared to other subcellular compartments, and maintaining the appropriate levels of oxidizing and reducing equivalents is essential to ER function. Both protein oxidation itself and other essential ER processes, such as the degradation of misfolded proteins and the sequestration of cellular calcium, are tuned to the ER redox state. Simultaneously, nutrients are oxidized in the cytosol and mitochondria to power ATP generation, reductive biosynthesis, and defense against reactive oxygen species. These parallel needs for protein oxidation in the ER and nutrient oxidation in the cytosol and mitochondria raise the possibility that the two processes compete for electron acceptors, even though they occur in separate cellular compartments. A key molecule central to both processes is NADPH, which is produced by reduction of NADP+ during nutrient catabolism and which in turn drives the reduction of components such as glutathione and thioredoxin that influence the redox potential in the ER lumen. For this reason, NADPH might serve as a mediator linking metabolic activity to ER homeostasis and stress, and represent a novel form of mitochondria-to-ER communication. In this review, we discuss oxidative protein folding in the ER, NADPH generation by the major pathways that mediate it, and ER-localized systems that can link the two processes to connect ER function to metabolic activity.
Collapse
Affiliation(s)
- Erica R. Gansemer
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - D. Thomas Rutkowski
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
18
|
Sun Y, Zhang XX, Huang S, Pan H, Gai YZ, Zhou YQ, Zhu L, Nie HZ, Li DX. Diet-Induced Obesity Promotes Liver Metastasis of Pancreatic Ductal Adenocarcinoma via CX3CL1/CX3CR1 Axis. J Immunol Res 2022; 2022:5665964. [PMID: 35478937 PMCID: PMC9038430 DOI: 10.1155/2022/5665964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/05/2022] [Accepted: 02/17/2022] [Indexed: 11/29/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers, and the patients are generally diagnosed with distant metastasis. Liver is one of the preferred organs of distant metastasis, and liver metastasis is the leading cause of death in PDAC. Diet-induced obesity (DIO) is a risk factor for PDAC, and it remains unclear whether and how DIO contributes to liver metastasis of PDAC. In our study, we found that DIO significantly promoted PDAC liver metastasis compared with normal diet (ND) in intrasplenic injection mouse model. RNA-seq analysis for liver metastasis nodules showed that the various chemokines and several chemokine receptors were altered between ND and DIO samples. The expression levels of CX3CL1 and CX3CR1 were significantly upregulated in DIO-induced liver metastasis of PDAC compared to ND. Increased CX3CL1 promoted the recruitment of CX3CR1-expressing pancreatic tumor cells. Taken together, our data demonstrated that DIO promoted PDAC liver metastasis via CX3CL1/CX3CR1 axis.
Collapse
Affiliation(s)
- Yue Sun
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University of Medicine, Shanghai 200240, China
| | - Xiao-Xin Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013 Jiangsu, China
| | - Shan Huang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University of Medicine, Shanghai 200240, China
| | - Hong Pan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University of Medicine, Shanghai 200240, China
| | - Yan-Zhi Gai
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University of Medicine, Shanghai 200240, China
| | - Yao-Qi Zhou
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University of Medicine, Shanghai 200240, China
| | - Lei Zhu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University of Medicine, Shanghai 200240, China
| | - Hui-Zhen Nie
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University of Medicine, Shanghai 200240, China
| | - Dong-Xue Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University of Medicine, Shanghai 200240, China
| |
Collapse
|
19
|
Chen L, Yan Y, Kong F, Wang J, Zeng J, Fang Z, Wang Z, Liu Z, Liu F. Contribution of Oxidative Stress Induced by Sonodynamic Therapy to the Calcium Homeostasis Imbalance Enhances Macrophage Infiltration in Glioma Cells. Cancers (Basel) 2022; 14:cancers14082036. [PMID: 35454942 PMCID: PMC9027216 DOI: 10.3390/cancers14082036] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Sonodynamic therapy (SDT) is a non-invasive technique that is based on the combination of a sonosensitizer and acoustic activation that destroys the mitochondrial respiratory chain, leading to increases in the levels of intracellular reactive oxygen species (ROS) and calcium overload as well as to the inhibition of proliferation, invasion, and promotion of the apoptosis of biologically more aggressive grade 4 glioma. This study aimed to better understand the calcium overload mechanism involved in SDT irradiation and killing gliomas as well as in lipid metabolism in aggressive glioma cells under the SDT treatment. In this study, we examined the hypothesis that the early application of the mechanosensitive Ca2+ channel Piezo1 antagonist (GsMTx4) could better promote the dissociation and polymerization of the Ca2+ lipid complex and further increase oxidative stress levels, leading to a better anti-tumor effect when SDT was used as a treatment. Moreover, Piezo1’s early closing state and intracellular calcium overload formation may be a key link that leads to the final tumor-infiltrating macrophages. Abstract Background: To better understand the Ca2+ overload mechanism of SDT killing gliomas, we examined the hypothesis that the early application of the mechanosensitive Ca2+ channel Piezo1 antagonist (GsMTx4) could have a better anti-tumor effect. Methods: The in vitro effect of low-energy SDT combined with GsMTx4 or agonist Yoda 1 on both the ROS-induced distribution of Ca2+ as well as on the opening of Piezo1 and the dissociation and polymerization of the Ca2+ lipid complex were assessed. The same groups were also studied to determine their effects on both tumor-bearing BALB/c-nude and C57BL/6 intracranial tumors, and their effects on the tumor-infiltrating macrophages were studied as well. Results: It was determined that ultrasound-activated Piezo1 contributes to the course of intracellular Ca2+ overload, which mediates macrophages (M1 and M2) infiltrating under the oxidative stress caused by SDT. Moreover, we explored the effects of SDT based on the dissociation of the Ca2+ lipid complex by inhibiting the expression of fatty acid binding protein 4 (FABP4). The Piezo1 channel was blocked early and combined with SDT treatment, recruited macrophages in the orthotopic transplantation glioma model. Conclusions: SDT regulates intracellular Ca2+ signals by upregulating Piezo1 leading to the inhibition of the energy supply from lipid and recruitment of macrophages. Therefore, intervening with the function of the Ca2+ channel on the glioma cell membrane in advance is likely to be the key factor to obtain a better effect combined with SDT treatment.
Collapse
Affiliation(s)
- Lei Chen
- Department of Neurosurgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China; (L.C.); (Y.Y.); (F.K.); (J.W.); (J.Z.); (Z.F.)
- The Cancer Center of the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China;
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Yang Yan
- Department of Neurosurgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China; (L.C.); (Y.Y.); (F.K.); (J.W.); (J.Z.); (Z.F.)
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China;
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Fangen Kong
- Department of Neurosurgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China; (L.C.); (Y.Y.); (F.K.); (J.W.); (J.Z.); (Z.F.)
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China;
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Jikai Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China; (L.C.); (Y.Y.); (F.K.); (J.W.); (J.Z.); (Z.F.)
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China;
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Jia Zeng
- Department of Neurosurgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China; (L.C.); (Y.Y.); (F.K.); (J.W.); (J.Z.); (Z.F.)
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China;
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Zhen Fang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China; (L.C.); (Y.Y.); (F.K.); (J.W.); (J.Z.); (Z.F.)
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China;
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Zheyan Wang
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China;
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Zhigang Liu
- The Cancer Center of the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China;
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
- Correspondence: (Z.L.); (F.L.); Tel.: +86-186-2758-5860 (Z.L.); +86-0756-861-8218 (F.L.)
| | - Fei Liu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China; (L.C.); (Y.Y.); (F.K.); (J.W.); (J.Z.); (Z.F.)
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China;
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
- Correspondence: (Z.L.); (F.L.); Tel.: +86-186-2758-5860 (Z.L.); +86-0756-861-8218 (F.L.)
| |
Collapse
|
20
|
Scorletti E, Carr RM. A new perspective on NAFLD: Focusing on lipid droplets. J Hepatol 2022; 76:934-945. [PMID: 34793866 DOI: 10.1016/j.jhep.2021.11.009] [Citation(s) in RCA: 190] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/13/2021] [Accepted: 11/06/2021] [Indexed: 02/07/2023]
Abstract
Lipid droplets (LDs) are complex and metabolically active organelles. They are composed of a neutral lipid core surrounded by a monolayer of phospholipids and proteins. LD accumulation in hepatocytes is the distinctive characteristic of non-alcoholic fatty liver disease (NAFLD), which is a chronic, heterogeneous liver condition that can progress to liver fibrosis and hepatocellular carcinoma. Though recent research has improved our understanding of the mechanisms linking LD accumulation to NAFLD progression, numerous aspects of LD biology are either poorly understood or unknown. In this review, we provide a description of several key mechanisms that contribute to LD accumulation in hepatocytes, favouring NAFLD progression. First, we highlight the importance of LD architecture and describe how the dysregulation of LD biogenesis leads to endoplasmic reticulum stress and inflammation. This is followed by an analysis of the causal nexus that exists between LD proteome composition and LD degradation. Finally, we describe how the increase in size of LDs causes activation of hepatic stellate cells, leading to liver fibrosis and hepatocellular carcinoma. We conclude that acquiring a more sophisticated understanding of LD biology will provide crucial insights into the heterogeneity of NAFLD and assist in the development of therapeutic approaches for this liver disease.
Collapse
Affiliation(s)
- Eleonora Scorletti
- Division of Translational Medicine and Human Genetics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Rotonya M Carr
- Division of Gastroenterology, University of Washington, Seattle, WA 98195-6424, United States.
| |
Collapse
|
21
|
Caffeine and MDMA (Ecstasy) Exacerbate ER Stress Triggered by Hyperthermia. Int J Mol Sci 2022; 23:ijms23041974. [PMID: 35216090 PMCID: PMC8880705 DOI: 10.3390/ijms23041974] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023] Open
Abstract
Drugs of abuse can cause local and systemic hyperthermia, a known trigger of endoplasmic reticulum (ER) stress and the unfolded protein response (UPR). Another trigger of ER stress and UPR is ER calcium depletion, which causes ER exodosis, the secretion of ER-resident proteins. In rodent models, club drugs such as 3,4-methylenedioxymethamphetamine (MDMA, ‘ecstasy’) can create hyperthermic conditions in the brain and cause toxicity that is affected by the environmental temperature and the presence of other drugs, such as caffeine. In human studies, MDMA stimulated an acute, dose-dependent increase in core body temperature, but an examination of caffeine and MDMA in combination remains a topic for clinical research. Here we examine the secretion of ER-resident proteins and activation of the UPR under combined exposure to MDMA and caffeine in a cellular model of hyperthermia. We show that hyperthermia triggers the secretion of normally ER-resident proteins, and that this aberrant protein secretion is potentiated by the presence of MDMA, caffeine, or a combination of the two drugs. Hyperthermia activates the UPR but the addition of MDMA or caffeine does not alter the canonical UPR gene expression despite the drug effects on ER exodosis of UPR-related proteins. One exception was increased BiP/GRP78 mRNA levels in MDMA-treated cells exposed to hyperthermia. These findings suggest that club drug use under hyperthermic conditions exacerbates disruption of ER proteostasis, contributing to cellular toxicity.
Collapse
|
22
|
An T, Liu JX, Yang XY, Lv BH, Wu YX, Jiang GJ. Supplementation of quinoa regulates glycolipid metabolism and endoplasmic reticulum stress in the high-fat diet-induced female obese mice. Nutr Metab (Lond) 2021; 18:95. [PMID: 34702298 PMCID: PMC8549395 DOI: 10.1186/s12986-021-00622-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 10/07/2021] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE To explore the effects of the quinoa diet on glycolipid metabolism and endoplasmic reticulum (ER) stress in an obese mouse model. METHODS Six-week-old C57BL/6J female mice have received a high-fat diet (HFD) to induce obesity and subsequently were treated with a quinoa diet for 12 weeks. During this period, fasting blood glucose, body fat and insulin resistance were measured regularly. At the end of the experiment, mouse serum and liver tissue were collected. The differences in glucose and lipid metabolism were analyzed, and liver tissue pathological morphology, liver endoplasmic reticulum stress-related mRNA and protein levels, and serum oxidative stress levels were measured. RESULTS Quinoa diet could significantly reduce the level of blood glucose, triglyceride, cholesterol, low-density lipoprotein, improve glucose tolerance, as well as improve histological changes of liver tissues in obese mice (P < 0.05 or < 0.01). Besides, quinoa could improve oxidative stress indicators such as GSH, and MDA (P < 0.05 or < 0.01). Furthermore, quinoa can down-regulate mRNA expression of ER stress markers eIF2α, GRP78, and CHOP in the liver of obese mice (P < 0.05 or < 0.01). CONCLUSIONS Quinoa supplementation can improve glycolipid metabolism, regulate ER stress, and alleviate obesity in HFD-induced mice.
Collapse
Affiliation(s)
- Tian An
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jia-Xian Liu
- Zhongli Science and Technology Limited Company, Beijing, 100022, China
| | - Xiu-Yan Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Bo-Han Lv
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yan-Xiang Wu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Guang-Jian Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
23
|
Li N, Huang Z, Ding L, Shi H, Hong M. Endoplasmic reticulum unfolded protein response modulates the adaptation of Trachemys scripta elegans in salinity water. Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109102. [PMID: 34102330 DOI: 10.1016/j.cbpc.2021.109102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 11/18/2022]
Abstract
Trachemys scripta elegans, as a freshwater invasive species, can survive and lay eggs in brackish water, which may lead to the expansion of its potential invasion range due to freshwater salinization. Our previous studies have shown that high salinity leads to the accumulation of serum lipid content, which may induce endoplasmic reticulum stress (ERS) in the turtle. To better understand whether ERS is triggered by salinity, and in turn whether the turtles promote the protection mechanism, we exposed the turtles to the freshwater (CK), 5‰ salinity water (S5) and 15‰ salinity water (S15), and sampled at 6 h, 24 h and 30 d. 13 differentially expressed genes (DEGs) related to ERS pathways were found in the comparison of CK vs. S15 by transcriptomics analysis. Then, the mRNA and protein expression of ERS and its related activation pathways were further investigated. ERS marker glucose regulated protein 78 kD (GRP78) increased significantly (p < 0.05) in both the transcript and protein levels after exposure to 15‰ salinity water, which clearly indicated that salinity could induce ERS in T. s. elegans. Meanwhile, the three unfolded protein response (UPR) including transducers protein kinase RNA (PKR)-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1α (IRE1α) and activating transcription factor-6 (ATF6) were promoted by salinity, suggesting that the turtle might promote physiological process to eliminate damaged cells and cope with unfolded proteins accumulation induced by ERS. Our results provide new insight into the mechanism of salinity adaptation in T. s. elegans and salt-tolerant biological invasion.
Collapse
Affiliation(s)
- Na Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Zubin Huang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Li Ding
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China.
| | - Haitao Shi
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Meiling Hong
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China.
| |
Collapse
|
24
|
Feriani A, Bizzarri M, Tir M, Aldawood N, Alobaid H, Allagui MS, Dahmash W, Tlili N, Mnafgui K, Alwasel S, Harrath AH. High-fat diet-induced aggravation of cardiovascular impairment in permethrin-treated Wistar rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112461. [PMID: 34224971 DOI: 10.1016/j.ecoenv.2021.112461] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 06/12/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
This study characterized the impact of post-weaning high-fat diet (HFD) and/or permethrin (PER) treatment on heart dysfunction and fibrosis, as well as atherogenic risk, in rats by investigating interactions between HFD and PER. Our results revealed that HFD and/or PER induced remarkable cardiotoxicity by promoting cardiac injury, biomarker leakage into the plasma and altering heart rate and electrocardiogram pattern, as well as plasma ion levels. HFD and/or PER increased plasma total cholesterol, triacylglycerols, and low-density lipoprotein (LDL) cholesterol levels but significantly reduced high-density lipoprotein (HDL) cholesterol. Cardiac content of peroxidation malonaldehyde, protein carbonyls, and reactive oxygen species were remarkably elevated, while glutathione levels and superoxide dismutase, catalase and glutathione peroxidase activities were inhibited in animals receiving a HFD and/or PER. Furthermore, cardiac DNA fragmentation and upregulation of Bax and caspase-3 gene expression supported the ability of HFD and/or PER to induce apoptosis and inflammation in rat hearts. High cardiac TGF-β1 expression explained the profibrotic effects of PER either with the standard diet or HFD. Masson's Trichrome staining clearly demonstrated that HFD and PER could cause cardiac fibrosis. Additionally, increased oxidized LDL and the presence of several lipid droplets in arterial tissues highlighted the atherogenic effects of HFD and/or PER in rats. Such PER-induced cardiac and vascular dysfunctions were aggravated by and associated with a HFD, implying that obese individuals may be more vulnerable to PER exposure. Collectively, post-weaning exposure to HFD and/or PER may promote heart failure and fibrosis, demonstrating the pleiotropic effects of exposure to environmental factors early in life.
Collapse
Affiliation(s)
- Anouar Feriani
- Research Unit of Macromolecular Biochemistry and Genetics, Faculty of Sciences of Gafsa, 2112 Gafsa, Tunisia
| | - Mariano Bizzarri
- Sapienza University of Rome, Dept of Experimental Medicine, Syst Biol Grp Lab, Rome, Italy
| | - Meriam Tir
- Laboratoire des Sciences de l'Environnement, Biologie et Physiologie des Organismes Aquatiques, LR18ES41, Faculté des Sciences de Tunis, Université Tunis EL Manar, 2092 Tunis, Tunisia
| | - Nouf Aldawood
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Hussah Alobaid
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | | | - Waleed Dahmash
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Nizar Tlili
- Institut Supérieur des Sciences et Technologies de l'Environnement, Université de Carthage, Tunisia
| | - Kais Mnafgui
- Laboratory of Animal Ecophysiology, Faculty of Science of Sfax, 3018 Sfax, Tunisia
| | - Saleh Alwasel
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdel Halim Harrath
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
25
|
Park M, Kim KH, Jaiswal V, Choi J, Chun JL, Seo KM, Lee MJ, Lee HJ. Effect of black ginseng and silkworm supplementation on obesity, the transcriptome, and the gut microbiome of diet-induced overweight dogs. Sci Rep 2021; 11:16334. [PMID: 34381138 PMCID: PMC8358025 DOI: 10.1038/s41598-021-95789-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/23/2021] [Indexed: 01/04/2023] Open
Abstract
Like humans, weight control in overweight dogs is associated with a longer life expectancy and a healthier life. Dietary supplements are one of the best strategies for controlling obesity and obesity-associated diseases. This study was conducted to assess the potential of black ginseng (BG) and silkworm (SW) as supplements for weight control in diet-induced overweight beagle dogs. To investigate the changes that occur in dogs administered the supplements, different obesity-related parameters, such as body condition score (BCS), blood fatty acid profile, transcriptome, and microbiome, were assessed in high energy diet (HD) and HD with BG + SW supplementation (HDT) groups of test animals. After 12 weeks of BG + SW supplementation, total cholesterol and triglyceride levels were reduced in the HDT group. In the transcriptome analysis, nine genes (NUGGC, EFR3B, RTP4, ACAN, HOXC4, IL17RB, SOX13, SLC18A2, and SOX4) that are known to be associated with obesity were found to be differentially expressed between the ND (normal diet) and HD groups as well as the HD and HDT groups. Significant changes in some taxa were observed between the HD and ND groups. These data suggest that the BG + SW supplement could be developed as dietary interventions against diet-induced obesity, and obesity-related differential genes could be important candidates in the mechanism of the anti-obesity effects of the BG + SW supplement.
Collapse
Affiliation(s)
- Miey Park
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, 13120, Gyeonggi-do, Korea
| | - Ki Hyun Kim
- Animal Welfare Research Team, National Institute of Animal Science, National Institute of Animal Science, Rural Development Administration, Wanju, 55365, Korea
| | - Varun Jaiswal
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, 13120, Gyeonggi-do, Korea
| | - Jihee Choi
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, 13120, Gyeonggi-do, Korea
| | - Ju Lan Chun
- Animal Welfare Research Team, National Institute of Animal Science, National Institute of Animal Science, Rural Development Administration, Wanju, 55365, Korea
| | - Kang Min Seo
- Animal Welfare Research Team, National Institute of Animal Science, National Institute of Animal Science, Rural Development Administration, Wanju, 55365, Korea
| | - Mi-Jin Lee
- Clinical Nutritional Medicine, Veterinary Medical Teaching Hospital, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, 13120, Gyeonggi-do, Korea.
| |
Collapse
|
26
|
Zhang Z, Liu S, Qi Y, Aluo Z, Zhang L, Yu L, Li Q, Luo Z, Sun Z, Zhou L, Li Y. Calcium supplementation relieves high-fat diet-induced liver steatosis by reducing energy metabolism and promoting lipolysis. J Nutr Biochem 2021; 94:108645. [PMID: 33838230 DOI: 10.1016/j.jnutbio.2021.108645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/10/2021] [Accepted: 03/30/2021] [Indexed: 01/23/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a chronic disease affecting the health of many people worldwide. Previous studies have shown that dietary calcium supplementation may alleviate NAFLD, but the underlying mechanism is not clear. In this study investigating the effect of calcium on hepatic lipid metabolism, 8-week-old male C57BL/6J mice were divided into four groups (n = 6): (1) mice given a normal chow containing 0.5% calcium (CN0.5), (2) mice given a normal chow containing 1.2% calcium (CN1.2), (3) mice given a high-fat diet (HFD) containing 0.5% calcium (HFD0.5), and (4) mice fed a HFD containing 1.2% calcium (HFD1.2). To understand the underlying mechanism, cells were treated with oleic acid and palmitic acid to mimic the HFD conditions in vitro. The results showed that calcium alleviated the increase in triglyceride accumulation induced by oleic acid and/or palmitic acid in HepG2, AML12, and primary hepatocyte cells. Our data demonstrated that calcium supplementation alleviated HFD-induced hepatic steatosis through increased liver lipase activity, proving calcium is involved in the regulation of hepatic lipid metabolism. Moreover, calcium also increased the level of glycogen in the liver, and at the same time had the effect of reducing glycolysis and promoting glucose absorption. Calcium addition increased calcium levels in the mitochondria and cytoplasm. Taken together, we concluded that calcium supplementation could relieve HFD-induced hepatic steatosis by changing energy metabolism and lipase activity.
Collapse
Affiliation(s)
- Zhiwang Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, P.R. China
| | - Siqi Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, P.R. China
| | - Yilin Qi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, P.R. China
| | - Zhier Aluo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, P.R. China
| | - Lifang Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, P.R. China
| | - Lin Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, P.R. China
| | - Qiang Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, P.R. China
| | - Zupeng Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, P.R. China
| | - Zheng Sun
- Department of Medicine-Endocrinology, Baylor College of Medicine, Houston, Texas, USA
| | - Lei Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, P.R. China
| | - Yixing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, P.R. China.
| |
Collapse
|
27
|
Lemmer IL, Willemsen N, Hilal N, Bartelt A. A guide to understanding endoplasmic reticulum stress in metabolic disorders. Mol Metab 2021; 47:101169. [PMID: 33484951 PMCID: PMC7887651 DOI: 10.1016/j.molmet.2021.101169] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/08/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The global rise of metabolic disorders, such as obesity, type 2 diabetes, and cardiovascular disease, demands a thorough molecular understanding of the cellular mechanisms that govern health or disease. The endoplasmic reticulum (ER) is a key organelle for cellular function and metabolic adaptation and, therefore disturbed ER function, known as "ER stress," is a key feature of metabolic disorders. SCOPE OF REVIEW As ER stress remains a poorly defined phenomenon, this review provides a general guide to understanding the nature, etiology, and consequences of ER stress in metabolic disorders. We define ER stress by its type of stressor, which is driven by proteotoxicity, lipotoxicity, and/or glucotoxicity. We discuss the implications of ER stress in metabolic disorders by reviewing evidence implicating ER phenotypes and organelle communication, protein quality control, calcium homeostasis, lipid and carbohydrate metabolism, and inflammation as key mechanisms in the development of ER stress and metabolic dysfunction. MAJOR CONCLUSIONS In mammalian biology, ER is a phenotypically and functionally diverse platform for nutrient sensing, which is critical for cell type-specific metabolic control by hepatocytes, adipocytes, muscle cells, and neurons. In these cells, ER stress is a distinct, transient state of functional imbalance, which is usually resolved by the activation of adaptive programs such as the unfolded protein response (UPR), ER-associated protein degradation (ERAD), or autophagy. However, challenges to proteostasis also impact lipid and glucose metabolism and vice versa. In the ER, sensing and adaptive measures are integrated and failure of the ER to adapt leads to aberrant metabolism, organelle dysfunction, insulin resistance, and inflammation. In conclusion, the ER is intricately linked to a wide spectrum of cellular functions and is a critical component in maintaining and restoring metabolic health.
Collapse
Affiliation(s)
- Imke L Lemmer
- Institute for Cardiovascular Prevention (IPEK), Pettenkoferstr. 9, Ludwig-Maximilians-University, 80336 Munich, Germany; Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Nienke Willemsen
- Institute for Cardiovascular Prevention (IPEK), Pettenkoferstr. 9, Ludwig-Maximilians-University, 80336 Munich, Germany
| | - Nazia Hilal
- Institute for Cardiovascular Prevention (IPEK), Pettenkoferstr. 9, Ludwig-Maximilians-University, 80336 Munich, Germany
| | - Alexander Bartelt
- Institute for Cardiovascular Prevention (IPEK), Pettenkoferstr. 9, Ludwig-Maximilians-University, 80336 Munich, Germany; Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Technische Universität München, Biedersteiner Str. 29, 80802 München, Germany; Department of Molecular Metabolism, 665 Huntington Avenue, Harvard T.H. Chan School of Public Health, 02115 Boston, MA, USA.
| |
Collapse
|
28
|
Ali ES, Rychkov GY, Barritt GJ. Targeting Ca 2+ Signaling in the Initiation, Promotion and Progression of Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12102755. [PMID: 32987945 PMCID: PMC7600741 DOI: 10.3390/cancers12102755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Liver cancer (hepatocellular carcinoma) is a significant health burden worldwide. It is often not detected until at an advanced stage when there are few treatment options available. Changes in calcium concentrations within liver cancer cells are essential for regulating their growth, death, and migration (metastasis). Our aim was to review published papers which have identified proteins involved in calcium signaling as potential drug targets for the treatment of liver cancer. About twenty calcium signaling proteins were identified, including those involved in regulating calcium concentrations in the cytoplasm, endoplasmic reticulum and mitochondria. A few of these have turned out to be sites of action of natural products previously known to inhibit liver cancer. More systematic studies are now needed to determine which calcium signaling proteins might be used clinically for treatment of liver cancer, especially advanced stage cancers and those resistant to inhibition by current drugs. Abstract Hepatocellular carcinoma (HCC) is a considerable health burden worldwide and a major contributor to cancer-related deaths. HCC is often not noticed until at an advanced stage where treatment options are limited and current systemic drugs can usually only prolong survival for a short time. Understanding the biology and pathology of HCC is a challenge, due to the cellular and anatomic complexities of the liver. While not yet fully understood, liver cancer stem cells play a central role in the initiation and progression of HCC and in resistance to drugs. There are approximately twenty Ca2+-signaling proteins identified as potential targets for therapeutic treatment at different stages of HCC. These potential targets include inhibition of the self-renewal properties of liver cancer stem cells; HCC initiation and promotion by hepatitis B and C and non-alcoholic fatty liver disease (principally involving reduction of reactive oxygen species); and cell proliferation, tumor growth, migration and metastasis. A few of these Ca2+-signaling pathways have been identified as targets for natural products previously known to reduce HCC. Promising Ca2+-signaling targets include voltage-operated Ca2+ channel proteins (liver cancer stem cells), inositol trisphosphate receptors, store-operated Ca2+ entry, TRP channels, sarco/endoplasmic reticulum (Ca2++Mg2+) ATP-ase and Ca2+/calmodulin-dependent protein kinases. However, none of these Ca2+-signaling targets has been seriously studied any further than laboratory research experiments. The future application of more systematic studies, including genomics, gene expression (RNA-seq), and improved knowledge of the fundamental biology and pathology of HCC will likely reveal new Ca2+-signaling protein targets and consolidate priorities for those already identified.
Collapse
Affiliation(s)
- Eunus S. Ali
- Department of Medical Biochemistry, College of Medicine and Public Health, Flinders University, Adelaide 5001, South Australia, Australia;
| | - Grigori Y. Rychkov
- School of Medicine, The University of Adelaide, Adelaide 5005, South Australia, Australia;
- South Australian Health and Medical Research Institute, Adelaide 5005, South Australia, Australia
| | - Greg J. Barritt
- Department of Medical Biochemistry, College of Medicine and Public Health, Flinders University, Adelaide 5001, South Australia, Australia;
- Correspondence: ; Tel.: +61-438-204-426
| |
Collapse
|
29
|
Tamitani M, Yamamoto T, Yamamoto N, Fujisawa K, Tanaka S, Nakamura Y, Uchinoumi H, Oda T, Okuda S, Takami T, Kobayashi S, Sakaida I, Yano M. Dantrolene prevents hepatic steatosis by reducing cytoplasmic Ca2+ level and ER stress. Biochem Biophys Rep 2020; 23:100787. [PMID: 32715106 PMCID: PMC7374254 DOI: 10.1016/j.bbrep.2020.100787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 11/24/2022] Open
Abstract
Introduction Our previous studies demonstrated that dantrolene, a ryanodine receptor stabilizer, prevents endoplasmic reticulum (ER) stress in the heart. ER stress is a strong mediator of impaired lipid metabolism in the liver, thereby contributing to fatty liver disease. In this study, we investigated the effects of dantrolene on fatty liver disease in mice and ER stress in hepatocytes. Methods and results Eight weeks old C57BL/6 mice were fed high-fat diet (HFD) for 8 weeks with or without the oral administration of dantrolene (100 mg/kg/day). The livers of mice without dantrolene (HFD group) showed severe fatty liver, whereas the livers of the mice treated with dantrolene (HFD + DAN group) only showed slightly fatty liver. To address the preventive effects of dantrolene, primary hepatocytes were cultured with palmitate in the presence or absence of dantrolene. Dantrolene reduced lipid load and prevents palmitate-induced increase in cytoplasmic Ca2+ and ER stress. Based on these findings, we propose that dantrolene is a potential new therapeutic agent against fatty liver disease. Oral dantrolene prevents fatty liver disease in mice. Dantrolene reduced the cytoplasmic Ca2+ level in hepatocytes. Dantrolene reduced the GRP78 protein level in hepatocytes.
Collapse
|
30
|
Zou Y, Qi Z. Understanding the Role of Exercise in Nonalcoholic Fatty Liver Disease: ERS-Linked Molecular Pathways. Mediators Inflamm 2020; 2020:6412916. [PMID: 32774148 PMCID: PMC7397409 DOI: 10.1155/2020/6412916] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/11/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is globally prevalent and characterized by abnormal lipid accumulation in the liver, frequently accompanied by insulin resistance (IR), enhanced hepatic inflammation, and apoptosis. Recent studies showed that endoplasmic reticulum stress (ERS) at the subcellular level underlies these featured pathologies in the development of NAFLD. As an effective treatment, exercise significantly reduces hepatic lipid accumulation and thus alleviates NAFLD. Confusingly, these benefits of exercise are associated with increased or decreased ERS in the liver. Further, the interaction between diet, medication, exercise types, and intensity in ERS regulation is more confusing, though most studies have confirmed the benefits of exercise. In this review, we focus on understanding the role of exercise-modulated ERS in NAFLD and ERS-linked molecular pathways. Moderate ERS is an essential signaling for hepatic lipid homeostasis. Higher ERS may lead to increased inflammation and apoptosis in the liver, while lower ERS may lead to the accumulation of misfolded proteins. Therefore, exercise acts like an igniter or extinguisher to keep ERS at an appropriate level by turning it up or down, which depends on diet, medications, exercise intensity, etc. Exercise not only enhances hepatic tolerance to ERS but also prevents the malignant development of steatosis due to excessive ERS.
Collapse
Affiliation(s)
- Yong Zou
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai 200241, China
- School of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Zhengtang Qi
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai 200241, China
- School of Physical Education and Health, East China Normal University, Shanghai 200241, China
| |
Collapse
|
31
|
Kim JY, Kim MH, Lee HJ, Huh JW, Lee SR, Lee HS, Lee DS. Peroxiredoxin 4 inhibits insulin-induced adipogenesis through regulation of ER stress in 3T3-L1 cells. Mol Cell Biochem 2020; 468:97-109. [PMID: 32185676 DOI: 10.1007/s11010-020-03714-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/06/2020] [Indexed: 02/06/2023]
Abstract
Obesity was originally considered a disease endemic to developed countries but has since emerged as a global health problem. Obesity is characterized by abnormal or excessive lipid accumulation (World Health Organization, WHO) resulting from pre-adipocyte differentiation (adipogenesis). The endoplasmic reticulum (ER) produces proteins and cholesterol and shuttles these compounds to their target sites. Many studies have implicated ER stress, indicative of ER dysfunction, in adipogenesis. Reactive oxygen species (ROS) are also known to be involved in pre-adipocyte differentiation. Prx4 specific to the ER lumen exhibits ROS scavenging activity, and we thereby focused on ER-specific Prx4 in tracking changes in adipocyte differentiation and lipid accumulation. Overexpression of Prx4 reduced ER stress and suppressed lipid accumulation by regulating adipogenic gene expression during adipogenesis. Our results demonstrate that Prx4 inhibits ER stress, lowers ROS levels, and attenuates pre-adipocyte differentiation. These findings suggested enhancing the activity of Prx4 may be helpful in the treatment of obesity; the data also support the development of new therapeutic approaches to obesity and obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Jae Yeop Kim
- School of Life Sciences, BK21 Plus KNU Creative Bioresearch Group, Kyungpook National University, Daegu, Republic of Korea.,School of Life Sciences & Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Mi Hye Kim
- School of Life Sciences, BK21 Plus KNU Creative Bioresearch Group, Kyungpook National University, Daegu, Republic of Korea.,School of Life Sciences & Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Hong Jun Lee
- College of Medicine, Chungbuk National University, Chungbuk, Republic of Korea.,Research Institute, E-Biogen Inc, Seoul, Korea
| | - Jae-Won Huh
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Sang-Rae Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Hyun-Shik Lee
- School of Life Sciences, BK21 Plus KNU Creative Bioresearch Group, Kyungpook National University, Daegu, Republic of Korea.,School of Life Sciences & Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Dong-Seok Lee
- School of Life Sciences, BK21 Plus KNU Creative Bioresearch Group, Kyungpook National University, Daegu, Republic of Korea. .,School of Life Sciences & Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
32
|
Zhang L, Wei J, Duan J, Guo C, Zhang J, Ren L, Liu J, Li Y, Sun Z, Zhou X. Silica nanoparticles exacerbates reproductive toxicity development in high-fat diet-treated Wistar rats. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121361. [PMID: 31606252 DOI: 10.1016/j.jhazmat.2019.121361] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 09/26/2019] [Accepted: 09/28/2019] [Indexed: 06/10/2023]
Abstract
To demonstrate the combined adverse effect and the mechanism of silica nanoparticles (SiNPs) with 57.66 ± 7.30 nm average diameter and high-fat diet (HFD) on Wistar rats, 60 male Wistar rats were randomly divided into six groups (n = 10): Control group, SiNPs group, HFD group, 2 mg kg-1 SiNPs + HFD group, 5 mg kg-1 SiNPs + HFD group and 10 mg kg-1 SiNPs + HFD group. HFD was administrated for 2 weeks for the rats in advance and SiNPs were supplied every 3 d for 48 d subsequently. The present study illustrated that both HFD and SiNPs could decrease sperm concentration, mobility rates, increase abnormality rates, damage testicular structure, reduce spermatogonium numbers and spermatoblast numbers, reduce ATP levels, and affect expression of regulatory factors for meiosis in testis. HFD and SiNPs further damaged the sperm and lowered the ATP level and expression of factors associated with meiotic signaling pathway compared with the HFD without SiNPs in testicular tissue of Wistar rats. These results suggested that SiNPs significantly promoted reproductive toxicity induced by HFD in Wistar rats, which provides novel experimental evidence and an explanation for magnified reproductive toxicity triggered by SiNPs in HFD rats.
Collapse
Affiliation(s)
- Lianshuang Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China; Department of Histology and Embryology, Binzhou Medical University, Yantai, China
| | - Jialiu Wei
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China; Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Caixia Guo
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Jin Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Lihua Ren
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Jianhui Liu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Yanbo Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Xianqing Zhou
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China.
| |
Collapse
|
33
|
Zhang B, Zhang C, Zhang X, Li N, Dong Z, Sun G, Sun X. Atorvastatin promotes AMPK signaling to protect against high fat diet-induced non-alcoholic fatty liver in golden hamsters. Exp Ther Med 2020; 19:2133-2142. [PMID: 32104276 PMCID: PMC7027324 DOI: 10.3892/etm.2020.8465] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 12/11/2019] [Indexed: 12/19/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by diffuse fatty acid degeneration and excess fat accumulation in the liver. Notably, the currently available medications used to treat NAFLD remain limited. The aim of the present study was to investigate the protective role of atorvastatin (Ato) against NAFLD in golden hamsters fed a high fat diet (HFD) and in HepG2 cells treated with palmitate, and identify the underlying molecular mechanism. Ato (3 mg/kg) was administered orally every day for 8 weeks to the hamsters during HFD administration. Hamsters in the model group developed hepatic steatosis with high serum levels of triglyceride, cholesterol, insulin and C-reactive protein, which were effectively reduced by treatment with Ato. Additionally, the relative liver weight of hamsters treated with Ato was markedly lower compared with that of the model group. Hematoxylin and eosin, and oil red O staining indicated that the livers of the animals in the model group exhibited large and numerous lipid droplets, which were markedly decreased after Ato treatment. Western blot analysis indicated that Ato inhibited fat accumulation in the liver through the AMP-activated protein kinase (AMPK)-dependent activation of peroxisome proliferator activated receptor α (PPARα), peroxisome proliferator-activated receptor-γ coactivator 1 α and their target genes. Furthermore, in vitro, Ato inhibited PA-induced lipid accumulation in HepG2 cells. This inhibitory effect was attenuated following Compound C treatment, indicating that AMPK may be a potential target of Ato. In conclusion, the increase in AMPK-mediated PPARα and its target genes may represent a novel molecular mechanism by which Ato prevents NAFLD.
Collapse
Affiliation(s)
- Bin Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, P.R. China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, P.R. China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, P.R. China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, P.R. China
| | - Chenyang Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, P.R. China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, P.R. China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, P.R. China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, P.R. China
| | - Xuelian Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, P.R. China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, P.R. China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, P.R. China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, P.R. China
| | - Nannan Li
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, P.R. China
| | - Zhengqi Dong
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, P.R. China
| | - Guibo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, P.R. China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, P.R. China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, P.R. China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, P.R. China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, P.R. China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, P.R. China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, P.R. China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, P.R. China
| |
Collapse
|
34
|
Huang Y, Li Y, Liu Q, Zhang J, Zhang Z, Wu T, Tang Q, Huang C, Li R, Zhou J, Zhang G, Zhao Y, Huang H, He J. Telmisartan attenuates obesity-induced insulin resistance via suppression of AMPK mediated ER stress. Biochem Biophys Res Commun 2020; 523:787-794. [PMID: 31948761 DOI: 10.1016/j.bbrc.2019.12.111] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 12/20/2019] [Indexed: 02/05/2023]
Abstract
Telmisartan is a known angiotensin II (Ang II) AT1 receptor blocker (ARB). While the beneficial effect of Telmisartan on glucose and lipid metabolism has been reported, the underlying molecular mechanism remained unclear. The endoplasmic reticulum (ER) stress is considered as one of important factors contributing to insulin resistance. In this study, we found that Telmisartan alleviated diet-induced obesity and insulin resistance, suppressed inflammation in adipose tissue, and alleviated hepatic steatosis. Furthermore, we showed that Telmisartan suppressed ER stress by activating AMP-activated protein kinase (AMPK) signaling pathway in vivo. In differentiated 3T3-L1 adipocytes, Telmisartan also improved palmitate acid (PA) induced ER stress. Compound C, an AMPK inhibitor, could abolish beneficial effect of Telmisartan on ER stress. Our data indicated Telmisartan improved obesity-induced insulin resistance through suppression of ER stress by activation of AMPK. These results provided the evidence that Telmisartan may have therapeutic potential for the treatment of obesity and type II diabetes.
Collapse
Affiliation(s)
- Ya Huang
- Department of Pharmacy and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, China
| | - Yanping Li
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, China
| | - Qinhui Liu
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, China
| | - Jinhang Zhang
- Department of Pharmacy and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, China
| | - Zijing Zhang
- Department of Pharmacy and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, China
| | - Tong Wu
- Department of Pharmacy and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, China
| | - Qin Tang
- Department of Pharmacy and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, China
| | - Cuiyuan Huang
- Department of Pharmacy and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, China
| | - Rui Li
- Department of Pharmacy and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, China
| | - Jian Zhou
- Department of Pharmacy and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, China
| | - Guorong Zhang
- Department of Pharmacy and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, China
| | - Yingnan Zhao
- Department of Pharmacy and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, China
| | - Hui Huang
- Department of Pharmacy and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, China
| | - Jinhan He
- Department of Pharmacy and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, China.
| |
Collapse
|
35
|
KDEL Receptors Are Differentially Regulated to Maintain the ER Proteome under Calcium Deficiency. Cell Rep 2019; 25:1829-1840.e6. [PMID: 30428351 DOI: 10.1016/j.celrep.2018.10.055] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/17/2018] [Accepted: 10/12/2018] [Indexed: 12/21/2022] Open
Abstract
Retention of critical endoplasmic reticulum (ER) luminal proteins needed to carry out diverse functions (e.g., protein synthesis and folding, lipid metabolism) is mediated through a carboxy-terminal ER retention sequence (ERS) and its interaction with KDEL receptors. Here, we demonstrate that depleting ER calcium causes mass departure of ERS-containing proteins from cells by overwhelming KDEL receptors. In addition, we provide evidence that KDELR2 and KDELR3, but not KDELR1, are unfolded protein response (UPR) genes upregulated as an adaptive response to counteract the loss of ERS-containing proteins, suggesting previously unknown isoform-specific functions of the KDEL receptors. Overall, our findings establish that decreases in ER calcium change the composition of the ER luminal proteome and secretome, which can impact cellular functions and cell viability. The redistribution of the ER proteome from inside the cell to the outside has implications for dissecting the complex relationship of ER homeostasis with diverse disease pathologies.
Collapse
|
36
|
Duvigneau JC, Luís A, Gorman AM, Samali A, Kaltenecker D, Moriggl R, Kozlov AV. Crosstalk between inflammatory mediators and endoplasmic reticulum stress in liver diseases. Cytokine 2019; 124:154577. [DOI: 10.1016/j.cyto.2018.10.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 10/18/2018] [Indexed: 12/11/2022]
|
37
|
Young JL, Yan X, Xu J, Yin X, Zhang X, Arteel GE, Barnes GN, States JC, Watson WH, Kong M, Cai L, Freedman JH. Cadmium and High-Fat Diet Disrupt Renal, Cardiac and Hepatic Essential Metals. Sci Rep 2019; 9:14675. [PMID: 31604971 PMCID: PMC6789035 DOI: 10.1038/s41598-019-50771-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 08/14/2019] [Indexed: 01/07/2023] Open
Abstract
Exposure to the environmental toxicant cadmium (Cd) contributes to the development of obesity-associated diseases. Obesity is a risk factor for a spectrum of unhealthy conditions including systemic metabolic dyshomeostasis. In the present study, the effects of whole-life exposure to environmentally-relevant concentrations of Cd on systemic essential metal distribution in adult mice fed a high-fat diet (HFD) were examined. For these studies, male and female mice were exposed to Cd-containing drinking water for >2 weeks before breeding. Pregnant mice and dams with offspring were exposed to Cd-containing drinking water. After weaning, offspring were continuously exposed to the same Cd concentration as their parents, and divided into HFD and normal (low) fat diet (LFD) groups. At 10 and 24 weeks, mice were sacrificed and blood, liver, kidney and heart harvested for metal analyses. There were significant concentration dependent increases in Cd levels in offspring with kidney > liver > heart. Sex significantly affected Cd levels in kidney and liver, with female animals accumulating more metal than males. Mice fed the HFD showed > 2-fold increase in Cd levels in the three organs compared to similarly treated LFD mice. Cadmium significantly affected essential metals levels in blood, kidney and liver. Additionally, HFD affected essential metal levels in these three organs. These findings suggest that Cd interacts with HFD to affect essential metal homeostasis, a phenomenon that may contribute to the underlying mechanism responsible for the development of obesity-associated pathologies.
Collapse
Affiliation(s)
- Jamie L Young
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Xiaofang Yan
- Department of Bioinformatics and Biostatistics, University of Louisville School of Public Health and Information Sciences, Louisville, KY, USA
| | - Jianxiang Xu
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Xinmin Yin
- Department of Chemistry, University of Louisville, Louisville, KY, USA
| | - Xiang Zhang
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
- Department of Chemistry, University of Louisville, Louisville, KY, USA
| | - Gavin E Arteel
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gregory N Barnes
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA
| | - J Christopher States
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Walter H Watson
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - Maiying Kong
- Department of Bioinformatics and Biostatistics, University of Louisville School of Public Health and Information Sciences, Louisville, KY, USA
| | - Lu Cai
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA.
| | - Jonathan H Freedman
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
38
|
Distinct Gut Microbiota Induced by Different Fat-to-Sugar-Ratio High-Energy Diets Share Similar Pro-obesity Genetic and Metabolite Profiles in Prediabetic Mice. mSystems 2019; 4:4/5/e00219-19. [PMID: 31594827 PMCID: PMC6787563 DOI: 10.1128/msystems.00219-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Various types of diet can lead to type 2 diabetes. The gut microbiota in type 2 diabetic patients are also different. So, two questions arise: whether there are any commonalities between gut microbiota induced by different pro-obese diets and whether these commonalities lead to disease. Here we found that high-energy diets with two different fat-to-sugar ratios can both cause obesity and prediabetes but enrich different gut microbiota. Still, these different gut microbiota have similar genetic and metabolite compositions. The microbial metabolites in common between the diets modulate lipid accumulation and macrophage inflammation in vivo and in vitro. This work suggests that studies that only use 16S rRNA amplicon sequencing to determine how the microbes respond to diet and associate with diabetic state are missing vital information. Gut microbiota play important roles in host metabolism, especially in diabetes. However, why different diets lead to similar diabetic states despite being associated with different microbiota is not clear. Mice were fed two high-energy diets (HED) with the same energy density but different fat-to-sugar ratios to determine the associations between the microbiota and early-stage metabolic syndrome. The two diets resulted in different microbiota but similar diabetic states. Interestingly, the microbial gene profiles were not significantly different, and many common metabolites were identified, including l-aspartic acid, cholestan-3-ol (5β, 3α), and campesterol, which have been associated with lipogenesis and inflammation. Our study suggests that different metabolic-syndrome-inducing diets may result in different microbiota but similar microbiomes and metabolomes. This suggests that the metagenome and metabolome are crucial for the prognosis and pathogenesis of obesity and metabolic syndrome. IMPORTANCE Various types of diet can lead to type 2 diabetes. The gut microbiota in type 2 diabetic patients are also different. So, two questions arise: whether there are any commonalities between gut microbiota induced by different pro-obese diets and whether these commonalities lead to disease. Here we found that high-energy diets with two different fat-to-sugar ratios can both cause obesity and prediabetes but enrich different gut microbiota. Still, these different gut microbiota have similar genetic and metabolite compositions. The microbial metabolites in common between the diets modulate lipid accumulation and macrophage inflammation in vivo and in vitro. This work suggests that studies that only use 16S rRNA amplicon sequencing to determine how the microbes respond to diet and associate with diabetic state are missing vital information.
Collapse
|
39
|
Galli E, Rossi J, Neumann T, Andressoo JO, Drinda S, Lindholm P. Mesencephalic Astrocyte-Derived Neurotrophic Factor Is Upregulated with Therapeutic Fasting in Humans and Diet Fat Withdrawal in Obese Mice. Sci Rep 2019; 9:14318. [PMID: 31586115 PMCID: PMC6778185 DOI: 10.1038/s41598-019-50841-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 09/19/2019] [Indexed: 02/08/2023] Open
Abstract
Dietary restriction induces beneficial metabolic changes and prevents age-related deterioration. Mesencephalic astrocyte-derived neurotrophic factor (MANF) shows protective effects on cells in various models of degenerative diseases. Here we studied whether circulating concentrations of MANF are associated with fasting-induced positive effects. We quantified the levels of circulating MANF from 40 human subjects before and after therapeutic fasting. As measured by an enzyme-linked immunosorbent assay (ELISA), the mean concentration of plasma MANF increased after an average fasting of 15 days. Plasma MANF levels correlated inversely with adiponectin, a hormone that regulates metabolism, thus suggesting that MANF levels are related to metabolic homeostasis. To study the effects of dietary intervention on MANF concentrations in mice, we developed an ELISA for mouse MANF and verified its specificity using MANF knock-out (KO) tissue. A switch from high-fat to normal diet increased MANF levels and downregulated the expression of unfolded protein response (UPR) genes in the liver, indicating decreased endoplasmic reticulum (ER) stress. Liver MANF and serum adiponectin concentrations correlated inversely in mice. Our findings demonstrate that MANF expression and secretion increases with dietary intervention. The MANF correlation to adiponectin and its possible involvement in metabolic regulation and overall health warrants further studies.
Collapse
Affiliation(s)
- Emilia Galli
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Jari Rossi
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Thomas Neumann
- Department of Internal Medicine III, Friedrich Schiller University Jena, Jena, Germany.,Department of Rheumatology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Jaan-Olle Andressoo
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.,Department of Pharmacology, Faculty of Medicine, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.,Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Stefan Drinda
- Hospital Buchinger-Wilhelmi, Überlingen, Germany.,Department for Rheumatology, Clinic St. Katharinental, Diessenhofen, Switzerland
| | - Päivi Lindholm
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
40
|
Ali ES, Rychkov GY, Barritt GJ. Deranged hepatocyte intracellular Ca 2+ homeostasis and the progression of non-alcoholic fatty liver disease to hepatocellular carcinoma. Cell Calcium 2019; 82:102057. [PMID: 31401389 DOI: 10.1016/j.ceca.2019.102057] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/29/2019] [Accepted: 07/01/2019] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related deaths in men, and the sixth in women. Non-alcoholic fatty liver disease (NAFLD) is now one of the major risk factors for HCC. NAFLD, which involves the accumulation of excess lipid in cytoplasmic lipid droplets in hepatocytes, can progress to non-alcoholic steatosis, fibrosis, and HCC. Changes in intracellular Ca2+ constitute important signaling pathways for the regulation of lipid and carbohydrate metabolism in normal hepatocytes. Recent studies of steatotic hepatocytes have identified lipid-induced changes in intracellular Ca2+, and have provided evidence that altered Ca2+ signaling exacerbates lipid accumulation and may promote HCC. The aims of this review are to summarise current knowledge of the lipid-induced changes in hepatocyte Ca2+ homeostasis, to comment on the mechanisms involved, and discuss the pathways leading from altered Ca2+ homeostasis to enhanced lipid accumulation and the potential promotion of HCC. In steatotic hepatocytes, lipid inhibits store-operated Ca2+ entry and SERCA2b, and activates Ca2+ efflux from the endoplasmic reticulum (ER) and its transfer to mitochondria. These changes are associated with changes in Ca2+ concentrations in the ER (decreased), cytoplasmic space (increased) and mitochondria (likely increased). They lead to: inhibition of lipolysis, lipid autophagy, lipid oxidation, and lipid secretion; activation of lipogenesis; increased lipid; ER stress, generation of reactive oxygen species (ROS), activation of Ca2+/calmodulin-dependent kinases and activation of transcription factor Nrf2. These all can potentially mediate the transition of NAFLD to HCC. It is concluded that lipid-induced changes in hepatocyte Ca2+ homeostasis are important in the initiation and progression of HCC. Further research is desirable to better understand the cause and effect relationships, the time courses and mechanisms involved, and the potential of Ca2+ transporters, channels, and binding proteins as targets for pharmacological intervention.
Collapse
Affiliation(s)
- Eunus S Ali
- Department of Medical Biochemistry, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, 5001, Australia
| | - Grigori Y Rychkov
- School of Medicine, The University of Adelaide, and South Australian Health and Medical Research Institute, Adelaide, South Australia, 5005, Australia
| | - Greg J Barritt
- Department of Medical Biochemistry, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, 5001, Australia.
| |
Collapse
|
41
|
Albert K, Airavaara M. Neuroprotective and reparative effects of endoplasmic reticulum luminal proteins - mesencephalic astrocyte-derived neurotrophic factor and cerebral dopamine neurotrophic factor. Croat Med J 2019. [PMID: 31044581 PMCID: PMC6509620 DOI: 10.3325/cmj.2019.60.99] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cerebral dopamine neurotrophic factor (CDNF) and mesencephalic astrocyte-derived neurotrophic factor (MANF) are proteins that have received increasing attention in the last decades. Although they are called neurotrophic factors they are drastically different from neurotrophic factors in their expression and physiological actions. They are located in the lumen of the endoplasmic reticulum (ER) and their basal secretion from neurons is very low. However their secretion is stimulated upon ER calcium depletion by chemical probes such as thapsigargin, a sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) pump inhibitor. Exogenous MANF and CDNF possess therapeutic properties in several neurological disease models, including Parkinson’s disease and stroke. Endogenous MANF expression has been shown to be neuroprotective, as well as administration of either CDNF or MANF into the extracellular space. In this review, we focus on their therapeutic effects, regulation of expression and secretion, comparison of their mechanisms of action, and their application to the brain parenchyma as recombinant proteins.
Collapse
Affiliation(s)
| | - Mikko Airavaara
- Mikko Airavaara, Neuroscience Center, HiLIFE, P.O. Box 63, 00014 University of Helsinki, Helsinki, Finland,
| |
Collapse
|
42
|
MANF regulates splenic macrophage differentiation in mice. Immunol Lett 2019; 212:37-45. [PMID: 31226359 DOI: 10.1016/j.imlet.2019.06.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 06/05/2019] [Accepted: 06/17/2019] [Indexed: 12/14/2022]
Abstract
Splenic immune cells, especially macrophages, play a key role in multiple pathological processes. With a proved anti-inflammatory and immunoregulatory function of mesencephalicastrocyte-derived neurotrophic factor (MANF) in inflammatory disorders, how MANF affects splenic immune cells in physiological and pathophysiological situations is still unknown. In this study, we constructed mono-macrophage-specific MANF knockout (Mø MANF-/-) mice and found the increased splenic M1 macrophages, but no significant change of splenic morphology and size compared with wild type (WT) mice. Also, we established the pathophysiological situation of carbon tetrachloride (CCl4)-induced hepatic fibrosis. Under the hepatic fibrosis, splenic M2 macrophages and CD138+ plasma cells were significantly increased in Mø MANF-/- mice. Consistently, we found the increased TGF-β1 level in serum and spleen of Mø MANF-/- mice as well. Mono-macrophage-specific MANF knockout did not affect the number of splenic T and B cells under both the normal and hepatic fibrosis conditions. Our results suggest a distinct regulation of MANF on splenic immune cells and a specific regulation of MANF on the differentiation of splenic macrophages, which may exert a significant impact on physiological and pathophysiological processes of the spleen.
Collapse
|
43
|
Pifithrin-Alpha Reduces Methamphetamine Neurotoxicity in Cultured Dopaminergic Neurons. Neurotox Res 2019; 36:347-356. [DOI: 10.1007/s12640-019-00050-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/26/2019] [Accepted: 04/16/2019] [Indexed: 12/28/2022]
|
44
|
Li B, Leung JCK, Chan LYY, Yiu WH, Li Y, Lok SWY, Liu WH, Chan KW, Tse HF, Lai KN, Tang SCW. Amelioration of Endoplasmic Reticulum Stress by Mesenchymal Stem Cells via Hepatocyte Growth Factor/c-Met Signaling in Obesity-Associated Kidney Injury. Stem Cells Transl Med 2019; 8:898-910. [PMID: 31054183 PMCID: PMC6708066 DOI: 10.1002/sctm.18-0265] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/24/2019] [Indexed: 12/12/2022] Open
Abstract
Recent advances in the understanding of lipid metabolism suggest a critical role of endoplasmic reticulum (ER) stress in obesity‐induced kidney injury. Hepatocyte growth factor (HGF) is a pleiotropic cytokine frequently featured in stem cell therapy with distinct renotropic benefits. This study aims to define the potential link between human induced pluripotent stem cell‐derived mesenchymal stem cells (iPS‐MSCs)/bone marrow‐derived MSCs (BM‐MSCs) and ER stress in lipotoxic kidney injury induced by palmitic acid (PA) in renal tubular cells and by high‐fat diet (HFD) in mice. iPS‐MSCs or BM‐MSCs alleviated ER stress (by preventing induction of Bip, chop, and unfolded protein response), inflammation (Il6, Cxcl1, and Cxcl2), and apoptosis (Bax/Bcl2 and terminal deoxynucleotidyl transferase‐mediated dUTP‐biotin nick end labeling‐positive cells) in renal cortex of animals exposed to HFD thus mitigating histologic damage and albuminuria, via activating HGF/c‐Met paracrine signaling that resulted in enhanced HGF secretion in the glomerular compartment and c‐Met expression in the tubules. Coculture experiments identified glomerular endothelial cells (GECs) to be the exclusive source of glomerular HGF when incubated with either iPS‐MSCs or BM‐MSCs in the presence of PA. Furthermore, both GEC‐derived HGF and exogenous recombinant HGF attenuated PA‐induced ER stress in cultured tubular cells, and this effect was abrogated by a neutralizing anti‐HGF antibody. Taken together, this study is the first to demonstrate that MSCs ameliorate lipotoxic kidney injury via a novel microenvironment‐dependent paracrine HGF/c‐Met signaling mechanism to suppress ER stress and its downstream pro‐inflammatory and pro‐apoptotic consequences. stem cells translational medicine2019;8:898&910
Collapse
Affiliation(s)
- Bin Li
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, People's Republic of China
| | - Joseph C K Leung
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, People's Republic of China
| | - Loretta Y Y Chan
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, People's Republic of China
| | - Wai Han Yiu
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, People's Republic of China
| | - Ye Li
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, People's Republic of China
| | - Sarah W Y Lok
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, People's Republic of China
| | - Wing Han Liu
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, People's Republic of China
| | - Kam Wa Chan
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, People's Republic of China
| | - Hung Fat Tse
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, People's Republic of China
| | - Kar Neng Lai
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, People's Republic of China
| | - Sydney C W Tang
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, People's Republic of China
| |
Collapse
|
45
|
Trychta KA, Heathward EJ, Sulima A, Bäck S, Farokhnia M, Richie CT, Leggio L, Rice KC, Harvey BK. Extracellular esterase activity as an indicator of endoplasmic reticulum calcium depletion. Biomarkers 2018; 23:756-765. [PMID: 30095301 DOI: 10.1080/1354750x.2018.1490968] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
CONTEXT Endoplasmic reticulum (ER) calcium depletion is associated with diverse diseases, including cardiac, hepatic, and neurologic diseases. OBJECTIVE The aim of the present study was to identify and characterize an endogenous protein that could be used to monitor ER calcium depletion comparably to a previously described exogenous reporter protein. MATERIALS AND METHODS The use of a selective esterase-fluorescein diester pair allowed for carboxylesterase activity in extracellular fluid to be measured using a fluorescent readout. Cell culture media from three different cell lines, rat plasma, and human serum all possess quantifiable amounts of esterase activity. RESULTS Fluorescence produced by the interaction of carboxylesterases with a fluorescein diester substrate tracks with pharmacological and physiological inducers of ER calcium depletion. The fluorescence measured for in vitro and in vivo samples were consistent with ER calcium depletion being the trigger for increased esterase activity. DISCUSSION Decreased luminal ER calcium causes ER resident esterases to be released from the cell, and, when assessed concurrently with other disease biomarkers, these esterases may provide insight into the role of ER calcium homeostasis in human diseases. CONCLUSION Our results indicate that carboxylesterases are putative markers of ER calcium dysfunction.
Collapse
Affiliation(s)
- Kathleen A Trychta
- a Molecular Mechanisms of Cellular Stress and Inflammation , Intramural Research Program, National Institute on Drug Abuse , Baltimore , MD , USA
| | - Emily J Heathward
- a Molecular Mechanisms of Cellular Stress and Inflammation , Intramural Research Program, National Institute on Drug Abuse , Baltimore , MD , USA
| | - Agnieszka Sulima
- b Section on Drug Design and Synthesis, Molecular Targets and Medications Branch , National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health , Bethesda , MD , USA
| | - Susanne Bäck
- a Molecular Mechanisms of Cellular Stress and Inflammation , Intramural Research Program, National Institute on Drug Abuse , Baltimore , MD , USA
| | - Mehdi Farokhnia
- c Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology , National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health , Bethesda , MD , USA
| | - Christopher T Richie
- a Molecular Mechanisms of Cellular Stress and Inflammation , Intramural Research Program, National Institute on Drug Abuse , Baltimore , MD , USA
| | - Lorenzo Leggio
- c Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology , National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health , Bethesda , MD , USA.,d Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences , Brown University , Providence , RI , USA
| | - Kenner C Rice
- b Section on Drug Design and Synthesis, Molecular Targets and Medications Branch , National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health , Bethesda , MD , USA
| | - Brandon K Harvey
- a Molecular Mechanisms of Cellular Stress and Inflammation , Intramural Research Program, National Institute on Drug Abuse , Baltimore , MD , USA
| |
Collapse
|
46
|
Diao L, Auger C, Konoeda H, Sadri AR, Amini-Nik S, Jeschke MG. Hepatic steatosis associated with decreased β-oxidation and mitochondrial function contributes to cell damage in obese mice after thermal injury. Cell Death Dis 2018; 9:530. [PMID: 29748608 PMCID: PMC5945855 DOI: 10.1038/s41419-018-0531-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 02/14/2018] [Accepted: 03/05/2018] [Indexed: 02/07/2023]
Abstract
Severely burned patients who are morbidly obese have poor clinical outcomes with aggravated metabolic consequences, a higher incidence of multiple organ dysfunction/failure, and significantly increased morbidity and mortality. The underlying mechanisms of these adverse outcomes are essentially unknown. Since the liver is one of the central metabolic organs, we hypothesized that thermal injury in obese patients leads to substantially increased lipolysis, hepatic fat infiltration, resulting in profound hepatic cellular and organellar alterations, consequently causing liver damage and severely augmented metabolic dysfunction. We tested this hypothesis using an obese mouse model subjected to a 20% total body surface area burn injury. C57BL/6 mice were randomly divided into low-fat diet (LFD) and high-fat diet (HFD) sham and burn groups (n = 6 per group) and fed for 16 weeks. 7 days after the thermal injury portal and cardiac blood were taken separately and liver tissue was collected for western blotting and immunohistochemical analysis. Gross examination of the liver showed apparent lipid infiltration in HFD fed and burned mice. We confirmed that augmented ER stress and inhibition of Akt-mTOR signaling dysregulated calcium homeostasis, contributed to the decrease of ER-mitochondria contact, and reduced mitochondrial β-oxidation in HFD fed and burned mice, leading to profound hepatic fat infiltration and substantial liver damage, hence increased morbidity and mortality. We conclude that obesity contributes to hepatic fat infiltration by suppressing β-oxidation, inducing cell damage and subsequent organ dysfunction after injury.
Collapse
Affiliation(s)
- Li Diao
- Sunnybrook Research Institute, Toronto, ON, Canada
| | | | | | | | - Saeid Amini-Nik
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Surgery, Division of Plastic Surgery, Division of General Surgery, Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Marc G Jeschke
- Sunnybrook Research Institute, Toronto, ON, Canada.
- Department of Surgery, Division of Plastic Surgery, Division of General Surgery, Department of Immunology, University of Toronto, Toronto, ON, Canada.
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.
| |
Collapse
|
47
|
Yu G, Zhu L, Li H, Shao Y, Chong L, Zhang H, Li C. Influence of gender on OVA-induced airway inflammation in C57/B6J mice on a high-fat diet. EUR J INFLAMM 2018. [DOI: 10.1177/2058739218760946] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Overweight/obesity has been suggested as a risk factor for asthma development, and prospective studies have confirmed that high body weight precedes asthma symptoms. However, the nature of the association between overweight/obese status and asthma remains unclear. Animal models of obesity-related asthma are very useful for understanding disease pathophysiology. Although C57/B6J mice are the most widely used animal model for researching obesity-related asthma, gender differences are not always taken into consideration. Therefore, to explore the effect of gender on the development of obesity-related asthma, both female and male C57/B6J mice were used in this study. The mice were fed with a high-fat diet or a low-fat diet as control. Body weight, body length, liver weight, and Lee’s Index were used to evaluate obesity status, and lung histology, lung inflammatory cells infiltration, and inflammatory cytokines in bronchoalveolar lavage fluid (BALF) were examined for asthma evaluation. We found that the mean body weight of male mice on a high-fat diet gradually increased and was significantly higher than control male mice on a low-fat diet ( P < 0.01), while no significant differences were found between female mice at the end of 12 weeks of feeding. Furthermore, the obese asthma group female and male mice exhibited significantly high inflammatory cells infiltration than normal weight or obese female and male mice ( P < 0.01). However, the obese asthma group presented higher Neu infiltration, Th1 cytokine, and interferon gamma (IFNγ) concentrations in BALF than the asthma group in both the genders ( P < 0.01). In conclusion, both female and male mice are suitable for the obesity-related asthma model, although male mice might be more stable. Besides, obesity-related asthma is not Th2 type asthma.
Collapse
Affiliation(s)
- Gang Yu
- Department of Respiratory, The 2nd Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lili Zhu
- Department of Respiratory, The 2nd Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haiyan Li
- Department of Respiratory, The 2nd Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Youyou Shao
- Department of Respiratory, The 2nd Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lei Chong
- Institute of Pediatrics, Department of Respiratory, The 2nd Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hailin Zhang
- Department of Respiratory, The 2nd Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Changchong Li
- Department of Respiratory, The 2nd Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|