1
|
Hessheimer AJ, Hartog H, Marcon F, Schlegel A, Adam R, Alwayn I, Angelico R, Antoine C, Berlakovich G, Bruggenwirth I, Calatayud D, Cardini B, Cillo U, Clavien PA, Czigany Z, De Carlis R, de Jonge J, De Meijer VE, Dondossola D, Domínguez-Gil B, Dutkowski P, Eden J, Eshmuminov D, Fundora Y, Gastaca M, Ghinolfi D, Justo I, Lesurtel M, Leuvenink H, Line PD, Lladó L, López López V, Lurje G, Marín LM, Monbaliu D, Muller X, Nadalin S, Nasralla D, Oniscu G, Patrono D, Pirenne J, Selzner M, Toso C, Troisi R, Van Beekum C, Watson C, Weissenbacher A, Zieniewicz K, Schneeberger S, Polak WG, Porte RJ, Fondevila C. Deceased donor liver utilisation and assessment: Consensus guidelines from the European Liver and Intestine Transplant Association. J Hepatol 2025; 82:1089-1109. [PMID: 40189968 DOI: 10.1016/j.jhep.2025.01.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/11/2025] [Accepted: 01/23/2025] [Indexed: 05/03/2025]
Abstract
Over the past two decades, the application of machine perfusion (MP) in human liver transplantation has moved from the realm of clinical exploration to routine clinical practice. Both in situ and ex situ perfusion strategies are feasible, safe, and may offer improvements in relevant post-transplant outcomes. An important utility of these strategies is the ability to transplant grafts traditionally considered too risky to transplant using conventional cold storage alone. While dynamic assessment and ultimately transplantation of such livers is an important goal for the international liver transplant community, its clinical application is inconsistent. To this end, ELITA (the European Liver and Intestine Transplant Association) gathered a panel of experts to create consensus guidelines regarding selection, approach, and criteria for deceased donor liver assessment in the MP era. An eight-member steering committee (SC) convened a panel of 44 professionals working in 14 countries in Europe and North America. The SC identified topics related to liver utilisation and assessment for transplantation. For each topic, subtopics were created to answer specific clinical questions. A systematic literature review was performed, and the panel graded relevant evidence. The SC drafted initial statements addressing each clinical question. Statements were presented at the in-person Consensus Meeting on Liver Discard and Viability Assessment during the ELITA Summit held from April 19-20, 2024, in Madrid, Spain. Online voting was held to approve statements according to a modified Delphi method; statements reaching ≥85% agreement were approved. Statements addressing liver utilisation, the definition of high-risk livers, and strategies and criteria for dynamic liver assessment are presented.
Collapse
Affiliation(s)
- Amelia J Hessheimer
- General & Digestive Surgery Service, Hospital Universitario La Paz, IdiPAZ, CIBERehd, Madrid, Spain
| | - Hermien Hartog
- University of Groningen & University Medical Center Groningen, UMCG Comprehensive Transplant Center, Department of Surgery, Groningen, the Netherlands; European Liver & Intestine Transplant Association Board
| | - Francesca Marcon
- General & Liver Transplant Surgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrea Schlegel
- Transplantation Center, Department of General Surgery, Cleveland Clinic, Cleveland, Ohio, USA
| | - René Adam
- Department of Hepatobiliary Surgery & Transplantation, AP-HP Hôpital Paul-Brousse, University of Paris-Saclay, Villejuif, France
| | - Ian Alwayn
- Department of Surgery & LUMC Transplant Center, Leiden University Medical Center, Leiden, the Netherlands
| | - Roberta Angelico
- Hepatobiliary & Transplant Unit, Department of Surgical Sciences, University of Rome Tor Vergata, Rome, Italy
| | | | | | | | - David Calatayud
- Hepatobiliary Surgery & Transplantation Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Benno Cardini
- Department of Visceral, Transplant, & Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Umberto Cillo
- Department of Surgery, Oncology, & Gastroenterology, Hepatobiliary & Liver Transplantation Unit, Padua University Hospital, Padua, Italy
| | - Pierre-Alain Clavien
- Wyss Translational Center, ETH Zurich & University of Zurich, Zurich, Switzerland
| | - Zoltan Czigany
- Department of Surgery & Transplantation, University Hospital Heidelberg, Medical Faculty Ruprecht Karl University Heidelberg, Heidelberg, Germany
| | - Riccardo De Carlis
- Department of General Surgery & Transplantation, ASST Grande Ospedale Metropolitano Niguarda, Milan, & PhD Course in Clinical and Experimental Sciences, University of Padua, Padua, Italy
| | - Jeroen de Jonge
- Division of HPB & Transplant Surgery, Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Vincent E De Meijer
- University of Groningen & University Medical Center Groningen, UMCG Comprehensive Transplant Center, Department of Surgery, Groningen, the Netherlands
| | - Daniele Dondossola
- General & Liver Transplant Surgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Philipp Dutkowski
- Department of Visceral Surgery, University Hospital Basel, Basel, Switzerland
| | - Janina Eden
- University of Groningen & University Medical Center Groningen, UMCG Comprehensive Transplant Center, Department of Surgery, Groningen, the Netherlands
| | - Dilmurodjon Eshmuminov
- Department of Surgery & Transplantation, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Yiliam Fundora
- General & Digestive Surgery Service, Hospital Clínic, Barcelona, Spain
| | - Mikel Gastaca
- Hepatobiliary Surgery & Liver Transplantation Unit, Biocruces Bizkaia Health Research Institute, Hospital Universitario Cruces, University of the Basque Country, Bilbao, Spain
| | - Davide Ghinolfi
- Division of Hepatic Surgery & Liver Transplantation, New Santa Chiara Hospital, Pisa, Italy
| | | | - Mickael Lesurtel
- Department of HPB & Transplantation, Beaujon Hospital, APHP, University of Paris Cité, Paris, France
| | - Henri Leuvenink
- University of Groningen & University Medical Center Groningen, UMCG Comprehensive Transplant Center, Department of Surgery, Groningen, the Netherlands
| | - Pal-Dag Line
- Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway; European Liver & Intestine Transplant Association Board
| | - Laura Lladó
- Department of Hepatobiliary Surgery & Liver Transplantation, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Víctor López López
- Department of Surgery & Transplantation, Hospital Clínico Universitario Virgen de la Arrixaca, Murcian Institute of Biosanitary Research, Murcia, Spain
| | - Georg Lurje
- Department of Surgery & Transplantation, University Hospital Heidelberg, Medical Faculty Ruprecht Karl University Heidelberg, Heidelberg, Germany
| | | | | | - Xavier Muller
- Department of Hepato-Pancreato-Biliary Surgery & Liver Transplantation, Croix-Rousse University Hospital, Hospices Civils de Lyon, Lyon University, Lyon, France
| | - Silvio Nadalin
- University of Tübingen, Tübingen, Germany; European Liver & Intestine Transplant Association Board
| | - David Nasralla
- Department of HPB and Liver Transplant Surgery, Royal Free Hospital, London, United Kingdom
| | - Gabriel Oniscu
- Transplantation Division, Department of Clinical Science, Intervention, & Technology, Karolinska Institutet, Stockholm, Sweden
| | - Damiano Patrono
- General Surgery 2U - Liver Transplant Centre, AOU Città della Salute e della Scienza di Torino, Torino, Italy
| | - Jacques Pirenne
- Abdominal Transplant Surgery, UZ Leuven, KUL, Leuven, Belgium
| | - Markus Selzner
- Department of Abdominal Transplant & Hepatopancreatobiliary Surgical Oncology, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Christian Toso
- Division of Abdominal Surgery, Geneva University Hospitals, Geneva, Switzerland
| | - Roberto Troisi
- Division HPB, Minimally Invasive and Robotic Surgery, Transplantation Center, Federico II University Hospital, Naples, Italy
| | - Cornelius Van Beekum
- Department of General, Visceral, & Transplant Surgery, Transplant Center Hannover, Hannover Medical School, Hannover, Germany
| | - Christopher Watson
- University of Cambridge Department of Surgery, Addenbrookes Hospital, Cambridge, United Kingdom
| | - Annemarie Weissenbacher
- Department of Visceral, Transplant, & Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Krzysztof Zieniewicz
- Department of General, Transplant, & Liver Surgery, Medical University of Warsaw, Warsaw, Poland; European Liver & Intestine Transplant Association Board
| | - Stefan Schneeberger
- Department of Visceral, Transplant, & Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Wojciech G Polak
- Division of HPB & Transplant Surgery, Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands; European Liver & Intestine Transplant Association Board
| | - Robert J Porte
- Division of HPB & Transplant Surgery, Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Constantino Fondevila
- General & Digestive Surgery Service, Hospital Universitario La Paz, IdiPAZ, CIBERehd, Madrid, Spain; Universidad Autónoma de Madrid, Madrid, Spain; European Liver & Intestine Transplant Association Board.
| |
Collapse
|
2
|
Li T, Chang P, Wang Y, Song Y, Qu P, Wang B, Lyu Y, Hu L. HOPE and AMPK activation reduce reperfusion injury and metabolic dysfunction in primate steatotic liver grafts. Sci Rep 2025; 15:11762. [PMID: 40189683 PMCID: PMC11973157 DOI: 10.1038/s41598-025-96265-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 03/27/2025] [Indexed: 04/09/2025] Open
Abstract
Living liver transplantation has become a significant and evolving aspect of organ transplantation, with a notable proportion of cases involving pediatric patients. Metabolic-associated fatty liver disease (MAFLD) is the most prevalent chronic liver disease. The growing number of individuals with MAFLD has led to an annual increase in the proportion of non-alcoholic fatty liver donors for pediatric living liver transplantation. Hypothermic oxygenated perfusion (HOPE) has been demonstrated to improve graft quality through the implementation of a continuous mechanical perfusion cycle. However, there is currently a paucity of evidence regarding its ability to reduce steatosis and improve prognosis within a shorter time window of living-organ transplantation, especially in primate models. This study simulated steatotic liver grafts in living liver transplantation using the MAFLD model of the cynomolgus monkey and explored the effects of HOPE combined with the AMPK activator AICAR on the amelioration of the donor liver. The left outer lobe livers were statically cold preserved for two hours, subjected to HOPE for two hours, or treated with HOPE + AICAR (1 mmol/L) for two hours, respectively. Subsequently, a normothermic ex vivo reperfusion model (IRM) simulating post-transplant reperfusion was established using diluted autologous blood. Following simulated reperfusion in vitro, steatotic liver grafts in the static cold preservation group exhibited notable reperfusion injury. The degree of reperfusion injury induced by the remaining two groups was reduced, with the HOPE + AICAR group showing the most significant reduction (P < 0.05). The adenosine triphosphate (ATP) level of the hepatic tissues in the HOPE + AICAR group was observed to improve at two hours of reperfusion, exhibiting a significantly higher level than that in the cold-preserved group (P < 0.05). Furthermore, the HOPE + AICAR group exhibited a notable decline in MDA levels (P < 0.05), accompanied by a considerable reduction in 8-OHdG and lactate concentrations in both the liver tissue and perfusate. Additionally, there was a marked decrease in the release of TNF-α and IL-6 cytokines, along with a reduction in TLR-4 activation (P < 0.05). In comparison to the cold-preserved and HOPE groups, the HOPE + AICAR group demonstrated the capacity to alter the degree of steatosis following a two-hour treatment period, as evidenced by a notable reduction in liver tissue triglyceride and cholesterol levels (P < 0.05). Additionally, p-AMPK levels in liver tissue were significantly increased in the HOPE + AICAR group (P < 0.05). The combination of HOPE and AMPK activators has been shown to reduce the degree of steatotic liver grafts in a relatively short time, significantly reduce reperfusion injury, and improve liver function. This study contributes to the existing body of knowledge on mechanical perfusion in primate models, addressing a previously identified gap in the literature.
Collapse
Affiliation(s)
- Tao Li
- Department of Hepatobiliary Surgery, Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Pengkang Chang
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yimeng Wang
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yihong Song
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Pengxiang Qu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Bo Wang
- Department of Hepatobiliary Surgery, Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yi Lyu
- Department of Hepatobiliary Surgery, Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Liangshuo Hu
- Department of Hepatobiliary Surgery, Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
3
|
Schurink IJ, Luijmes SH, Willemse J, de Goeij FHC, Groen PC, Küçükerbil EH, Broere R, Pascale MM, Porte RJ, Tintu AN, van der Laan LJW, Polak WG, de Jonge J. Assessment of Ex Situ Liver Function by Indocyanine Green Clearance During Clinical Normothermic Machine Perfusion of Extended Criteria Grafts. Transplantation 2025:00007890-990000000-01019. [PMID: 40045462 DOI: 10.1097/tp.0000000000005350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
BACKGROUND Normothermic machine perfusion (NMP) enables pretransplantation assessment of donor liver viability to increase donor liver utilization. However, unambiguous objective criteria to determine integrated liver function during NMP to decide upon acceptance are still lacking. This study investigates whether the indocyanine green (ICG) elimination test can be applied to assess liver function during NMP. METHODS Donor livers underwent dual-hypothermic oxygenated machine perfusion and NMP. The ICG elimination test was improved during an optimization phase (n = 10) and tested against current functional perfusion parameters and posttransplantation outcomes in clinically perfused livers (n = 32). RESULTS The ICG plasma disappearance rate (PDR) during NMP was dependent on perfusion blood flow and liver weight. The corrected PDR (NMP-PDR) was correlated to the hepatic extraction rate ( R = 0.923; P > 0.001) and ATP content in liver biopsies at 2 h of NMP ( R = 0.692; P = 0.027). In the clinical phase, the length of the functional warm ischemia time in the donation process was inversely correlated to the NMP-PDR ( P = 0.042). Both individual acceptance criteria (lactate clearance, ability of self-regulate pH, Δbicarbonate, and ΔpH) and overall hepatocellular and cholangiocellular acceptance criteria were correlated to the NMP-PDR. The NMP-PDR was higher in the cohort accepted for transplantation (n = 18; 18.1%/L·kg [14.0% to 22.7%/L·kg]) than in the nontransplanted cohort (n = 14; 11.8%/L·kg [8.8% to 12.9%/L·kg]; P < 0.0001). Furthermore, the NMP-PDR correlated with the liver graft assessment following transplantation at 7 d score posttransplantation ( R = -0.551; P = 0.027). CONCLUSIONS We demonstrate that the NMP-PDR correlates with both liver function during NMP and short-term posttransplantation outcomes. This simple objective test has the potential to increase donor liver utilization rate, while preventing hepatocellular dysfunction posttransplantation.
Collapse
Affiliation(s)
- Ivo J Schurink
- Department of Surgery, Erasmus MC Transplant Institute University Medical Center, Rotterdam, the Netherlands
| | - Stefan H Luijmes
- Department of Surgery, Erasmus MC Transplant Institute University Medical Center, Rotterdam, the Netherlands
| | - Jorke Willemse
- Department of Surgery, Erasmus MC Transplant Institute University Medical Center, Rotterdam, the Netherlands
| | - Femke H C de Goeij
- Department of Surgery, Erasmus MC Transplant Institute University Medical Center, Rotterdam, the Netherlands
| | - Puck C Groen
- Department of Surgery, Erasmus MC Transplant Institute University Medical Center, Rotterdam, the Netherlands
| | - Efrayim H Küçükerbil
- Department of Surgery, Erasmus MC Transplant Institute University Medical Center, Rotterdam, the Netherlands
| | - Roberto Broere
- Department of Surgery, Erasmus MC Transplant Institute University Medical Center, Rotterdam, the Netherlands
| | - Marco M Pascale
- Department of Surgery, Fondazione Policlinico Universitario "Agostino Gemelli," Rome, Italy
| | - Robert J Porte
- Department of Surgery, Erasmus MC Transplant Institute University Medical Center, Rotterdam, the Netherlands
| | - Andrei N Tintu
- Department of Clinical Chemistry, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC Transplant Institute University Medical Center, Rotterdam, the Netherlands
| | - Wojciech G Polak
- Department of Surgery, Erasmus MC Transplant Institute University Medical Center, Rotterdam, the Netherlands
| | - Jeroen de Jonge
- Department of Surgery, Erasmus MC Transplant Institute University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
4
|
Zhylko A, Morawski M, Rykowski P, Krasnodębski M, Wyporski A, Borkowski J, Zhylko D, Kobryń K, Stankiewicz R, Stypułkowski J, Hołówko W, Patkowski W, Wróblewski T, Szczepankiewicz B, Górnicka B, Mielczarek-Puta M, Struga M, Krawczyk M, Grąt M. Real-Time Biomarkers of Liver Graft Quality in Hypothermic Oxygenated Machine Perfusion. J Clin Med 2025; 14:471. [PMID: 39860477 PMCID: PMC11766178 DOI: 10.3390/jcm14020471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/21/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
Background: Hypothermic oxygenated machine perfusion has emerged as a strategy to alleviate ischemic-reperfusion injury in liver grafts. Nevertheless, there is limited data on the effectiveness of hypothermic liver perfusion in evaluating organ quality. This study aimed to introduce a readily accessible real-time predictive biomarker measured in machine perfusate for post-transplant liver graft function. Methods: The study evaluated perfusate analytes over a 90-day postoperative period in 26 patients randomly assigned to receive a liver graft following dual hypothermic machine perfusion in a prospective randomized controlled trial. Machine perfusion was consistently conducted end-ischemically for at least 120 min, with real-time perfusate assessment at 30-min intervals. Graft functionality was assessed using established metrics, including Early Allograft Dysfunction (EAD). Results: Perfusate lactate concentration after 120 min of machine perfusion demonstrated significant predictive value for EAD (AUC ROC: 0.841, p = 0.009). Additionally, it correlated with post-transplant peak transaminase levels and extended hospital stays. Subgroup analysis revealed significantly higher lactate accumulation in livers with post-transplant EAD. Conclusions: Liver graft quality can be effectively assessed during hypothermic machine perfusion using simple perfusate lactate measurements. The reliability and accessibility of this evaluation support its potential integration into diverse transplant centers.
Collapse
Affiliation(s)
- Andriy Zhylko
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland; (M.M.); (M.K.); (M.G.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Marcin Morawski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland; (M.M.); (M.K.); (M.G.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Paweł Rykowski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland; (M.M.); (M.K.); (M.G.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Maciej Krasnodębski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland; (M.M.); (M.K.); (M.G.)
| | - Anya Wyporski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland; (M.M.); (M.K.); (M.G.)
| | - Jan Borkowski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland; (M.M.); (M.K.); (M.G.)
| | - Dmytro Zhylko
- Computer Engineering Division, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| | - Konrad Kobryń
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland; (M.M.); (M.K.); (M.G.)
| | - Rafał Stankiewicz
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland; (M.M.); (M.K.); (M.G.)
| | - Jan Stypułkowski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland; (M.M.); (M.K.); (M.G.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Wacław Hołówko
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland; (M.M.); (M.K.); (M.G.)
| | - Waldemar Patkowski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland; (M.M.); (M.K.); (M.G.)
| | - Tadeusz Wróblewski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland; (M.M.); (M.K.); (M.G.)
| | | | - Barbara Górnicka
- Department of Pathology, Medical University of Warsaw, 02-004 Warsaw, Poland
| | | | - Marta Struga
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Marek Krawczyk
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland; (M.M.); (M.K.); (M.G.)
| | - Michał Grąt
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland; (M.M.); (M.K.); (M.G.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| |
Collapse
|
5
|
Cillo U, Lonati C, Bertacco A, Magnini L, Battistin M, Borsetto L, Dazzi F, Al-Adra D, Gringeri E, Bacci ML, Schlegel A, Dondossola D. A proof-of-concept study in small and large animal models for coupling liver normothermic machine perfusion with mesenchymal stromal cell bioreactors. Nat Commun 2025; 16:283. [PMID: 39746966 PMCID: PMC11697227 DOI: 10.1038/s41467-024-55217-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/03/2024] [Indexed: 01/04/2025] Open
Abstract
To fully harness mesenchymal-stromal-cells (MSCs)' benefits during Normothermic Machine Perfusion (NMP), we developed an advanced NMP platform coupled with a MSC-bioreactor and investigated its bio-molecular effects and clinical feasibility using rat and porcine models. The study involved three work packages: 1) Development (n = 5): MSC-bioreactors were subjected to 4 h-liverless perfusion; 2) Rat model (n = 10): livers were perfused for 4 h on the MSC-bioreactor-circuit or with the standard platform; 3) Porcine model (n = 6): livers were perfused using a clinical device integrated with a MSC-bioreactor or in its standard setup. MSCs showed intact stem-core properties after liverless-NMP. Liver NMP induced specific, liver-tailored, changes in MSCs' secretome. Rat livers exposed to bioreactor-based perfusion produced more bile, released less damage and pro-inflammatory biomarkers, and showed improved mithocondrial function than those subjected to standard NMP. MSC-bioreactor integration into a clinical device resulted in no machine failure and perfusion-related injury. This proof-of-concept study presents a novel MSC-based liver NMP platform that could reduce the deleterious effects of ischemia/reperfusion before transplantation.
Collapse
Affiliation(s)
- Umberto Cillo
- Hepato-Biliary-Pancreatic Surgery and Liver Transplant Unit, General Surgery 2, Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy
| | - Caterina Lonati
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Pace 9, 20100, Milan, Italy.
| | - Alessandra Bertacco
- Hepato-Biliary-Pancreatic Surgery and Liver Transplant Unit, General Surgery 2, Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy
| | - Lucrezia Magnini
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Pace 9, 20100, Milan, Italy
| | - Michele Battistin
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Pace 9, 20100, Milan, Italy
| | - Lara Borsetto
- Hepato-Biliary-Pancreatic Surgery and Liver Transplant Unit, General Surgery 2, Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy
| | - Francesco Dazzi
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, UK
| | - David Al-Adra
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Enrico Gringeri
- Hepato-Biliary-Pancreatic Surgery and Liver Transplant Unit, General Surgery 2, Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy
| | - Maria Laura Bacci
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Andrea Schlegel
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Pace 9, 20100, Milan, Italy
- Transplantation Center, Digestive Disease and Surgery Institute, Department of Immunity and Inflammation, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44106, USA
| | - Daniele Dondossola
- General and Liver Transplant Surgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20100, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, 20100, Milan, Italy
| |
Collapse
|
6
|
Rosello AP, Chullo G, Pera M, Bataller R, Fundora-Suárez Y, Adam R, Carbonell T, Catafau JR. Danger Biomarkers in Perfusates From Fatty Liver Grafts Subjected to Cold Storage Preservation in Different Preservation Solutions. Transplant Proc 2025; 57:37-42. [PMID: 39757056 DOI: 10.1016/j.transproceed.2024.11.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 08/26/2024] [Accepted: 11/05/2024] [Indexed: 01/07/2025]
Abstract
Static cold storage remains the traditional standard for liver graft preservation prior to transplantation in both clinical and experimental settings. The use of polyethylene glycol 35 solutions, such as Institut Georges Lopez-2 (IGL2) preservation solution, for protecting against mitochondrial damage during cold static preservation necessitates combination with hypothermic oxygenated perfusion to enhance liver graft performance. This study presents a preliminary comparative evaluation of "danger signals" indicating hepatocellular injury (transaminases, lactate content), mitochondrial damage (glutamate dehydrogenase release), and cytokine release in liver perfusates from suboptimal grafts (fatty livers) subjected to 24-hour cold storage. We refined an original IGL2 solution, referred to as IGL2-M solution, which was compared to Histidine-Tryptophan-Ketoglutarate preservation solution used as a control. The IGL2-M solution demonstrated superior efficacy in preventing hepatocellular and mitochondrial damage in vulnerable steatotic grafts against ischemia-reperfusion injury. The IGL2-M solution better preserved the quality of fatty liver grafts compared to the Histidine-Tryptophan-Ketoglutarate solution, as evidenced by fewer danger signals after 24 hours of cold static preservation. Further investigations are warranted to explore these findings in greater depth.
Collapse
Affiliation(s)
- Arnau Panisello Rosello
- Experimental Pathology Department, Institut d'Investigacions Biomèdiques de Barcelona (IIBB)-CSIC, Barcelona, Spain; Steatohepatitis and Liver Transplant, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), CIBER ehd, Barcelona, Spain.
| | - Gabriela Chullo
- Service of Hepato-Pancreatico-Biliary and Liver Transplantation, ICMDM, Hospital Clinic of Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), CIBERehd, University of Barcelona, Barcelona, Spain
| | - Miguel Pera
- Service of Hepato-Pancreatico-Biliary and Liver Transplantation, ICMDM, Hospital Clinic of Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), CIBERehd, University of Barcelona, Barcelona, Spain
| | - Ramon Bataller
- Service of Hepatology, ICMDM, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Yiliam Fundora-Suárez
- Service of Hepato-Pancreatico-Biliary and Liver Transplantation, ICMDM, Hospital Clinic of Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), CIBERehd, University of Barcelona, Barcelona, Spain
| | - Rene Adam
- Centre Hépato-Biliaire, AP-HP, Hôpital Paul Brousse, Paris, France
| | - Teresa Carbonell
- Department of Physiology, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Joan Rosello Catafau
- Experimental Pathology Department, Institut d'Investigacions Biomèdiques de Barcelona (IIBB)-CSIC, Barcelona, Spain; Steatohepatitis and Liver Transplant, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), CIBER ehd, Barcelona, Spain
| |
Collapse
|
7
|
Wisel SA, Steggerda JA, Kim IK. Use of Machine Perfusion in the United States Increases Organ Utilization and Improves DCD Graft Survival in Liver Transplantation. Transplant Direct 2024; 10:e1726. [PMID: 39534757 PMCID: PMC11554346 DOI: 10.1097/txd.0000000000001726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 11/16/2024] Open
Abstract
Background Adoption of machine perfusion (MP) technology has rapidly expanded in liver transplantation without real-world data on utilization and outcomes, which are critical to understand the appropriate application of MP technology. Methods The Organ Procurement and Transplant Network/Standard Transplant Analysis and Research database was used to identify all deceased donor livers procured with intent for transplant between October 27, 2015 (date of first recorded MP) and June 30, 2023 (n = 67 795). Liver allografts were cohorted by donation after brain death (DBD; n = 59 957) or circulatory death (DCD; n = 7873) and analyzed by static cold storage (SCS) or MP preservation method. Donor demographics, organ utilization, and graft survival were evaluated. Results By 2023, 12.5% of all livers and 37.2% of DCD livers underwent MP preservation (82.6% normothermic, 6.7% hypothermic, and 10.8% other/unknown). Compared with SCS, MP liver donors were older (DBD: 48 versus 40 y [P < 0.001]; DCD: 43 versus 38 y [P < 0.001]) with higher body mass index (DBD: 28.8 versus 26.9 kg/m2 [P < 0.001]; DCD: 27.7 versus 26.9 kg/m2 [P = 0.004]). Donor livers had similar levels of macrosteatosis (median 5%). Graft utilization was higher for MP than SCS after DBD (96.4% versus 93.0%, P < 0.001) and DCD (91.4% versus 70.3%, P < 0.001) donation. Graft survival was similar between MP and SCS livers from DBD donors (P = 0.516), whereas MP-preserved grafts had superior survival from DCD donors at 1 and 3 y posttransplant (P = 0.013 and 0.037). Patient survival was similar across all groups at 3 y (P = 0.322). Conclusions The use of MP in liver transplantation increased rates of liver utilization and improved graft survival after DCD. Further monitoring of MP outcomes is required to understand long-term benefits.
Collapse
Affiliation(s)
- Steven A. Wisel
- Comprehensive Transplant Center, Jim and Eleanor Randall Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Justin A. Steggerda
- Comprehensive Transplant Center, Jim and Eleanor Randall Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Irene K. Kim
- Comprehensive Transplant Center, Jim and Eleanor Randall Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
8
|
Risbey CWG, Thomas C, Niu A, Liu K, Crawford M, Pulitano C. Hypothermic Oxygenated machine PErfusion for high-risk liver grafts for transplantation: A systematic review and meta-analysis. Artif Organs 2024; 48:1085-1099. [PMID: 39418539 DOI: 10.1111/aor.14814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/22/2024] [Accepted: 06/11/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Hypothermic Oxygenated machine PErfusion (HOPE) can reduce ischemic reperfusion injury and improve outcomes for liver transplant recipients. However, the effect of HOPE on high-risk extended criteria donor (ECD) and donation after circulatory death determination (DCDD) grafts is incomplete, despite the expectation that this cohort benefit maximally from HOPE. Accordingly, this paper aims to characterize the effect of HOPE on ECD and DCDD grafts. METHODS This study includes all papers comparing HOPE to static cold storage for high-risk ECD and DCDD grafts. Systematic searches of Medline, Embase, and Scopus were completed using the terms "HOPE" OR "hypothermic oxygenated machine perfusion" AND "liver transplantation". Data were extracted and analyzed using IBM SPSS to perform the meta-analysis. RESULTS A total of 2286 records were identified, with 10 meeting the inclusion criteria. Overall, the quality of evidence is heterogenous with many papers relying on retrospective controls. However, pooled analysis demonstrates HOPE to significantly reduce the rate of early allograft dysfunction, 12-month graft failure, re-transplantation, total biliary complications, and non-anastomotic strictures for high-risk grafts. CONCLUSIONS There is good evidence that HOPE improves outcomes following liver transplantation across a number of biochemical and clinical endpoints for high-risk grafts. Of note, the reduction in biliary complications and re-transplantation is particularly significant given the morbidity associated with these endpoints. However, further, high-quality prospective trials with contemporary controls and clinically relevant primary endpoints are needed to better define the impact of HOPE for this cohort of grafts.
Collapse
Affiliation(s)
- Charles W G Risbey
- Department of Transplant Surgery, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Centre for Organ Assessment, Repair, & Optimization (COARO), Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Royal Prince Alfred Hospital Transplant Institute (RPATI), Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Charles Thomas
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Anita Niu
- Department of Transplant Surgery, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Centre for Organ Assessment, Repair, & Optimization (COARO), Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Royal Prince Alfred Hospital Transplant Institute (RPATI), Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Ken Liu
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Australian National Liver Transplantation Unit (ANLTU), Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Michael Crawford
- Department of Transplant Surgery, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Centre for Organ Assessment, Repair, & Optimization (COARO), Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Royal Prince Alfred Hospital Transplant Institute (RPATI), Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Australian National Liver Transplantation Unit (ANLTU), Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Carlo Pulitano
- Department of Transplant Surgery, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Centre for Organ Assessment, Repair, & Optimization (COARO), Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Royal Prince Alfred Hospital Transplant Institute (RPATI), Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Australian National Liver Transplantation Unit (ANLTU), Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
9
|
Wehrle CJ, Panconesi R, Satish S, Maspero M, Jiao C, Sun K, Karakaya O, Allkushi E, Modaresi Esfeh J, Whitsett Linganna M, Ma WW, Fujiki M, Hashimoto K, Miller C, Kwon DCH, Aucejo F, Schlegel A. The Impact of Biliary Injury on the Recurrence of Biliary Cancer and Benign Disease after Liver Transplantation: Risk Factors and Mechanisms. Cancers (Basel) 2024; 16:2789. [PMID: 39199562 PMCID: PMC11352383 DOI: 10.3390/cancers16162789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
Liver transplantation is known to generate significant inflammation in the entire organ based on the metabolic profile and the tissue's ability to recover from the ischemia-reperfusion injury (IRI). This cascade contributes to post-transplant complications, affecting both the synthetic liver function (immediate) and the scar development in the biliary tree. The new occurrence of biliary strictures, and the recurrence of malignant and benign liver diseases, such as cholangiocarcinoma (CCA) and primary sclerosing cholangitis (PSC), are direct consequences linked to this inflammation. The accumulation of toxic metabolites, such as succinate, causes undirected electron flows, triggering the releases of reactive oxygen species (ROS) from a severely dysfunctional mitochondrial complex 1. This initiates the inflammatory IRI cascade, with subsequent ischemic biliary stricturing, and the upregulation of pro-tumorigenic signaling. Such inflammation is both local and systemic, promoting an immunocompromised status that can lead to the recurrence of underlying liver disease, both malignant and benign in nature. The traditional treatment for CCA was resection, when possible, followed by cytotoxic chemotherapy. Liver transplant oncology is increasingly recognized as a potentially curative approach for patients with intrahepatic (iCCA) and perihilar (pCCA) cholangiocarcinoma. The link between IRI and disease recurrence is increasingly recognized in transplant oncology for hepatocellular carcinoma. However, smaller numbers have prevented similar analyses for CCA. The mechanistic link may be even more critical in this disease, as IRI causes the most profound damage to the intrahepatic bile ducts. This article reviews the underlying mechanisms associated with biliary inflammation and biliary pathology after liver transplantation. One main focus is on the link between transplant-related IRI-associated inflammation and the recurrence of cholangiocarcinoma and benign liver diseases of the biliary tree. Risk factors and protective strategies are highlighted.
Collapse
Affiliation(s)
- Chase J. Wehrle
- Transplantation Center, Cleveland Clinic, Cleveland, OH 44195, USA; (C.J.W.); (F.A.)
| | - Rebecca Panconesi
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (R.P.); (C.J.)
| | - Sangeeta Satish
- Transplantation Center, Cleveland Clinic, Cleveland, OH 44195, USA; (C.J.W.); (F.A.)
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (R.P.); (C.J.)
| | - Marianna Maspero
- General Surgery and Liver Transplantation Unit, IRCCS Istituto Tumori, 20133 Milan, Italy
| | - Chunbao Jiao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (R.P.); (C.J.)
| | - Keyue Sun
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (R.P.); (C.J.)
| | - Omer Karakaya
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (R.P.); (C.J.)
| | - Erlind Allkushi
- Transplantation Center, Cleveland Clinic, Cleveland, OH 44195, USA; (C.J.W.); (F.A.)
| | - Jamak Modaresi Esfeh
- Department of Gastroenterology and Transplant Hepatology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Maureen Whitsett Linganna
- Department of Gastroenterology and Transplant Hepatology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Wen Wee Ma
- Novel Therapeutics Center, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Masato Fujiki
- Transplantation Center, Cleveland Clinic, Cleveland, OH 44195, USA; (C.J.W.); (F.A.)
| | - Koji Hashimoto
- Transplantation Center, Cleveland Clinic, Cleveland, OH 44195, USA; (C.J.W.); (F.A.)
| | - Charles Miller
- Transplantation Center, Cleveland Clinic, Cleveland, OH 44195, USA; (C.J.W.); (F.A.)
| | - David C. H. Kwon
- Transplantation Center, Cleveland Clinic, Cleveland, OH 44195, USA; (C.J.W.); (F.A.)
| | - Federico Aucejo
- Transplantation Center, Cleveland Clinic, Cleveland, OH 44195, USA; (C.J.W.); (F.A.)
| | - Andrea Schlegel
- Transplantation Center, Cleveland Clinic, Cleveland, OH 44195, USA; (C.J.W.); (F.A.)
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (R.P.); (C.J.)
| |
Collapse
|
10
|
Broere R, Luijmes SH, de Jonge J, Porte RJ. Graft repair during machine perfusion: a current overview of strategies. Curr Opin Organ Transplant 2024; 29:248-254. [PMID: 38726753 PMCID: PMC11224572 DOI: 10.1097/mot.0000000000001151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
PURPOSE OF REVIEW With changing donor characteristics (advanced age, obesity), an increase in the use of extended criteria donor (ECD) livers in liver transplantation is seen. Machine perfusion allows graft viability assessment, but still many donor livers are considered nontransplantable. Besides being used as graft viability assessment tool, ex situ machine perfusion offers a platform for therapeutic strategies to ameliorate grafts prior to transplantation. This review describes the current landscape of graft repair during machine perfusion. RECENT FINDINGS Explored anti-inflammatory therapies, including inflammasome inhibitors, hemoabsorption, and cellular therapies mitigate the inflammatory response and improve hepatic function. Cholangiocyte organoids show promise in repairing the damaged biliary tree. Defatting during normothermic machine perfusion shows a reduction of steatosis and improved hepatobiliary function compared to nontreated livers. Uptake of RNA interference therapies during machine perfusion paves the way for an additional treatment modality. SUMMARY The possibility to repair injured donor livers during ex situ machine perfusion might increase the utilization of ECD-livers. Application of defatting agents is currently explored in clinical trials, whereas other therapeutics require further research or optimization before entering clinical research.
Collapse
Affiliation(s)
- Roberto Broere
- Department of Surgery, Division of Hepato-Pancreato- Biliary and Transplant Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
11
|
Dondossola D, Lonati C, Battistin M, Vivona L, Zanella A, Maggioni M, Valentina V, Zizmare L, Trautwein C, Schlegel A, Gatti S. Twelve-hour normothermic liver perfusion in a rat model: characterization of the changes in the ex-situ bio-molecular phenotype and metabolism. Sci Rep 2024; 14:6040. [PMID: 38472309 DOI: 10.1038/s41598-024-56433-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/06/2024] [Indexed: 03/14/2024] Open
Abstract
The partial understanding of the biological events that occur during normothermic machine perfusion (NMP) and particularly during prolonged perfusion might hinder its deployment in clinical transplantation. The aim of our study was to implement a rat model of prolonged NMP to characterize the bio-molecular phenotype and metabolism of the perfused organs. Livers (n = 5/group) were procured and underwent 4 h (NMP4h) or 12 h (NMP12h) NMP, respectively, using a perfusion fluid supplemented with an acellular oxygen carrier. Organs that were not exposed to any procedure served as controls (Native). All perfused organs met clinically derived viability criteria at the end of NMP. Factors related to stress-response and survival were increased after prolonged perfusion. No signs of oxidative damage were detected in both NMP groups. Evaluation of metabolite profiles showed preserved mitochondrial function, activation of Cori cycle, induction of lipolysis, acetogenesis and ketogenesis in livers exposed to 12 h-NMP. Increased concentrations of metabolites involved in glycogen synthesis, glucuronidation, bile acid conjugation, and antioxidant response were likewise observed. In conclusion, our NMP12h model was able to sustain liver viability and function, thereby deeply changing cell homeostasis to maintain a newly developed equilibrium. Our findings provide valuable information for the implementation of optimized protocols for prolonged NMP.
Collapse
Affiliation(s)
- Daniele Dondossola
- General and Liver Transplant Surgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20100, Milan, Italy.
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, 20100, Milan, Italy.
| | - Caterina Lonati
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Pace 9, 20100, Milan, Italy
| | - Michele Battistin
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Pace 9, 20100, Milan, Italy
| | - Luigi Vivona
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Alberto Zanella
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, 20100, Milan, Italy
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Marco Maggioni
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Vaira Valentina
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Laimdota Zizmare
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Eberhard Karls University of Tübingen, Röntgenweg 13, 72076, Tübingen, Germany
| | - Christoph Trautwein
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Eberhard Karls University of Tübingen, Röntgenweg 13, 72076, Tübingen, Germany
| | - Andrea Schlegel
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Pace 9, 20100, Milan, Italy
- Transplantation Center, Digestive Disease and Surgery Institute and Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Stefano Gatti
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Pace 9, 20100, Milan, Italy
| |
Collapse
|
12
|
Xiang Z, Li J, Zeng H, Xiang X, Gao F, Wang K, Wei X, Zheng S, Xu X. Current Understanding of Marginal Grafts in Liver Transplantation. Aging Dis 2024; 16:1036-1058. [PMID: 38607739 PMCID: PMC11964436 DOI: 10.14336/ad.2024.0214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/14/2024] [Indexed: 04/14/2024] Open
Abstract
End-stage liver disease (ESLD), stemming from a spectrum of chronic liver pathologies including chronic liver failure, acute cirrhosis decompensation and hepatocellular carcinoma, imposes a significant global healthcare burden. Liver transplantation (LT) remains the only treatment for ESLD. However, the escalating mortality on transplant waitlists has prompted the utilization of marginal liver grafts in LT procedures. These grafts primarily encompass elderly livers, steatotic livers, livers from donation after circulatory death, split livers and those infected with the hepatitis virus. While the expansion of the donor pool offers promise, it also introduces concomitant risks. These encompass graft failure, biliary and cardiovascular complications, the recurrence of liver disease and reduced patient and graft survival. Consequently, various established strategies, ranging from improved donor-recipient matching to surgical interventions, have emerged to mitigate these risks. This article undertakes a comprehensive assessment of the current landscape, evaluating the viability of diverse marginal liver grafts. Additionally, it synthesizes approaches aimed at enhancing the quality of such marginal liver grafts. The overarching objective is to augment the donor pool and ameliorate the risk factors associated with the shortage of liver grafts.
Collapse
Affiliation(s)
- Ze Xiang
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Hangzhou 310006, China.
- Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Jiarui Li
- Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Huixuan Zeng
- Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Xiaonan Xiang
- Zhejiang University School of Medicine, Hangzhou 310058, China.
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, Cambridgeshire, UK.
| | - Fengqiang Gao
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Hangzhou 310006, China.
- Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Kai Wang
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Hangzhou 310006, China.
- Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Xuyong Wei
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Hangzhou 310006, China.
| | - Shusen Zheng
- Zhejiang University School of Medicine, Hangzhou 310058, China.
- Shulan (Hangzhou) Hospital, Zhejiang Shuren University School of Medicine, Hangzhou 310022, China.
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China.
| | - Xiao Xu
- Zhejiang University School of Medicine, Hangzhou 310058, China.
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China.
| |
Collapse
|
13
|
Panconesi R, Carvalho MF, Eden J, Fazi M, Ansari F, Mancina L, Navari N, Sousa Da Silva RX, Dondossola D, Borrego LB, Pietzke M, Peris A, Meierhofer D, Muiesan P, Galkin A, Marra F, Dutkowski P, Schlegel A. Mitochondrial injury during normothermic regional perfusion (NRP) and hypothermic oxygenated perfusion (HOPE) in a rodent model of DCD liver transplantation. EBioMedicine 2023; 98:104861. [PMID: 37924707 PMCID: PMC10660010 DOI: 10.1016/j.ebiom.2023.104861] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Normothermic regional perfusion (NRP) and hypothermic-oxygenated-perfusion (HOPE), were both shown to improve outcomes after liver transplantation from donors after circulatory death (DCD). Comparative clinical and mechanistical studies are however lacking. METHODS A rodent model of NRP and HOPE, both in the donor, was developed. Following asystolic donor warm ischemia time (DWIT), the abdominal compartment was perfused either with a donor-blood-based-perfusate at 37 °C (NRP) or with oxygenated Belzer-MPS at 10 °C (donor-HOPE) for 2 h. Livers were then procured and underwent 5 h static cold storage (CS), followed by transplantation. Un-perfused and HOPE-treated DCD-livers (after CS) and healthy livers (DBD) with direct implantation after NRP served as controls. Endpoints included the entire spectrum of ischemia-reperfusion-injury. FINDINGS Healthy control livers (DBD) showed minimal signs of inflammation during 2 h NRP and achieved 100% posttransplant recipient survival. In contrast, DCD livers with 30 and 60 min DWIT suffered from greater mitochondrial injury and inflammation as measured by increased perfusate Lactate, FMN- and HMGB-1-levels with subsequent Toll-like-receptor activation during NRP. In contrast, donor-HOPE (instead of NRP) led to significantly less mitochondrial-complex-I-injury and inflammation. Results after donor-HOPE were comparable to ex-situ HOPE after CS. Most DCD-liver recipients survived when treated with one HOPE-technique (86%), compared to only 40% after NRP (p = 0.0053). Following a reduction of DWIT (15 min), DCD liver recipients achieved comparable survivals with NRP (80%). INTERPRETATION High-risk DCD livers benefit more from HOPE-treatment, either immediately in the donor or after cold storage. Comparative prospective clinical studies are required to translate the results. FUNDING Funding was provided by the Swiss National Science Foundation (grant no: 32003B-140776/1, 3200B-153012/1, 320030-189055/1, and 31IC30-166909) and supported by University Careggi (grant no 32003B-140776/1) and the OTT (grant No.: DRGT641/2019, cod.prog. 19CT03) and the Max Planck Society. Work in the A.G. laboratory was partially supported by the NIH R01NS112381 and R21NS125466 grants.
Collapse
Affiliation(s)
- Rebecca Panconesi
- Hepatobiliary Unit, Careggi University Hospital, University of Florence, Florence, Italy; Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Department of Surgery, A.O.U. Città della Salute e della Scienza di Torino, University of Turin, 10124, Turin, Italy; Department of Visceral Surgery and Transplantation, University Hospital Zurich, Swiss HPB and Transplant Center, Zurich, Switzerland
| | | | - Janina Eden
- Department of Visceral Surgery and Transplantation, University Hospital Zurich, Swiss HPB and Transplant Center, Zurich, Switzerland
| | - Marilena Fazi
- Hepatobiliary Unit, Careggi University Hospital, University of Florence, Florence, Italy; Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Fariha Ansari
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, USA
| | - Leandro Mancina
- Department of Visceral Surgery and Transplantation, University Hospital Zurich, Swiss HPB and Transplant Center, Zurich, Switzerland
| | - Nadia Navari
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Richard Xavier Sousa Da Silva
- Department of Visceral Surgery and Transplantation, University Hospital Zurich, Swiss HPB and Transplant Center, Zurich, Switzerland
| | - Daniele Dondossola
- General and Liver Transplant Surgery Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico and University of Milan, Centre of Preclinical Research, 20122, Italy
| | - Lucia Bautista Borrego
- Department of Visceral Surgery and Transplantation, University Hospital Zurich, Swiss HPB and Transplant Center, Zurich, Switzerland
| | - Matthias Pietzke
- Max Planck Institute for Molecular Genetics, Mass Spectrometry Facility, 14195, Berlin, Germany
| | - Adriano Peris
- Tuscany Regional Transplant Authority, Centro Regionale Allocazione Organi e Tessuti (CRAOT), Florence, Italy
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Mass Spectrometry Facility, 14195, Berlin, Germany
| | - Paolo Muiesan
- Hepatobiliary Unit, Careggi University Hospital, University of Florence, Florence, Italy; Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, USA
| | - Alexander Galkin
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, USA
| | - Fabio Marra
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Center for Research, High Education and Transfer DENOThe, University of Florence, Florence, Italy
| | - Philipp Dutkowski
- Department of Visceral Surgery and Transplantation, University Hospital Zurich, Swiss HPB and Transplant Center, Zurich, Switzerland
| | - Andrea Schlegel
- Hepatobiliary Unit, Careggi University Hospital, University of Florence, Florence, Italy; Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Department of Visceral Surgery and Transplantation, University Hospital Zurich, Swiss HPB and Transplant Center, Zurich, Switzerland; General and Liver Transplant Surgery Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico and University of Milan, Centre of Preclinical Research, 20122, Italy; Transplantation Center, Digestive Disease and Surgery Institute and Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
14
|
Liu H, Yeung WHO, Pang L, Liu J, Liu XB, Pan Ng KT, Zhang Q, Qiu WQ, Zhu Y, Ding T, Wang Z, Zhu JY, Lo CM, Man K. Arachidonic acid activates NLRP3 inflammasome in MDSCs via FATP2 to promote post-transplant tumour recurrence in steatotic liver grafts. JHEP Rep 2023; 5:100895. [PMID: 37916155 PMCID: PMC10616418 DOI: 10.1016/j.jhepr.2023.100895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/06/2023] [Accepted: 08/16/2023] [Indexed: 11/03/2023] Open
Abstract
Background & Aims The steatotic grafts have been applied in liver transplantation frequently owing to the high incidence of non-alcoholic fatty liver disease. However, fatty livers are vulnerable to graft injury. Myeloid-derived suppressor cell (MDSC) recruitment during liver graft injury promotes tumour recurrence. Lipid metabolism exerts the immunological influence on MDSCs in tumour progression. Here, we aimed to explore the role and mechanism of inflammasome activation in MDSCs induced by lipid metabolism during fatty liver graft injury and the subsequent effects on tumour recurrence. Methods MDSC populations and nucleotide-binding oligomerisation domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome levels were investigated in a clinical cohort and a rat liver transplantation model. The mechanism of NLRP3 activation by specific fatty acids was explored in mouse hepatic ischaemia/reperfusion injury (IRI) with tumour recurrence model and in vitro studies. Results MDSC populations and NLRP3 levels were increased with higher tumour recurrent rate in patients using steatotic grafts. NLRP3 was upregulated in MDSCs with lipid accumulation post mouse fatty liver IRI. Mechanistically, arachidonic acid was discovered to activate NLRP3 inflammasome in MDSCs through fatty acid transport protein 2 (FATP2), which was identified by screening lipid uptake receptors. The mitochondrial dysfunction with enhanced reactive oxygen species bridged arachidonic acid uptake and NLRP3 activation in MDSCs, which subsequently stimulated CD4+ T cells producing more IL-17 in fatty liver IRI. Blockade of FATP2 inhibited NLRP3 activation in MDSCs, IL-17 production in CD4+ T cells, and the tumour recurrence post fatty liver IRI. Conclusions During fatty liver graft injury, arachidonic acid activated NLRP3 inflammasome in MDSCs through FATP2, which subsequently stimulated CD4+ T cells producing IL-17 to promote tumour recurrence post transplantation. Impact and implications The high incidence of non-alcoholic fatty liver disease resulted in the frequent application of steatotic donors in liver transplantation. Our data showed that the patients who underwent liver transplantation using fatty grafts experienced higher tumour recurrence. We found that arachidonic acid activated NLRP3 inflammasome in MDSCs through FATP2 during fatty liver graft injury, which led to more IL-17 secretion of CD4+ T cells and promoted tumour recurrence post transplantation. The inflammasome activation by aberrant fatty acid metabolism in MDSCs bridged the acute-phase fatty liver graft injury and liver tumour recurrence.
Collapse
Affiliation(s)
- Hui Liu
- Department of Surgery, School of Clinical Medicine, HKU-SZH and LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wai Ho Oscar Yeung
- Department of Surgery, School of Clinical Medicine, HKU-SZH and LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Li Pang
- Department of Surgery, School of Clinical Medicine, HKU-SZH and LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jiang Liu
- Department of Surgery, School of Clinical Medicine, HKU-SZH and LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiao Bing Liu
- Department of Surgery, School of Clinical Medicine, HKU-SZH and LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kevin Tak Pan Ng
- Department of Surgery, School of Clinical Medicine, HKU-SZH and LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Qingmei Zhang
- Department of Surgery, School of Clinical Medicine, HKU-SZH and LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Wen Qi Qiu
- Department of Surgery, School of Clinical Medicine, HKU-SZH and LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yueqin Zhu
- Department of Surgery, School of Clinical Medicine, HKU-SZH and LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tao Ding
- Department of Surgery, School of Clinical Medicine, HKU-SZH and LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhe Wang
- Department of Surgery, School of Clinical Medicine, HKU-SZH and LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ji Ye Zhu
- Department of Surgery, School of Clinical Medicine, HKU-SZH and LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Chung Mau Lo
- Department of Surgery, School of Clinical Medicine, HKU-SZH and LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kwan Man
- Department of Surgery, School of Clinical Medicine, HKU-SZH and LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
15
|
Grąt M, Morawski M, Zhylko A, Rykowski P, Krasnodębski M, Wyporski A, Borkowski J, Lewandowski Z, Kobryń K, Stankiewicz R, Stypułkowski J, Hołówko W, Patkowski W, Mielczarek-Puta M, Struga M, Szczepankiewicz B, Górnicka B, Krawczyk M. Routine End-ischemic Hypothermic Oxygenated Machine Perfusion in Liver Transplantation From Donors After Brain Death: A Randomized Controlled Trial. Ann Surg 2023; 278:662-668. [PMID: 37497636 DOI: 10.1097/sla.0000000000006055] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
OBJECTIVE To assess whether end-ischemic hypothermic oxygenated machine perfusion (HOPE) is superior to static cold storage (SCS) in preserving livers procured from donors after brain death (DBD). BACKGROUND There is increasing evidence of the benefits of HOPE in liver transplantation, but predominantly in the setting of high-risk donors. METHODS In this randomized clinical trial, livers procured from DBDs were randomly assigned to either end-ischemic dual HOPE for at least 2 hours or SCS (1:3 allocation ratio). The Model for Early Allograft Function (MEAF) was the primary outcome measure. The secondary outcome measure was 90-day morbidity (ClinicalTrials. gov, NCT04812054). RESULTS Of the 104 liver transplantations included in the study, 26 were assigned to HOPE and 78 to SCS. Mean MEAF was 4.94 and 5.49 in the HOPE and SCS groups ( P =0.24), respectively, with the corresponding rates of MEAF >8 of 3.8% (1/26) and 15.4% (12/78; P =0.18). Median Comprehensive Complication Index was 20.9 after transplantations with HOPE and 21.8 after transplantations with SCS ( P =0.19). Transaminase activity, bilirubin concentration, and international normalized ratio were similar in both groups. In the case of donor risk index >1.70, HOPE was associated with significantly lower mean MEAF (4.92 vs 6.31; P =0.037) and lower median Comprehensive Complication Index (4.35 vs 22.6; P =0.050). No significant differences between HOPE and SCS were observed for lower donor risk index values. CONCLUSION Routine use of HOPE in DBD liver transplantations does not seem justified as the clinical benefits are limited to high-risk donors.
Collapse
Affiliation(s)
- Michał Grąt
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Marcin Morawski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Andriy Zhylko
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Paweł Rykowski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Maciej Krasnodębski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Anya Wyporski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Jan Borkowski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Zbigniew Lewandowski
- Department of Epidemiology and Biostatistics, Medical University of Warsaw, Warsaw, Poland
| | - Konrad Kobryń
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Rafał Stankiewicz
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Jan Stypułkowski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Wacław Hołówko
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Waldemar Patkowski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | | | - Marta Struga
- Department of Biochemistry, Medical University of Warsaw, Warsaw, Poland
| | | | - Barbara Górnicka
- Department of Pathology, Medical University of Warsaw, Warsaw, Poland
| | - Marek Krawczyk
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
16
|
Yue P, Lv X, You J, Zou Y, Luo J, Lu Z, Cao H, Liu Z, Fan X, Ye Q. Hypothermic oxygenated perfusion attenuates DCD liver ischemia-reperfusion injury by activating the JAK2/STAT3/HAX1 pathway to regulate endoplasmic reticulum stress. Cell Mol Biol Lett 2023; 28:55. [PMID: 37438690 DOI: 10.1186/s11658-023-00466-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/14/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND Hepatic ischemia-reperfusion injury (IRI) in donation after cardiac death (DCD) donors is a major determinant of transplantation success. Endoplasmic reticulum (ER) stress plays a key role in hepatic IRI, with potential involvement of the Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) pathway and the antiapoptotic protein hematopoietic-lineage substrate-1-associated protein X-1 (HAX1). In this study, we aimed to investigate the effects of hypothermic oxygenated perfusion (HOPE), an organ preservation modality, on ER stress and apoptosis during hepatic IRI in a DCD rat model. METHODS To investigate whether HOPE could improve IRI in DCD livers, levels of different related proteins were examined by western blotting and quantitative real-time polymerase chain reaction. Further expression analyses, immunohistochemical analyses, immunofluorescence staining, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining, and transmission electron microscopy were conducted to analyze the effects of HOPE on ER stress and apoptosis. To clarify the role of the JAK2/STAT3 pathway and HAX1 in this process, AG490 inhibitor, JAX1 plasmid transfection, co-immunoprecipitation (CO-IP), and flow cytometry analyses were conducted. RESULTS HOPE reduced liver injury and inflammation while alleviating ER stress and apoptosis in the DCD rat model. Mechanistically, HOPE inhibited unfolded protein responses by activating the JAK2/STAT3 pathway, thus reducing ER stress and apoptosis. Moreover, the activated JAK2/STAT3 pathway upregulated HAX1, promoting the interaction between HAX1 and SERCA2b to maintain ER calcium homeostasis. Upregulated HAX1 also modulated ER stress and apoptosis by inhibiting the inositol-requiring enzyme 1 (IRE1) pathway. CONCLUSIONS JAK2/STAT3-mediated upregulation of HAX1 during HOPE alleviates hepatic ER stress and apoptosis, indicating the JAK2/STAT3/HAX1 pathway as a potential target for IRI management during DCD liver transplantation.
Collapse
Affiliation(s)
- Pengpeng Yue
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, 430071, Wuhan, China
| | - Xiaoyan Lv
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jian You
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, 430071, Wuhan, China
| | - Yongkang Zou
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, 430071, Wuhan, China
| | - Jun Luo
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, 430071, Wuhan, China
| | - Zhongshan Lu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, 430071, Wuhan, China
| | - Hankun Cao
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, 430071, Wuhan, China
| | - Zhongzhong Liu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, 430071, Wuhan, China
| | - Xiaoli Fan
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, 430071, Wuhan, China.
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, 430071, Wuhan, China.
- The Third Xiangya Hospital of Central South University, Research Center of National Health Ministry On Transplantation Medicine Engineering and Technology, Changsha, 410013, China.
| |
Collapse
|
17
|
Parente A, Flores Carvalho M, Schlegel A. Endothelial Cells and Mitochondria: Two Key Players in Liver Transplantation. Int J Mol Sci 2023; 24:10091. [PMID: 37373238 PMCID: PMC10298511 DOI: 10.3390/ijms241210091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Building the inner layer of our blood vessels, the endothelium forms an important line communicating with deeper parenchymal cells in our organs. Previously considered passive, endothelial cells are increasingly recognized as key players in intercellular crosstalk, vascular homeostasis, and blood fluidity. Comparable to other cells, their metabolic function strongly depends on mitochondrial health, and the response to flow changes observed in endothelial cells is linked to their mitochondrial metabolism. Despite the direct impact of new dynamic preservation concepts in organ transplantation, the impact of different perfusion conditions on sinusoidal endothelial cells is not yet explored well enough. This article therefore describes the key role of liver sinusoidal endothelial cells (LSECs) together with their mitochondrial function in the context of liver transplantation. The currently available ex situ machine perfusion strategies are described with their effect on LSEC health. Specific perfusion conditions, including perfusion pressure, duration, and perfusate oxygenation are critically discussed considering the metabolic function and integrity of liver endothelial cells and their mitochondria.
Collapse
Affiliation(s)
- Alessandro Parente
- HPB and Transplant Unit, Department of Surgical Science, University of Rome Tor Vergata, 00133 Rome, Italy;
- Division of Hepatobiliary and Liver Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Mauricio Flores Carvalho
- Department of Experimental and Clinical Medicine, University of Florence, 50121 Florence, Italy;
| | - Andrea Schlegel
- Department of Experimental and Clinical Medicine, University of Florence, 50121 Florence, Italy;
- Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Centre of Preclinical Research, 20122 Milan, Italy
- Transplantation Center, Digestive Disease and Surgery Institute, Department of Immunity and Inflammation, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| |
Collapse
|
18
|
Patrono D, De Stefano N, Vissio E, Apostu AL, Petronio N, Vitelli G, Catalano G, Rizza G, Catalano S, Colli F, Chiusa L, Romagnoli R. How to Preserve Steatotic Liver Grafts for Transplantation. J Clin Med 2023; 12:3982. [PMID: 37373676 DOI: 10.3390/jcm12123982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Liver allograft steatosis is a significant risk factor for postoperative graft dysfunction and has been associated with inferior patient and graft survival, particularly in the case of moderate or severe macrovesicular steatosis. In recent years, the increasing incidence of obesity and fatty liver disease in the population has led to a higher proportion of steatotic liver grafts being used for transplantation, making the optimization of their preservation an urgent necessity. This review discusses the mechanisms behind the increased susceptibility of fatty livers to ischemia-reperfusion injury and provides an overview of the available strategies to improve their utilization for transplantation, with a focus on preclinical and clinical evidence supporting donor interventions, novel preservation solutions, and machine perfusion techniques.
Collapse
Affiliation(s)
- Damiano Patrono
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Nicola De Stefano
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Elena Vissio
- Department of Pathology, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Ana Lavinia Apostu
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Nicoletta Petronio
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Giovanni Vitelli
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Giorgia Catalano
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Giorgia Rizza
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Silvia Catalano
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Fabio Colli
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Luigi Chiusa
- Department of Pathology, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Renato Romagnoli
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| |
Collapse
|
19
|
Schlegel A, Mergental H, Fondevila C, Porte RJ, Friend PJ, Dutkowski P. Machine perfusion of the liver and bioengineering. J Hepatol 2023; 78:1181-1198. [PMID: 37208105 DOI: 10.1016/j.jhep.2023.02.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 05/21/2023]
Abstract
With the increasing number of accepted candidates on waiting lists worldwide, there is an urgent need to expand the number and the quality of donor livers. Dynamic preservation approaches have demonstrated various benefits, including improving liver function and graft survival, and reducing liver injury and post-transplant complications. Consequently, organ perfusion techniques are being used in clinical practice in many countries. Despite this success, a proportion of livers do not meet current viability tests required for transplantation, even with the use of modern perfusion techniques. Therefore, devices are needed to further optimise machine liver perfusion - one promising option is to prolong machine liver perfusion for several days, with ex situ treatment of perfused livers. For example, stem cells, senolytics, or molecules targeting mitochondria or downstream signalling can be administered during long-term liver perfusion to modulate repair mechanisms and regeneration. Besides, today's perfusion equipment is also designed to enable the use of various liver bioengineering techniques, to develop scaffolds or for their re-cellularisation. Cells or entire livers can also undergo gene modulation to modify animal livers for xenotransplantation, to directly treat injured organs or to repopulate such scaffolds with "repaired" autologous cells. This review first discusses current strategies to improve the quality of donor livers, and secondly reports on bioengineering techniques to design optimised organs during machine perfusion. Current practice, as well as the benefits and challenges associated with these different perfusion strategies are discussed.
Collapse
Affiliation(s)
- Andrea Schlegel
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Centre of Preclinical Research, Milan, 20122, Italy; Department of Surgery and Transplantation, Swiss HPB Center, University Hospital Zurich, Switzerland
| | - Hynek Mergental
- The Liver Unit, Queen Elizabeth University Hospital Birmingham, United Kingdom
| | - Constantino Fondevila
- Hepatopancreatobiliary Surgery & Transplantation, General & Digestive Surgery Service, Hospital Universitario La Paz, IdiPAZ, CIBERehd, Madrid, Spain
| | - Robert J Porte
- Erasmus MC Transplant Institute, Department of Surgery, Division of HPB & Transplant Surgery, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Peter J Friend
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Philipp Dutkowski
- Department of Surgery and Transplantation, Swiss HPB Center, University Hospital Zurich, Switzerland.
| |
Collapse
|
20
|
Liu H, Zhu Y, Ng KTP, Lo CM, Man K. The Landscape of Aberrant Alternative Splicing Events in Steatotic Liver Graft Post Transplantation via Transcriptome-Wide Analysis. Int J Mol Sci 2023; 24:ijms24098216. [PMID: 37175922 PMCID: PMC10179559 DOI: 10.3390/ijms24098216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 05/15/2023] Open
Abstract
The application of steatotic liver graft has been increased significantly due to the severe donor shortage and prevalence of non-alcoholic fatty liver disease. However, steatotic donor livers are vulnerable to acute phase inflammatory injury, which may result in cancer recurrence. Alternative splicing events (ASEs) are critical for diverse transcriptional variants in hepatocellular carcinoma (HCC). Here, we aimed to depict the landscape of ASEs, as well as to identify the differential ASEs in steatotic liver graft and their association with tumor recurrence after transplantation. The overall portrait of intragraft transcripts and ASEs were elucidated through RNA sequencing with the liver graft biopsies from patients and rat transplant models. Various differential ASEs were identified in steatotic liver grafts. CYP2E1, ADH1A, CYP2C8, ADH1C, and HGD, as corresponding genes to the common pathways involved differential ASEs in human and rats, were significantly associated with HCC patients' survival. The differential ASEs related RNA-binding proteins (RBPs) were enriched in metabolic pathways. The altered immune cell distribution, particularly macrophages and neutrophils, were perturbated by differential ASEs. The cancer hallmarks were enriched in steatotic liver grafts and closely associated with differential ASEs. Our work identified the differential ASE network with metabolic RBPs, immune cell distribution, and cancer hallmarks in steatotic liver grafts. We verified the link between steatotic liver graft injury and tumor recurrence at post-transcriptional level, offered new evidence to explore metabolism and immune responses, and provided the potential prognostic and therapeutic markers for tumor recurrence.
Collapse
Affiliation(s)
- Hui Liu
- Department of Surgery, School of Clinical Medicine, HKU-SZH & LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yueqin Zhu
- Department of Surgery, School of Clinical Medicine, HKU-SZH & LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kevin Tak-Pan Ng
- Department of Surgery, School of Clinical Medicine, HKU-SZH & LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Chung-Mau Lo
- Department of Surgery, School of Clinical Medicine, HKU-SZH & LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kwan Man
- Department of Surgery, School of Clinical Medicine, HKU-SZH & LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
21
|
Parente A, Cho HD, Kim KH, Schlegel A. Association between Hepatocellular Carcinoma Recurrence and Graft Size in Living Donor Liver Transplantation: A Systematic Review. Int J Mol Sci 2023; 24:6224. [PMID: 37047199 PMCID: PMC10093934 DOI: 10.3390/ijms24076224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
The aim of this work was to assess the association between graft-to-recipient weight ratio (GRWR) in adult-to-adult living donor liver transplantation (LDLT) and hepatocellular carcinoma (HCC) recurrence. A search of the MEDLINE and EMBASE databases was performed until December 2022 for studies comparing different GRWRs in the prognosis of HCC recipients in LDLT. Data were pooled to evaluate 1- and 3-year survival rates. We identified three studies, including a total of 782 patients (168 GRWR < 0.8 vs. 614 GRWR ≥ 0.8%). The pooled overall survival was 85% and 77% at one year and 90% and 83% at three years for GRWR < 0.8 and GRWR ≥ 0.8, respectively. The largest series found that, in patients within Milan criteria, the GRWR was not associated with lower oncological outcomes. However, patients with HCC outside the Milan criteria with a GRWR < 0.8% had lower survival and higher tumor recurrence rates. The GRWR < 0.8% appears to be associated with lower survival rates in HCC recipients, particularly for candidates with tumors outside established HCC criteria. Although the data are scarce, the results of this study suggest that considering the individual GRWR not only as risk factor for small-for-size-syndrome but also as contributor to HCC recurrence in patients undergoing LDLT would be beneficial. Novel perfusion technologies and pharmacological interventions may contribute to improving outcomes.
Collapse
Affiliation(s)
- Alessandro Parente
- HPB and Transplant Unit, Department of Surgical Science, University of Rome Tor Vergata, 00133 Rome, Italy
- Division of Hepatobiliary and Liver Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Hwui-Dong Cho
- Division of Hepatobiliary and Liver Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Ki-Hun Kim
- Division of Hepatobiliary and Liver Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Andrea Schlegel
- Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Centre of Preclinical Research, 20122 Milan, Italy
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
22
|
Hypothermic Oxygenated Machine Perfusion (HOPE) Prior to Liver Transplantation Mitigates Post-Reperfusion Syndrome and Perioperative Electrolyte Shifts. J Clin Med 2022; 11:jcm11247381. [PMID: 36555997 PMCID: PMC9786550 DOI: 10.3390/jcm11247381] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
(1) Background: Post-reperfusion syndrome (PRS) and electrolyte shifts (ES) represent considerable challenges during liver transplantation (LT) being associated with significant morbidity. We aimed to investigate the impact of hypothermic oxygenated machine perfusion (HOPE) on PRS and ES in LT. (2) Methods: In this retrospective study, we compared intraoperative parameters of 100 LTs, with 50 HOPE preconditioned liver grafts and 50 grafts stored in static cold storage (SCS). During reperfusion phase, prospectively registered serum parameters and vasopressor administration were analyzed. (3) Results: Twelve percent of patients developed PRS in the HOPE cohort vs. 42% in the SCS group (p = 0.0013). Total vasopressor demand in the first hour after reperfusion was lower after HOPE pretreatment, with reduced usage of norepinephrine (−26%; p = 0.122) and significant reduction of epinephrine consumption (−52%; p = 0.018). Serum potassium concentration dropped by a mean of 14.1% in transplantations after HOPE, compared to a slight decrease of 1% (p < 0.001) after SCS. The overall incidence of early allograft dysfunction (EAD) was reduced by 44% in the HOPE group (p = 0.04). (4) Conclusions: Pre-transplant graft preconditioning with HOPE results in higher hemodynamic stability during reperfusion and lower incidence of PRS and EAD. HOPE has the potential to mitigate ES by preventing hyperpotassemic complications that need to be addressed in LT with HOPE-pre-treated grafts.
Collapse
|
23
|
Meier RPH, Kelly Y, Braun H, Maluf D, Freise C, Ascher N, Roberts J, Roll G. Comparison of Biliary Complications Rates After Brain Death, Donation After Circulatory Death, and Living-Donor Liver Transplantation: A Single-Center Cohort Study. Transpl Int 2022; 35:10855. [PMID: 36568142 PMCID: PMC9780276 DOI: 10.3389/ti.2022.10855] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022]
Abstract
Donation-after-circulatory-death (DCD), donation-after-brain-death (DBD), and living-donation (LD) are the three possible options for liver transplantation (LT), each with unique benefits and complication rates. We aimed to compare DCD-, DBD-, and LD-LT-specific graft survival and biliary complications (BC). We collected data on 138 DCD-, 3,027 DBD- and 318 LD-LTs adult recipients from a single center and analyzed patient/graft survival. BC (leak and anastomotic/non-anastomotic stricture (AS/NAS)) were analyzed in a subset of 414 patients. One-/five-year graft survival were 88.6%/70.0% for DCD-LT, 92.6%/79.9% for DBD-LT, and, 91.7%/82.9% for LD-LT. DCD-LTs had a 1.7-/1.3-fold adjusted risk of losing their graft compared to DBD-LT and LD-LT, respectively (p < 0.010/0.403). Bile leaks were present in 10.1% (DCD-LTs), 7.2% (DBD-LTs), and 36.2% (LD-LTs) (ORs, DBD/LD vs. DCD: 0.7/4.2, p = 0.402/<0.001). AS developed in 28.3% DCD-LTs, 18.1% DBD-LTs, and 43.5% LD-LTs (ORs, DBD/LD vs. DCD: 0.5/1.8, p = 0.018/0.006). NAS was present in 15.2% DCD-LTs, 1.4% DBDs-LT, and 4.3% LD-LTs (ORs, DBD/LD vs. DCD: 0.1/0.3, p = 0.001/0.005). LTs w/o BC had better liver graft survival compared to any other groups with BC. DCD-LT and LD-LT had excellent graft survival despite significantly higher BC rates compared to DBD-LT. DCD-LT represents a valid alternative whose importance should increase further with machine/perfusion systems.
Collapse
Affiliation(s)
- Raphael Pascal Henri Meier
- University of California, San Francisco, San Francisco, CA, United States,University of Maryland, Baltimore, Baltimore, MD, United States,*Correspondence: Raphael Pascal Henri Meier,
| | - Yvonne Kelly
- University of California, San Francisco, San Francisco, CA, United States
| | - Hillary Braun
- University of California, San Francisco, San Francisco, CA, United States
| | - Daniel Maluf
- University of Maryland, Baltimore, Baltimore, MD, United States
| | - Chris Freise
- University of California, San Francisco, San Francisco, CA, United States
| | - Nancy Ascher
- University of California, San Francisco, San Francisco, CA, United States
| | - John Roberts
- University of California, San Francisco, San Francisco, CA, United States
| | - Garrett Roll
- University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
24
|
Li JH, Xu X, Wang YF, Xie HY, Chen JY, Dong NG, Badiwala M, Xin LM, Ribeiro RVP, Yin H, Zhang H, Zhang JZ, Huo F, Yang JY, Yang HJ, Pan H, Li SG, Qiao YB, Luo J, Li HY, Jia JJ, Yu H, Liang H, Yang SJ, Wang H, Liu ZY, Zhang LC, Hu XY, Wu H, Hu YQ, Tang PF, Ye QF, Zheng SS. Chinese expert consensus on organ protection of transplantation (2022 edition). Hepatobiliary Pancreat Dis Int 2022; 21:516-526. [PMID: 36376226 DOI: 10.1016/j.hbpd.2022.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Jian-Hui Li
- Department of Hepatobiliary and Pancreatic Surgery, Department of Liver Transplantation, Shulan (Hangzhou) Hospital, Zhejiang Shuren University School of Medicine, Hangzhou 310022, China
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Yan-Feng Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan 430062, China
| | - Hai-Yang Xie
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Jing-Yu Chen
- Wuxi Lung Transplantation Center, Wuxi People's Hospital Affiliated with Nanjing Medical University, Wuxi 214023, China
| | - Nian-Guo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mitesh Badiwala
- Peter Munk Cardiac Centre, Toronto General Hospital-University Health Network, Toronto, Canada
| | - Li-Ming Xin
- School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China
| | | | - Hao Yin
- Organ Transplant Center, Shanghai Changzheng Hospital, Shanghai 200003, China
| | - Hao Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100039, China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100039, China
| | - Jian-Zheng Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100039, China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100039, China
| | - Feng Huo
- Department of Surgery, General Hospital of Guangzhou Military Command of PLA, Guangzhou 510040, China
| | - Jia-Yin Yang
- Department of Liver Surgery, Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Hong-Ji Yang
- Organ Transplantation Center, Sichuan Provincial People's Hospital and School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Hui Pan
- Department of Lung Transplantation, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shao-Guang Li
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100039, China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100039, China
| | - Yin-Biao Qiao
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Jia Luo
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Hao-Yu Li
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Jun-Jun Jia
- Division of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Hao Yu
- Division of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Han Liang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan 430062, China
| | - Si-Jia Yang
- Department of Lung Transplantation, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Hao Wang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100039, China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100039, China
| | - Zhong-Yang Liu
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100039, China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100039, China
| | - Li-Cheng Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100039, China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100039, China
| | - Xiao-Yi Hu
- Division of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Hao Wu
- Division of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yi-Qing Hu
- Division of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Pei-Fu Tang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100039, China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100039, China
| | - Qi-Fa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan 430062, China
| | - Shu-Sen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, Department of Liver Transplantation, Shulan (Hangzhou) Hospital, Zhejiang Shuren University School of Medicine, Hangzhou 310022, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China; Division of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
25
|
Young EN, Dogan M, Watkins C, Bajwa A, Eason JD, Kuscu C, Kuscu C. A Review of Defatting Strategies for Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2022; 23:ijms231911805. [PMID: 36233107 PMCID: PMC9569609 DOI: 10.3390/ijms231911805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/30/2022] Open
Abstract
Non-alcoholic fatty liver disease is a huge cause of chronic liver failure around the world. This condition has become more prevalent as rates of metabolic syndrome, type 2 diabetes, and obesity have also escalated. The unfortunate outcome for many people is liver cirrhosis that warrants transplantation or being unable to receive a transplant since many livers are discarded due to high levels of steatosis. Over the past several years, however, a great deal of work has gone into understanding the pathophysiology of this disease as well as possible treatment options. This review summarizes various defatting strategies including in vitro use of pharmacologic agents, machine perfusion of extracted livers, and genomic approaches targeting specific proteins. The goal of the field is to reduce the number of necessary transplants and expand the pool of organs available for use.
Collapse
|
26
|
Panconesi R, Widmer J, Carvalho MF, Eden J, Dondossola D, Dutkowski P, Schlegel A. Mitochondria and ischemia reperfusion injury. Curr Opin Organ Transplant 2022; 27:434-445. [PMID: 35950880 DOI: 10.1097/mot.0000000000001015] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW This review describes the role of mitochondria in ischemia-reperfusion-injury (IRI). RECENT FINDINGS Mitochondria are the power-house of our cells and play a key role for the success of organ transplantation. With their respiratory chain, mitochondria are the main energy producers, to fuel metabolic processes, control cellular signalling and provide electrochemical integrity. The mitochondrial metabolism is however severely disturbed when ischemia occurs. Cellular energy depletes rapidly and various metabolites, including Succinate accumulate. At reperfusion, reactive oxygen species are immediately released from complex-I and initiate the IRI-cascade of inflammation. Prior to the development of novel therapies, the underlying mechanisms should be explored to target the best possible mitochondrial compound. A clinically relevant treatment should recharge energy and reduce Succinate accumulation before organ implantation. While many interventions focus instead on a specific molecule, which may inhibit downstream IRI-inflammation, mitochondrial protection can be directly achieved through hypothermic oxygenated perfusion (HOPE) before transplantation. SUMMARY Mitochondria are attractive targets for novel molecules to limit IRI-associated inflammation. Although dynamic preservation techniques could serve as delivery tool for new therapeutic interventions, their own inherent mechanism should not only be studied, but considered as key treatment to reduce mitochondrial injury, as seen with the HOPE-approach.
Collapse
Affiliation(s)
- Rebecca Panconesi
- General Surgery 2U-Liver Transplant Unit, Department of Surgery, A.O.U. Città della Salute e della Scienza di Torino, University of Turin, Turin
- Hepatobiliary Unit, Careggi University Hospital, University of Florence, Florence, Italy
| | - Jeannette Widmer
- Swiss HPB and Transplant Center, Department of Visceral Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
| | | | - Janina Eden
- Swiss HPB and Transplant Center, Department of Visceral Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
| | - Daniele Dondossola
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Center for Preclinical Research, Milan, Italy
| | - Philipp Dutkowski
- Swiss HPB and Transplant Center, Department of Visceral Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
| | - Andrea Schlegel
- Hepatobiliary Unit, Careggi University Hospital, University of Florence, Florence, Italy
- Swiss HPB and Transplant Center, Department of Visceral Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Center for Preclinical Research, Milan, Italy
| |
Collapse
|
27
|
Patrono D, De Stefano N, Martins PN, Romagnoli R. Highlights from the Turin international workshop on liver machine perfusion. Artif Organs 2022; 46:2511-2517. [PMID: 36149237 DOI: 10.1111/aor.14407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 11/28/2022]
Abstract
The 1st Turin international workshop on liver machine perfusion, which was held in Turin (Italy) on June 10th-11th, 2022, gathered more than 50 key opinion leaders and more than 220 delegates from 11 countries. The purpose of the meeting was discussing several aspects of liver machine perfusion in liver transplantation, including the state of the art, real-world clinical indications, and potential developments of this technology. We herein provide a brief summary of the evidence, perspectives and controversies presented during the meeting.
Collapse
Affiliation(s)
- Damiano Patrono
- General Surgery 2U - Liver Transplant Unit, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, University of Torino, Turin, Italy
| | - Nicola De Stefano
- General Surgery 2U - Liver Transplant Unit, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, University of Torino, Turin, Italy
| | - Paulo N Martins
- UMass Memorial Health, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Renato Romagnoli
- General Surgery 2U - Liver Transplant Unit, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, University of Torino, Turin, Italy
| | | |
Collapse
|
28
|
Widmer J, Eden J, Carvalho MF, Dutkowski P, Schlegel A. Machine Perfusion for Extended Criteria Donor Livers: What Challenges Remain? J Clin Med 2022; 11:5218. [PMID: 36079148 PMCID: PMC9457017 DOI: 10.3390/jcm11175218] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/30/2022] [Indexed: 11/28/2022] Open
Abstract
Based on the renaissance of dynamic preservation techniques, extended criteria donor (ECD) livers reclaimed a valuable eligibility in the transplantable organ pool. Being more vulnerable to ischemia, ECD livers carry an increased risk of early allograft dysfunction, primary non-function and biliary complications and, hence, unveiled the limitations of static cold storage (SCS). There is growing evidence that dynamic preservation techniques-dissimilar to SCS-mitigate reperfusion injury by reconditioning organs prior transplantation and therefore represent a useful platform to assess viability. Yet, a debate is ongoing about the advantages and disadvantages of different perfusion strategies and their best possible applications for specific categories of marginal livers, including organs from donors after circulatory death (DCD) and brain death (DBD) with extended criteria, split livers and steatotic grafts. This review critically discusses the current clinical spectrum of livers from ECD donors together with the various challenges and posttransplant outcomes in the context of standard cold storage preservation. Based on this, the potential role of machine perfusion techniques is highlighted next. Finally, future perspectives focusing on how to achieve higher utilization rates of the available donor pool are highlighted.
Collapse
Affiliation(s)
- Jeannette Widmer
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, 8091 Zürich, Switzerland
| | - Janina Eden
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, 8091 Zürich, Switzerland
| | - Mauricio Flores Carvalho
- Hepatobiliary Unit, Department of Clinical and Experimental Medicine, University of Florence, AOU Careggi, 50139 Florence, Italy
| | - Philipp Dutkowski
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, 8091 Zürich, Switzerland
| | - Andrea Schlegel
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, 8091 Zürich, Switzerland
- Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Centre of Preclinical Research, 20122 Milan, Italy
| |
Collapse
|
29
|
Asong-Fontem N, Panisello-Rosello A, Beghdadi N, Lopez A, Rosello-Catafau J, Adam R. Pre-Ischemic Hypothermic Oxygenated Perfusion Alleviates Protective Molecular Markers of Ischemia-Reperfusion Injury in Rat Liver. Transplant Proc 2022; 54:1954-1969. [PMID: 35961798 DOI: 10.1016/j.transproceed.2022.05.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/26/2022] [Accepted: 05/22/2022] [Indexed: 11/16/2022]
Abstract
To expand the pool of organs, hypothermic oxygenated perfusion (HOPE), one of the most promising perfusion protocols, is currently performed after cold storage (CS) at transplant centers (HOPE-END). We investigated a new timing for HOPE, hypothesizing that performing HOPE before CS (HOPE-PRE) could boost mitochondrial protection allowing the graft to better cope with the accumulation of oxidative stress during CS. We analyzed liver injuries at 3 different levels. Histologic analysis demonstrated that, compared to classical CS (CTRL), the HOPE-PRE group showed significantly less ischemic necrosis compared to CTRL vs HOPE-END. From a biochemical standpoint, transaminases were lower after 2 hours of reperfusion in the CTRL vs HOPE-PRE group, which marked decreased liver injury. qPCR analysis on 37 genes involved in ischemia-reperfusion injury revealed protection in HOPE-PRE and HOPE-END compared to CTRL mediated through similar pathways. However, the CTRL vs HOPE-PRE group demonstrated an increased transcriptional level for protective genes compared to the CTRL vs HOPE-END group. This study provides insights on novel biomarkers that could be used in the clinic to better characterize graft quality improving transplantation outcomes.
Collapse
Affiliation(s)
- Njikem Asong-Fontem
- Université Paris-Saclay, Faculté de Médecine, Unité Chronothérapie, Cancers et Transplantation, Kremlin-Bicêtre, France.
| | - Arnau Panisello-Rosello
- Experimental Hepatic Ischemia-Reperfusion Unit, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Catalonia, Spain
| | - Nassiba Beghdadi
- Université Paris-Saclay, Faculté de Médecine, Unité Chronothérapie, Cancers et Transplantation, Kremlin-Bicêtre, France; Center Hépato-Biliaire, APHP Hôpital Universitaire Paul Brousse, Villejuif, France
| | - Alexandre Lopez
- Université Paris-Saclay, Faculté de Médecine, Unité Chronothérapie, Cancers et Transplantation, Kremlin-Bicêtre, France
| | - Joan Rosello-Catafau
- Experimental Hepatic Ischemia-Reperfusion Unit, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Catalonia, Spain
| | - René Adam
- Université Paris-Saclay, Faculté de Médecine, Unité Chronothérapie, Cancers et Transplantation, Kremlin-Bicêtre, France; Center Hépato-Biliaire, APHP Hôpital Universitaire Paul Brousse, Villejuif, France
| |
Collapse
|
30
|
Parente A, Flores Carvalho M, Eden J, Dutkowski P, Schlegel A. Mitochondria and Cancer Recurrence after Liver Transplantation-What Is the Benefit of Machine Perfusion? Int J Mol Sci 2022; 23:9747. [PMID: 36077144 PMCID: PMC9456431 DOI: 10.3390/ijms23179747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Tumor recurrence after liver transplantation has been linked to multiple factors, including the recipient's tumor burden, donor factors, and ischemia-reperfusion injury (IRI). The increasing number of livers accepted from extended criteria donors has forced the transplant community to push the development of dynamic perfusion strategies. The reason behind this progress is the urgent need to reduce the clinical consequences of IRI. Two concepts appear most beneficial and include either the avoidance of ischemia, e.g., the replacement of cold storage by machine perfusion, or secondly, an endischemic organ improvement through perfusion in the recipient center prior to implantation. While several concepts, including normothermic perfusion, were found to reduce recipient transaminase levels and early allograft dysfunction, hypothermic oxygenated perfusion also reduced IRI-associated post-transplant complications and costs. With the impact on mitochondrial injury and subsequent less IRI-inflammation, this endischemic perfusion was also found to reduce the recurrence of hepatocellular carcinoma after liver transplantation. Firstly, this article highlights the contributing factors to tumor recurrence, including the surgical and medical tissue trauma and underlying mechanisms of IRI-associated inflammation. Secondly, it focuses on the role of mitochondria and associated interventions to reduce cancer recurrence. Finally, the role of machine perfusion technology as a delivery tool and as an individual treatment is discussed together with the currently available clinical studies.
Collapse
Affiliation(s)
- Alessandro Parente
- The Liver Unit, Queen Elizabeth University Hospital Birmingham, Birmingham B15 2GW, UK
| | - Mauricio Flores Carvalho
- Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Centre of Preclinical Research, 20122 Milan, Italy
| | - Janina Eden
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Philipp Dutkowski
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Andrea Schlegel
- Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Centre of Preclinical Research, 20122 Milan, Italy
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
31
|
Liver perfusion strategies: what is best and do ischemia times still matter? Curr Opin Organ Transplant 2022; 27:285-299. [PMID: 35438271 DOI: 10.1097/mot.0000000000000963] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW This review describes recent developments in the field of liver perfusion techniques. RECENT FINDINGS Dynamic preservation techniques are increasingly tested due to the urgent need to improve the overall poor donor utilization. With their exposure to warm ischemia, livers from donors after circulatory death (DCD) transmit additional risk for severe complications after transplantation. Although the superiority of dynamic approaches compared to static-cold-storage is widely accepted, the number of good quality studies remains limited. Most risk factors, particularly donor warm ischemia, and accepted thresholds are inconsistently reported, leading to difficulties to assess the impact of new preservation technologies. Normothermic regional perfusion (NRP) leads to good outcomes after DCD liver transplantation, with however short ischemia times. While randomized controlled trials (RCT) with NRP are lacking, results from the first RCTs with ex-situ perfusion were reported. Hypothermic oxygenated perfusion was shown to protect DCD liver recipients from ischemic cholangiopathy. In contrast, endischemic normothermic perfusion seems to not impact on the development of biliary complications, although this evidence is only available from retrospective studies. SUMMARY Dynamic perfusion strategies impact posttransplant outcomes and are increasingly commissioned in various countries along with more evidence from RCTs. Transparent reporting of risk and utilization with uniform definitions is required to compare the role of different preservation strategies in DCD livers with prolonged ischemia times.
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW Organ transplantation is one of the miracles in medicine in the 20th century. However, in the current practice, all the donor organs suffer from ischemia/reperfusion injury (IRI), which compromise transplant outcomes and limits organ availability. Continuous efforts have been made in organ machine perfusion to ameliorate IRI. In 2017, ischemia-free organ transplantation (IFOT) was first proposed with the aim of complete avoidance of IRI in organ transplantation. The purpose of this review is to highlight the latest progresses in IFOT. RECENT FINDINGS The feasibility of IFOT has been validated in liver, kidney, and heart transplantation. The results of the first nonrandomized controlled study demonstrate that ischemia-free liver transplantation (IFLT) may improve transplant outcomes and increase organ availability. Furthermore, laboratory results, including the absence of the characteristic pathological changes, gene transcription and metabolic reprogramming, as well as sterile inflammation activation in IFLT grafts, suggest the virtual avoidance of graft IRI in IFLT. SUMMARY IFOT might change the current practice by abrogating graft IRI. IFOT also provides a unique model to investigate the interaction between allograft IRI and rejection. The next steps will be to simplify the technique, make long-distance transportation possible and evaluate cost-effectiveness.
Collapse
Affiliation(s)
- Zhiyong Guo
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China
| | - Tao Luo
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China
| | - Runbing Mo
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China
| | - Qiang Zhao
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China
| | - Xiaoshun He
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China
| |
Collapse
|
33
|
Riediger C, Schweipert J, Weitz J. Prädiktoren für erfolgreiche Lebertransplantationen und Risikofaktoren. Zentralbl Chir 2022; 147:369-380. [DOI: 10.1055/a-1866-4197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
ZusammenfassungDie Lebertransplantation ist die einzige kurative Therapieoption einer chronischen Leberinsuffizienz im Endstadium. Daneben stellen onkologische Lebererkrankungen wie das HCC eine weitere
Indikation für die Lebertransplantation dar, ebenso wie das akute Leberversagen.Seit der ersten erfolgreichen Lebertransplantation durch Professor Thomas E. Starzl im Jahr 1967 haben sich nicht nur die chirurgischen, immunologischen und anästhesiologischen Techniken
und Möglichkeiten geändert, sondern auch die Indikationen und das Patientengut. Hinzu kommt, dass die Empfänger ein zunehmendes Lebensalter und damit einhergehend mehr Begleiterkrankungen
aufweisen.Die Zahl an Lebertransplantationen ist weltweit weiter ansteigend. Es benötigen aber mehr Menschen eine Lebertransplantation, als Organe zur Verfügung stehen. Dies liegt am zunehmenden
Bedarf an Spenderorganen bei gleichzeitig weiter rückläufiger Zahl postmortaler Organspenden.Diese Diskrepanz zwischen Spenderorganen und Empfängern kann nur zu einem kleinen Teil durch Split-Lebertransplantationen oder die Leberlebendspende kompensiert werden.Um den Spenderpool zu erweitern, werden zunehmend auch marginale Organe, die nur die erweiterten Spenderkriterien („extended donor criteria [EDC]“) erfüllen, allokiert. In manchen Ländern
zählen hierzu auch die sogenannten DCD-Organe (DCD: „donation after cardiac death“), d. h. Organe, die erst nach dem kardiozirkulatorischen Tod des Spenders entnommen werden.Es ist bekannt, dass marginale Spenderorgane mit einem erhöhten Risiko für ein schlechteres Transplantat- und Patientenüberleben nach Lebertransplantation einhergehen.Um die Qualität marginaler Spenderorgane zu verbessern, hat sich eine rasante Entwicklung der Techniken der Organkonservierung über die letzten Jahre gezeigt. Mit der maschinellen
Organperfusion besteht beispielsweise die Möglichkeit, die Organqualität deutlich zu verbessern. Insgesamt haben sich die Risikokonstellationen von Spenderorgan und Transplantatempfänger
deutlich geändert.Aus diesem Grunde ist es von großer Bedeutung, spezifische Prädiktoren für eine erfolgreiche Lebertransplantation sowie die entsprechenden Risikofaktoren für einen schlechten postoperativen
Verlauf zu kennen, um das bestmögliche Transplantat- und Patientenüberleben nach Lebertransplantation zu ermöglichen.Diese Einflussfaktoren, inklusive möglicher Risiko-Scores, sollen hier ebenso wie die neuen technischen Möglichkeiten in der Lebertransplantation beleuchtet werden.
Collapse
Affiliation(s)
- Carina Riediger
- Klinik und Poliklinik für Viszeral-, Thorax-, und Gefäßchirurgie, Technische Universität Dresden, Dresden, Deutschland
- Klinik und Poliklinik für Viszeral-, Thorax-, und Gefäßchirurgie, Universitätsklinikum Carl Gustav Carus an der TU Dresden, Dresden, Deutschland
| | - Johannes Schweipert
- Klinik und Poliklinik für Viszeral-, Thorax-, und Gefäßchirurgie, Technische Universität Dresden, Dresden, Deutschland
- Klinik und Poliklinik für Viszeral-, Thorax-, und Gefäßchirurgie, Universitätsklinikum Carl Gustav Carus an der TU Dresden, Dresden, Deutschland
| | - Jürgen Weitz
- Klinik und Poliklinik für Viszeral-, Thorax-, und Gefäßchirurgie, Technische Universität Dresden, Dresden, Deutschland
- Klinik und Poliklinik für Viszeral-, Thorax-, und Gefäßchirurgie, Universitätsklinikum Carl Gustav Carus an der TU Dresden, Dresden, Deutschland
| |
Collapse
|
34
|
Panconesi R, Flores Carvalho M, Dondossola D, Muiesan P, Dutkowski P, Schlegel A. Impact of Machine Perfusion on the Immune Response After Liver Transplantation - A Primary Treatment or Just a Delivery Tool. Front Immunol 2022; 13:855263. [PMID: 35874758 PMCID: PMC9304705 DOI: 10.3389/fimmu.2022.855263] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/31/2022] [Indexed: 12/12/2022] Open
Abstract
The frequent use of marginal livers forces transplant centres to explore novel technologies to improve organ quality and outcomes after implantation. Organ perfusion techniques are therefore frequently discussed with an ever-increasing number of experimental and clinical studies. Two main approaches, hypothermic and normothermic perfusion, are the leading strategies to be introduced in clinical practice in many western countries today. Despite this success, the number of studies, which provide robust data on the underlying mechanisms of protection conveyed through this technology remains scarce, particularly in context of different stages of ischemia-reperfusion-injury (IRI). Prior to a successful clinical implementation of machine perfusion, the concept of IRI and potential key molecules, which should be addressed to reduce IRI-associated inflammation, requires a better exploration. During ischemia, Krebs cycle metabolites, including succinate play a crucial role with their direct impact on the production of reactive oxygen species (ROS) at mitochondrial complex I upon reperfusion. Such features are even more pronounced under normothermic conditions and lead to even higher levels of downstream inflammation. The direct consequence appears with an activation of the innate immune system. The number of articles, which focus on the impact of machine perfusion with and without the use of specific perfusate additives to modulate the inflammatory cascade after transplantation is very small. This review describes first, the subcellular processes found in mitochondria, which instigate the IRI cascade together with proinflammatory downstream effects and their link to the innate immune system. Next, the impact of currently established machine perfusion strategies is described with a focus on protective mechanisms known for the different perfusion approaches. Finally, the role of such dynamic preservation techniques to deliver specific agents, which appear currently of interest to modulate this posttransplant inflammation, is discussed together with future aspects in this field.
Collapse
Affiliation(s)
- Rebecca Panconesi
- Department of Clinical and Experimental Medicine, Hepatobiliary Unit, Careggi University Hospital, University of Florence, Florence, Italy
- General Surgery 2U-Liver Transplant Unit, Department of Surgery, A.O.U. Città della Salute e della, Scienza di Torino, University of Turin, Turin, Italy
| | - Mauricio Flores Carvalho
- Department of Clinical and Experimental Medicine, Hepatobiliary Unit, Careggi University Hospital, University of Florence, Florence, Italy
| | - Daniele Dondossola
- General and Liver Transplant Surgery Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore, Policlinico and University of Milan, Milan, Italy
| | - Paolo Muiesan
- Department of Clinical and Experimental Medicine, Hepatobiliary Unit, Careggi University Hospital, University of Florence, Florence, Italy
- General and Liver Transplant Surgery Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore, Policlinico and University of Milan, Milan, Italy
| | - Philipp Dutkowski
- Department of Surgery and Transplantation, Swiss Hepato-Pancreato-Biliary (HPB) Center, University Hospital Zurich, Zurich, Switzerland
| | - Andrea Schlegel
- Department of Clinical and Experimental Medicine, Hepatobiliary Unit, Careggi University Hospital, University of Florence, Florence, Italy
- General and Liver Transplant Surgery Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore, Policlinico and University of Milan, Milan, Italy
- Department of Surgery and Transplantation, Swiss Hepato-Pancreato-Biliary (HPB) Center, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
35
|
Organ Transportation Innovations and Future Trends. CURRENT TRANSPLANTATION REPORTS 2022. [DOI: 10.1007/s40472-021-00341-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
36
|
Schlegel A, Porte R, Dutkowski P. Protective mechanisms and current clinical evidence of hypothermic oxygenated machine perfusion (HOPE) in preventing post-transplant cholangiopathy. J Hepatol 2022; 76:1330-1347. [PMID: 35589254 DOI: 10.1016/j.jhep.2022.01.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/10/2022] [Accepted: 01/31/2022] [Indexed: 12/12/2022]
Abstract
The development of cholangiopathies after liver transplantation impacts on the quality and duration of graft and patient survival, contributing to higher costs as numerous interventions are required to treat strictures and infections at the biliary tree. Prolonged donor warm ischaemia time in combination with additional cold storage are key risk factors for the development of biliary strictures. Based on this, the clinical implementation of dynamic preservation strategies is a current hot topic in the field of donation after circulatory death (DCD) liver transplantation. Despite various retrospective studies reporting promising results, also regarding biliary complications, there are only a few randomised-controlled trials on machine perfusion. Recently, the group from Groningen has published the first randomised-controlled trial on hypothermic oxygenated perfusion (HOPE), demonstrating a significant reduction of symptomatic ischaemic cholangiopathies with the use of a short period of HOPE before DCD liver implantation. The most likely mechanism for this important effect, also shown in several experimental studies, is based on mitochondrial reprogramming under hypothermic aerobic conditions, e.g. exposure to oxygen in the cold, with a controlled and slow metabolism of ischaemically accumulated succinate and simultaneous ATP replenishment. This unique feature prevents mitochondrial oxidative injury and further downstream tissue inflammation. HOPE treatment therefore supports livers by protecting them from ischaemia-reperfusion injury (IRI), and thereby also prevents the development of post-transplant biliary injury. With reduced IRI-associated inflammation, recipients are also protected from activation of the innate immune system, with less acute rejections seen after HOPE.
Collapse
Affiliation(s)
- Andrea Schlegel
- Department of Visceral Surgery and Transplantation, University Hospital Zurich, Swiss HPB and Transplant Center, Zurich, Switzerland; General and Liver Transplant Surgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20100 Milan, Italy
| | - Robert Porte
- Department of Surgery, Surgical Research Laboratory, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Philipp Dutkowski
- Department of Visceral Surgery and Transplantation, University Hospital Zurich, Swiss HPB and Transplant Center, Zurich, Switzerland.
| |
Collapse
|
37
|
Bardallo RG, da Silva RT, Carbonell T, Palmeira C, Folch-Puy E, Roselló-Catafau J, Adam R, Panisello-Rosello A. Liver Graft Hypothermic Static and Oxygenated Perfusion (HOPE) Strategies: A Mitochondrial Crossroads. Int J Mol Sci 2022; 23:5742. [PMID: 35628554 PMCID: PMC9143961 DOI: 10.3390/ijms23105742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/06/2022] [Accepted: 05/18/2022] [Indexed: 12/14/2022] Open
Abstract
Marginal liver grafts, such as steatotic livers and those from cardiac death donors, are highly vulnerable to ischemia-reperfusion injury that occurs in the complex route of the graft from "harvest to revascularization". Recently, several preservation methods have been developed to preserve liver grafts based on hypothermic static preservation and hypothermic oxygenated perfusion (HOPE) strategies, either combined or alone. However, their effects on mitochondrial functions and their relevance have not yet been fully investigated, especially if different preservation solutions/effluents are used. Ischemic liver graft damage is caused by oxygen deprivation conditions during cold storage that provoke alterations in mitochondrial integrity and function and energy metabolism breakdown. This review deals with the relevance of mitochondrial machinery in cold static preservation and how the mitochondrial respiration function through the accumulation of succinate at the end of cold ischemia is modulated by different preservation solutions such as IGL-2, HTK, and UW (gold-standard reference). IGL-2 increases mitochondrial integrity and function (ALDH2) when compared to UW and HTK. This mitochondrial protection by IGL-2 also extends to protective HOPE strategies when used as an effluent instead of Belzer MP. The transient oxygenation in HOPE sustains the mitochondrial machinery at basal levels and prevents, in part, the accumulation of energy metabolites such as succinate in contrast to those that occur in cold static preservation conditions. Additionally, several additives for combating oxygen deprivation and graft energy metabolism breakdown during hypothermic static preservation such as oxygen carriers, ozone, AMPK inducers, and mitochondrial UCP2 inhibitors, and whether they are or not to be combined with HOPE, are presented and discussed. Finally, we affirm that IGL-2 solution is suitable for protecting graft mitochondrial machinery and simplifying the complex logistics in clinical transplantation where traditional (static preservation) and innovative (HOPE) strategies may be combined. New mitochondrial markers are presented and discussed. The final goal is to take advantage of marginal livers to increase the pool of suitable organs and thereby shorten patient waiting lists at transplantation clinics.
Collapse
Affiliation(s)
- Raquel G. Bardallo
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain; (R.G.B.); (T.C.)
| | - Rui T. da Silva
- Center for Neuroscience and Cell Biology, Universidade Coimbra, 3000-370 Coimbra, Portugal; (R.T.d.S.); (C.P.)
- Experimental Pathology Department, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC)-IDIBAPS, CIBEREHD, 08036 Barcelona, Catalonia, Spain; (E.F.-P.); (J.R.-C.)
| | - Teresa Carbonell
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain; (R.G.B.); (T.C.)
| | - Carlos Palmeira
- Center for Neuroscience and Cell Biology, Universidade Coimbra, 3000-370 Coimbra, Portugal; (R.T.d.S.); (C.P.)
| | - Emma Folch-Puy
- Experimental Pathology Department, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC)-IDIBAPS, CIBEREHD, 08036 Barcelona, Catalonia, Spain; (E.F.-P.); (J.R.-C.)
| | - Joan Roselló-Catafau
- Experimental Pathology Department, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC)-IDIBAPS, CIBEREHD, 08036 Barcelona, Catalonia, Spain; (E.F.-P.); (J.R.-C.)
| | - René Adam
- Centre Hépato-Biliaire, AP-PH, Hôpital Paul Brousse, 94800 Villejuif, France;
| | - Arnau Panisello-Rosello
- Experimental Pathology Department, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC)-IDIBAPS, CIBEREHD, 08036 Barcelona, Catalonia, Spain; (E.F.-P.); (J.R.-C.)
- Centre Hépato-Biliaire, AP-PH, Hôpital Paul Brousse, 94800 Villejuif, France;
| |
Collapse
|
38
|
Zhou W, Peng S, Du P, Zhou P, Xue C, Ye Q. Hypothermic oxygenated perfusion combined with TJ-M2010-5 alleviates hepatic ischemia-reperfusion injury in donation after circulatory death. Int Immunopharmacol 2022; 105:108541. [DOI: 10.1016/j.intimp.2022.108541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 11/05/2022]
|
39
|
Parente A, Tirotta F, Ronca V, Schlegel A, Muiesan P. Donation after Circulatory Death Liver Transplantation in Paediatric Recipients. TRANSPLANTOLOGY 2022; 3:91-102. [DOI: 10.3390/transplantology3010009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
Waiting list mortality together, with limited availability of organs, are one of the major challenges in liver transplantation (LT). Especially in the paediatric population, another limiting factor is the scarcity of transplantable liver grafts due to additional concerns regarding graft size matching. In adults, donation after circulatory death (DCD) liver grafts have been used to expand the donor pool with satisfactory results. Although several studies suggest that DCD livers could also be used in paediatric recipients with good outcomes, their utilisation in children is still limited to a small number of reports. Novel organ perfusion strategies could be used to improve organ quality and help to increase the number of DCD grafts utilised for children. With the current manuscript, we present the available literature of LT using DCD grafts in paediatric recipients, discussing current challenges with the use of these livers in children and how machine perfusion technologies could be of impact in the future.
Collapse
Affiliation(s)
| | - Fabio Tirotta
- Liver Unit, Queen Elizabeth Hospital, Birmingham B15 2TH, UK
| | - Vincenzo Ronca
- Liver Unit, Queen Elizabeth Hospital, Birmingham B15 2TH, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Andrea Schlegel
- General and Liver Transplant Surgery Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico and University of Milan, 20122 Milan, Italy
- Swiss HPB and Transplant Center, Department of Visceral Surgery and Transplantation, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Paolo Muiesan
- General and Liver Transplant Surgery Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico and University of Milan, 20122 Milan, Italy
| |
Collapse
|
40
|
Teodoro JS, Da Silva RT, Machado IF, Panisello-Roselló A, Roselló-Catafau J, Rolo AP, Palmeira CM. Shaping of Hepatic Ischemia/Reperfusion Events: The Crucial Role of Mitochondria. Cells 2022; 11:688. [PMID: 35203337 PMCID: PMC8870414 DOI: 10.3390/cells11040688] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 12/10/2022] Open
Abstract
Hepatic ischemia reperfusion injury (HIRI) is a major hurdle in many clinical scenarios, including liver resection and transplantation. Various studies and countless surgical events have led to the observation of a strong correlation between HIRI induced by liver transplantation and early allograft-dysfunction development. The detrimental impact of HIRI has driven the pursuit of new ways to alleviate its adverse effects. At the core of HIRI lies mitochondrial dysfunction. Various studies, from both animal models and in clinical settings, have clearly shown that mitochondrial function is severely hampered by HIRI and that its preservation or restoration is a key indicator of successful organ recovery. Several strategies have been thus implemented throughout the years, targeting mitochondrial function. This work briefly discusses some the most utilized approaches, ranging from surgical practices to pharmacological interventions and highlights how novel strategies can be investigated and implemented by intricately discussing the way mitochondrial function is affected by HIRI.
Collapse
Affiliation(s)
- João S. Teodoro
- MitoLab, Department of Life Sciences, University of Coimbra, 3000 Coimbra, Portugal; (J.S.T.); (A.P.R.)
- MitoLab, Mitochondria, Metabolism and Disease Group, Center for Neurosciences and Cell Biology, Faculdade de Medicina, University of Coimbra, 3000 Coimbra, Portugal; (R.T.D.S.); (I.F.M.)
- IIIUC–Institute of Interdisciplinary Research, University of Coimbra, Pólo II da Universidade de Coimbra, 3000 Coimbra, Portugal
| | - Rui T. Da Silva
- MitoLab, Mitochondria, Metabolism and Disease Group, Center for Neurosciences and Cell Biology, Faculdade de Medicina, University of Coimbra, 3000 Coimbra, Portugal; (R.T.D.S.); (I.F.M.)
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB), CSIC-IDIBAPS, 08036 Barcelona, Spain; (A.P.-R.); (J.R.-C.)
| | - Ivo F. Machado
- MitoLab, Mitochondria, Metabolism and Disease Group, Center for Neurosciences and Cell Biology, Faculdade de Medicina, University of Coimbra, 3000 Coimbra, Portugal; (R.T.D.S.); (I.F.M.)
- IIIUC–Institute of Interdisciplinary Research, University of Coimbra, Pólo II da Universidade de Coimbra, 3000 Coimbra, Portugal
| | - Arnau Panisello-Roselló
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB), CSIC-IDIBAPS, 08036 Barcelona, Spain; (A.P.-R.); (J.R.-C.)
| | - Joan Roselló-Catafau
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB), CSIC-IDIBAPS, 08036 Barcelona, Spain; (A.P.-R.); (J.R.-C.)
| | - Anabela P. Rolo
- MitoLab, Department of Life Sciences, University of Coimbra, 3000 Coimbra, Portugal; (J.S.T.); (A.P.R.)
- MitoLab, Mitochondria, Metabolism and Disease Group, Center for Neurosciences and Cell Biology, Faculdade de Medicina, University of Coimbra, 3000 Coimbra, Portugal; (R.T.D.S.); (I.F.M.)
| | - Carlos M. Palmeira
- MitoLab, Department of Life Sciences, University of Coimbra, 3000 Coimbra, Portugal; (J.S.T.); (A.P.R.)
- MitoLab, Mitochondria, Metabolism and Disease Group, Center for Neurosciences and Cell Biology, Faculdade de Medicina, University of Coimbra, 3000 Coimbra, Portugal; (R.T.D.S.); (I.F.M.)
| |
Collapse
|
41
|
Wang S, Zeng X, Yang Y, Li S, Wang Y, Ye Q, Fan X. Hypothermic oxygenated perfusion ameliorates ischemia-reperfusion injury of fatty liver in mice via Brg1/Nrf2/HO-1 axis. Artif Organs 2022; 46:229-238. [PMID: 34570898 DOI: 10.1111/aor.14076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/05/2021] [Accepted: 09/14/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND After cold storage (CS) and subsequent transplantation, fatty liver is more inclined to develop liver dysfunction and serious postoperative complications in contrast to healthy liver. Hypothermic oxygenated perfusion (HOPE) is a safe and efficacious system, which can repair fatty liver and reduce ischemia-reperfusion injury. The aim of this research is to investigate the function of Brg1/Nrf2/HO-1 signaling pathway in the protective effect of HOPE on ischemia-reperfusion injury of fatty liver. METHODS The mouse fatty liver model was successfully established and verified by hematoxylin-eosin (HE) staining and oil red O staining. The animals were divided into Control group, CS group and HOPE group. The levels of liver enzyme and lactate in the perfusate were used to measure liver function and cellular metabolism. HE staining and TUNEL staining were utilized to assess the tissue structure and apoptosis, respectively. The levels of superoxide dismutase, malondialdehyde and reactive oxygen species in liver tissue were measured to quantitatively analyze the degree of oxidative stress, and the expressions of protein Brg1, Nrf2 and HO-1 were detected by means of the western blot. Double-labeling immunofluorescence was to explore the colocalization of Brg1 and Nrf2. RESULTS The injury of the liver in the CS group was more serious than that in the control group. However, HOPE could significantly reduce the injury, which was manifested by the improvement of liver function and cellular metabolism, and the lower degrees of apoptosis, necrosis and oxidative stress. Furthermore, the expressions of Brg1, Nrf2 and HO-1 in the HOPE group were significantly increased than those in the CS group. CONCLUSIONS One-hour HOPE treatment before reperfusion can obviously improve the injury of fatty liver in mice. The underlying mechanism may be that the interaction of Brg1 and Nrf2 can selectively activate the transcription of HO-1.
Collapse
Affiliation(s)
- Shengjie Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan, China
| | - Xianpeng Zeng
- Department of Urology, Union Hospital, Affiliated TongJi Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yunying Yang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan, China
| | - Shiyi Li
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan, China
| | - Yanfeng Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan, China
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan, China
- Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, The 3rd Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoli Fan
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan, China
| |
Collapse
|
42
|
A Clinical Tool to Guide Selection and Utilization of Marginal Donor Livers With Graft Steatosis in Liver Transplantation. Transplant Direct 2022; 8:e1280. [PMID: 35047662 PMCID: PMC8759620 DOI: 10.1097/txd.0000000000001280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/03/2021] [Accepted: 11/19/2021] [Indexed: 11/26/2022] Open
Abstract
Supplemental Digital Content is available in the text. Background. Donor liver biopsy (DLBx) in liver transplantation provides information on allograft quality; however, predicting outcomes from these allografts remains difficult. Methods. Between 2006 and 2015, 16 691 transplants with DLBx were identified from the Standard Transplant Analysis and Research database. Cox proportional hazard regression analyses identified donor and recipient characteristics associated with 30-d, 90-d, 1-y, and 3-y graft survival. A composite model, the Liver Transplant After Biopsy (LTAB) score, was created. The Mini-LTAB was then derived consisting of only donor age, macrosteatosis on DLBx, recipient model for end-stage liver disease score, and cold ischemic time. Risk groups were identified for each score and graft survival was evaluated. P values <0.05 were considered significant. Results. The LTAB model used 14 variables and 5 risk groups and identified low-, mild-, moderate-, high-, and severe-risk groups. Compared with moderate-risk recipients, severe-risk recipients had increased risk of graft loss at 30 d (hazard ratio, 3.270; 95% confidence interval, 2.568-4.120) and at 1 y (2.258; 1.928-2.544). The Mini-LTAB model identified low-, moderate-, and high-risk groups. Graft survival in Mini-LTAB high-risk transplants was significantly lower than moderate- or low-risk transplants at all time points. Conclusions. The LTAB and Mini-LTAB scores represent guiding principles and provide clinically useful tools for the successful selection and utilization of marginal allografts in liver transplantation.
Collapse
|
43
|
Mitochondrial respiratory chain and Krebs cycle enzyme function in human donor livers subjected to end-ischaemic hypothermic machine perfusion. PLoS One 2021; 16:e0257783. [PMID: 34710117 PMCID: PMC8553115 DOI: 10.1371/journal.pone.0257783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/09/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Marginal human donor livers are highly susceptible to ischaemia reperfusion injury and mitochondrial dysfunction. Oxygenation during hypothermic machine perfusion (HMP) was proposed to protect the mitochondria but the mechanism is unclear. Additionally, the distribution and uptake of perfusate oxygen during HMP are unknown. This study aimed to examine the feasibility of mitochondrial function analysis during end-ischaemic HMP, assess potential mitochondrial viability biomarkers, and record oxygenation kinetics. METHODS This was a randomised pilot study using human livers retrieved for transplant but not utilised. Livers (n = 38) were randomised at stage 1 into static cold storage (n = 6), hepatic artery HMP (n = 7), and non-oxygen supplemented portal vein HMP (n = 7) and at stage 2 into oxygen supplemented and non-oxygen supplemented portal vein HMP (n = 11 and 7, respectively). Mitochondrial parameters were compared between the groups and between low- and high-risk marginal livers based on donor history, organ steatosis and preservation period. The oxygen delivery efficiency was assessed in additional 6 livers using real-time measurements of perfusate and parenchymal oxygen. RESULTS The change in mitochondrial respiratory chain (complex I, II, III, IV) and Krebs cycle enzyme activity (aconitase, citrate synthase) before and after 4-hour preservation was not different between groups in both study stages (p > 0.05). Low-risk livers that could have been used clinically (n = 8) had lower complex II-III activities after 4-hour perfusion, compared with high-risk livers (73 nmol/mg/min vs. 113 nmol/mg/min, p = 0.01). Parenchymal pO2 was consistently lower than perfusate pO2 (p ≤ 0.001), stabilised in 28 minutes compared to 3 minutes in perfusate (p = 0.003), and decreased faster upon oxygen cessation (75 vs. 36 minutes, p = 0.003). CONCLUSIONS Actively oxygenated and air-equilibrated end-ischaemic HMP did not induce oxidative damage of aconitase, and respiratory chain complexes remained intact. Mitochondria likely respond to variable perfusate oxygen levels by adapting their respiratory function during end-ischaemic HMP. Complex II-III activities should be further investigated as viability biomarkers.
Collapse
|
44
|
Lonati C, Schlegel A, Battistin M, Merighi R, Carbonaro M, Dongiovanni P, Leonardi P, Zanella A, Dondossola D. Effluent Molecular Analysis Guides Liver Graft Allocation to Clinical Hypothermic Oxygenated Machine Perfusion. Biomedicines 2021; 9:1444. [PMID: 34680561 PMCID: PMC8533371 DOI: 10.3390/biomedicines9101444] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 01/14/2023] Open
Abstract
Hypothermic-oxygenated-machine-perfusion (HOPE) allows assessment/reconditioning of livers procured from high-risk donors before transplantation. Graft referral to HOPE mostly depends on surgeons' subjective judgment, as objective criteria are still insufficient. We investigated whether analysis of effluent fluids collected upon organ flush during static-cold-storage can improve selection criteria for HOPE utilization. Effluents were analyzed to determine cytolysis enzymes, metabolites, inflammation-related mediators, and damage-associated-molecular-patterns. Molecular profiles were assessed by unsupervised cluster analysis. Differences between "machine perfusion (MP)-yes" vs. "MP-no"; "brain-death (DBD) vs. donation-after-circulatory-death (DCD)"; "early-allograft-dysfunction (EAD)-yes" vs. "EAD-no" groups, as well as correlation between effluent variables and transplantation outcome, were investigated. Livers assigned to HOPE (n = 18) showed a different molecular profile relative to grafts transplanted without this procedure (n = 21, p = 0.021). Increases in the inflammatory mediators PTX3 (p = 0.048), CXCL8/IL-8 (p = 0.017), TNF-α (p = 0.038), and ANGPTL4 (p = 0.010) were observed, whereas the anti-inflammatory cytokine IL-10 was reduced (p = 0.007). Peculiar inflammation, cell death, and coagulation signatures were observed in fluids collected from DCD livers compared to those from DBD grafts. AST (p = 0.034), ALT (p = 0.047), and LDH (p = 0.047) were higher in the "EAD-yes" compared to the "EAD-no" group. Cytolysis markers and hyaluronan correlated with recipient creatinine, AST, and ICU stay. The study demonstrates that effluent molecular analysis can provide directions about the use of HOPE.
Collapse
Affiliation(s)
- Caterina Lonati
- Center for Preclinical Research, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.B.); (R.M.); (D.D.)
| | - Andrea Schlegel
- Hepatobiliary Unit, Careggi University Hospital, University of Florence, 50139 Florence, Italy;
- Swiss HPB and Transplant Center, Department of Visceral Surgery and Transplantation, University Hospital Zurich, 8000 Zurich, Switzerland
| | - Michele Battistin
- Center for Preclinical Research, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.B.); (R.M.); (D.D.)
| | - Riccardo Merighi
- Center for Preclinical Research, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.B.); (R.M.); (D.D.)
| | - Margherita Carbonaro
- General and Liver Transplant Sugery Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy;
| | - Patrizia Leonardi
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; (P.L.); (A.Z.)
| | - Alberto Zanella
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; (P.L.); (A.Z.)
- Department of Anesthesia and Critical Care, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Daniele Dondossola
- Center for Preclinical Research, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.B.); (R.M.); (D.D.)
- General and Liver Transplant Sugery Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; (P.L.); (A.Z.)
| |
Collapse
|
45
|
Tien C, Remulla D, Kwon Y, Emamaullee J. Contemporary strategies to assess and manage liver donor steatosis: a review. Curr Opin Organ Transplant 2021; 26:474-481. [PMID: 34524179 PMCID: PMC8447219 DOI: 10.1097/mot.0000000000000893] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Due to a persistent shortage of donor livers, attention has turned toward ways of utilizing marginal grafts, particularly those with steatosis, without incurring inferior outcomes. Here we review the evaluation and utilization of steatotic liver allografts, highlight recently published data, and discuss novel methods of graft rehabilitation. RECENT FINDINGS Although severe liver allograft (>60%) steatosis has been associated with inferior graft and recipient outcomes, mild (<30%) steatosis has not. There is ongoing debate regarding safe utilization of grafts with moderate (30-60%) steatosis. Presently, no established protocols for evaluating steatosis in donor candidates or utilizing such grafts exist. Liver biopsy is accepted as the gold standard technique, though noninvasive methods have shown promise in accurately predicting steatosis. More recently, machine perfusion has been shown to enhance ex situ liver function and reduce steatosis, emerging as a potential means of optimizing steatotic grafts prior to transplantation. SUMMARY Steatotic liver allografts constitute a large proportion of deceased donor organs. Further work is necessary to define safe upper limits for the acceptable degree of steatosis, develop standardized evaluation protocols, and establish utilization guidelines that prioritize safety. Machine perfusion has shown promise in rehabilitating steatotic grafts and offers the possibility of expanding the deceased donor pool.
Collapse
Affiliation(s)
- Christine Tien
- Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Daphne Remulla
- Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Yong Kwon
- Keck School of Medicine, University of Southern California, Los Angeles, CA
- Department of Surgery, University of Southern California, Los Angeles, CA
| | - Juliet Emamaullee
- Keck School of Medicine, University of Southern California, Los Angeles, CA
- Department of Surgery, University of Southern California, Los Angeles, CA
| |
Collapse
|
46
|
Patrono D, Roggio D, Mazzeo AT, Catalano G, Mazza E, Rizza G, Gambella A, Rigo F, Leone N, Elia V, Dondossola D, Lonati C, Fanelli V, Romagnoli R. Clinical assessment of liver metabolism during hypothermic oxygenated machine perfusion using microdialysis. Artif Organs 2021; 46:281-295. [PMID: 34516020 PMCID: PMC9292750 DOI: 10.1111/aor.14066] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/17/2021] [Accepted: 09/05/2021] [Indexed: 12/12/2022]
Abstract
Background While growing evidence supports the use of hypothermic oxygenated machine perfusion (HOPE) in liver transplantation, its effects on liver metabolism are still incompletely understood. Methods To assess liver metabolism during HOPE using microdialysis (MD), we conducted an open‐label, observational pilot study on 10 consecutive grafts treated with dual‐HOPE (D‐HOPE). Microdialysate and perfusate levels of glucose, lactate, pyruvate, glutamate, and flavin mononucleotide (FMN) were measured during back table preparation and D‐HOPE and correlated to graft function and patient outcome. Results Median (IQR) MD and D‐HOPE time was 228 (210, 245) and 116 (103, 143) min. Three grafts developed early allograft dysfunction (EAD), with one requiring retransplantation. During D‐HOPE, MD glucose and lactate levels increased (ANOVA = 9.88 [p = 0.01] and 3.71 [p = 0.08]). Their 2nd‐hour levels were higher in EAD group and positively correlated with L‐GrAFT score. 2nd‐hour MD glucose and lactate were also positively correlated with cold ischemia time, macrovesicular steatosis, weight gain during D‐HOPE, and perfusate FMN. These correlations were not apparent when perfusate levels were considered. In contrast, MD FMN levels invariably dropped steeply after D‐HOPE start, whereas perfusate FMN was higher in dysfunctioning grafts. Conclusion MD glucose and lactate during D‐HOPE are markers of hepatocellular injury and could represent additional elements of the viability assessment.
Collapse
Affiliation(s)
- Damiano Patrono
- General Surgery 2U - Liver Transplant Unit, Department of Surgical Sciences, A.O.U. Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Dorotea Roggio
- General Surgery 2U - Liver Transplant Unit, Department of Surgical Sciences, A.O.U. Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Anna Teresa Mazzeo
- Anaesthesia, Critical Care and Emergency, A.O.U. Department of Surgical Sciences, Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy.,Anesthesia and Intensive Care, Department of Adult and Pediatric Pathology, University of Messina, Messina, Italy
| | - Giorgia Catalano
- General Surgery 2U - Liver Transplant Unit, Department of Surgical Sciences, A.O.U. Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Elena Mazza
- General Surgery 2U - Liver Transplant Unit, Department of Surgical Sciences, A.O.U. Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Giorgia Rizza
- General Surgery 2U - Liver Transplant Unit, Department of Surgical Sciences, A.O.U. Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Alessandro Gambella
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Federica Rigo
- General Surgery 2U - Liver Transplant Unit, Department of Surgical Sciences, A.O.U. Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Nicola Leone
- General Surgery 2U - Liver Transplant Unit, Department of Surgical Sciences, A.O.U. Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Vincenzo Elia
- Anaesthesia, Critical Care and Emergency, A.O.U. Department of Surgical Sciences, Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Daniele Dondossola
- General and Liver Transplant Surgery Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi of Milan, Milan, Italy
| | - Caterina Lonati
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Vito Fanelli
- Anaesthesia, Critical Care and Emergency, A.O.U. Department of Surgical Sciences, Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Renato Romagnoli
- General Surgery 2U - Liver Transplant Unit, Department of Surgical Sciences, A.O.U. Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| |
Collapse
|
47
|
Lin F, Zhen F, Yan X, Shaojun Y, Guizhu P, Yanfeng W, Qifa Y. Hypothermic oxygenated perfusion with defatting cocktail further improves steatotic liver grafts in a transplantation rat model. Artif Organs 2021; 45:E304-E316. [PMID: 33908066 DOI: 10.1111/aor.13976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/06/2021] [Accepted: 03/19/2021] [Indexed: 12/18/2022]
Abstract
In this study, we evaluated the restoring and defatting effect of hypothermic oxygenated perfusion (HOPE) on severe steatotic liver grafts with a defatting cocktail (DF) in a rat model. Severe (≥60%) hepatic macrosteatosis was induced by a high-fat diet (HFD) for 6 weeks, after which the rats were randomly divided into four following groups: Control group, with lean livers being preserved in static cold storage (SCS) at 0°C-4°C for 45 minutes; SCS group, with a steatotic liver graft (SLG) being preserved in SCS at 0°C-4°C for 4 hours; HOPE group, where SLG was perfused with 3-hours HOPE followed by 1-hours SCS; and HOPE + DF group, HOPE with the addition of DF. Graft function after orthotopic liver transplantation was assessed in terms of mitochondrial function (adenosine triphosphate [ATP], Glycogen), endoplasmic reticulum stress (PPY, GRP78, CHOP, and ATF-6), cell apoptosis (Tunel assay, Caspase-3), inflammatory level (HMGB1, TLR4, IL-1β, IL-6. TNF-α, Factor V), and posttransplantation survival. HOPE protected steatotic liver grafts from microcirculation disturbance and endoplasmic reticulum stress and then promoted ATP and glycogen synthesis that improved mitochondrial function. Meanwhile, under conditions of ischemia-reperfusion injury, it prevented nuclear injury and endothelial damage by suppressing the release of an inflammatory mediator. The high efficacy of HOPE was enhanced after the addition of the DF. DF agents cannot promote the lipid decomposition of the steatotic liver graft at 0°C-4°C, but they can further improve steatotic liver and postoperative survival compared to the HOPE. The defatted steatotic liver grafts can be safely used in rat orthotopic liver transplantation.
Collapse
Affiliation(s)
- Fan Lin
- Hubei Key Laboratory of Medical Technology on Transplantation, Transplant Center of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan, PR China
| | - Fu Zhen
- Hubei Key Laboratory of Medical Technology on Transplantation, Transplant Center of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan, PR China
| | - Xiong Yan
- Hubei Key Laboratory of Medical Technology on Transplantation, Transplant Center of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan, PR China
| | - Ye Shaojun
- Hubei Key Laboratory of Medical Technology on Transplantation, Transplant Center of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan, PR China
| | - Peng Guizhu
- Hubei Key Laboratory of Medical Technology on Transplantation, Transplant Center of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan, PR China
| | - Wang Yanfeng
- Hubei Key Laboratory of Medical Technology on Transplantation, Transplant Center of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan, PR China
| | - Ye Qifa
- Hubei Key Laboratory of Medical Technology on Transplantation, Transplant Center of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan, PR China
- Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, The 3rd Xiangya Hospital of Central South University, Changsha, PR China
| |
Collapse
|
48
|
Schlegel A, Foley DP, Savier E, Flores Carvalho M, De Carlis L, Heaton N, Taner CB. Recommendations for Donor and Recipient Selection and Risk Prediction: Working Group Report From the ILTS Consensus Conference in DCD Liver Transplantation. Transplantation 2021; 105:1892-1903. [PMID: 34416750 DOI: 10.1097/tp.0000000000003825] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although the utilization of donation after circulatory death donors (DCDs) for liver transplantation (LT) has increased steadily, much controversy remains, and no common acceptance criteria exist with regard to donor and recipient risk factors and prediction models. A consensus conference was organized by International Liver Transplantation Society on January 31, 2020, in Venice, Italy, to review the current clinical practice worldwide regarding DCD-LT and to develop internationally accepted guidelines. The format of the conference was based on the grade system. International experts in this field were allocated to 6 working groups and prepared evidence-based recommendations to answer-specific questions considering the currently available literature. Working group members and conference attendees served as jury to edit and confirm the final recommendations presented at the end of the conference by each working group separately. This report presents the final statements and recommendations provided by working group 2, covering the entire spectrum of donor and recipient risk factors and prediction models in DCD-LT.
Collapse
Affiliation(s)
- Andrea Schlegel
- The Liver Unit, Queen Elizabeth Hospital Birmingham, Edgbaston, Birmingham, United Kingdom
- Hepatobiliary Unit, Department of Clinical and Experimental Medicine, University of Florence, AOU Careggi, Florence, Italy
| | - David P Foley
- University of Wisconsin School of Medicine and Public Health, William S. Middleton VA Medical Center, Madison, WI
| | - Eric Savier
- Department of Hepatobiliary Surgery and Liver Transplantation, Sorbonne Université Pitié-Salpêtrière Hospital, Paris, France
| | - Mauricio Flores Carvalho
- Hepatobiliary Unit, Department of Clinical and Experimental Medicine, University of Florence, AOU Careggi, Florence, Italy
| | - Luciano De Carlis
- Department of General Surgery and Transplantation, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Nigel Heaton
- Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - C Burcin Taner
- Department of Transplant, Mayo Clinic Florida, Jacksonville, FL
| |
Collapse
|
49
|
Dondossola D, Ravaioli M, Lonati C, Maroni L, Pini A, Accardo C, Germinario G, Antonelli B, Odaldi F, Zanella A, Siniscalchi A, Cescon M, Rossi G. The Role of Ex Situ Hypothermic Oxygenated Machine Perfusion and Cold Preservation Time in Extended Criteria Donation After Circulatory Death and Donation After Brain Death. Liver Transpl 2021; 27:1130-1143. [PMID: 33835695 DOI: 10.1002/lt.26067] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 03/08/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
Hypothermic oxygenated machine perfusion (HOPE) has the potential to counterbalance the detrimental consequences of cold and warm ischemia time (WIT) in both donation after brain death (DBD) and donation after circulatory death (DCD). Herein we investigated the protective effects of HOPE in extended criteria donor (ECD) DBD and overextended WIT DCD grafts. The present retrospective case series included 50 livers subjected to end-ischemic HOPE or dual DHOPE in 2 liver transplantation (LT) centers from January 2018 to December 2019. All DCD donors were subjected to normothermic regional perfusion before organ procurement. Results are expressed as median (interquartile range [IQR]). In the study period, 21 grafts were derived from overextended WIT DCD donors (total WIT 54 [IQR, 40-60] minutes and 75% classified as futile), whereas 29 were from ECD DBD. A total of 3 biliary complications and 1 case of ischemia-type biliary lesion were diagnosed. The rate of early allograft dysfunction (EAD) was 20%, and those patients had higher Comprehensive Complication Index scores. Through a changing point analysis, cold preservation time >9 hours was associated with prolonged hospital stays (P = 0.02), higher rates of EAD (P = 0.009), and worst post-LT complications (P = 0.02). Logistic regression analyses indicated a significant relationship between cold preservation time and EAD. No differences were shown in terms of the early post-LT results between LTs performed with DCD and DBD. Overall, our data are fully comparable with benchmark criteria in LT. In conclusion, the application of DHOPE obtained satisfactory and promising results using ECD-DBD and overextended DCD grafts. Our findings indicate the need to reduce cold preservation time also in the setting of DHOPE, particularly for grafts showing poor quality.
Collapse
Affiliation(s)
- Daniele Dondossola
- General and Liver Transplant Surgery Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Matteo Ravaioli
- Department of General Surgery and Transplantation, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Caterina Lonati
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Lorenzo Maroni
- Department of General Surgery and Transplantation, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Alessia Pini
- Department of Statistical Sciences, Università Cattolica del Sacro Cuore, Milan, Italy
| | - Caterina Accardo
- General and Liver Transplant Surgery Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Giuliana Germinario
- Department of General Surgery and Transplantation, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Barbara Antonelli
- General and Liver Transplant Surgery Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Federica Odaldi
- Department of General Surgery and Transplantation, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Alberto Zanella
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.,Department of Anesthesia and Critical Care, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Antonio Siniscalchi
- Department of General Surgery and Transplantation, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Matteo Cescon
- Department of General Surgery and Transplantation, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giorgio Rossi
- General and Liver Transplant Surgery Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
50
|
Liu H, Man K. New Insights in Mechanisms and Therapeutics for Short- and Long-Term Impacts of Hepatic Ischemia Reperfusion Injury Post Liver Transplantation. Int J Mol Sci 2021; 22:ijms22158210. [PMID: 34360975 PMCID: PMC8348697 DOI: 10.3390/ijms22158210] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023] Open
Abstract
Liver transplantation has been identified as the most effective treatment for patients with end-stage liver diseases. However, hepatic ischemia reperfusion injury (IRI) is associated with poor graft function and poses a risk of adverse clinical outcomes post transplantation. Cell death, including apoptosis, necrosis, ferroptosis and pyroptosis, is induced during the acute phase of liver IRI. The release of danger-associated molecular patterns (DAPMs) and mitochondrial dysfunction resulting from the disturbance of metabolic homeostasis initiates graft inflammation. The inflammation in the short term exacerbates hepatic damage, leading to graft dysfunction and a higher incidence of acute rejection. The subsequent changes in the graft immune environment due to hepatic IRI may result in chronic rejection, cancer recurrence and fibrogenesis in the long term. In this review, we mainly focus on new mechanisms of inflammation initiated by immune activation related to metabolic alteration in the short term during liver IRI. The latest mechanisms of cancer recurrence and fibrogenesis due to the long-term impact of inflammation in hepatic IRI is also discussed. Furthermore, the development of therapeutic strategies, including ischemia preconditioning, pharmacological inhibitors and machine perfusion, for both attenuating acute inflammatory injury and preventing late-phase disease recurrence, will be summarized in the context of clinical, translational and basic research.
Collapse
|