1
|
Li Y, Gupta A, Papas BN, Aponte-Diaz D, Harris JM, Misumi I, Whitmire JK, Cameron CE, Morgan M, Lemon SM. Noncanonical Poly(A) Polymerase TENT4 Drives Expression of Subgenomic Hepatitis A Virus RNAs in Infected Cells. Viruses 2025; 17:665. [PMID: 40431677 PMCID: PMC12115875 DOI: 10.3390/v17050665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 04/29/2025] [Accepted: 04/30/2025] [Indexed: 05/29/2025] Open
Abstract
Both hepatitis B virus (HBV), an hepadnavirus with a DNA genome, and hepatitis A virus (HAV), a picornavirus, require the TRAMP-like host ZCCHC14-TENT4 complex for efficient replication. However, whereas HBV requires the nucleotidyltransferase activity of TENT4 to extend and stabilize the 3' poly(A) tails of mRNA transcribed from its genome, the role played by TENT4 in HAV replication is uncertain. HAV proteins are synthesized directly from its genomic RNA, which possesses a 3' poly(A) tail, with its length and composition presumably maintained by 3Dpol-catalyzed RNA transcription during its replicative cycle. Using nanopore long-read sequencing of RNA from infected cells, we confirm here that the length of the HAV 3' poly(A) tail is not altered by treating infected cells with RG7834, a small molecule TENT4 inhibitor with potent anti-HAV activity. Despite this, TENT4 catalytic activity is essential for HAV replication. Surprisingly, nanopore sequencing revealed a low abundance of HAV subgenomic RNAs (hsRNAs) that extend from the 5' end of the genome to a site within the 5' untranslated RNA (5'UTR) immediately downstream of a stem-loop to which the ZCCHC14-TENT4 complex is recruited. These hsRNAs are polyadenylated, and their abundance is sharply reduced by RG7834 treatment, implying they are likely products of TENT4. Similar subgenomic RNAs were not identified in poliovirus-infected cells. hsRNAs are present not only in HAV-infected cell culture but also in the liver of HAV-infected mice, where they represent 1-3% of all HAV transcripts, suggesting their physiological relevance. However, transfecting exogenous hsRNA into TENT4-depleted cells failed to rescue HAV replication, leaving the functional role of hsRNA unresolved. These findings reveal a novel picornaviral subgenomic RNA species while highlighting mechanistic differences in the manner in which HAV and HBV exploit the host ZCCHC4-TENT4 complex for their replication.
Collapse
Affiliation(s)
- You Li
- Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ankit Gupta
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, USA; (A.G.); (M.M.)
| | - Brian N. Papas
- Integrative Bioinformatics, Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, USA;
| | - David Aponte-Diaz
- Department of Microbiology & Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (D.A.-D.); (J.M.H.); (C.E.C.)
| | - Jayden M. Harris
- Department of Microbiology & Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (D.A.-D.); (J.M.H.); (C.E.C.)
| | - Ichiro Misumi
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.M.); (J.K.W.)
| | - Jason K. Whitmire
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.M.); (J.K.W.)
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Craig E. Cameron
- Department of Microbiology & Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (D.A.-D.); (J.M.H.); (C.E.C.)
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marcos Morgan
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, USA; (A.G.); (M.M.)
| | - Stanley M. Lemon
- Department of Microbiology & Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (D.A.-D.); (J.M.H.); (C.E.C.)
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
2
|
Misumi I, Yue Z, Jiang Z, Karampoori A, Whitmire JK, Cullen JM, Block T, Lemon SM, Du Y, Li Y. Hepato-selective dihydroquinolizinones active against hepatitis A virus in vitro and in vivo. Antiviral Res 2025; 237:106145. [PMID: 40118118 DOI: 10.1016/j.antiviral.2025.106145] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/15/2025] [Accepted: 03/16/2025] [Indexed: 03/23/2025]
Abstract
Despite the considerable clinical and economic burden imposed by hepatitis A virus (HAV) infection, both globally and in U.S., there are currently no available antiviral therapies for the treatment of type A hepatitis. Here we describe novel third-generation hepato-selective dihydroquinolizinones (HS-DHQs) with cellular uptake mediated by transport via hepatocyte-specific solute organic anion transporter family members 1B1 and 1B3 (OATP1B1-B3). The lead HS-DHQ compound, HS83128, demonstrates robust inhibition of the host cell TENT4A/B terminal nucleotidyltransferases required for efficient HAV RNA synthesis (IC50 6-25nM), and potent antiviral activity against HAV in cell culture (EC50 0.6 nM). Pharmacokinetic studies in CD-1 mice receiving comparable oral doses of HS83128 and a first-generation dihydroquinolizinone, RG7834, revealed a 5-fold increase in intrahepatic drug concentration and more than 10-fold improvement in liver versus nervous system tissue selectivity. Twice-daily oral administration of HS83128 rapidly arrested viral replication in HAV-infected Ifnar1-/- mice, reducing fecal virus shedding and cytokine markers of hepatic inflammation and reversing virus-induced liver injury. The hepato-selective nature of HS83128 may reduce the risk of neurologic and reproductive track toxicities observed with long-term administration of other dihydroquinolizinones, making it a candidate for the first antiviral therapy of hepatitis A.
Collapse
Affiliation(s)
- Ichiro Misumi
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7292, USA
| | - Zhizhou Yue
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA; Harlingene Life Sciences, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Zhengyuan Jiang
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Anilkumar Karampoori
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA; Harlingene Life Sciences, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Jason K Whitmire
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7292, USA; Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - John M Cullen
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27607, USA
| | - Timothy Block
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA; Harlingene Life Sciences, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Stanley M Lemon
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7292, USA; Department of Microbiology & Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7292, USA
| | - Yanming Du
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA; Harlingene Life Sciences, 3805 Old Easton Road, Doylestown, PA, 18902, USA.
| | - You Li
- Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
3
|
Prescott NA, Biaco T, Mansisidor A, Bram Y, Rendleman J, Faulkner SC, Lemmon AA, Lim C, Tiersky R, Salataj E, Garcia-Martinez L, Borges RL, Morey L, Hamard PJ, Koche RP, Risca VI, Schwartz RE, David Y. A nucleosome switch primes hepatitis B virus infection. Cell 2025; 188:2111-2126.e21. [PMID: 39983728 DOI: 10.1016/j.cell.2025.01.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 12/20/2024] [Accepted: 01/24/2025] [Indexed: 02/23/2025]
Abstract
Chronic hepatitis B virus (HBV) infection is an incurable pathogen responsible for causing liver disease and hepatocellular carcinoma. During the genesis of infection, HBV establishes an independent minichromosome consisting of the viral covalently closed circular DNA (cccDNA) genome and host histones. The viral X gene must be expressed immediately upon infection to induce degradation of the host silencing factor, the Smc5/6 complex. However, the relationship between cccDNA chromatinization and X gene transcription remains poorly understood. By establishing a reconstituted viral minichromosome platform, we found that nucleosome occupancy in cccDNA regulates X transcription. We corroborated these findings in situ and further showed that the chromatin-destabilizing molecule CBL137 inhibits full-length X transcription and HBV infection in primary human hepatocytes. Our results shed light on a long-standing paradox and represent a potential therapeutic approach for the treatment of chronic HBV infection.
Collapse
Affiliation(s)
- Nicholas A Prescott
- Tri-Institutional PhD Program in Chemical Biology, New York, NY 10065, USA; Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tracy Biaco
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Andrés Mansisidor
- Laboratory of Genome Architecture and Dynamics, The Rockefeller University, New York, NY 10065, USA
| | - Yaron Bram
- Division of Gastroenterology & Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Justin Rendleman
- Laboratory of Genome Architecture and Dynamics, The Rockefeller University, New York, NY 10065, USA
| | - Sarah C Faulkner
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Abigail A Lemmon
- Tri-Institutional PhD Program in Chemical Biology, New York, NY 10065, USA; Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Christine Lim
- Division of Gastroenterology & Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Rachel Tiersky
- Division of Gastroenterology & Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Eralda Salataj
- Epigenetics Research Innovation Laboratory, Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Liliana Garcia-Martinez
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, Miami, FL 33136, USA; Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Rodrigo L Borges
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, Miami, FL 33136, USA; Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lluis Morey
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, Miami, FL 33136, USA; Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Pierre-Jacques Hamard
- Epigenetics Research Innovation Laboratory, Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Richard P Koche
- Epigenetics Research Innovation Laboratory, Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Viviana I Risca
- Laboratory of Genome Architecture and Dynamics, The Rockefeller University, New York, NY 10065, USA.
| | - Robert E Schwartz
- Division of Gastroenterology & Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Department of Physiology, Biophysics, and System Biology, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Yael David
- Tri-Institutional PhD Program in Chemical Biology, New York, NY 10065, USA; Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA; Department of Physiology, Biophysics, and System Biology, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
4
|
Tanaka Y. Clinical potential of SAG-524: A novel HBV RNA destabilizer with a unique mechanism of action. Glob Health Med 2025; 7:64-66. [PMID: 40026852 PMCID: PMC11866905 DOI: 10.35772/ghm.2024.01078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/16/2024] [Accepted: 12/25/2024] [Indexed: 03/05/2025]
Abstract
SAG-524 is a novel, oral HBV RNA destabilizer developed to address the limitations of treatment with nucleos(t)ide analogues (NAs), which are effective against HBV DNA but show limited efficacy in reducing hepatitis B surface antigen (HBsAg) levels. SAG-524 exerts its effect by destabilizing HBV RNA by shortening the poly(A) tail, which leads to a significant reduction of both pgRNA and PreS/S mRNA. This destabilization seems to be specific for HBV RNA molecules. The mechanism involves the recruitment of PAPD5/7 by ZCCHC14 to the HBV RNA, where guanine is incorporated into the poly(A) tail to protect against degradation. SAG-524 disrupts this process by directly targeting PAPD5, thus destabilizing HBV RNA. In preclinical trials, oral administration of SAG-524 reduced serum HBsAg levels in HBV-infected PXB mice. When combined with NAs or capsid assembly modulators (CAMs), significant reductions in HBsAg, HBV DNA, and intrahepatic covalently closed circular DNA were observed. Safety studies conducted over 13 weeks in mice and monkeys revealed no significant toxicity, demonstrating the drug demonstrated a favorable safety profile. In conclusion, the novel mechanism of action, high oral bioavailability, and strong suppression of HBsAg make SAG-524 a promising candidate for future therapeutic use. The potential for combination therapy with NAs or CAMs underscores its capacity to contribute to achieving a functional cure for chronic HBV infection.
Collapse
Affiliation(s)
- Yasuhito Tanaka
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
5
|
Lee H, Park SK, Lim J. Dual Roles of Host Zinc Finger Proteins in Viral RNA Regulation: Decay or Stabilization. Int J Mol Sci 2024; 25:11138. [PMID: 39456919 PMCID: PMC11508327 DOI: 10.3390/ijms252011138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Host defense mechanisms against viral infections have been extensively studied over the past few decades and continue to be a crucial area of research in understanding human diseases caused by acute and chronic viral infections. Among various host mechanisms, recent findings have revealed that several host RNA-binding proteins play pivotal roles in regulating viral RNA to suppress viral replication and eliminate infection. We have focused on identifying host proteins that function as regulators of viral RNA, specifically targeting viral components without adversely affecting host cells. Interestingly, these proteins exhibit dual roles in either restricting viral infections or promoting viral persistence by interacting with cofactors to either degrade viral genomes or stabilize them. In this review, we discuss RNA-binding zinc finger proteins as viral RNA regulators, classified into two major types: ZCCCH-type and ZCCHC-type. By highlighting the functional diversity of these zinc finger proteins, this review provides insights into their potential as therapeutic targets for the development of novel antiviral therapies.
Collapse
Affiliation(s)
- Hyokyoung Lee
- Department of Pharmacy, School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Sung-Kyun Park
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Junghyun Lim
- Department of Pharmacy, School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
6
|
Pastor F, Charles E, Di Vona C, Chapelle M, Rivoire M, Passot G, Chabot B, de la Luna S, Lucifora J, Durantel D, Salvetti A. The dual-specificity kinase DYRK1A interacts with the Hepatitis B virus genome and regulates the production of viral RNA. PLoS One 2024; 19:e0311655. [PMID: 39405283 PMCID: PMC11478819 DOI: 10.1371/journal.pone.0311655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
The genome of Hepatitis B virus (HBV) persists in infected hepatocytes as a nuclear episome (cccDNA) that is responsible for the transcription of viral genes and viral rebound, following antiviral treatment arrest in chronically infected patients. There is currently no clinically approved therapeutic strategy able to efficiently target cccDNA (Lucifora J 2016). The development of alternative strategies aiming at permanently abrogating HBV RNA production requires a thorough understanding of cccDNA transcriptional and post-transcriptional regulation. In a previous study, we discovered that 1C8, a compound that inhibits the phosphorylation of some cellular RNA-binding proteins, could decrease the level of HBV RNAs. Here, we aimed at identifying kinases responsible for this effect. Among the kinases targeted by 1C8, we focused on DYRK1A, a dual-specificity kinase that controls the transcription of cellular genes by phosphorylating transcription factors, histones, chromatin regulators as well as RNA polymerase II. The results of a combination of genetic and chemical approaches using HBV-infected hepatocytes, indicated that DYRK1A positively regulates the production of HBV RNAs. In addition, we found that DYRK1A associates with cccDNA, and stimulates the production of HBV nascent RNAs. Finally, reporter gene assays showed that DYRK1A up-regulates the activity of the HBV enhancer 1/X promoter in a sequence-dependent manner. Altogether, these results indicate that DYRK1A is a proviral factor that may participate in the HBV life cycle by stimulating the production of HBx, a viral factor absolutely required to trigger the complete cccDNA transcriptional program.
Collapse
Affiliation(s)
- Florentin Pastor
- International Center for Research in Infectiology (CIRI), INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France
| | - Emilie Charles
- International Center for Research in Infectiology (CIRI), INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France
| | - Chiara Di Vona
- Genome Biology Program, Center for Genomic Regulation (CRG), and CIBER of Rare Diseases, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Maëlys Chapelle
- International Center for Research in Infectiology (CIRI), INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France
| | | | - Guillaume Passot
- Service de Chirurgie Générale et Oncologique, Hôpital Lyon Sud, Hospices Civils de Lyon Et CICLY, EA3738, Université Lyon 1, Lyon, France
| | - Benoit Chabot
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Susana de la Luna
- Genome Biology Program, Center for Genomic Regulation (CRG), and CIBER of Rare Diseases, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Julie Lucifora
- International Center for Research in Infectiology (CIRI), INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France
| | - David Durantel
- International Center for Research in Infectiology (CIRI), INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France
| | - Anna Salvetti
- International Center for Research in Infectiology (CIRI), INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France
| |
Collapse
|
7
|
Hossain MG, Ueda K. Regulation of Hepatitis B Virus Replication by Modulating Endoplasmic Reticulum Stress (ER-Stress). Int J Microbiol 2024; 2024:9117453. [PMID: 39246409 PMCID: PMC11379510 DOI: 10.1155/2024/9117453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/21/2024] [Indexed: 09/10/2024] Open
Abstract
Hepatitis B virus (HBV), resistant to several antiviral drugs due to viral genomic mutations, has been reported, which aggravates chronic infection and leads to hepatocellular carcinoma. Therefore, host cellular factors/signaling modulation might be an alternative way of treatment for drug-resistant HBV. Here, we investigated the viral protein expression, replication, and virion production using endoplasmic reticulum (ER) stress-modulating chemicals, tunicamycin (an ER-stress inducer), and salubrinal (an ER-stress inhibitor). We found that ER-stress could be induced by HBV replication in transfected HepG2 cells as well as by tunicamycin as demonstrated by dual luciferase assay. HBV intracellular core-associated DNA quantified by qPCR has been significantly increased by tunicamycin in transfected HepG2 cells. Inversely, intracellular core associated and extracellular particle DNA has been significantly decreased in a dose-dependent manner in salubrinal-treated HepG2 cells transfected with HBV-replicating plasmid pHBI. Similar results were found in stably HBV-expressing hepatoblastoma (HB611) cells treated with salubrinal. However, increased or decreased ER-stress by tunicamycin or salubrinal treatment, respectively, has been confirmed by expression analysis of grp78 using Western blot. In addition, Western blot results demonstrated that the expression of HBV core protein and large HBsAg is increased and decreased by tunicamycin and salubrinal, respectively. In conclusion, the sal-mediated inhibition of the HBV replication and virion production might be due to the simultaneous reduction of core and large HBsAg expression and maintaining the ER homeostasis. These results of HBV replication regulation by modulation of ER-stress dynamics would be useful for designing/identifying anti-HBV drugs targeting cellular signaling pathways.
Collapse
Affiliation(s)
- Md Golzar Hossain
- Department of Microbiology and Hygiene Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Keiji Ueda
- Division of Virology Department of Microbiology and Immunology Graduate School of Medicine Osaka University, Osaka, Japan
| |
Collapse
|
8
|
Zhang T, Yang J, Gao H, Wu Y, Zhao X, Zhao H, Xie X, Yang L, Li Y, Wu Q. Progress of Infection and Replication Systems of Hepatitis B Virus. ACS Pharmacol Transl Sci 2024; 7:1711-1721. [PMID: 38898948 PMCID: PMC11184603 DOI: 10.1021/acsptsci.4c00147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/06/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024]
Abstract
Despite the long-standing availability of effective prophylaxis, chronic hepatitis B virus (HBV) infection remains a formidable public health threat. Antiviral treatments can limit viral propagation, but prolonged therapy is necessary to control HBV replication. Robust in vitro models of HBV infection are indispensable prerequisites for elucidating viral pathogenesis, delineating virus-host interplay and developing novel therapeutic, preventative countermeasures. Buoyed by advances in molecular techniques and tissue culture systems, investigators have engineered numerous in vitro models of the HBV life cycle. However, all current platforms harbor limitations in the recapitulation of natural infection. In this article, we comprehensively review the HBV life cycle, provide an overview of existing in vitro HBV infection and replication systems, and succinctly present the benefits and caveats in each model with the primary objective of constructing refined experimental models that closely mimic native viral infection and offering robust support for the ambitious "elimination of hepatitis by 2030" initiative.
Collapse
Affiliation(s)
- Tiantian Zhang
- National
Health Commission Science and Technology Innovation Platform for Nutrition
and Safety of Microbial Food, Guangdong Provincial Key Laboratory
of Microbial Safety and Health, State Key Laboratory of Applied Microbiology
Southern China, Institute of Microbiology,
Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Juan Yang
- National
Health Commission Science and Technology Innovation Platform for Nutrition
and Safety of Microbial Food, Guangdong Provincial Key Laboratory
of Microbial Safety and Health, State Key Laboratory of Applied Microbiology
Southern China, Institute of Microbiology,
Guangdong Academy of Sciences, Guangzhou 510070, China
| | - He Gao
- National
Health Commission Science and Technology Innovation Platform for Nutrition
and Safety of Microbial Food, Guangdong Provincial Key Laboratory
of Microbial Safety and Health, State Key Laboratory of Applied Microbiology
Southern China, Institute of Microbiology,
Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yuwei Wu
- National
Health Commission Science and Technology Innovation Platform for Nutrition
and Safety of Microbial Food, Guangdong Provincial Key Laboratory
of Microbial Safety and Health, State Key Laboratory of Applied Microbiology
Southern China, Institute of Microbiology,
Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xinyu Zhao
- National
Health Commission Science and Technology Innovation Platform for Nutrition
and Safety of Microbial Food, Guangdong Provincial Key Laboratory
of Microbial Safety and Health, State Key Laboratory of Applied Microbiology
Southern China, Institute of Microbiology,
Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Hui Zhao
- National
Health Commission Science and Technology Innovation Platform for Nutrition
and Safety of Microbial Food, Guangdong Provincial Key Laboratory
of Microbial Safety and Health, State Key Laboratory of Applied Microbiology
Southern China, Institute of Microbiology,
Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xinqiang Xie
- National
Health Commission Science and Technology Innovation Platform for Nutrition
and Safety of Microbial Food, Guangdong Provincial Key Laboratory
of Microbial Safety and Health, State Key Laboratory of Applied Microbiology
Southern China, Institute of Microbiology,
Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Lingshuang Yang
- National
Health Commission Science and Technology Innovation Platform for Nutrition
and Safety of Microbial Food, Guangdong Provincial Key Laboratory
of Microbial Safety and Health, State Key Laboratory of Applied Microbiology
Southern China, Institute of Microbiology,
Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Ying Li
- National
Health Commission Science and Technology Innovation Platform for Nutrition
and Safety of Microbial Food, Guangdong Provincial Key Laboratory
of Microbial Safety and Health, State Key Laboratory of Applied Microbiology
Southern China, Institute of Microbiology,
Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qingping Wu
- National
Health Commission Science and Technology Innovation Platform for Nutrition
and Safety of Microbial Food, Guangdong Provincial Key Laboratory
of Microbial Safety and Health, State Key Laboratory of Applied Microbiology
Southern China, Institute of Microbiology,
Guangdong Academy of Sciences, Guangzhou 510070, China
| |
Collapse
|
9
|
Prescott NA, Mansisidor A, Bram Y, Biaco T, Rendleman J, Faulkner SC, Lemmon AA, Lim C, Hamard PJ, Koche RP, Risca VI, Schwartz RE, David Y. A nucleosome switch primes Hepatitis B Virus infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.03.531011. [PMID: 38915612 PMCID: PMC11195122 DOI: 10.1101/2023.03.03.531011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Chronic hepatitis B virus (HBV) infection is an incurable global health threat responsible for causing liver disease and hepatocellular carcinoma. During the genesis of infection, HBV establishes an independent minichromosome consisting of the viral covalently closed circular DNA (cccDNA) genome and host histones. The viral X gene must be expressed immediately upon infection to induce degradation of the host silencing factor, Smc5/6. However, the relationship between cccDNA chromatinization and X gene transcription remains poorly understood. Establishing a reconstituted viral minichromosome platform, we found that nucleosome occupancy in cccDNA drives X transcription. We corroborated these findings in cells and further showed that the chromatin destabilizing molecule CBL137 inhibits X transcription and HBV infection in hepatocytes. Our results shed light on a long-standing paradox and represent a potential new therapeutic avenue for the treatment of chronic HBV infection.
Collapse
Affiliation(s)
- Nicholas A. Prescott
- Tri-Institutional PhD Program in Chemical Biology; New York, NY 10065, USA
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Andrés Mansisidor
- Laboratory of Genome Architecture and Dynamics, The Rockefeller University; New York, NY 10065, USA
- These authors contributed equally
| | - Yaron Bram
- Division of Gastroenterology & Hepatology, Department of Medicine, Weill Cornell Medicine; New York, NY 10065, USA
- These authors contributed equally
| | - Tracy Biaco
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Department of Pharmacology, Weill Cornell Medicine; New York, NY 10065, USA
- These authors contributed equally
| | - Justin Rendleman
- Laboratory of Genome Architecture and Dynamics, The Rockefeller University; New York, NY 10065, USA
| | - Sarah C. Faulkner
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Abigail A. Lemmon
- Tri-Institutional PhD Program in Chemical Biology; New York, NY 10065, USA
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Christine Lim
- Division of Gastroenterology & Hepatology, Department of Medicine, Weill Cornell Medicine; New York, NY 10065, USA
| | - Pierre-Jacques Hamard
- Epigenetics Research Innovation Lab, Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Richard P. Koche
- Epigenetics Research Innovation Lab, Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Viviana I. Risca
- Laboratory of Genome Architecture and Dynamics, The Rockefeller University; New York, NY 10065, USA
| | - Robert E. Schwartz
- Division of Gastroenterology & Hepatology, Department of Medicine, Weill Cornell Medicine; New York, NY 10065, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine; New York, NY 10065, USA
| | - Yael David
- Tri-Institutional PhD Program in Chemical Biology; New York, NY 10065, USA
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Department of Pharmacology, Weill Cornell Medicine; New York, NY 10065, USA
- Lead Contact
| |
Collapse
|
10
|
Tang L, Remiszewski S, Snedeker A, Chiang LW, Shenk T. An allosteric inhibitor of sirtuin 2 blocks hepatitis B virus covalently closed circular DNA establishment and its transcriptional activity. Antiviral Res 2024; 226:105888. [PMID: 38641024 PMCID: PMC12053749 DOI: 10.1016/j.antiviral.2024.105888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
296 million people worldwide are predisposed to developing severe end-stage liver diseases due to chronic hepatitis B virus (HBV) infection. HBV forms covalently closed circular DNA (cccDNA) molecules that persist as episomal DNA in the nucleus of infected hepatocytes and drive viral replication. Occasionally, the HBV genome becomes integrated into host chromosomal DNA, a process that is believed to significantly contribute to circulating HBsAg levels and HCC development. Neither cccDNA accumulation nor expression from integrated HBV DNA are directly targeted by current antiviral treatments. In this study, we investigated the antiviral properties of a newly described allosteric modulator, FLS-359, that targets sirtuin 2 (SIRT2), an NAD+-dependent deacylase. Our results demonstrate that SIRT2 modulation by FLS-359 and by other tool compounds inhibits cccDNA synthesis following de novo infection of primary human hepatocytes and HepG2 (C3A)-NTCP cells, and FLS-359 substantially reduces cccDNA recycling in HepAD38 cells. While pre-existing cccDNA is not eradicated by short-term treatment with FLS-359, its transcriptional activity is substantially impaired, likely through inhibition of viral promoter activities. Consistent with the inhibition of viral transcription, HBsAg production by HepG2.2.15 cells, which contain integrated HBV genomes, is also suppressed by FLS-359. Our study provides further insights on SIRT2 regulation of HBV infection and supports the development of potent SIRT2 inhibitors as HBV antivirals.
Collapse
Affiliation(s)
- Liudi Tang
- Evrys Bio, LLC, Pennsylvania Biotechnology Center, Doylestown, PA, 18902, USA; Baruch S. Blumberg Institute, Doylestown, PA, 18902, USA.
| | - Stacy Remiszewski
- Evrys Bio, LLC, Pennsylvania Biotechnology Center, Doylestown, PA, 18902, USA
| | | | - Lillian W Chiang
- Evrys Bio, LLC, Pennsylvania Biotechnology Center, Doylestown, PA, 18902, USA
| | - Thomas Shenk
- Evrys Bio, LLC, Pennsylvania Biotechnology Center, Doylestown, PA, 18902, USA; Department of Molecular Biology, Princeton University, Princeton, NJ, 08540, USA
| |
Collapse
|
11
|
Ren F, Zhao S, He X, Lo H, Wong VKW, Law BYK, Wu A, Zhang J. Discovery and mechanistic study of Imperatorin that inhibits HBsAg expression and cccDNA transcription. J Med Virol 2024; 96:e29669. [PMID: 38773784 DOI: 10.1002/jmv.29669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/24/2024]
Abstract
Chronic hepatitis B virus (HBV) infection remains a significant global health challenge due to its link to severe conditions like HBV-related cirrhosis and hepatocellular carcinoma (HCC). Although current treatments effectively reduce viral levels, they have limited impact on certain HBV elements, namely hepatitis B surface antigen (HBsAg) and covalently closed circular DNA (cccDNA). This highlights the urgent need for innovative pharmaceutical and biological interventions that can disrupt HBsAg production originating from cccDNA. In this study, we identified a natural furanocoumarin compound, Imperatorin, which markedly inhibited the expression of HBsAg from cccDNA, by screening a library of natural compounds derived from Chinese herbal medicines using ELISA assay and qRT-PCR. The pharmacodynamics study of Imperatorin was explored on HBV infected HepG2-NTCP/PHHs and HBV-infected humanized mouse model. Proteome analysis was performed on HBV infected HepG2-NTCP cells following Imperatorin treatment. Molecular docking and bio-layer interferometry (BLI) were used for finding the target of Imperatorin. Our findings demonstrated Imperatorin remarkably reduced the level of HBsAg, HBV RNAs, HBV DNA and transcriptional activity of cccDNA both in vitro and in vivo. Additionally, Imperatorin effectively restrained the actions of HBV promoters responsible for cccDNA transcription. Mechanistic study revealed that Imperatorin directly binds to ERK and subsequently interfering with the activation of CAMP response element-binding protein (CREB), a crucial transcriptional factor for HBV and has been demonstrated to bind to the PreS2/S and X promoter regions of HBV. Importantly, the absence of ERK could nullify the antiviral impact triggered by Imperatorin. Collectively, the natural compound Imperatorin may be an effective candidate agent for inhibiting HBsAg production and cccDNA transcription by impeding the activities of HBV promoters through ERK-CREB axis.
Collapse
Affiliation(s)
- Fang Ren
- Department of Clinical Laboratory, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing, China
| | - Shiqiao Zhao
- Department of Clinical Laboratory, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing, China
| | - Xin He
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Hanghong Lo
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao
| | - Betty Yuen Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drug Ability Evaluation, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Juan Zhang
- Department of Clinical Laboratory, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing, China
| |
Collapse
|
12
|
Matsui T. A revolutionary oral HBV treatment candidate as innovative therapeutic approach warranting clinical trials. J Gastroenterol 2024; 59:434-435. [PMID: 38526624 DOI: 10.1007/s00535-024-02091-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 03/27/2024]
Affiliation(s)
- Takeshi Matsui
- Center for Gastroenterology, Teine-Keijinkai Hospital, 1-jo 12-chome, Maeda, Teine-ku, Sapporo, 006-8555, Japan.
| |
Collapse
|
13
|
Li Y, Lemon SM. Biochemical analysis of the host factor activity of ZCCHC14 in hepatitis A virus replication. J Virol 2024; 98:e0005724. [PMID: 38501662 PMCID: PMC11019785 DOI: 10.1128/jvi.00057-24] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/01/2024] [Indexed: 03/20/2024] Open
Abstract
Relatively little is known of the mechanisms underlying hepatitis A virus (HAV) genome replication. Unlike other well-studied picornaviruses, HAV RNA replication requires the zinc finger protein ZCCHC14 and non-canonical TENT4 poly(A) polymerases with which it forms a complex. The ZCCHC14-TENT4 complex binds to a stem-loop located within the internal ribosome entry site (IRES) in the 5' untranslated RNA (5'UTR) and is essential for viral RNA synthesis, but the underlying mechanism is unknown. Here, we describe how different ZCCHC14 domains contribute to its RNA-binding, TENT4-binding, and HAV host factor activities. We show that the RNA-binding activity of ZCCHC14 requires both a sterile alpha motif (SAM) and a downstream unstructured domain (D4) and that ZCCHC14 contains two TENT4-binding sites: one at the N-terminus and the other around D4. Both RNA-binding and TENT4-binding are required for HAV host factor activity of ZCCHC14. We also demonstrate that the location of the ZCCHC14-binding site within the 5'UTR is critical for its function. Our study provides a novel insight into the function of ZCCHC14 and helps elucidate the mechanism of the ZCCHC14-TENT4 complex in HAV replication.IMPORTANCEThe zinc finger protein ZCCHC14 is an essential host factor for both hepatitis A virus (HAV) and hepatitis B virus (HBV). It recruits the non-canonical TENT4 poly(A) polymerases to viral RNAs and most likely also a subset of cellular mRNAs. Little is known about the details of these interactions. We show here the functional domains of ZCCHC14 that are involved in binding to HAV RNA and interactions with TENT4 and describe previously unrecognized peptide sequences that are critical for the HAV host factor activity of ZCCHC14. Our study advances the understanding of the ZCCHC14-TENT4 complex and how it functions in regulating viral and cellular RNAs.
Collapse
Affiliation(s)
- You Li
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Stanley M. Lemon
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology & Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
14
|
Giraud G, El Achi K, Zoulim F, Testoni B. Co-Transcriptional Regulation of HBV Replication: RNA Quality Also Matters. Viruses 2024; 16:615. [PMID: 38675956 PMCID: PMC11053573 DOI: 10.3390/v16040615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Chronic hepatitis B (CHB) virus infection is a major public health burden and the leading cause of hepatocellular carcinoma. Despite the efficacy of current treatments, hepatitis B virus (HBV) cannot be fully eradicated due to the persistence of its minichromosome, or covalently closed circular DNA (cccDNA). The HBV community is investing large human and financial resources to develop new therapeutic strategies that either silence or ideally degrade cccDNA, to cure HBV completely or functionally. cccDNA transcription is considered to be the key step for HBV replication. Transcription not only influences the levels of viral RNA produced, but also directly impacts their quality, generating multiple variants. Growing evidence advocates for the role of the co-transcriptional regulation of HBV RNAs during CHB and viral replication, paving the way for the development of novel therapies targeting these processes. This review focuses on the mechanisms controlling the different co-transcriptional processes that HBV RNAs undergo, and their contribution to both viral replication and HBV-induced liver pathogenesis.
Collapse
Affiliation(s)
- Guillaume Giraud
- INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France (F.Z.)
- The Lyon Hepatology Institute EVEREST, 69003 Lyon, France
| | - Khadija El Achi
- INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France (F.Z.)
| | - Fabien Zoulim
- INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France (F.Z.)
- The Lyon Hepatology Institute EVEREST, 69003 Lyon, France
- Hospices Civils de Lyon, Hôpital Croix Rousse, Service d’Hépato-Gastroentérologie, 69004 Lyon, France
| | - Barbara Testoni
- INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France (F.Z.)
- The Lyon Hepatology Institute EVEREST, 69003 Lyon, France
| |
Collapse
|
15
|
Watanabe T, Hayashi S, Zhaoyu Y, Inada H, Nagaoka K, Tateyama M, Tanaka Y. A novel, small anti-HBV compound reduces HBsAg and HBV-DNA by destabilizing HBV-RNA. J Gastroenterol 2024; 59:315-328. [PMID: 38315437 DOI: 10.1007/s00535-023-02070-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/17/2023] [Indexed: 02/07/2024]
Abstract
BACKGROUND Currently, standard treatments for chronic hepatitis B such as nucleos(t)ide analogs (NAs), effectively reduce hepatitis B virus (HBV) loads but rarely result in a functional cure (defined as sustained HBsAg loss). We report the discovery of a novel, 4-pyridone compound, SAG-524, a potent and orally bioavailable small molecule inhibitor of HBV replication. METHODS The antiviral characteristics and selectivity of SAG-524 and its derivative compound against HBV were evaluated in HBV-infection assays and HBV-infected chimeric urokinase-type plasminogen activator/severe combined immunodeficiency mice with humanized livers (PXB mice), alone or in combination with entecavir. Toxicity studies were conducted in mice and monkeys. RESULTS SAG-524 reduced HBV-DNA (IC50 = 0.92 nM) and HBsAg (IC50 = 1.4 nM) in the supernatant of the HepG2.2.15 cells. SAG-524 selectively destabilized HBV-RNA via PAPD5, but not GAPDH or albumin mRNA, by shortening the poly(A) tail. PAPD5 may also be involved in HBV regulation via ELAVL1. In a study of HBV-infected PXB mice, SAG-524 produced potent reductions of serum HBsAg and HBcrAg, and the minimum effective dose was estimated to be 6 mg/kg/day. The combination therapy with entecavir greatly reduced HBsAg and cccDNA in the liver due to reduction of human hepatocytes with good tolerability. Administration of SAG-524 to monkeys, up to 1000 mg/kg/day for two weeks, led to no significant toxicity, as determined by blood tests and pathological images. CONCLUSIONS We have identified SAG-524 as novel and orally bioavailable HBV-RNA destabilizers which can reduce HBsAg and HBV-DNA levels, and possibly contribute a functional cure.
Collapse
Affiliation(s)
- Takehisa Watanabe
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo, Kumamoto, 860-8556, Japan
| | - Sanae Hayashi
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo, Kumamoto, 860-8556, Japan
| | - Yan Zhaoyu
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo, Kumamoto, 860-8556, Japan
| | - Hiroki Inada
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo, Kumamoto, 860-8556, Japan
| | - Katsuya Nagaoka
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo, Kumamoto, 860-8556, Japan
| | - Masakuni Tateyama
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo, Kumamoto, 860-8556, Japan
| | - Yasuhito Tanaka
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo, Kumamoto, 860-8556, Japan.
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Science, Nagoya, Japan.
| |
Collapse
|
16
|
Li Y, Hwang N, Snedeker A, Lemon SM, Noe D, Sun L, Clement JA, Zhou T, Tang L, Block T, Du Y. "PROTAC" modified dihydroquinolizinones (DHQs) that cause degradation of PAPD-5 and inhibition of hepatitis A virus and hepatitis B virus, in vitro. Bioorg Med Chem Lett 2024; 102:129680. [PMID: 38428537 DOI: 10.1016/j.bmcl.2024.129680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/15/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
Dihydroquinolizinones (DHQs) that inhibit cellular polyadenylating polymerases 5 and 7 (PAPD5 & 7), such as RG7834, have been shown to inhibit both hepatitis A (HAV) and hepatitis B virus (HBV) in vitro and in vivo. In this report, we describe RG7834-based proteolysis-targeting chimeras (PROTACs), such as compound 12b, (6S)-9-((1-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)amino)-21-oxo-3,6,9,12,15,18-hexaoxa-22-azapentacosan-25-yl)oxy)-6-isopropyl-10-methoxy-2-oxo-6,7-dihydro-2H-pyrido[2,1-a]isoquinoline-3-carboxylic acid. The PROTAC DHQs described here inhibited an HAV reporter virus in vitro with an IC50 of 277 nM. Although the PROTAC DHQs were also inhibitory to HBV, their activities were substantially less potent against HBV in vitro, being in the 10 to 20 µM range, based on the reduction of HBsAg and HBV mRNA levels. Importantly, unlike RG7834, the incubation of cells in vitro with PROTAC DHQ 12b resulted in the degradation of PAPD5, as expected for a PROTAC compound, but curiously not PAPD7. PAPD5 polypeptide degradation was prevented when a proteasome inhibitor, epoxomicin, was used, indicating that proteasome mediated proteolysis was associated with the observed activities of 12b. Taken together, these data show that 12b is the first example of a PROTAC that suppresses both HAV and HBV that is based on a small molecule warhead. The possibility that it has mechanisms that differ from its parent compound, RG7834, and has clinical value, is discussed.
Collapse
Affiliation(s)
- You Li
- Division of Infectious Diseases, Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7292, USA
| | - Nicky Hwang
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA 18902, USA
| | - Andrew Snedeker
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA 18902, USA
| | - Stanley M Lemon
- Division of Infectious Diseases, Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7292, USA.
| | - Daisy Noe
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA 18902, USA
| | - Liren Sun
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA 18902, USA
| | - Jason A Clement
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA 18902, USA
| | - Tianlun Zhou
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA 18902, USA
| | - Liudi Tang
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA 18902, USA
| | - Timothy Block
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA 18902, USA.
| | - Yanming Du
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA 18902, USA.
| |
Collapse
|
17
|
Mouzannar K, Schauer A, Liang TJ. The Post-Transcriptional Regulatory Element of Hepatitis B Virus: From Discovery to Therapy. Viruses 2024; 16:528. [PMID: 38675871 PMCID: PMC11055085 DOI: 10.3390/v16040528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
The post-transcriptional regulatory element (PRE) is present in all HBV mRNAs and plays a major role in their stability, nuclear export, and enhancement of viral gene expression. Understanding PRE's structure, function, and mode of action is essential to leverage its potential as a therapeutic target. A wide range of PRE-based reagents and tools have been developed and assessed in preclinical and clinical settings for therapeutic and biotechnology applications. This manuscript aims to provide a systematic review of the characteristics and mechanism of action of PRE, as well as elucidating its current applications in basic and clinical research. Finally, we discuss the promising opportunities that PRE may provide to antiviral development, viral biology, and potentially beyond.
Collapse
Affiliation(s)
- Karim Mouzannar
- Liver Diseases Branch, National Institute of Diabetics and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA;
| | | | - T. Jake Liang
- Liver Diseases Branch, National Institute of Diabetics and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA;
| |
Collapse
|
18
|
Song H, Yang S, Wu S, Qin X, Wang Y, Ma X, Gong J, Wei M, Wang A, Wang M, Lan K, Guo J, Liu M, Chen X, Li Y, Lv K. Identification of dihydroquinolizinone derivatives with nitrogen heterocycle moieties as new anti-HBV agents. Eur J Med Chem 2024; 268:116280. [PMID: 38458109 DOI: 10.1016/j.ejmech.2024.116280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 03/10/2024]
Abstract
The sustained loss of HBsAg is considered a pivotal indicator for achieving functional cure of HBV. Dihydroquinolizinone derivatives (DHQs) have demonstrated remarkable inhibitory activity against HBsAg both in vitro and in vivo. However, the reported neurotoxicity associated with RG7834 has raised concerns regarding the development of DHQs. In this study, we designed and synthesized a series of DHQs incorporating nitrogen heterocycle moieties. Almost all of these compounds exhibited potent inhibition activity against HBsAg, with IC50 values at the nanomolar level. Impressively, the compound (S)-2a (10 μM) demonstrated a comparatively reduced impact on the neurite outgrowth of HT22 cells and isolated mouse DRG neurons in comparison to RG7834, thereby indicating a decrease in neurotoxicity. Furthermore, (S)-2a exhibited higher drug exposures than RG7834. The potent anti-HBV activity, reduced neurotoxicity, and favorable pharmacokinetic profiles underscore its promising potential as a lead compound for future anti-HBV drug discovery.
Collapse
Affiliation(s)
- Huijuan Song
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shangze Yang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Shuo Wu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xiaoyu Qin
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ya Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xican Ma
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jiaqi Gong
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Meng Wei
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Apeng Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Mengyuan Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Kun Lan
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Juan Guo
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Mingliang Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xingjuan Chen
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Yuhuan Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Kai Lv
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
19
|
Lam AM, Dugyala RR, Sheraz M, Liu F, Thi EP, Graves IE, Cuconati A, Steuer HM, Ardzinski A, Overholt N, Mason JD, Gotchev D, Cole AG, Harasym TO, Sofia MJ. Preclinical Antiviral and Safety Profiling of the HBV RNA Destabilizer AB-161. Viruses 2024; 16:323. [PMID: 38543689 PMCID: PMC10975527 DOI: 10.3390/v16030323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 05/23/2024] Open
Abstract
HBV RNA destabilizers are a class of small-molecule compounds that target the noncanonical poly(A) RNA polymerases PAPD5 and PAPD7, resulting in HBV RNA degradation and the suppression of viral proteins including the hepatitis B surface antigen (HBsAg). AB-161 is a next-generation HBV RNA destabilizer with potent antiviral activity, inhibiting HBsAg expressed from cccDNA and integrated HBV DNA in HBV cell-based models. AB-161 exhibits broad HBV genotype coverage, maintains activity against variants resistant to nucleoside analogs, and shows additive effects on HBV replication when combined with other classes of HBV inhibitors. In AAV-HBV-transduced mice, the dose-dependent reduction of HBsAg correlated with concentrations of AB-161 in the liver reaching above its effective concentration mediating 90% inhibition (EC90), compared to concentrations in plasma which were substantially below its EC90, indicating that high liver exposure drives antiviral activities. In preclinical 13-week safety studies, minor non-adverse delays in sensory nerve conductance velocity were noted in the high-dose groups in rats and dogs. However, all nerve conduction metrics remained within physiologically normal ranges, with no neurobehavioral or histopathological findings. Despite the improved neurotoxicity profile, microscopic findings associated with male reproductive toxicity were detected in dogs, which subsequently led to the discontinuation of AB-161's clinical development.
Collapse
Affiliation(s)
- Angela M. Lam
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, PA 18974, USA; (R.R.D.); (M.S.); (F.L.); (E.P.T.); (I.E.G.); (A.C.); (H.M.S.); (A.A.); (N.O.); (J.D.M.); (D.G.); (A.G.C.); (T.O.H.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Michael J. Sofia
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, PA 18974, USA; (R.R.D.); (M.S.); (F.L.); (E.P.T.); (I.E.G.); (A.C.); (H.M.S.); (A.A.); (N.O.); (J.D.M.); (D.G.); (A.G.C.); (T.O.H.)
| |
Collapse
|
20
|
Gotchev D, Dorsey BD, Nguyen D, Kakarla R, Dugan B, Chen S, Gao M, Bailey L, Liu F, Harasym T, Chiu T, Tang S, Lee ACH, Cole AG, Sofia MJ. Structure-Activity Relationships and Discovery of ( S)-6-Isopropyl-2-methoxy-3-(3-methoxypropoxy)-10-oxo-5,10-dihydro-6 H-pyrido[1,2- h][1,7]naphthyridine-9-carboxylic Acid (AB-452), a Novel Orally Available HBV RNA Destabilizer. J Med Chem 2024; 67:1421-1446. [PMID: 38190324 DOI: 10.1021/acs.jmedchem.3c01981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Approved therapies for hepatitis B virus (HBV) treatment include nucleos(t)ides and interferon alpha (IFN-α) which effectively suppress viral replication, but they rarely lead to cure. Expression of viral proteins, especially surface antigen of the hepatitis B virus (HBsAg) from covalently closed circular DNA (cccDNA) and the integrated genome, is believed to contribute to the persistence of HBV. This work focuses on therapies that target the expression of HBV proteins, in particular HBsAg, which differs from current treatments. Here we describe the identification of AB-452, a dihydroquinolizinone (DHQ) analogue. AB-452 is a potent HBV RNA destabilizer by inhibiting PAPD5/7 proteins in vitro with good in vivo efficacy in a chronic HBV mouse model. AB-452 showed acceptable tolerability in 28-day rat and dog toxicity studies, and a high degree of oral exposure in multiple species. Based on its in vitro and in vivo profiles, AB-452 was identified as a clinical development candidate.
Collapse
Affiliation(s)
- Dimitar Gotchev
- Arbutus Biopharma, 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Bruce D Dorsey
- Arbutus Biopharma, 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Duyan Nguyen
- Arbutus Biopharma, 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Ramesh Kakarla
- Arbutus Biopharma, 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Benjamin Dugan
- Arbutus Biopharma, 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Shuai Chen
- Arbutus Biopharma, 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Min Gao
- Arbutus Biopharma, 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Laurèn Bailey
- Arbutus Biopharma, 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Fei Liu
- Arbutus Biopharma, 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Troy Harasym
- Arbutus Biopharma, 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Tim Chiu
- Arbutus Biopharma, 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Sunny Tang
- Arbutus Biopharma, 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Amy C-H Lee
- Arbutus Biopharma, 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Andrew G Cole
- Arbutus Biopharma, 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Michael J Sofia
- Arbutus Biopharma, 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| |
Collapse
|
21
|
Bartosh UI, Dome AS, Zhukova NV, Karitskaya PE, Stepanov GA. CRISPR/Cas9 as a New Antiviral Strategy for Treating Hepatitis Viral Infections. Int J Mol Sci 2023; 25:334. [PMID: 38203503 PMCID: PMC10779197 DOI: 10.3390/ijms25010334] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Hepatitis is an inflammatory liver disease primarily caused by hepatitis A (HAV), B (HBV), C (HCV), D (HDV), and E (HEV) viruses. The chronic forms of hepatitis resulting from HBV and HCV infections can progress to cirrhosis or hepatocellular carcinoma (HCC), while acute hepatitis can lead to acute liver failure, sometimes resulting in fatality. Viral hepatitis was responsible for over 1 million reported deaths annually. The treatment of hepatitis caused by viral infections currently involves the use of interferon-α (IFN-α), nucleoside inhibitors, and reverse transcriptase inhibitors (for HBV). However, these methods do not always lead to a complete cure for viral infections, and chronic forms of the disease pose significant treatment challenges. These facts underscore the urgent need to explore novel drug developments for the treatment of viral hepatitis. The discovery of the CRISPR/Cas9 system and the subsequent development of various modifications of this system have represented a groundbreaking advance in the quest for innovative strategies in the treatment of viral infections. This technology enables the targeted disruption of specific regions of the genome of infectious agents or the direct manipulation of cellular factors involved in viral replication by introducing a double-strand DNA break, which is targeted by guide RNA (spacer). This review provides a comprehensive summary of our current knowledge regarding the application of the CRISPR/Cas system in the regulation of viral infections caused by HAV, HBV, and HCV. It also highlights new strategies for drug development aimed at addressing both acute and chronic forms of viral hepatitis.
Collapse
Affiliation(s)
| | | | | | | | - Grigory A. Stepanov
- The Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia; (U.I.B.); (A.S.D.); (N.V.Z.); (P.E.K.)
| |
Collapse
|
22
|
Inoue T, Watanabe T, Tanaka Y. Hepatitis B core-related antigen: A novel and promising surrogate biomarker to guide anti-hepatitis B virus therapy. Clin Mol Hepatol 2023; 29:851-868. [PMID: 36891607 PMCID: PMC10577333 DOI: 10.3350/cmh.2022.0434] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/19/2023] [Accepted: 03/07/2023] [Indexed: 03/10/2023] Open
Abstract
The current requirement for biomarkers to detect hepatitis B virus (HBV) infection is polarized. One is a fully-automated and highly sensitive measurement system; the other is a simple system for point-of-care testing (POCT) in resource-limited areas. Hepatitis B core-related antigen (HBcrAg) reflects intrahepatic covalently closed circular DNA and serum HBV DNA. Even in patients with undetectable serum HBV DNA or HBsAg loss, HBcrAg may remain detectable. Decreased HBcrAg levels are associated with reduction of the occurrence of hepatocellular carcinoma (HCC) in chronic hepatitis B. Recently, a fully-automated, novel high-sensitivity HBcrAg assay (iTACT-HBcrAg, cut-off value: 2.1 logIU/mL) has been developed. This attractive assay has been released in Japan very recently. iTACT-HBcrAg can be useful for monitoring HBV reactivation and prediction of HCC occurrence, as an alternative to HBV DNA. Moreover, monitoring HBcrAg may be suitable for determining the therapeutic effectiveness of approved drugs and novel drugs under development. Presently, international guidelines recommend anti-HBV prophylaxis for pregnant women with high viral loads to prevent mother-to-child transmission of HBV. However, >95% of HBV-infected individuals live in countries where HBV DNA quantification is not available. Worldwide elimination of HBV needs the scaling-up of examination and medication services in resource-limited areas. Based on this situation, a rapid and easy HBcrAg assay as a POCT is valuable. This review provides the latest information regarding the clinical use of a new surrogate marker, HBcrAg, in HBV management, based on iTACT-HBcrAg or POCT, and introduces novel agents targeting HBV RNA/protein.
Collapse
Affiliation(s)
- Takako Inoue
- Department of Clinical Laboratory Medicine, Nagoya City University Hospital, Nagoya, Japan
| | - Takehisa Watanabe
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yasuhito Tanaka
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Department of Virology & Liver unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
23
|
Wen X, Irshad A, Jin H. The Battle for Survival: The Role of RNA Non-Canonical Tails in the Virus-Host Interaction. Metabolites 2023; 13:1009. [PMID: 37755289 PMCID: PMC10537345 DOI: 10.3390/metabo13091009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023] Open
Abstract
Terminal nucleotidyltransferases (TENTs) could generate a 'mixed tail' or 'U-rich tail' consisting of different nucleotides at the 3' end of RNA by non-templated nucleotide addition to protect or degrade cellular messenger RNA. Recently, there has been increasing evidence that the decoration of virus RNA terminus with a mixed tail or U-rich tail is a critical way to affect viral RNA stability in virus-infected cells. This paper first briefly introduces the cellular function of the TENT family and non-canonical tails, then comprehensively reviews their roles in virus invasion and antiviral immunity, as well as the significance of the TENT family in antiviral therapy. This review will contribute to understanding the role and mechanism of non-canonical RNA tailing in survival competition between the virus and host.
Collapse
Affiliation(s)
| | | | - Hua Jin
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing 100081, China; (X.W.); (A.I.)
| |
Collapse
|
24
|
Ogunnaike M, Das S, Raut SS, Sultana A, Nayan MU, Ganesan M, Edagwa BJ, Osna NA, Poluektova LY. Chronic Hepatitis B Infection: New Approaches towards Cure. Biomolecules 2023; 13:1208. [PMID: 37627273 PMCID: PMC10452112 DOI: 10.3390/biom13081208] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infection leads to the development of cirrhosis and hepatocellular carcinoma. Lifelong treatment with nucleotides/nucleoside antiviral agents is effective at suppressing HBV replication, however, adherence to daily therapy can be challenging. This review discusses recent advances in the development of long-acting formulations for HBV treatment and prevention, which could potentially improve adherence. Promising new compounds that target distinct steps of the virus life cycle are summarized. In addition to treatments that suppress viral replication, curative strategies are focused on the elimination of covalently closed circular DNA and the inactivation of the integrated viral DNA from infected hepatocytes. We highlight promising long-acting antivirals and genome editing strategies for the elimination or deactivation of persistent viral DNA products in development.
Collapse
Affiliation(s)
- Mojisola Ogunnaike
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA; (M.O.); (S.D.); (S.S.R.); (A.S.); (M.U.N.); (M.G.)
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Srijanee Das
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA; (M.O.); (S.D.); (S.S.R.); (A.S.); (M.U.N.); (M.G.)
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Samiksha S. Raut
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA; (M.O.); (S.D.); (S.S.R.); (A.S.); (M.U.N.); (M.G.)
| | - Ashrafi Sultana
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA; (M.O.); (S.D.); (S.S.R.); (A.S.); (M.U.N.); (M.G.)
| | - Mohammad Ullah Nayan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA; (M.O.); (S.D.); (S.S.R.); (A.S.); (M.U.N.); (M.G.)
| | - Murali Ganesan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA; (M.O.); (S.D.); (S.S.R.); (A.S.); (M.U.N.); (M.G.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Benson J. Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA; (M.O.); (S.D.); (S.S.R.); (A.S.); (M.U.N.); (M.G.)
| | - Natalia A. Osna
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA; (M.O.); (S.D.); (S.S.R.); (A.S.); (M.U.N.); (M.G.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Larisa Y. Poluektova
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA; (M.O.); (S.D.); (S.S.R.); (A.S.); (M.U.N.); (M.G.)
| |
Collapse
|
25
|
Wang X, Hu B, Hu H, Zhou S, Yin M, Cheng X, Zhang Z, Liu H. Tannic Acid Suppresses HBV Replication via the Regulation of NF-κB, MAPKs, and Autophagy in HepG2.2.15 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37450882 DOI: 10.1021/acs.jafc.3c00863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Hepatitis B virus (HBV) infection is a serious global health problem that threatens the health of human. Tannic acid (TA), a natural polyphenol in foods, fruits, and plants, exhibits a variety of bioactive functions. In our research, we decide to explore the pharmacological mechanism of TA against HBV replication. Our results showed that TA effectively reduced the content of HBV DNA and viral antigens (HBsAg and HBeAg) in HepG2.2.15 cells. Meanwhile, TA significantly decreased the mRNA expression of HBV RNA, which include total HBV RNA, HBV pregenomic RNA, and HBV precore mRNA. Besides, TA evidently downregulated the activity of HBV promoters in HepG2.2.15 cells. Furthermore, we found that TA upregulated the expression of IL-8, TNF-α, IFN-α, and IFN-α-mediated antiviral effectors in HepG2.2.15 cells. On the contrary, TA downregulated the expression of IL-10 and hepatic nuclear factor 4 (HNF4α). In addition, TA activated the NF-κB and MAPK pathways that contributed to the inhibition of HBV replication. Finally, TA treatment led to the occurrence of autophagy, which accelerated the elimination of HBV components in HepG2.2.15 cells. Taken together, our results elucidated the suppressive effect of TA on HBV replication and provided inspiration for its clinical application in HBV treatment.
Collapse
Affiliation(s)
- Xuefeng Wang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Baifei Hu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Haiming Hu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Shuhan Zhou
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Mingzhu Yin
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Xue Cheng
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Zhigang Zhang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Hongtao Liu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| |
Collapse
|
26
|
Seo JJ, Jung SJ, Yang J, Choi DE, Kim VN. Functional viromic screens uncover regulatory RNA elements. Cell 2023:S0092-8674(23)00675-X. [PMID: 37413987 DOI: 10.1016/j.cell.2023.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 04/21/2023] [Accepted: 06/10/2023] [Indexed: 07/08/2023]
Abstract
The number of sequenced viral genomes has surged recently, presenting an opportunity to understand viral diversity and uncover unknown regulatory mechanisms. Here, we conducted a screening of 30,367 viral segments from 143 species representing 96 genera and 37 families. Using a library of viral segments in 3' UTR, we identified hundreds of elements impacting RNA abundance, translation, and nucleocytoplasmic distribution. To illustrate the power of this approach, we investigated K5, an element conserved in kobuviruses, and found its potent ability to enhance mRNA stability and translation in various contexts, including adeno-associated viral vectors and synthetic mRNAs. Moreover, we identified a previously uncharacterized protein, ZCCHC2, as a critical host factor for K5. ZCCHC2 recruits the terminal nucleotidyl transferase TENT4 to elongate poly(A) tails with mixed sequences, delaying deadenylation. This study provides a unique resource for virus and RNA research and highlights the potential of the virosphere for biological discoveries.
Collapse
Affiliation(s)
- Jenny J Seo
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Soo-Jin Jung
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jihye Yang
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Da-Eun Choi
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - V Narry Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
27
|
Yu H, Deng W, Chen S, Qin B, Yao Y, Zhou C, Guo M. Strongylocentrotus nudus egg polysaccharide (SEP) suppresses HBV replication via activation of TLR4-induced immune pathway. Int J Biol Macromol 2023:125539. [PMID: 37355064 DOI: 10.1016/j.ijbiomac.2023.125539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 06/17/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
Chronic hepatitis B virus (HBV) infection is a worldwide public health problem that causes significant liver-related morbidity and mortality. In our previous study, Strongylocentrotus nudus eggs polysaccharide (SEP), extracted from sea urchins, had immunomodulatory and antitumor effects. Whether SEP has anti-HBV activity is still obscure. This study demonstrated that SEP decreased the secretion of hepatitis B surface antigen (HBsAg) and e antigen (HBeAg), as well as the replication and transcription of HBV both in vitro and in vivo. Immunofluorescence and immunohistochemistry results showed that the level of HBV core antigen (HBcAg) was clearly reduced by SEP treatment. Mechanistically, RT-qPCR, western blot, and confocal microscopy analysis showed that SEP significantly increased the expression of toll-like receptor 4 (TLR4) and co-localization with TLR4. The downstream molecules of TLR4, including NF-κb and IRF3, were activated and the expression of IFN-β, TNF-α, IL-6, OAS, and MxA were also increased, which could suppress HBV replication. Moreover, SEP inhibited other genotypes of HBV and hepatitis C virus (HCV) replication in vitro. In summary, SEP could be investigated as a potential anti-HBV drug capable of modulating the innate immune.
Collapse
Affiliation(s)
- Haifei Yu
- State Key Laboratory of Natural Medicines, School of Life Science & Technolgy, China Pharmaceutical University, Nanjing 211198, Jiangsu province, China
| | - Wanyu Deng
- College of life science, Shangrao Normal University, Shangrao 334001, Jiangxi province, China
| | - Shuo Chen
- State Key Laboratory of Natural Medicines, School of Life Science & Technolgy, China Pharmaceutical University, Nanjing 211198, Jiangsu province, China
| | - Bo Qin
- Shaoxing Women and Children's Hospital, Shaoxing 312000, Zhejiang, China
| | - Yongxuan Yao
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children Medical Center, Guangzhou 510623, China.
| | - Changlin Zhou
- State Key Laboratory of Natural Medicines, School of Life Science & Technolgy, China Pharmaceutical University, Nanjing 211198, Jiangsu province, China.
| | - Min Guo
- State Key Laboratory of Natural Medicines, School of Life Science & Technolgy, China Pharmaceutical University, Nanjing 211198, Jiangsu province, China.
| |
Collapse
|
28
|
Bopst M, Dinklo T, Funk J, Greiter-Wilke A, Lenz B, Kustermann S, Jiang T, Xie J. Unexpected neurotoxicity in chronic toxicity studies with a HBV viral expression inhibitor. Regul Toxicol Pharmacol 2023; 141:105407. [PMID: 37141985 DOI: 10.1016/j.yrtph.2023.105407] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/12/2023] [Accepted: 05/01/2023] [Indexed: 05/06/2023]
Abstract
The non-clinical safety profile of the small molecule hepatitis B virus viral expression inhibitor RG7834 was studied in a package consisting of safety pharmacology, genotoxicity, repeat dose toxicity and reproductive toxicity studies. The chronic monkey toxicity study identified dose- and time-dependent symptoms of polyneuropathy, with correlating nerve conduction velocity reductions and axonal degeneration in peripheral nerves and spinal cord, in all compound treatment groups with no evidence of reversibility after approximately 3 months of treatment cessation. Similar histopathological findings were observed in the chronic rat toxicity study. Subsequent in vitro neurotoxicity investigations and ion channel electrophysiology did not elucidate a potential mechanism for the late toxicity. However, based on similar findings observed with a structurally different molecule, an inhibition of their common pharmacological targets, PAPD5 & PAPD 7, was considered as a possible mechanism of toxicity. In conclusion, the marked neuropathies, only observed after chronic dosing, did not support further clinical development of RG7834 because of its foreseen clinical treatment duration of up to 48 weeks in chronic HBV patients.
Collapse
Affiliation(s)
- Martin Bopst
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland.
| | - Theo Dinklo
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Juergen Funk
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Andrea Greiter-Wilke
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Barbara Lenz
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Stefan Kustermann
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Tianyi Jiang
- Roche Pharma and Early Development, Pharmaceutical Sciences, Roche Innovation Center, Shanghai, 201023, China
| | - Jianxun Xie
- Roche Pharma and Early Development, Pharmaceutical Sciences, Roche Innovation Center, Shanghai, 201023, China
| |
Collapse
|
29
|
Zhang L, Ge X, Jin H, Lu D, Chen S, Zhang Y, Wang X, Xu H, Ao W, Zhang Y. Discovery, optimization and biological evaluation of novel HBsAg production inhibitors. Eur J Med Chem 2023; 256:115387. [PMID: 37187088 DOI: 10.1016/j.ejmech.2023.115387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 05/17/2023]
Abstract
Hepatitis B virus (HBV) infection is a major global health problem. HBsAg inhibitors are expected to reduce the production of HBsAg via inhibiting host proteins PAPD5 & PAPD7 and finally achieve the ideal goal of "functional cure". In this work, a series of tetrahydropyridine (THP) derivatives with a bridged ring were synthesized and evaluated for their inhibiting HBsAg production and HBV DNA activity. Among them, compound 17i was identified as potent HBsAg production inhibitor with excellent in vitro anti-HBV potency (HBV DNA EC50 = 0.018 μM, HBsAg EC50 = 0.044 μM) and low toxicity (CC50 > 100 μM). Moreover, 17i exhibited favorable in vitro/in vivo DMPK properties in mice. 17i could also significantly reduce serum HBsAg and HBV DNA levels (1.08 and 1.04 log units, respectively) in HBV transgenic mice.
Collapse
Affiliation(s)
- Li Zhang
- Pharmaceutical R&D Institute, Chia Tai Tianqing Pharmaceutical Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing, Jiangsu Province, China
| | - Xingfeng Ge
- Pharmaceutical R&D Institute, Chia Tai Tianqing Pharmaceutical Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing, Jiangsu Province, China
| | - Hui Jin
- Pharmaceutical R&D Institute, Chia Tai Tianqing Pharmaceutical Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing, Jiangsu Province, China
| | - Dandan Lu
- Pharmaceutical R&D Institute, Chia Tai Tianqing Pharmaceutical Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing, Jiangsu Province, China
| | - Shuo Chen
- Pharmaceutical R&D Institute, Chia Tai Tianqing Pharmaceutical Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing, Jiangsu Province, China
| | - Yang Zhang
- Pharmaceutical R&D Institute, Chia Tai Tianqing Pharmaceutical Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing, Jiangsu Province, China
| | - Xiaojin Wang
- Pharmaceutical R&D Institute, Chia Tai Tianqing Pharmaceutical Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing, Jiangsu Province, China
| | - Hongjiang Xu
- Pharmaceutical R&D Institute, Chia Tai Tianqing Pharmaceutical Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing, Jiangsu Province, China
| | - Wangwei Ao
- Pharmaceutical R&D Institute, Chia Tai Tianqing Pharmaceutical Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing, Jiangsu Province, China.
| | - Yinsheng Zhang
- Pharmaceutical R&D Institute, Chia Tai Tianqing Pharmaceutical Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing, Jiangsu Province, China.
| |
Collapse
|
30
|
Wang L, Zhu Q, Zhang JD, Zhang Y, Ni X, Xiang K, Jiang J, Li B, Yu Y, Hu H, Zhang M, Wu W, Zeng J, Yan Z, Dai J, Sun K, Zhang X, Chen D, Feng S, Sach-Peltason L, Young JAT, Gao L. Discovery of a first-in-class orally available HBV cccDNA inhibitor. J Hepatol 2023; 78:742-753. [PMID: 36587899 DOI: 10.1016/j.jhep.2022.12.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/25/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND & AIMS The persistence of covalently closed circular DNA (cccDNA) in infected hepatocytes is the major barrier preventing viral eradication with existing therapies in patients with chronic hepatitis B. Therapeutic agents that can eliminate cccDNA are urgently needed to achieve viral eradication and thus HBV cure. METHODS A phenotypic assay with HBV-infected primary human hepatocytes (PHHs) was employed to screen for novel cccDNA inhibitors. A HBVcircle mouse model and a uPA-SCID (urokinase-type plasminogen activator-severe combined immunodeficiency) humanized liver mouse model were used to evaluate the anti-HBV efficacy of the discovered cccDNA inhibitors. RESULTS Potent and dose-dependent reductions in extracellular HBV DNA, HBsAg, and HBeAg levels were achieved upon the initiation of ccc_R08 treatment two days after the HBV infection of PHHs. More importantly, the level of cccDNA was specifically reduced by ccc_R08, while it did not obviously affect mitochondrial DNA. Additionally, ccc_R08 showed no significant cytotoxicity in PHHs or in multiple proliferating cell lines. The twice daily oral administration of ccc_R08 to HBVcircle model mice, which contained surrogate cccDNA molecules, significantly decreased the serum levels of HBV DNA and antigens, and these effects were sustained during the off-treatment follow-up period. Moreover, at the end of follow-up, the levels of surrogate cccDNA molecules in the livers of ccc_R08-treated HBVcircle mice were reduced to below the lower limit of quantification. CONCLUSIONS We have discovered a small-molecule cccDNA inhibitor that reduces HBV cccDNA levels. cccDNA inhibitors potentially represent a new approach to completely cure patients chronically infected with HBV. IMPACT AND IMPLICATIONS Covalently closed circular DNA (cccDNA) persistence in HBV-infected hepatocytes is the root cause of chronic hepatitis B. We discovered a novel small-molecule cccDNA inhibitor that can specifically reduce cccDNA levels in HBV-infected hepatocytes. This type of molecule could offer a new approach to completely cure patients chronically infected with HBV.
Collapse
Affiliation(s)
- Li Wang
- Infectious Disease Discovery
| | | | | | | | | | | | | | | | | | - Hui Hu
- Infectious Disease Discovery
| | | | | | | | | | | | | | - Xin Zhang
- Preclinical Chemistry Manufacturing and Controls
| | | | | | - Lisa Sach-Peltason
- Data & Analytics, Roche Pharmaceutical Research and Early Development, Roche Innovation Center Shanghai, Roche Innovation Center Basel
| | | | - Lu Gao
- Infectious Disease Discovery.
| |
Collapse
|
31
|
Dihydromyricetin inhibits Hepatitis B virus replication by activating NF-κB, MAPKs, and autophagy in HepG2.2.15 cells. Mol Biol Rep 2023; 50:1403-1414. [PMID: 36474061 DOI: 10.1007/s11033-022-07971-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/21/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Hepatitis B virus (HBV) infection is a severe global health problem, and there has been no effective method to eliminate HBV. This study was designed to explore the pharmacological mechanism of Dihydromyricetin (DHM) treatment on HBV replication in vitro. METHODS AND RESULTS DHM is a flavonoid compound from Ampelopsis grossedentata. Using HepG2.2.15 cells, which can stably express HBV in vitro, we demonstrated that DHM treatment dramatically reduced HBV replication and secretions of HBsAg and HBeAg. Meanwhile, DHM inhibited mRNA expression of HBV RNAs in HepG2.2.15 cells, including Total HBV RNA, HBV pregenomic RNA (pgRNA), and HBV precore mRNA (pcRNA). Also, DHM elevated the mRNA expressions of inflammatory cytokines and antiviral effectors. In contrast, DHM decreased the mRNA level of HNF4α, which positively correlated with HBV replication. Further studies show that the activation of nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathway played a critical role in DHM-initiated inhibition of HBV replication in HepG2.2.15 cells. Besides, activated autophagy was another contributor that may accelerate the clearance of HBV components. CONCLUSION In summary, DHM could suppress HBV replication by activating NF-κB, MAPKs, and autophagy in HepG2.2.15 cells. Our studies shed light on the future application of DHM for the clinical treatment of HBV infection.
Collapse
|
32
|
Durantel D. Therapies against chronic hepatitis B infections: The times they are a-changin', but the changing is slow! Antiviral Res 2023; 210:105515. [PMID: 36603773 DOI: 10.1016/j.antiviral.2022.105515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 01/04/2023]
Abstract
PREAMBULAR NOTA BENE As a tribute to Dr Mike Bray, the following review of literature willbe mainly based on published data andconcepts, but will also contain my personal views, and in this respect could be more considered as a bioassay. Even though a cost-effective and excellent prophylactic vaccine exists since many years to protect against hepatitis B virus (HBV) infection, academic-researcher/drug-developers/stakeholders are still busy with the R&D of novel therapies that could eventually have an impact on its worldwide incidence. The Taiwanese experience have univocally demonstrated the effectiveness of constrained national HBV prophylactic vaccination programs to prevent the most dramatic HBV-induced end-stage liver disease, which is hepatocellular carcinoma; but yet the number of individuals chronically infected with the virus, for whom the existing prophylactic vaccine is no longer useful, remains high, with around 300 million individuals around the globe. In this review/bioassay, recent findings and novel concepts on prospective therapies against HBV infections will be discussed; yet it does not have the pretention to be exhaustive, as "pure immunotherapeutic concepts" will be mainly let aside (or referred to other reviews) due to a lack of expertise of this writer, but also due to the lack of, or incremental, positive results in clinical trials as-off today with these approaches.
Collapse
Affiliation(s)
- David Durantel
- Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, UMR_5308 CNRS-Université de Lyon (UCBL1), ENS de Lyon, Lyon, 69007, France.
| |
Collapse
|
33
|
Ciliatoside A, isolated from Peristrophe japonica, inhibits HBsAg expression and cccDNA transcription by inducing autophagy. Antiviral Res 2023; 209:105482. [PMID: 36496141 DOI: 10.1016/j.antiviral.2022.105482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022]
Abstract
Hepatitis B surface antigen (HBsAg) loss and seroconversion are considered as an end point of a functional cure. Therefore, it is crucial to find new agents which could efficiently decrease HBsAg. Traditional herbal plants have been considered as an important source of new hepatitis B drugs development for their extensive use in antimicrobial and anti-inflammation. In this study, Peristrophe japonica, which could remarkably reduce HBsAg in the supernatant of HepG2.2.15 cells, was screened out for further extraction. Here, an active ethyl acetate fraction of Peristrophe japonica containing 34 sub-fractions was extracted. Subsequently, the monomeric compound Ciliatoside A was isolated and identified as a potential antiviral reagent with low cytotoxicity from Fraction 30. Ciliatoside A exhibited strong inhibition on intracellular and circulating HBsAg and HBV RNAs in HBV-infected cells and an HBV recombinant-cccDNA mouse model. The mechanistic study revealed that Ciliatoside A exhibited a potent anti-HBV effect through inducing autophagy-lysosomal pathway to autophagic degradation of HBc by activating AMPK-ULK1 axis and inhibiting mTOR activation. In summary, we have identified a novel antiviral compound Ciliatoside A isolated from Peristrophe japonica. This study may provide important direction and new ideas for the discovery of hepatitis B cure drugs.
Collapse
|
34
|
Pregenomic RNA Launch Hepatitis B Virus Replication System Facilitates the Mechanistic Study of Antiviral Agents and Drug-Resistant Variants on Covalently Closed Circular DNA Synthesis. J Virol 2022; 96:e0115022. [PMID: 36448800 PMCID: PMC9769369 DOI: 10.1128/jvi.01150-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Hepatitis B virus (HBV) replicates its genomic DNA by reverse transcription of an RNA intermediate, termed pregenomic RNA (pgRNA), within nucleocapsid. It had been shown that transfection of in vitro-transcribed pgRNA initiated viral replication in human hepatoma cells. We demonstrated here that viral capsids, single-stranded DNA, relaxed circular DNA (rcDNA) and covalently closed circular DNA (cccDNA) became detectable sequentially at 3, 6, 12, and 24 h post-pgRNA transfection into Huh7.5 cells. The levels of viral DNA replication intermediates and cccDNA peaked at 24 and 48 h post-pgRNA transfection, respectively. HBV surface antigen (HBsAg) became detectable in culture medium at day 4 posttransfection. Interestingly, the early robust viral DNA replication and cccDNA synthesis did not depend on the expression of HBV X protein (HBx), whereas HBsAg production was strictly dependent on viral DNA replication and expression of HBx, consistent with the essential role of HBx in the transcriptional activation of cccDNA minichromosomes. While the robust and synchronized HBV replication within 48 h post-pgRNA transfection is particularly suitable for the precise mapping of the HBV replication steps, from capsid assembly to cccDNA formation, targeted by distinct antiviral agents, the treatment of cells starting at 48 h post-pgRNA transfection allows the assessment of antiviral agents on mature nucleocapsid uncoating, cccDNA synthesis, and transcription, as well as viral RNA stability. Moreover, the pgRNA launch system could be used to readily assess the impacts of drug-resistant variants on cccDNA formation and other replication steps in the viral life cycle. IMPORTANCE Hepadnaviral pgRNA not only serves as a template for reverse transcriptional replication of viral DNA but also expresses core protein and DNA polymerase to support viral genome replication and cccDNA synthesis. Not surprisingly, cytoplasmic expression of duck hepatitis B virus pgRNA initiated viral replication leading to infectious virion secretion. However, HBV replication and antiviral mechanism were studied primarily in human hepatoma cells transiently or stably transfected with plasmid-based HBV replicons. The presence of large amounts of transfected HBV DNA or transgenes in cellular chromosomes hampered the robust analyses of HBV replication and cccDNA function. As demonstrated here, the pgRNA launch HBV replication system permits the accurate mapping of antiviral target and investigation of cccDNA biosynthesis and transcription using secreted HBsAg as a convenient quantitative marker. The effect of drug-resistant variants on viral capsid assembly, genome replication, and cccDNA biosynthesis and function can also be assessed using this system.
Collapse
|
35
|
Batista LFZ, Dokal I, Parker R. Telomere biology disorders: time for moving towards the clinic? Trends Mol Med 2022; 28:882-891. [PMID: 36057525 PMCID: PMC9509473 DOI: 10.1016/j.molmed.2022.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 11/19/2022]
Abstract
Telomere biology disorders (TBDs) are a group of rare diseases caused by mutations that impair telomere maintenance. Mutations that cause reduced levels of TERC/hTR, the telomerase RNA component, are found in most TBD patients and include loss-of-function mutations in hTR itself, in hTR-binding proteins [NOP10, NHP2, NAF1, ZCCHC8, and dyskerin (DKC1)], and in proteins required for hTR processing (PARN). These patients show diverse clinical presentations that most commonly include bone marrow failure (BMF)/aplastic anemia (AA), pulmonary fibrosis, and liver cirrhosis. There are no curative therapies for TBD patients. An understanding of hTR biogenesis, maturation, and degradation has identified pathways and pharmacological agents targeting the poly(A) polymerase PAPD5, which adds 3'-oligoadenosine tails to hTR to promote hTR degradation, and TGS1, which modifies the 5'-cap structure of hTR to enhance degradation, as possible therapeutic approaches. Critical next steps will be clinical trials to establish the effectiveness and potential side effects of these compounds in TBD patients.
Collapse
Affiliation(s)
- Luis F Z Batista
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA; Center for Genome Integrity, Washington University in St. Louis, St. Louis, MO, USA; Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO, USA.
| | - Inderjeet Dokal
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Roy Parker
- Department of Biochemistry and Biofrontiers Instiute, University of Colorado, Boulder, CO, USA; Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
36
|
Suresh M, Menne S. Recent Drug Development in the Woodchuck Model of Chronic Hepatitis B. Viruses 2022; 14:v14081711. [PMID: 36016334 PMCID: PMC9416195 DOI: 10.3390/v14081711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/22/2022] [Accepted: 07/31/2022] [Indexed: 11/24/2022] Open
Abstract
Infection with hepatitis B virus (HBV) is responsible for the increasing global hepatitis burden, with an estimated 296 million people being carriers and living with the risk of developing chronic liver disease and cancer. While the current treatment options for chronic hepatitis B (CHB), including oral nucleos(t)ide analogs and systemic interferon-alpha, are deemed suboptimal, the path to finding an ultimate cure for this viral disease is rather challenging. The lack of suitable laboratory animal models that support HBV infection and associated liver disease progression is one of the major hurdles in antiviral drug development. For more than four decades, experimental infection of the Eastern woodchuck with woodchuck hepatitis virus has been applied for studying the immunopathogenesis of HBV and developing new antiviral therapeutics against CHB. There are several advantages to this animal model that are beneficial for performing both basic and translational HBV research. Previous review articles have focused on the value of this animal model in regard to HBV replication, pathogenesis, and immune response. In this article, we review studies of drug development and preclinical evaluation of direct-acting antivirals, immunomodulators, therapeutic vaccines, and inhibitors of viral entry, gene expression, and antigen release in the woodchuck model of CHB since 2014 until today and discuss their significance for clinical trials in patients.
Collapse
|
37
|
Abstract
Despite excellent vaccines, resurgent outbreaks of hepatitis A have caused thousands of hospitalizations and hundreds of deaths within the United States in recent years. There is no effective antiviral therapy for hepatitis A, and many aspects of the hepatitis A virus (HAV) replication cycle remain to be elucidated. Replication requires the zinc finger protein ZCCHC14 and noncanonical TENT4 poly(A) polymerases with which it associates, but the underlying mechanism is unknown. Here, we show that ZCCHC14 and TENT4A/B are required for viral RNA synthesis following translation of the viral genome in infected cells. Cross-linking immunoprecipitation sequencing (CLIP-seq) experiments revealed that ZCCHC14 binds a small stem-loop in the HAV 5' untranslated RNA possessing a Smaug recognition-like pentaloop to which it recruits TENT4. TENT4 polymerases lengthen and stabilize the 3' poly(A) tails of some cellular and viral mRNAs, but the chemical inhibition of TENT4A/B with the dihydroquinolizinone RG7834 had no impact on the length of the HAV 3' poly(A) tail, stability of HAV RNA, or cap-independent translation of the viral genome. By contrast, RG7834 inhibited the incorporation of 5-ethynyl uridine into nascent HAV RNA, indicating that TENT4A/B function in viral RNA synthesis. Consistent with potent in vitro antiviral activity against HAV (IC50 6.11 nM), orally administered RG7834 completely blocked HAV infection in Ifnar1-/- mice, and sharply reduced serum alanine aminotransferase activities, hepatocyte apoptosis, and intrahepatic inflammatory cell infiltrates in mice with acute hepatitis A. These results reveal requirements for ZCCHC14-TENT4A/B in hepatovirus RNA synthesis, and suggest that TENT4A/B inhibitors may be useful for preventing or treating hepatitis A in humans.
Collapse
|
38
|
Watanabe T, Hayashi S, Tanaka Y. Drug Discovery Study Aimed at a Functional Cure for HBV. Viruses 2022; 14:1393. [PMID: 35891374 PMCID: PMC9321005 DOI: 10.3390/v14071393] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/19/2022] [Accepted: 06/23/2022] [Indexed: 02/04/2023] Open
Abstract
Hepatitis B virus (HBV) causes acute and, most importantly, chronic hepatitis B worldwide. Antiviral treatments have been developed to reduce viral loads but few patients with chronic hepatitis B (CHB) achieve a functional cure. The development of new therapeutic agents is desirable. Recently, many novel agents have been developed, including drugs targeting HBV-DNA and HBV-RNA. This review provides an overview of the developmental status of these drugs, especially direct acting antiviral agents (DAAs). Serological biomarkers of HBV infection are essential for predicting the clinical course of CHB. It is also important to determine the amount and activity of covalently closed circular DNA (cccDNA) in the nuclei of infected hepatocytes. Hepatitis B core-associated antigen (HBcrAg) is a new HBV marker that has an important role in reflecting cccDNA in CHB, because it is associated with hepatic cccDNA, as well as serum HBV DNA. The highly sensitive HBcrAg (iTACT-HBcrAg) assay could be a very sensitive HBV activation marker and an alternative to HBV DNA testing for monitoring reactivation. Many of the drugs currently in clinical trials have shown efficacy in reducing hepatitis B surface antigen (HBsAg) levels. Combination therapies with DAAs and boost immune response are also under development; finding the best combinations will be important for therapeutic development.
Collapse
Affiliation(s)
| | | | - Yasuhito Tanaka
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (T.W.); (S.H.)
| |
Collapse
|
39
|
Spunde K, Vigante B, Dubova UN, Sipola A, Timofejeva I, Zajakina A, Jansons J, Plotniece A, Pajuste K, Sobolev A, Muhamadejev R, Jaudzems K, Duburs G, Kozlovska T. Design and Synthesis of Hepatitis B Virus (HBV) Capsid Assembly Modulators and Evaluation of Their Activity in Mammalian Cell Model. Pharmaceuticals (Basel) 2022; 15:ph15070773. [PMID: 35890072 PMCID: PMC9317397 DOI: 10.3390/ph15070773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 12/02/2022] Open
Abstract
Capsid assembly modulators (CAMs) have emerged as a promising class of antiviral agents. We studied the effects of twenty-one newly designed and synthesized CAMs including heteroaryldihydropyrimidine compounds (HAPs), their analogs and standard compounds on hepatitis B virus (HBV) capsid assembly. Cytoplasmic expression of the HBV core (HBc) gene driven by the exogenously delivered recombinant alphavirus RNA replicon was used for high level production of the full-length HBc protein in mammalian cells. HBV capsid assembly was assessed by native agarose gel immunoblot analysis, electron microscopy and inhibition of virion secretion in HepG2.2.15 HBV producing cell line. Induced fit docking simulation was applied for modelling the structural relationships of the synthesized compounds and HBc. The most efficient were the HAP class compounds—dihydropyrimidine 5-carboxylic acid n-alkoxyalkyl esters, which induced the formation of incorrectly assembled capsid products and their accumulation within the cells. HBc product accumulation in the cells was not detected with the reference HAP compound Bay 41-4109, suggesting different modes of action. A significant antiviral effect and substantially reduced toxicity were revealed for two of the synthesized compounds. Two new HAP compounds revealed a significant antiviral effect and a favorable toxicity profile that allows these compounds to be considered promising leads and drug candidates for the treatment of HBV infection. The established alphavirus based HBc expression approach allows for the specific selection of capsid assembly modulators directly in the natural cell environment.
Collapse
Affiliation(s)
- Karina Spunde
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (U.N.D.); (I.T.); (A.Z.); (J.J.); (T.K.)
- Correspondence: (K.S.); (B.V.)
| | - Brigita Vigante
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (A.S.); (A.P.); (K.P.); (A.S.); (R.M.); (K.J.); (G.D.)
- Correspondence: (K.S.); (B.V.)
| | - Unda Nelda Dubova
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (U.N.D.); (I.T.); (A.Z.); (J.J.); (T.K.)
| | - Anda Sipola
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (A.S.); (A.P.); (K.P.); (A.S.); (R.M.); (K.J.); (G.D.)
| | - Irena Timofejeva
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (U.N.D.); (I.T.); (A.Z.); (J.J.); (T.K.)
| | - Anna Zajakina
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (U.N.D.); (I.T.); (A.Z.); (J.J.); (T.K.)
| | - Juris Jansons
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (U.N.D.); (I.T.); (A.Z.); (J.J.); (T.K.)
| | - Aiva Plotniece
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (A.S.); (A.P.); (K.P.); (A.S.); (R.M.); (K.J.); (G.D.)
| | - Karlis Pajuste
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (A.S.); (A.P.); (K.P.); (A.S.); (R.M.); (K.J.); (G.D.)
| | - Arkadij Sobolev
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (A.S.); (A.P.); (K.P.); (A.S.); (R.M.); (K.J.); (G.D.)
| | - Ruslan Muhamadejev
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (A.S.); (A.P.); (K.P.); (A.S.); (R.M.); (K.J.); (G.D.)
| | - Kristaps Jaudzems
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (A.S.); (A.P.); (K.P.); (A.S.); (R.M.); (K.J.); (G.D.)
| | - Gunars Duburs
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (A.S.); (A.P.); (K.P.); (A.S.); (R.M.); (K.J.); (G.D.)
| | - Tatjana Kozlovska
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (U.N.D.); (I.T.); (A.Z.); (J.J.); (T.K.)
| |
Collapse
|
40
|
Yuan SY, Yu HB, Yang Z, Qin YP, Ren JH, Cheng ST, Ren F, Law BYK, Wong VKW, Ng JPL, Zhou YJ, He X, Tan M, Zhang ZZ, Chen J. Pimobendan Inhibits HBV Transcription and Replication by Suppressing HBV Promoters Activity. Front Pharmacol 2022; 13:837115. [PMID: 35721154 PMCID: PMC9204083 DOI: 10.3389/fphar.2022.837115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/10/2022] [Indexed: 12/03/2022] Open
Abstract
Current anti-HBV therapeutic strategy relies on interferon and nucleos(t)ide-type drugs with the limitation of functional cure, inducing hepatitis B surface antigen (HBsAg) loss in very few patients. Notably, the level of HBsAg has been established as an accurate indicator to evaluate the drug efficacy and predict the disease prognosis, thus exploring a novel drug targeting HBsAg will be of great significance. Herein, by screening 978 compounds from an FDA-approved drug library and determining the inhibitory function of each drug on HBsAg level in HepG2.2.15 cells supernatant, we identified that pimobendan (Pim) has a powerful antiviral activity with relatively low cytotoxicity. The inhibitory effect of Pim on HBsAg as well as other HBV markers was validated in HBV-infected cell models and HBV-transgenic mice. Mechanistically, real-time PCR and dual-luciferase reporter assay were applied to identify the partial correlation of transcription factor CAAT enhancer-binding protein α (C/EBPα) with the cccDNA transcription regulated by Pim. This indicates Pim is an inhibitor of HBV transcription through suppressing HBV promoters to reduce HBV RNAs levels and HBsAg production. In conclusion, Pim was identified to be a transcription inhibitor of cccDNA, thereby inhibiting HBsAg and other HBV replicative intermediates both in vitro and in vivo. This report may provide a promising lead for the development of new anti-HBV agent.
Collapse
Affiliation(s)
- Si-Yu Yuan
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Hai-Bo Yu
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Zhen Yang
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yi-Ping Qin
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Ji-Hua Ren
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Sheng-Tao Cheng
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Fang Ren
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Betty Yuen Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Jerome P. L. Ng
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Yu-Jiao Zhou
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xin He
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Ming Tan
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Zhen-Zhen Zhang
- Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Department of Infectious Diseases, The Children’s Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Zhen-Zhen Zhang, ; Juan Chen,
| | - Juan Chen
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
- *Correspondence: Zhen-Zhen Zhang, ; Juan Chen,
| |
Collapse
|
41
|
Qin X, Yang L, Ma X, Jiang B, Wu S, Wang A, Xu S, Wu W, Song H, Du N, Lv K, Li Y, Liu M. Identification of dihydroquinolizinone derivatives with cyclic ether moieties as new anti-HBV agents. Eur J Med Chem 2022; 238:114518. [DOI: 10.1016/j.ejmech.2022.114518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/28/2022] [Accepted: 06/03/2022] [Indexed: 11/28/2022]
|
42
|
Phenotypic drug discovery: recent successes, lessons learned and new directions. Nat Rev Drug Discov 2022; 21:899-914. [DOI: 10.1038/s41573-022-00472-w] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2022] [Indexed: 12/29/2022]
|
43
|
Novel Neplanocin A Derivatives as Selective Inhibitors of Hepatitis B Virus with a Unique Mechanism of Action. Antimicrob Agents Chemother 2022; 66:e0207321. [PMID: 35604213 DOI: 10.1128/aac.02073-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Novel neplanocin A derivatives have been identified as potent and selective inhibitors of hepatitis B virus (HBV) replication in vitro. These include (1S,2R,5R)-5-(5-bromo-4-methyl-7H-pyrrolo[2,3-d]-pyrimidin-7-yl)-3-(hydroxymethyl)cyclopent-3-ene-1,2-diol (AR-II-04-26) and (1S,2R,5R)-5-(4-amino-3-iodo-1H-pyrazolo[3,4-d]pyrimidin-1-yl)-3-(hydroxylmethyl)cyclopent-3-ene-1,2-diol (MK-III-02-03). The 50% effective concentrations of AR-II-04-26 and MK-III-02-03 were 0.77 ± 0.23 and 0.83 ± 0.36 μM in HepG2.2.15.7 cells, respectively. These compounds reduced intracellular HBV RNA levels in HepG2.2.15.7 cells and infected primary human hepatocytes. Accordingly, they could reduce HBs and HBe antigen production in the culture supernatants, which was not observed with clinically approved anti-HBV nucleosides and nucleotides (reverse transcriptase inhibitors). The neplanocin A derivatives also inhibited HBV RNA derived from cccDNA. In addition, unlike neplanocin A itself, the compounds did not inhibit S-adenosyl-l-homocysteine hydrolase activity. Thus, it appears that the mechanism of action of AR-II-04-26 and MK-III-02-03 differs from that of the clinically approved anti-HBV agents. Although their exact mechanism (target molecule) remains to be elucidated, the novel neplanocin A derivatives are considered promising candidate drugs for inhibition of HBV replication.
Collapse
|
44
|
Safety, Tolerability, and Pharmacokinetics of the Novel Hepatitis B Virus Expression Inhibitor GST-HG131 in Healthy Chinese Subjects: a First-in-Human Single- and Multiple-Dose Escalation Trial. Antimicrob Agents Chemother 2022; 66:e0009422. [PMID: 35404074 DOI: 10.1128/aac.00094-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
GST-HG131, a novel dihydroquinolizinone (DHQ) compound, has been shown to reduce circulating levels of HBsAg in animals. This first-in-human trial evaluated the safety, tolerability, and pharmacokinetic profile of GST-HG131 in healthy Chinese subjects. This was a double-blind, randomized, placebo-controlled phase Ia clinical trial that was conducted in two parts. Part A was a single-ascending-dose (SAD; GST-HG131 10 30, 60, 100, 150, 200, 250 or 300 mg or placebo) study, which also assessed the food effect of GST-HG131 100 mg. Part B was a multiple-ascending-dose (MAD; GST-HG131 30, 60 or 100 mg or placebo BID) study. Tolerability assessments included adverse events, vital signs, 12-lead electrocardiogram, physical examination, and clinical laboratory tests. PK analyses were conducted in blood, urine, and fecal samples. Single doses of GST-HG131 ≤ 300 mg and multiple doses of GST-HG131 ≤ 60 mg were generally safe and well tolerated; however, multiple dosing was stopped at GST-HG131 100 mg, as pre-defined stopping rules specified in the protocol were met (Grade II drug related AEs of nausea and dizziness in >50% of subjects). In the SAD study, median tmax of GST-HG131 was 1-6 h, and t1/2 ranged from 3.88 h to 14.3 h. PK parameters were proportional to dose. Exposure was reduced after food intake. In the MAD study, steady-state was attained on day 4, and there was no apparent plasma accumulation of GST-HG131 on day 7 (Racc < 1.5). In conclusion, GST-HG131 exhibited an acceptable safety profile in healthy subjects at single doses ranging from 10-300 mg and multiple doses (BID) ranging from 30-60 mg, and the MAD doses (30 mg and 60 mg BID) that potentially meet the therapeutic AUC requirements. These findings imply GST-HG131 has potential as a therapeutic option for CHB infection. (This study has been registered at ClinicalTrials.gov under identifier NCT04499443.).
Collapse
|
45
|
Denel-Bobrowska M, Olejniczak AB. Non-nucleoside structured compounds with antiviral activity—past 10 years (2010–2020). Eur J Med Chem 2022; 231:114136. [PMID: 35085926 PMCID: PMC8769541 DOI: 10.1016/j.ejmech.2022.114136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/05/2022] [Accepted: 01/14/2022] [Indexed: 02/06/2023]
Abstract
Nucleosides and their derivatives are a well-known and well-described class of compounds with antiviral activity. Currently, in the era of the COVID-19 pandemic, scientists are also looking for compounds not related to nucleosides with antiviral properties. This review aims to provide an overview of selected synthetic antiviral agents not associated to nucleosides developed against human viruses and introduced to preclinical and clinical trials as well as drugs approved for antiviral therapy over the last 10 years. The article describes for the first time the wide classification of such antiviral drugs and drug candidates and briefly summarizes the biological target and clinical applications of the compounds. The described compounds are arranged according to the antiviral mechanism of action. Knowledge of the drug's activity toward specific molecular targets may be the key to researching new antiviral compounds and repositioning drugs already approved for clinical use. The paper also briefly discusses the future directions of antiviral therapy. The described examples of antiviral compounds can be helpful for further drug development.
Collapse
|
46
|
Leowattana W, Leowattana T. Chronic hepatitis B: New potential therapeutic drugs target. World J Virol 2022; 11:57-72. [PMID: 35117971 PMCID: PMC8788212 DOI: 10.5501/wjv.v11.i1.57] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/13/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Abstract
Chronic hepatitis B (CHB) infection remains the most causative agent of liver-related morbidity and mortality worldwide. It impacts nearly 300 million people. The current treatment for chronic infection with the hepatitis B virus (HBV) is complex and lacks a durable treatment response, especially hepatitis B surface antigen (HBsAg) loss, necessitating indefinite treatment in most CHB patients due to the persistence of HBV covalently closed circular DNA (cccDNA). New drugs that target distinct steps of the HBV life cycle have been investigated, which comprise inhibiting the entry of HBV into hepatocytes, disrupting or silencing HBV cccDNA, modulating nucleocapsid assembly, interfering HBV transcription, and inhibiting HBsAg release. The achievement of a functional cure or sustained HBsAg loss in CHB patients represents the following approach towards HBV eradication. This review will explore the up-to-date advances in the development of new direct-acting anti-HBV drugs. Hopefully, with the combination of the current antiviral drugs and the newly developed direct-acting antiviral drugs targeting the different steps of the HBV life cycle, the ultimate eradication of CHB infection will soon be achieved.
Collapse
Affiliation(s)
- Wattana Leowattana
- Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Tawithep Leowattana
- Department of Medicine, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| |
Collapse
|
47
|
OUP accepted manuscript. Toxicol Sci 2022; 186:298-308. [DOI: 10.1093/toxsci/kfac009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
48
|
Watanabe T, Inoue T, Tanaka Y. Hepatitis B Core-Related Antigen and New Therapies for Hepatitis B. Microorganisms 2021; 9:2083. [PMID: 34683404 PMCID: PMC8537336 DOI: 10.3390/microorganisms9102083] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023] Open
Abstract
The hepatitis B core-related antigen (HBcrAg) is an unprecedented novel HBV biomarker that plays an essential role in reflecting covalently closed circular DNA (cccDNA) in chronic hepatitis B (CHB) because its levels correlate with intrahepatic cccDNA and serum HBV DNA. In this review, we describe the clinical application of serum HBcrAg in CHB patients, with a particular focus on new therapies targeting intrahepatic HBV replication. (1) HBcrAg can be detected in clinical cases where serum HBV DNA is undetectable during anti-HBV therapy. (2) A highly sensitive HBcrAg assay (iTACT-HBcrAg) may be useful for monitoring HBV reactivation, as an alternative to HBV DNA. (3) Decreased HBcrAg levels have been significantly associated with promising outcomes in CHB patients, reducing the risk of progression or recurrence of hepatocellular carcinoma. Additionally, we focus on and discuss several drugs in development that target HBV replication, and monitoring HBcrAg may be useful for determining the therapeutic efficacies of such novel drugs. In conclusion, HBcrAg, especially when measured by the recently developed iTACT-HBcrAg assay, may be the most appropriate surrogate marker, over other HBV biomarkers, to predict disease progression and treatment response in CHB patients.
Collapse
Affiliation(s)
- Takehisa Watanabe
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan;
| | - Takako Inoue
- Department of Clinical Laboratory Medicine, Nagoya City University Hospital, Nagoya 467-8602, Japan;
| | - Yasuhito Tanaka
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan;
| |
Collapse
|
49
|
Sturm G, List M, Zhang JD. Tissue heterogeneity is prevalent in gene expression studies. NAR Genom Bioinform 2021; 3:lqab077. [PMID: 34514392 PMCID: PMC8415427 DOI: 10.1093/nargab/lqab077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/01/2021] [Accepted: 08/29/2021] [Indexed: 12/17/2022] Open
Abstract
Lack of reproducibility in gene expression studies is a serious issue being actively addressed by the biomedical research community. Besides established factors such as batch effects and incorrect sample annotations, we recently reported tissue heterogeneity, a consequence of unintended profiling of cells of other origins than the tissue of interest, as a source of variance. Although tissue heterogeneity exacerbates irreproducibility, its prevalence in gene expression data remains unknown. Here, we systematically analyse 2 667 publicly available gene expression datasets covering 76 576 samples. Using two independent data compendia and a reproducible, open-source software pipeline, we find a prevalence of tissue heterogeneity in gene expression data that affects between 1 and 40% of the samples, depending on the tissue type. We discover both cases of severe heterogeneity, which may be caused by mistakes in annotation or sample handling, and cases of moderate heterogeneity, which are likely caused by tissue infiltration or sample contamination. Our analysis establishes tissue heterogeneity as a widespread phenomenon in publicly available gene expression datasets, which constitutes an important source of variance that should not be ignored. Consequently, we advocate the application of quality-control methods such as BioQC to detect tissue heterogeneity prior to mining or analysing gene expression data.
Collapse
Affiliation(s)
- Gregor Sturm
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Markus List
- Chair of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Jitao David Zhang
- Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| |
Collapse
|
50
|
Host Poly(A) Polymerases PAPD5 and PAPD7 Provide Two Layers of Protection That Ensure the Integrity and Stability of Hepatitis B Virus RNA. J Virol 2021; 95:e0057421. [PMID: 34191584 PMCID: PMC8387043 DOI: 10.1128/jvi.00574-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Noncanonical poly(A) polymerases PAPD5 and PAPD7 (PAPD5/7) stabilize hepatitis B virus (HBV) RNA via the interaction with the viral posttranscriptional regulatory element (PRE), representing new antiviral targets to control HBV RNA metabolism, hepatitis B surface antigen (HBsAg) production, and viral replication. Inhibitors targeting these proteins are being developed as antiviral therapies; therefore, it is important to understand how PAPD5/7 coordinate to stabilize HBV RNA. Here, we utilized a potent small-molecule AB-452 as a chemical probe, along with genetic analyses to dissect the individual roles of PAPD5/7 in HBV RNA stability. AB-452 inhibits PAPD5/7 enzymatic activities and reduces HBsAg both in vitro (50% effective concentration [EC50] ranged from 1.4 to 6.8 nM) and in vivo by 0.94 log10. Our genetic studies demonstrate that the stem-loop alpha sequence within PRE is essential for both maintaining HBV poly(A) tail integrity and determining sensitivity toward the inhibitory effect of AB-452. Although neither single knockout (KO) of PAPD5 nor PAPD7 reduces HBsAg RNA and protein production, PAPD5 KO does impair poly(A) tail integrity and confers partial resistance to AB-452. In contrast, PAPD7 KO did not result in any measurable changes within the HBV poly(A) tails, but cells with both PAPD5 and PAPD7 KO show reduced HBsAg production and conferred complete resistance to AB-452 treatment. Our results indicate that PAPD5 plays a dominant role in stabilizing viral RNA by protecting the integrity of its poly(A) tail, while PAPD7 serves as a second line of protection. These findings inform PAPD5-targeted therapeutic strategies and open avenues for further investigating PAPD5/7 in HBV replication. IMPORTANCE Chronic hepatitis B affects more than 250 million patients and is a major public health concern worldwide. HBsAg plays a central role in maintaining HBV persistence, and as such, therapies that aim at reducing HBsAg through destabilizing or degrading HBV RNA have been extensively investigated. Besides directly degrading HBV transcripts through antisense oligonucleotides or RNA silencing technologies, small-molecule compounds targeting host factors such as the noncanonical poly(A) polymerase PAPD5 and PAPD7 have been reported to interfere with HBV RNA metabolism. Herein, our antiviral and genetic studies using relevant HBV infection and replication models further characterize the interplays between the cis element within the viral sequence and the trans elements from the host factors. PAPD5/7-targeting inhibitors, with oral bioavailability, thus represent an opportunity to reduce HBsAg through destabilizing HBV RNA.
Collapse
|