1
|
Yu F, Zhu Y, Li S, Hao L, Li N, Ye F, Jiang Z, Hu X. Dysfunction and regulatory interplay of T and B cells in chronic hepatitis B: immunotherapy and emerging antiviral strategies. Front Cell Infect Microbiol 2024; 14:1488527. [PMID: 39717542 PMCID: PMC11663751 DOI: 10.3389/fcimb.2024.1488527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/20/2024] [Indexed: 12/25/2024] Open
Abstract
In the context of chronic hepatitis B virus (HBV) infection, the continuous replication of HBV within host hepatocytes is a characteristic feature. Rather than directly causing hepatocyte destruction, this replication leads to immune dysfunction and establishes a state of T-B immune tolerance. Successful clearance of the HBV virus is dependent on the close collaboration between humoral and cellular immunity. Humoral immunity, mediated by B-cell subpopulations, and cellular immunity, dominated by T-cell subpopulations show varying degrees of dysfunction during chronic hepatitis B (CHB). Notably, not all T- and B-cells produce positive immune responses. This review examine the most recent developments in the mutual regulation of T-B cells during chronic HBV infection. Our focus is on the prevailing immunotherapeutic strategies, such as T cell engineering, HBV-related vaccines, PD-1 inhibitors, and Toll-like receptor agonists. While nucleos(t)ide analogues (NUCs) and interferons have notable limitations, including inadequate viral suppression, drug resistance, and adverse reactions, several HBV entry inhibitors have shown promising clinical efficacy. To overcome the challenges posed by NUCs or monotherapy, the combination of immunotherapy and novel antiviral agents presents a promising avenue for future CHB treatment and potential cure.
Collapse
Affiliation(s)
- Fei Yu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yue Zhu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shenghao Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Liyuan Hao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Na Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fanghang Ye
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhi Jiang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Roca Suarez AA, Plissonnier ML, Grand X, Michelet M, Giraud G, Saez-Palma M, Dubois A, Heintz S, Diederichs A, Van Renne N, Vanwolleghem T, Daffis S, Li L, Kolhatkar N, Hsu YC, Wallin JJ, Lau AH, Fletcher SP, Rivoire M, Levrero M, Testoni B, Zoulim F. TLR8 agonist selgantolimod regulates Kupffer cell differentiation status and impairs HBV entry into hepatocytes via an IL-6-dependent mechanism. Gut 2024; 73:2012-2022. [PMID: 38697771 DOI: 10.1136/gutjnl-2023-331396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/16/2024] [Indexed: 05/05/2024]
Abstract
OBJECTIVE Achieving HBV cure will require novel combination therapies of direct-acting antivirals and immunomodulatory agents. In this context, the toll-like receptor 8 (TLR8) agonist selgantolimod (SLGN) has been investigated in preclinical models and clinical trials for chronic hepatitis B (CHB). However, little is known regarding its action on immune effectors within the liver. Our aim was to characterise the transcriptomic changes and intercellular communication events induced by SLGN in the hepatic microenvironment. DESIGN We identified TLR8-expressing cell types in the human liver using publicly available single-cell RNA-seq data and established a method to isolate Kupffer cells (KCs). We characterised transcriptomic and cytokine KC profiles in response to SLGN. SLGN's indirect effect was evaluated by RNA-seq in hepatocytes treated with SLGN-conditioned media (CM) and quantification of HBV parameters following infection. Pathways mediating SLGN's effect were validated using transcriptomic data from HBV-infected patients. RESULTS Hepatic TLR8 expression takes place in the myeloid compartment. SLGN treatment of KCs upregulated monocyte markers (eg, S100A12) and downregulated genes associated with the KC identity (eg, SPIC). Treatment of hepatocytes with SLGN-CM downregulated NTCP and impaired HBV entry. Cotreatment with an interleukin 6-neutralising antibody reverted the HBV entry inhibition. CONCLUSION Our transcriptomic characterisation of SLGN sheds light into the programmes regulating KC activation. Furthermore, in addition to its previously described effect on established HBV infection and adaptive immunity, we show that SLGN impairs HBV entry. Altogether, SLGN may contribute through KCs to remodelling the intrahepatic immune microenvironment and may thus represent an important component of future combinations to cure HBV infection.
Collapse
Affiliation(s)
- Armando Andres Roca Suarez
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- The Lyon Hepatology Institute EVEREST, Lyon, France
| | - Marie-Laure Plissonnier
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- The Lyon Hepatology Institute EVEREST, Lyon, France
| | - Xavier Grand
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- The Lyon Hepatology Institute EVEREST, Lyon, France
| | - Maud Michelet
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- The Lyon Hepatology Institute EVEREST, Lyon, France
| | - Guillaume Giraud
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- The Lyon Hepatology Institute EVEREST, Lyon, France
| | - Maria Saez-Palma
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- The Lyon Hepatology Institute EVEREST, Lyon, France
| | - Anaëlle Dubois
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- The Lyon Hepatology Institute EVEREST, Lyon, France
| | - Sarah Heintz
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- The Lyon Hepatology Institute EVEREST, Lyon, France
| | - Audrey Diederichs
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- The Lyon Hepatology Institute EVEREST, Lyon, France
| | - Nicolaas Van Renne
- Viral Hepatitis Research Group, Laboratory of Experimental Medicine and Pediatrics, Antwerp University, Antwerp, Belgium
| | - Thomas Vanwolleghem
- Viral Hepatitis Research Group, Laboratory of Experimental Medicine and Pediatrics, Antwerp University, Antwerp, Belgium
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium
| | | | - Li Li
- Gilead Sciences Inc, 324 Lakeside Dr, Foster City, CA, USA
| | | | - Yao-Chun Hsu
- Center for Liver Diseases, E-Da Hospital/I-Shou University, Kaohsiung, Taiwan
| | | | - Audrey H Lau
- Gilead Sciences Inc, 324 Lakeside Dr, Foster City, CA, USA
| | | | | | - Massimo Levrero
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- The Lyon Hepatology Institute EVEREST, Lyon, France
- Department of Hepatology, Croix Rousse hospital, Hospices Civils de Lyon, Lyon, France
- Department of Internal Medicine - DMISM and the IIT Center for Life Nanoscience (CLNS), Sapienza University, Rome, Italy
| | - Barbara Testoni
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- The Lyon Hepatology Institute EVEREST, Lyon, France
| | - Fabien Zoulim
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- The Lyon Hepatology Institute EVEREST, Lyon, France
- Department of Hepatology, Croix Rousse hospital, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
3
|
Bächer J, Allweiss L, Dandri M. SMC5/6-Mediated Transcriptional Regulation of Hepatitis B Virus and Its Therapeutic Potential. Viruses 2024; 16:1667. [PMID: 39599784 PMCID: PMC11598903 DOI: 10.3390/v16111667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Cells have developed various mechanisms to counteract viral infections. In an evolutionary arms race, cells mobilize cellular restriction factors to fight off viruses, targeted by viral factors to facilitate their own replication. The hepatitis B virus (HBV) is a small dsDNA virus that causes acute and chronic infections of the liver. Its genome persists in the nuclei of infected hepatocytes as a covalently closed circular DNA (cccDNA) minichromosome, thus building up an episomal persistence reservoir. The chromosomal maintenance complex SMC5/6 acts as a restriction factor hindering cccDNA transcription, whereas the viral regulatory protein HBx targets SMC5/6 for proteasomal degradation, thus relieving transcriptional suppression of the HBV minichromosome. To date, no curative therapies are available for chronic HBV carriers. Knowledge of the factors regulating the cccDNA and the development of therapies involving silencing the minichromosome or specifically interfering with the HBx-SMC5/6 axis holds promise in achieving sustained viral control. Here, we summarize the current knowledge of the mechanism of SMC5/6-mediated HBV restriction. We also give an overview of SMC5/6 cellular functions and how this compares to the restriction of other DNA viruses. We further discuss the therapeutic potential of available and investigational drugs interfering with the HBx-SMC5/6 axis.
Collapse
Affiliation(s)
- Johannes Bächer
- I. Department of Internal Medicine, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (J.B.); (L.A.)
| | - Lena Allweiss
- I. Department of Internal Medicine, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (J.B.); (L.A.)
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Site, Germany
| | - Maura Dandri
- I. Department of Internal Medicine, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (J.B.); (L.A.)
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Site, Germany
| |
Collapse
|
4
|
Dai DL, Xie C, Zhong LY, Liu SX, Zhang LL, Zhang H, Wu XP, Wu ZM, Kang K, Li Y, Sun YM, Xia TL, Zhang CS, Zhang A, Shi M, Sun C, Chen ML, Zhao GX, Bu GL, Liu YT, Huang KY, Zhao Z, Li SX, Zhang XY, Yuan YF, Wen SJ, Zhang L, Li BK, Zhong Q, Zeng MS. AXIN1 boosts antiviral response through IRF3 stabilization and induced phase separation. Signal Transduct Target Ther 2024; 9:281. [PMID: 39384753 PMCID: PMC11464762 DOI: 10.1038/s41392-024-01978-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/02/2024] [Accepted: 09/13/2024] [Indexed: 10/11/2024] Open
Abstract
Axis inhibition protein 1 (AXIN1), a scaffold protein interacting with various critical molecules, plays a vital role in determining cell fate. However, its impact on the antiviral innate immune response remains largely unknown. Here, we identify that AXIN1 acts as an effective regulator of antiviral innate immunity against both DNA and RNA virus infections. In the resting state, AXIN1 maintains the stability of the transcription factor interferon regulatory factor 3 (IRF3) by preventing p62-mediated autophagic degradation of IRF3. This is achieved by recruiting ubiquitin-specific peptidase 35 (USP35), which removes lysine (K) 48-linked ubiquitination at IRF3 K366. Upon virus infection, AXIN1 undergoes a phase separation triggered by phosphorylated TANK-binding kinase 1 (TBK1). This leads to increased phosphorylation of IRF3 and a boost in IFN-I production. Moreover, KYA1797K, a small molecule that binds to the AXIN1 RGS domain, enhances the AXIN1-IRF3 interaction and promotes the elimination of various highly pathogenic viruses. Clinically, patients with HBV-associated hepatocellular carcinoma (HCC) who show reduced AXIN1 expression in pericarcinoma tissues have low overall and disease-free survival rates, as well as higher HBV levels in their blood. Overall, our findings reveal how AXIN1 regulates IRF3 signaling and phase separation-mediated antiviral immune responses, underscoring the potential of the AXIN1 agonist KYA1797K as an effective antiviral agent.
Collapse
Affiliation(s)
- Dan-Ling Dai
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Chu Xie
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Lan-Yi Zhong
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Shang-Xin Liu
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Le-Le Zhang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Hua Zhang
- Shenzhen Key Laboratory of Systems Medicine for inflammatory diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-sen University, Shenzhen, Guangdong, P. R. China
| | - Xing-Ping Wu
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Zhou-Ming Wu
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Kexin Kang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, P. R. China
| | - Yan Li
- Department of Pathology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Ya-Meng Sun
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Tian-Liang Xia
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Chen-Song Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, P. R. China
| | - Ao Zhang
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Ming Shi
- Department of Liver Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Cong Sun
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Mei-Ling Chen
- Department of Nuclear medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Ge-Xin Zhao
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Guo-Long Bu
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Yuan-Tao Liu
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Kui-Yuan Huang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Zheng Zhao
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Shu-Xin Li
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Xiao-Yong Zhang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Yun-Fei Yuan
- Department of Liver Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Shi-Jun Wen
- Medicinal Synthetic Chemistry Center, Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Lingqiang Zhang
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, P. R. China
| | - Bin-Kui Li
- Department of Liver Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.
| | - Qian Zhong
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.
| | - Mu-Sheng Zeng
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.
| |
Collapse
|
5
|
Li S, Yang L, Xu Q, Li X, Zhao J, Tan Z, Gu X, Qiu J. Exploration of 1-(indolin-1-yl)-2-(thiazol-2-yl)ethan-1-one derivatives as novel anti-HBV agent with potential TLR7-agonistic effect. Eur J Med Chem 2024; 275:116575. [PMID: 38865744 DOI: 10.1016/j.ejmech.2024.116575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024]
Abstract
Hepatitis B virus (HBV) infection, as a serious global public health issue, is closely related to the immune dysfunction. Herein, thirty-seven 1-(indolin-1-yl)-2-(thiazol-4-yl)ethan-1-one derivatives were prepared as potential immunomodulatory anti-HBV agents. Anti-HBV activity evaluation confirmed compound 11a could significantly suppress the HBV DNA replication in both wild and resistant HBV stains, with IC50 values of 0.13 μM and 0.36 μM, respectively. Preliminary action mechanism studies showed that 11a had an inhibitory effect on cellular HBsAg secretion and could effectively activate TLR7, thereby inducing the secretion of TLR7-regulated cytokines IL-12, TNF-α and IFN-α in human PBMC cells. SPR analysis confirmed that 11a could bind to TLR7 protein with an affinity of 7.06 μM. MD simulation predicted that 11a could form tight interactions with residues in the binding pocket of TLR7. Physicochemical parameters perdition and pharmacokinetic analysis indicated that 11a displayed relatively favorable drug-like properties. Considering all the results, compound 11a might be a promising lead for developing novel immunomodulatory anti-HBV agents.
Collapse
Affiliation(s)
- Shuqiong Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China; Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Lihua Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Qiuting Xu
- Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Xincheng Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Jiangyan Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Zhoupeng Tan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Xiaoke Gu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China.
| | - Jingying Qiu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China; Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China.
| |
Collapse
|
6
|
Jiang Q, Zhang Y, Duan D, Retout S, Upmanyu R, Glavini K, Triyatni M, Zhu Y, Grippo JF, Jin Y. Using exploratory pharmacokinetic and pharmacodynamic analyses to predict the probability of flu-like symptoms in healthy volunteers and patients with chronic hepatitis B treated with the toll-like receptor 7 agonist ruzotolimod. Clin Transl Sci 2024; 17:e13896. [PMID: 39119977 PMCID: PMC11310849 DOI: 10.1111/cts.13896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
Ruzotolimod (Toll-like receptor 7 (TLR7) agonist, RG7854) is an oral, small molecule immuno-modulator activating the TLR 7 and is being evaluated in patients with CHB. As with other TLR7 agonists, the study drug-related adverse events of flu-like symptoms have been reported in some participants during phase I studies with ruzotolimod. An exploratory analysis of the relationship between pharmacokinetic (PK)/pharmacodynamic (PD) and flu-like symptoms was performed in participants from two phase I studies including both healthy volunteers and NUC-suppressed CHB patients who received either single or multiple ascending doses of orally administered ruzotolimod. Linear and logistic regression were used to explore potential relationships between dose, flu-like symptoms, PK, and PD. Generalized linear regression was performed to predict the probability of flu-like symptoms of all intensities at different RO7011785 (the active metabolite of the double prodrug ruzotolimod) PK exposure. This analysis showed that single or multiple doses of ruzotolimod at ⩾100 mg, the immune PD (IFN-α, neopterin, IP-10, and the transcriptional expression of ISG15, OAS-1, MX1, and TLR7) responses increase with the RO7011785 PK exposure, which increases linearly with the doses from 3 mg to 170 mg of ruzotolimod. The analysis also showed that the probability of flu-like symptoms occurrence increases with PD responses (IFN-α and IP-10). Dose reduction of ruzotolimod can be an effective way to reduce the magnitude of PD response, thus reducing the probability of study drug-related flu-like symptoms occurrence at all intensity in the participants who are highly sensitive to PD activation and intolerant to flu-like symptoms.
Collapse
Affiliation(s)
| | | | - Dan Duan
- Roche Innovation CenterShanghaiChina
| | | | | | | | | | | | | | - Yuyan Jin
- Roche Innovation CenterShanghaiChina
| |
Collapse
|
7
|
Ye X, Chen X, Liu H, Jiang Y, Yang C, Xu T, Chen Z, Wang Y, Chen F, Liu X, Yu H, Yuan Q, Xia N, Chen Y, Luo W. HBsAg and TLR7/8 dual-targeting antibody-drug conjugates induce sustained anti-HBV activity in AAV/HBV mice: a preliminary study. Antib Ther 2024; 7:249-255. [PMID: 39262443 PMCID: PMC11384142 DOI: 10.1093/abt/tbae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/13/2024] [Accepted: 06/28/2024] [Indexed: 09/13/2024] Open
Abstract
UNLABELLED Hepatitis B virus (HBV) infection is a significant global health concern due to elevated immunosuppressive viral antigen levels, the host immune system's inability to manage HBV, and the liver's immunosuppressive conditions. While immunotherapies utilizing broadly reactive HBV neutralizing antibodies present potential due to their antiviral capabilities and Fc-dependent vaccinal effects, they necessitate prolonged and frequent dosing to achieve optimal therapeutic outcomes. Toll-like receptor 7/8 (TLR7/8) agonists have been demonstrated promise for the cure of chronic hepatitis B, but their systemic use often leads to intense side effects. In this study, we introduced immune-stimulating antibody conjugates which consist of TLR7/8 agonists 1-[[4-(aminomethyl)phenyl]methyl]-2-butyl-imidazo[4,5-c]quinolin-4-amine (IMDQ) linked to an anti-hepatitis B surface antigen (HBsAg) antibody 129G1, and designated as 129G1-IMDQ. Our preliminary study highlights that 129G1-IMDQ can prompt robust and sustained anti-HBsAg specific reactions with short-term administration. This underscores the conjugate's potential as an effective strategy for HBsAg clearance and seroconversion, offering a fresh perspective for a practical therapeutic approach in the functional cure of CHB. HIGHLIGHTS HBV-neutralizing antibody 129G1 was linked with a TLR7/8 agonist small molecule compound IMDQ.Treatment with 129G1-IMDQ has shown significant promise in lowering HBsAg levels in AAV/HBV mice.129G1-IMDQ were eliciting a strong and lasting anti-HBsAg immune response after short-term treatment in AAV/HBV mice.
Collapse
Affiliation(s)
- Xinya Ye
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xiaoqing Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Han Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yichao Jiang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Chengyu Yang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Tao Xu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Ziyou Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yalin Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Fentian Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xue Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Hai Yu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Quan Yuan
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yuanzhi Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Wenxin Luo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| |
Collapse
|
8
|
Su X, Wang Z, Li J, Gao S, Fan Y, Wang K. Hypermethylation of the glutathione peroxidase 4 gene promoter is associated with the occurrence of immune tolerance phase in chronic hepatitis B. Virol J 2024; 21:72. [PMID: 38515187 PMCID: PMC10958902 DOI: 10.1186/s12985-024-02346-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/19/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) infection is a public health problem that seriously threatens human health. This study aimed to investigate the clinical significance of glutathione peroxidase 4(GPX4) in the occurrence and development of chronic hepatitis B (CHB). METHODS A total of 169 participants including 137 patients with CHB and 32 healthy controls (HCs) were recruited. We detected the expression of GPX4 and stimulator of interferon genes (STING) in peripheral blood mononuclear cells (PBMCs) by real-time quantitative polymerase chain reaction (RT-qPCR). The methylation level of GPX4 gene promoter in PBMCs was detected by TaqMan probe-based quantitative methylation-specific PCR (MethyLight). Enzyme-linked immunosorbent assay (ELISA) was performed to detect the serum levels of GPX4, IFN-β, oxidative stress (OS) related molecules, and pro-inflammatory cytokines. RESULTS The expression levels of GPX4 in PBMCs and serum of CHB patients were lower than those of HCs, but the methylation levels of GPX4 promoter were higher than those of HCs, especially in patients at the immune tolerance phase. STING mRNA expression levels in PBMCs and serum IFN-β levels of patients at the immune activation phase and reactivation phase of CHB were higher than those at other clinical phases of CHB and HCs. GPX4 mRNA expression level and methylation level in PBMCs from patients with CHB had a certain correlation with STING and IFN-β expression levels. In addition, the methylation level of the GPX4 promoter in PBMCs from patients with CHB was correlated with molecules associated with OS and inflammation. CONCLUSIONS GPX4 may play an important role in the pathogenesis and immune tolerance of CHB, which may provide new ideas for the functional cure of CHB.
Collapse
Affiliation(s)
- Xing Su
- Department of Hepatology, Qilu Hospital of Shandong University, Wenhuaxi Road 107#, 250012, Jinan City, Shandong Province, China
| | - Zhaohui Wang
- Department of Hepatology, Qilu Hospital of Shandong University, Wenhuaxi Road 107#, 250012, Jinan City, Shandong Province, China
| | - Jihui Li
- Department of Hepatology, Qilu Hospital of Shandong University, Wenhuaxi Road 107#, 250012, Jinan City, Shandong Province, China
| | - Shuai Gao
- Department of Hepatology, Qilu Hospital of Shandong University, Wenhuaxi Road 107#, 250012, Jinan City, Shandong Province, China
- Hepatology Institute of Shandong University, 250012, Jinan, Shandong, China
| | - Yuchen Fan
- Department of Hepatology, Qilu Hospital of Shandong University, Wenhuaxi Road 107#, 250012, Jinan City, Shandong Province, China
- Hepatology Institute of Shandong University, 250012, Jinan, Shandong, China
| | - Kai Wang
- Department of Hepatology, Qilu Hospital of Shandong University, Wenhuaxi Road 107#, 250012, Jinan City, Shandong Province, China.
- Hepatology Institute of Shandong University, 250012, Jinan, Shandong, China.
| |
Collapse
|
9
|
Wei T, Zhou BY, Wu XH, Liu XA, Huo MW, Huang XX, Shi LZ, Shi LL, Cao QR. Development of Polyvinyl Alcohol/Polyethylene Glycol Copolymer-based Orodispersible Films Loaded with Entecavir: Formulation and In vitro Characterization. Curr Drug Deliv 2024; 21:1362-1374. [PMID: 37929732 DOI: 10.2174/0115672018261294231024093926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/08/2023] [Accepted: 09/06/2023] [Indexed: 11/07/2023]
Abstract
PURPOSE The aim of the study is to prepare entecavir (ETV)-loaded orodispersible films (ODFs) using polyvinyl alcohol (PVA)/polyethylene glycol (PEG) graft copolymer (Kollicoat® IR) as a film-forming agent, and further to evaluate the dissolution rate, mechanical and physicochemical properties of films. METHODS ETV-ODFs were prepared by a solvent casting method. The amount of film-forming agent, plasticizer, and disintegrating agent was optimized in terms of the appearance, thickness, disintegration time and mechanical properties of ODFs. The compatibility between the drug and each excipient was conducted under high temperature (60 °C), high humidity (RH 92.5%), and strong light (4500 Lx) for 10 days. The dissolution study of optimal ODFs compared with the original commercial tablet (Baraclude®) was performed using a paddle method in pH 1.0, pH 4.5, pH 6.8, and pH 7.4 media at 37 °C. The morphology of ODFs was observed via scanning electron microscopy (SEM). The mechanical properties such as tensile strength (TS), elastic modulus (EM), and percentage elongation (E%) of ODFs were evaluated using the universal testing machine. The physicochemical properties of ODFs were investigated using X-ray diffraction (XRD), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FT-IR). RESULTS The related substances were less than 0.5% under high temperature, high humidity, and strong light for 10 days when ETV was mixed with excipients. The optimal formulation of ODFs was set as the quality ratio of Kollicoat® IR, glycerol, sodium alginate (ALG-Na): TiO2: MCC+CMC-Na: ETV was 60:9:12:1:1:1. The drug-loaded ODFs were white and translucent with excellent stripping property. The thickness, disintegration time, EM, TS, and E% were 103.33±7.02 μm, 25.31±1.95 s, 25.34±8.69 Mpa, 2.14±0.26 Mpa, and 65.45±19.41 %, respectively. The cumulative drug release from ODFs was more than 90% in four different media at 10 min. The SEM showed that the drug was highly dispersible in ODFs, and the XRD, DSC, and FT-IR results showed that there occurred some interactions between the drug and excipients. CONCLUSION In conclusion, the developed ETV-loaded ODFs showed relatively short disintegration time, rapid drug dissolution, and excellent mechanical properties. This might be an alternative to conventional ETV Tablets for the treatment of chronic hepatitis B.
Collapse
Affiliation(s)
- Teng Wei
- College of Pharmaceutical Sciences, Soochow University, Suzhou, People's Republic of China
| | - Bing-Yu Zhou
- Dongliao People's Hospital, Liaoyuan, People's Republic of China
| | - Xin-Hong Wu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, People's Republic of China
| | - Xue-Ai Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, People's Republic of China
| | - Ming-Wei Huo
- College of Pharmaceutical Sciences, Soochow University, Suzhou, People's Republic of China
| | - Xiang-Xiang Huang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, People's Republic of China
| | - Ling-Zhi Shi
- College of Pharmaceutical Sciences, Soochow University, Suzhou, People's Republic of China
| | - Li-Li Shi
- College of Medicine, Jiaxing University, Jiaxing, People's Republic of China
| | - Qin-Ri Cao
- College of Pharmaceutical Sciences, Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
10
|
Furutani Y, Hirano Y, Toguchi M, Higuchi S, Qin XY, Yanaka K, Sato-Shiozaki Y, Takahashi N, Sakai M, Kongpracha P, Suzuki T, Dohmae N, Kukimoto-Niino M, Shirouzu M, Nagamori S, Suzuki H, Kobayashi K, Masaki T, Koyama H, Sekiba K, Otsuka M, Koike K, Kohara M, Kojima S, Kakeya H, Matsuura T. A small molecule iCDM-34 identified by in silico screening suppresses HBV DNA through activation of aryl hydrocarbon receptor. Cell Death Discov 2023; 9:467. [PMID: 38135680 PMCID: PMC10746708 DOI: 10.1038/s41420-023-01755-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
IFN-alpha have been reported to suppress hepatitis B virus (HBV) cccDNA via APOBEC3 cytidine deaminase activity through interferon signaling. To develop a novel anti-HBV drug for a functional cure, we performed in silico screening of the binding compounds fitting the steric structure of the IFN-alpha-binding pocket in IFNAR2. We identified 37 compounds and named them in silico cccDNA modulator (iCDM)-1-37. We found that iCDM-34, a new small molecule with a pyrazole moiety, showed anti-HCV and anti-HBV activities. We measured the anti-HBV activity of iCDM-34 dependent on or independent of entecavir (ETV). iCDM-34 suppressed HBV DNA, pgRNA, HBsAg, and HBeAg, and also clearly exhibited additive inhibitory effects on the suppression of HBV DNA with ETV. We confirmed metabolic stability of iCDM-34 was stable in human liver microsomal fraction. Furthermore, anti-HBV activity in human hepatocyte-chimeric mice revealed that iCDM-34 was not effective as a single reagent, but when combined with ETV, it suppressed HBV DNA compared to ETV alone. Phosphoproteome and Western blotting analysis showed that iCDM-34 did not activate IFN-signaling. The transcriptome analysis of interferon-stimulated genes revealed no increase in expression, whereas downstream factors of aryl hydrocarbon receptor (AhR) showed increased levels of the expression. CDK1/2 and phospho-SAMHD1 levels decreased under iCDM-34 treatment. In addition, AhR knockdown inhibited anti-HCV activity of iCDM-34 in HCV replicon cells. These results suggest that iCDM-34 decreases the phosphorylation of SAMHD1 through CDK1/2, and suppresses HCV replicon RNA, HBV DNA, and pgRNA formation.
Collapse
Affiliation(s)
- Yutaka Furutani
- Department of Laboratory Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan.
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- Biomolecular Characterization Unit RIKEN Center for Sustainable Resource Science (CSRS), RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- Center for SI Medical Research, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8471, Japan.
| | - Yoshinori Hirano
- Department of Mechanical Engineering, Keio University, Yokohama, Kanagawa, 223-8522, Japan
- Laboratory for Computational Molecular Design, RIKEN Center for Biosystems Dynamics Research (BDR), 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan
| | - Mariko Toguchi
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Shoko Higuchi
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Xian-Yang Qin
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Kaori Yanaka
- Department of Laboratory Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Center for SI Medical Research, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8471, Japan
| | - Yumi Sato-Shiozaki
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Nobuaki Takahashi
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Marina Sakai
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Pornparn Kongpracha
- Department of Laboratory Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan
- Center for SI Medical Research, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8471, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit RIKEN Center for Sustainable Resource Science (CSRS), RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit RIKEN Center for Sustainable Resource Science (CSRS), RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Mutsuko Kukimoto-Niino
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Shushi Nagamori
- Department of Laboratory Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan
- Center for SI Medical Research, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8471, Japan
| | - Harukazu Suzuki
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Kaoru Kobayashi
- Laboratory of Biopharmaceutics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Takahiro Masaki
- Department of Laboratory Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Hiroo Koyama
- Drug Discovery Chemistry Platform Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Kazuma Sekiba
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, 113-8655, Japan
| | - Motoyuki Otsuka
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, 113-8655, Japan
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, 113-8655, Japan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Soichi Kojima
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Tomokazu Matsuura
- Department of Laboratory Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Center for SI Medical Research, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8471, Japan
- Sasaki Institute Shonan Medical Examination Center, 10-4 Takarachou, Hiratsuka-shi, Kanagawa, 254-0034, Japan
| |
Collapse
|
11
|
Cheng T, Cheng Y, Jin DY. Oncostatin M for Anti-HBV Therapy: Can a Foe Be Turned Into a Friend? Cell Mol Gastroenterol Hepatol 2023; 17:309-310. [PMID: 38016648 PMCID: PMC10829518 DOI: 10.1016/j.jcmgh.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 11/30/2023]
Affiliation(s)
- Tao Cheng
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yun Cheng
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Pokfulam, Hong Kong
| | - Dong-Yan Jin
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Pokfulam, Hong Kong.
| |
Collapse
|
12
|
Ye Y, Fu Y, Lin C, Shen Y, Yu Q, Yao X, Huang Q, Liu C, Zeng Y, Chen T, Wu S, Xun Z, Ou Q. Oncostatin M Induces IFITM1 Expression to Inhibit Hepatitis B Virus Replication Via JAK-STAT Signaling. Cell Mol Gastroenterol Hepatol 2023; 17:219-235. [PMID: 37879404 PMCID: PMC10760422 DOI: 10.1016/j.jcmgh.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND & AIMS Functional cure is achieved by a limited number of patients with chronic hepatitis B (CHB) after nucleotide analogue(s) and interferon treatment. It is urgent to develop therapies that can help a larger proportion of patients achieve functional cure. The present study was designed to explore the anti-hepatitis B virus (HBV) potency of interleukin-6 family cytokines and to characterize the underlying mechanisms of the cytokine displaying the highest anti-HBV potency. METHODS HBV-infected cells were used to screened the anti-HBV potency of interleukin-6 family cytokines. The concentration of oncostatin M (OSM) in patients with chronic HBV infection was examined by enzyme-linked immunosorbent assay. The underlying mechanism of OSM anti-HBV was explored through RNA-seq. C57BL/6 mice injected with rAAV8-1.3HBV were used to explore the suppression effect of OSM on HBV in vivo. RESULTS OSM is the most effective of the interleukin-6 family cytokines for suppression of HBV replication (percentage of average inhibition: hepatitis B surface antigen, 34.44%; hepatitis B e antigen, 32.52%; HBV DNA, 61.57%). Hepatitis B e antigen-positive CHB patients with high OSM levels had lower hepatitis B surface antigen and hepatitis B e antigen than those with low levels. OSM activated JAK-STAT signaling pathway promoting the formation of STAT1-IRF9 transcription factor complex. Following this, OSM increased the expression of various genes with known functions in innate and adaptive immunity, which was higher expression in patients with CHB in immune clearance phase than in immune tolerance phase (data from GEO: GSE65359). Interferon-induced transmembrane protein 1, one of the most differentially expressed genes, was identified as an HBV restriction factor involved in OSM-mediated anti-HBV effect. In vivo, we also found OSM significantly inhibited HBV replication and induced expression of antiviral effector interferon-induced transmembrane protein 1. CONCLUSIONS Our study shows that OSM remodels the immune response against HBV and exerts potent anti-HBV activity, supporting its further development as a potential therapy for treating CHB.
Collapse
Affiliation(s)
- Yuchen Ye
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, China
| | - Ya Fu
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Laboratory Medicine, National Reginal Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Caorui Lin
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Laboratory Medicine, National Reginal Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Ye Shen
- Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, China
| | - Qingqing Yu
- Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, China
| | - Xiaobao Yao
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, China
| | - Qunfang Huang
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, China
| | - Can Liu
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Laboratory Medicine, National Reginal Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yongbin Zeng
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Laboratory Medicine, National Reginal Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Tianbin Chen
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, China
| | - Songhang Wu
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Zhen Xun
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Laboratory Medicine, National Reginal Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| | - Qishui Ou
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Laboratory Medicine, National Reginal Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
13
|
Yu H, Deng W, Chen S, Qin B, Yao Y, Zhou C, Guo M. Strongylocentrotus nudus egg polysaccharide (SEP) suppresses HBV replication via activation of TLR4-induced immune pathway. Int J Biol Macromol 2023:125539. [PMID: 37355064 DOI: 10.1016/j.ijbiomac.2023.125539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 06/17/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
Chronic hepatitis B virus (HBV) infection is a worldwide public health problem that causes significant liver-related morbidity and mortality. In our previous study, Strongylocentrotus nudus eggs polysaccharide (SEP), extracted from sea urchins, had immunomodulatory and antitumor effects. Whether SEP has anti-HBV activity is still obscure. This study demonstrated that SEP decreased the secretion of hepatitis B surface antigen (HBsAg) and e antigen (HBeAg), as well as the replication and transcription of HBV both in vitro and in vivo. Immunofluorescence and immunohistochemistry results showed that the level of HBV core antigen (HBcAg) was clearly reduced by SEP treatment. Mechanistically, RT-qPCR, western blot, and confocal microscopy analysis showed that SEP significantly increased the expression of toll-like receptor 4 (TLR4) and co-localization with TLR4. The downstream molecules of TLR4, including NF-κb and IRF3, were activated and the expression of IFN-β, TNF-α, IL-6, OAS, and MxA were also increased, which could suppress HBV replication. Moreover, SEP inhibited other genotypes of HBV and hepatitis C virus (HCV) replication in vitro. In summary, SEP could be investigated as a potential anti-HBV drug capable of modulating the innate immune.
Collapse
Affiliation(s)
- Haifei Yu
- State Key Laboratory of Natural Medicines, School of Life Science & Technolgy, China Pharmaceutical University, Nanjing 211198, Jiangsu province, China
| | - Wanyu Deng
- College of life science, Shangrao Normal University, Shangrao 334001, Jiangxi province, China
| | - Shuo Chen
- State Key Laboratory of Natural Medicines, School of Life Science & Technolgy, China Pharmaceutical University, Nanjing 211198, Jiangsu province, China
| | - Bo Qin
- Shaoxing Women and Children's Hospital, Shaoxing 312000, Zhejiang, China
| | - Yongxuan Yao
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children Medical Center, Guangzhou 510623, China.
| | - Changlin Zhou
- State Key Laboratory of Natural Medicines, School of Life Science & Technolgy, China Pharmaceutical University, Nanjing 211198, Jiangsu province, China.
| | - Min Guo
- State Key Laboratory of Natural Medicines, School of Life Science & Technolgy, China Pharmaceutical University, Nanjing 211198, Jiangsu province, China.
| |
Collapse
|
14
|
Pan Y, Xia H, He Y, Zeng S, Shen Z, Huang W. The progress of molecules and strategies for the treatment of HBV infection. Front Cell Infect Microbiol 2023; 13:1128807. [PMID: 37009498 PMCID: PMC10053227 DOI: 10.3389/fcimb.2023.1128807] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/03/2023] [Indexed: 03/17/2023] Open
Abstract
Hepatitis B virus infections have always been associated with high levels of mortality. In 2019, hepatitis B virus (HBV)-related diseases resulted in approximately 555,000 deaths globally. In view of its high lethality, the treatment of HBV infections has always presented a huge challenge. The World Health Organization (WHO) came up with ambitious targets for the elimination of hepatitis B as a major public health threat by 2030. To accomplish this goal, one of the WHO's strategies is to develop curative treatments for HBV infections. Current treatments in a clinical setting included 1 year of pegylated interferon alpha (PEG-IFNα) and long-term nucleoside analogues (NAs). Although both treatments have demonstrated outstanding antiviral effects, it has been difficult to develop a cure for HBV. The reason for this is that covalently closed circular DNA (cccDNA), integrated HBV DNA, the high viral burden, and the impaired host immune responses all hinder the development of a cure for HBV. To overcome these problems, there are clinical trials on a number of antiviral molecules being carried out, all -showing promising results so far. In this review, we summarize the functions and mechanisms of action of various synthetic molecules, natural products, traditional Chinese herbal medicines, as clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR/Cas)-based systems, zinc finger nucleases (ZFNs), and transcription activator-like effector nucleases (TALENs), all of which could destroy the stability of the HBV life cycle. In addition, we discuss the functions of immune modulators, which can enhance or activate the host immune system, as well some representative natural products with anti-HBV effects.
Collapse
Affiliation(s)
| | | | | | | | | | - Wenhai Huang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
15
|
Durantel D. Therapies against chronic hepatitis B infections: The times they are a-changin', but the changing is slow! Antiviral Res 2023; 210:105515. [PMID: 36603773 DOI: 10.1016/j.antiviral.2022.105515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 01/04/2023]
Abstract
PREAMBULAR NOTA BENE As a tribute to Dr Mike Bray, the following review of literature willbe mainly based on published data andconcepts, but will also contain my personal views, and in this respect could be more considered as a bioassay. Even though a cost-effective and excellent prophylactic vaccine exists since many years to protect against hepatitis B virus (HBV) infection, academic-researcher/drug-developers/stakeholders are still busy with the R&D of novel therapies that could eventually have an impact on its worldwide incidence. The Taiwanese experience have univocally demonstrated the effectiveness of constrained national HBV prophylactic vaccination programs to prevent the most dramatic HBV-induced end-stage liver disease, which is hepatocellular carcinoma; but yet the number of individuals chronically infected with the virus, for whom the existing prophylactic vaccine is no longer useful, remains high, with around 300 million individuals around the globe. In this review/bioassay, recent findings and novel concepts on prospective therapies against HBV infections will be discussed; yet it does not have the pretention to be exhaustive, as "pure immunotherapeutic concepts" will be mainly let aside (or referred to other reviews) due to a lack of expertise of this writer, but also due to the lack of, or incremental, positive results in clinical trials as-off today with these approaches.
Collapse
Affiliation(s)
- David Durantel
- Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, UMR_5308 CNRS-Université de Lyon (UCBL1), ENS de Lyon, Lyon, 69007, France.
| |
Collapse
|
16
|
The antiviral activity of tripartite motif protein 38 in hepatitis B virus replication and gene expression and its association with treatment responses during PEG-IFN-α antiviral therapy. Virology 2023; 579:84-93. [PMID: 36623352 DOI: 10.1016/j.virol.2022.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
Hepatitis B virus (HBV) infection represents one of the most critical health problems worldwide. Tripartite motif protein 38 (TRIM38) is an interferon-stimulated gene (ISG) that inhibits various DNA and RNA viruses.In this study, we found a mechanistic correlation between TRIM38 expression levels and the efficacy of HBV infection and IFN-α therapy in patients with CHB. TRIM38 was highly induced by IFN-alpha (IFN-α) in vivo and in vitro. TRIM38 overexpression inhibited HBV replication and gene expression in HepG2 and HepG2.2.15 cells, whereas knockdown of TRIM38 increased these processes. Further experiments indicated that TRIM38 protein enhanced the antiviral effect of IFN-α by enhancing the expression of antiviral proteins. A prospective study revealed high TRIM38 levels in peripheral blood PBMCs were from early responders, and increased TRIM38 expression correlated with a better response to PEG-IFN-α therapy. Taken together, our study suggests that TRIM38 plays a vital role in HBV replication and gene expression.
Collapse
|
17
|
Lucifora J, Alfaiate D, Pons C, Michelet M, Ramirez R, Fusil F, Amirache F, Rossi A, Legrand AF, Charles E, Vegna S, Farhat R, Rivoire M, Passot G, Gadot N, Testoni B, Bach C, Baumert TF, Hyrina A, Beran RK, Zoulim F, Boonstra A, Büning H, Verrier ER, Cosset FL, Fletcher SP, Salvetti A, Durantel D. Hepatitis D virus interferes with hepatitis B virus RNA production via interferon-dependent and -independent mechanisms. J Hepatol 2023; 78:958-970. [PMID: 36702177 DOI: 10.1016/j.jhep.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/25/2023]
Abstract
BACKGROUND & AIMS Chronic coinfection with HBV and HDV leads to the most aggressive form of chronic viral hepatitis. Herein, we aimed to elucidate the molecular mechanisms underlying the widely reported observation that HDV interferes with HBV in most coinfected patients. METHODS Patient liver tissues, primary human hepatocytes, HepaRG cells and human liver chimeric mice were used to analyze the effect of HDV on HBV using virological and RNA-sequencing analyses, as well as RNA synthesis, stability and association assays. RESULTS Transcriptomic analyses in cell culture and mouse models of coinfection enabled us to define an HDV-induced signature, mainly composed of interferon (IFN)-stimulated genes (ISGs). We also provide evidence that ISGs are upregulated in chronically HDV/HBV-coinfected patients but not in cells that only express HDV antigen (HDAg). Inhibition of the hepatocyte IFN response partially rescued the levels of HBV parameters. We observed less HBV RNA synthesis upon HDV infection or HDV protein expression. Additionally, HDV infection or expression of HDAg alone specifically accelerated the decay of HBV RNA, and HDAg was associated with HBV RNAs. On the contrary, HDAg expression did not affect other viruses such as HCV or SARS-CoV-2. CONCLUSIONS Our data indicate that HDV interferes with HBV through both IFN-dependent and IFN-independent mechanisms. Specifically, we uncover a new viral interference mechanism in which proteins of a satellite virus affect the RNA production of its helper virus. Exploiting these findings could pave the way to the development of new therapeutic strategies against HBV. IMPACT AND IMPLICATIONS Although the molecular mechanisms remained unexplored, it has long been known that despite its dependency, HDV decreases HBV viremia in patients. Herein, using in vitro and in vivo models, we showed that HDV interferes with HBV through both IFN-dependent and IFN-independent mechanisms affecting HBV RNA metabolism, and we defined the HDV-induced modulation signature. The mechanisms we uncovered could pave the way for the development of new therapeutic strategies against HBV by mimicking and/or increasing the effect of HDAg on HBV RNA. Additionally, the HDV-induced modulation signature could potentially be correlated with responsiveness to IFN-α treatment, thereby helping to guide management of HBV/HDV-coinfected patients.
Collapse
Affiliation(s)
- Julie Lucifora
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France; INSERM, U1052, Cancer Research Center of Lyon (CRCL), University of Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France.
| | - Dulce Alfaiate
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), University of Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France; Service des Maladies Infectieuses et Tropicales, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Caroline Pons
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France; INSERM, U1052, Cancer Research Center of Lyon (CRCL), University of Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France
| | - Maud Michelet
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), University of Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France
| | | | - Floriane Fusil
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Fouzia Amirache
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Axel Rossi
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Anne-Flore Legrand
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Emilie Charles
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Serena Vegna
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), University of Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France
| | - Rayan Farhat
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), University of Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France
| | | | - Guillaume Passot
- Service de chirurgie générale et Oncologique, Hôpital Lyon Sud, Hospices Civils de Lyon Et CICLY, EA3738, Université Lyon 1, France
| | - Nicolas Gadot
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), University of Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France
| | - Barbara Testoni
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), University of Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France
| | - Charlotte Bach
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
| | - Thomas F Baumert
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France; Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, 67000 Strasbourg, France
| | | | | | - Fabien Zoulim
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), University of Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France; Department of Hepatology, Croix-Rousse Hospital, Hospices Civils de Lyon, Lyon, France
| | - Andre Boonstra
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, Gravendijkwal 230, Rotterdam, the Netherlands
| | - Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Eloi R Verrier
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
| | - François-Loïc Cosset
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | | | - Anna Salvetti
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France; INSERM, U1052, Cancer Research Center of Lyon (CRCL), University of Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France
| | - David Durantel
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France; INSERM, U1052, Cancer Research Center of Lyon (CRCL), University of Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France
| |
Collapse
|
18
|
Sun H, Li Y, Zhang P, Xing H, Zhao S, Song Y, Wan D, Yu J. Targeting toll-like receptor 7/8 for immunotherapy: recent advances and prospectives. Biomark Res 2022; 10:89. [PMID: 36476317 PMCID: PMC9727882 DOI: 10.1186/s40364-022-00436-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/19/2022] [Indexed: 12/12/2022] Open
Abstract
Toll-like receptors (TLRs) are a large family of proteins that are expressed in immune cells and various tumor cells. TLR7/8 are located in the intracellular endosomes, participate in tumor immune surveillance and play different roles in tumor growth. Activation of TLRs 7 and 8 triggers induction of a Th1 type innate immune response in the highly sophisticated process of innate immunity signaling with the recent research advances involving the small molecule activation of TLR 7 and 8. The wide range of expression and clinical significance of TLR7/TLR8 in different kinds of cancers have been extensively explored. TLR7/TLR8 can be used as novel diagnostic biomarkers, progression and prognostic indicators, and immunotherapeutic targets for various tumors. Although the mechanism of action of TLR7/8 in cancer immunotherapy is still incomplete, TLRs on T cells are involved in the regulation of T cell function and serve as co-stimulatory molecules and activate T cell immunity. TLR agonists can activate T cell-mediated antitumor responses with both innate and adaptive immune responses to improve tumor therapy. Recently, novel drugs of TLR7 or TLR8 agonists with different scaffolds have been developed. These agonists lead to the induction of certain cytokines and chemokines that can be applied to the treatment of some diseases and can be used as good adjutants for vaccines. Furthermore, TLR7/8 agonists as potential therapeutics for tumor-targeted immunotherapy have been developed. In this review, we summarize the recent advances in the development of immunotherapy strategies targeting TLR7/8 in patients with various cancers and chronic hepatitis B.
Collapse
Affiliation(s)
- Hao Sun
- Department of Radiotherapy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Yingmei Li
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Peng Zhang
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Haizhou Xing
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Song Zhao
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Yongping Song
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Dingming Wan
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Jifeng Yu
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
- Henan International Joint Laboratory of Nuclear Protein Gene Regulation, Henan University College of Medicine, Kaifeng, 475004 Henan China
| |
Collapse
|
19
|
Wang L, Zhang G, Sun Y, Wu Z, Ren C, Zhang Z, Peng X, Zhang Y, Zhao Y, Li C, Gao L, Liang X, Sun H, Cui J, Ma C. Enhanced Delivery of TLR7/8 Agonists by Metal-Organic Frameworks for Hepatitis B Virus Cure. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46176-46187. [PMID: 36206454 DOI: 10.1021/acsami.2c11203] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hepatitis B virus (HBV) infection remains a major challenge to global health due to unsatisfactory treatment efficacy, side effects of current therapies, and immune tolerance. Toll-like receptors 7/8 (TLR7/8) agonists have shown great potential in chronic hepatitis B (CHB) cure, but systemic administration often induces severe side effects due to rapid dispersion into the microvasculature. Herein, we encapsulate an imidazoquinoline-based TLR7/8 agonist (IMDQ) into zeolitic imidazolate framework 8 nanoparticles (IMDQ@ZIF-8 NPs) for HBV immunotherapy. Compared with free IMDQ, IMDQ@ZIF-8 NPs efficiently accumulate in the liver and are selectively taken up by antigen-presenting cells (APCs), leading to enhanced APC activation and efficient viral elimination in HBV-infected models. Strikingly, MDQ@ZIF-8 NP treatment results in the obvious production of anti-HBs antibody and seroconversion in HBV-infected mice. Overall, this study on the convergence of a facile assembly approach and efficient therapeutic effects represents a promising strategy for HBV treatment.
Collapse
Affiliation(s)
- Liyuan Wang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong 250012, China
- Department of Microbiology, Weifang Medical University, Weifang, Shandong 261042, China
| | - Guiqiang Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong 250117, China
| | - Yang Sun
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong 250012, China
| | - Zhuanchang Wu
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong 250012, China
| | - Caiyue Ren
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong 250012, China
| | - Zhaoying Zhang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong 250012, China
| | - Xueqi Peng
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong 250012, China
| | - Yankun Zhang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong 250012, China
| | - Ying Zhao
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong 250012, China
| | - Chunyang Li
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong University, Jinan, Shandong 250012, China
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong University, Jinan, Shandong 250012, China
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong University, Jinan, Shandong 250012, China
| | - Haifeng Sun
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
20
|
Yang G, Wan P, Zhang Y, Tan Q, Qudus MS, Yue Z, Luo W, Zhang W, Ouyang J, Li Y, Wu J. Innate Immunity, Inflammation, and Intervention in HBV Infection. Viruses 2022; 14:2275. [PMID: 36298831 PMCID: PMC9609328 DOI: 10.3390/v14102275] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/12/2022] [Accepted: 10/15/2022] [Indexed: 07/30/2023] Open
Abstract
Hepatitis B virus (HBV) infection is still one of the most dangerous viral illnesses. HBV infects around 257 million individuals worldwide. Hepatitis B in many individuals ultimately develops hepatocellular carcinoma (HCC), which is the sixth most common cancer and the third leading cause of cancer-related deaths worldwide. The innate immunity acts as the first line of defense against HBV infection through activating antiviral genes. Along with the immune responses, pro-inflammatory cytokines are triggered to enhance the antiviral responses, but this may result in acute or chronic liver inflammation, especially when the clearance of virus is unsuccessful. To a degree, the host innate immune and inflammatory responses dominate the HBV infection and liver pathogenesis. Thus, it is crucial to figure out the signaling pathways involved in the activation of antiviral factors and inflammatory cytokines. Here, we review the interplay between HBV and the signal pathways that mediates innate immune responses and inflammation. In addition, we summarize current therapeutic strategies for HBV infection via modulating innate immunity or inflammation. Characterizing the mechanisms that underlie these HBV-host interplays might provide new approaches for the cure of chronic HBV infection.
Collapse
Affiliation(s)
- Ge Yang
- Foshan Institute of Medical Microbiology, Foshan 528315, China
| | - Pin Wan
- Foshan Institute of Medical Microbiology, Foshan 528315, China
| | - Yaru Zhang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
| | - Qiaoru Tan
- Foshan Institute of Medical Microbiology, Foshan 528315, China
| | - Muhammad Suhaib Qudus
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhaoyang Yue
- Foshan Institute of Medical Microbiology, Foshan 528315, China
| | - Wei Luo
- Clinical Research Institute, The First People’s Hospital, Foshan 528000, China
| | - Wen Zhang
- Guangdong Longfan Biological Science and Technology, Foshan 528315, China
| | - Jianhua Ouyang
- Guangdong Longfan Biological Science and Technology, Foshan 528315, China
| | - Yongkui Li
- Foshan Institute of Medical Microbiology, Foshan 528315, China
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
- Guangdong Longfan Biological Science and Technology, Foshan 528315, China
| | - Jianguo Wu
- Foshan Institute of Medical Microbiology, Foshan 528315, China
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
21
|
Wang D, Fu B, Wei H. Advances in Immunotherapy for Hepatitis B. Pathogens 2022; 11:1116. [PMID: 36297173 PMCID: PMC9612046 DOI: 10.3390/pathogens11101116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/26/2023] Open
Abstract
Hepatitis B virus (HBV) is a hepatotropic virus with the potential to cause chronic infection, and it is one of the common causes of liver disease worldwide. Chronic HBV infection leads to liver cirrhosis and, ultimately, hepatocellular carcinoma (HCC). The persistence of covalently closed circular DNA (cccDNA) and the impaired immune response in patients with chronic hepatitis B (CHB) has been studied over the past few decades. Despite advances in the etiology of HBV and the development of potent virus-suppressing regimens, a cure for HBV has not been found. Both the innate and adaptive branches of immunity contribute to viral eradication. However, immune exhaustion and evasion have been demonstrated during CHB infection, although our understanding of the mechanism is still evolving. Recently, the successful use of an antiviral drug for hepatitis C has greatly encouraged the search for a cure for hepatitis B, which likely requires an approach focused on improving the antiviral immune response. In this review, we discuss our current knowledge of the immunopathogenic mechanisms and immunobiology of HBV infection. In addition, we touch upon why the existing therapeutic approaches may not achieve the goal of a functional cure. We also propose how combinations of new drugs, and especially novel immunotherapies, contribute to HBV clearance.
Collapse
Affiliation(s)
- Dongyao Wang
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei 230001, China
- Anhui Provincial Key Laboratory of Blood Research and Applications, Hefei 230001, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu 233030, China
| | - Binqing Fu
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei 230001, China
| | - Haiming Wei
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei 230001, China
| |
Collapse
|
22
|
Bhat S, Kazim SN. HBV cccDNA-A Culprit and Stumbling Block for the Hepatitis B Virus Infection: Its Presence in Hepatocytes Perplexed the Possible Mission for a Functional Cure. ACS OMEGA 2022; 7:24066-24081. [PMID: 35874215 PMCID: PMC9301636 DOI: 10.1021/acsomega.2c02216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Hepatitis B virus infection (HBV) is still a big health problem across the globe. It has been linked to the development of liver cirrhosis and hepatocellular carcinoma and can trigger different types of liver damage. Existing medicines are unable to disable covalently closed circular DNA (cccDNA), which may result in HBV persistence and recurrence. The current therapeutic goal is to achieve a functional cure, which means HBV-DNA no longer exists when treatment stops and the absence of HBsAg seroclearance. However, due to the presence of integrated HBV DNA and cccDNA functional treatment is now regarded to be difficult. In order to uncover pathways for potential therapeutic targets and identify medicines that could result in large rates of functional cure, a thorough understanding of the virus' biology is required. The proteins of the virus and episomal cccDNA are thought to be critical for the management and support of the HBV replication cycle as they interact directly with the host proteome to establish the best atmosphere for the virus while evading immune detection. The breakthroughs of host dependence factors, cccDNA transcription, epigenetic regulation, and immune-mediated breakdown have all produced significant progress in our understanding of cccDNA biology during the past decade. There are some strategies where cccDNA can be targeted either in a direct or indirect way and are presently at the point of discovery or preclinical or early clinical advancement. Editing of genomes, techniques targeting host dependence factors or epigenetic gene maintenance, nucleocapsid modulators, miRNA, siRNA, virion secretory inhibitors, and immune-mediated degradation are only a few examples. Though cccDNA approaches for direct targeting are still in the early stages of development, the assembly of capsid modulators and immune-reliant treatments have made it to the clinic. Clinical trials are currently being conducted to determine their efficiency and safety in patients, as well as their effect on viral cccDNA. The influence of recent breakthroughs in the development of new treatment techniques on cccDNA biology is also summarized in this review.
Collapse
Affiliation(s)
- Sajad
Ahmad Bhat
- Jamia Millia Islamia Central University, Centre for Interdisciplinary Research in Basic Sciences, New Delhi 110025, India
| | - Syed Naqui Kazim
- Jamia Millia Islamia Central University, Centre for Interdisciplinary Research in Basic Sciences, New Delhi 110025, India
| |
Collapse
|
23
|
Codelivery of HBx-siRNA and Plasmid Encoding IL-12 for Inhibition of Hepatitis B Virus and Reactivation of Antiviral Immunity. Pharmaceutics 2022; 14:pharmaceutics14071439. [PMID: 35890334 PMCID: PMC9318813 DOI: 10.3390/pharmaceutics14071439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/24/2022] [Accepted: 07/04/2022] [Indexed: 02/04/2023] Open
Abstract
Chronic hepatitis B is a critical cause of many serious liver diseases such as hepatocellular carcinoma (HCC). The main challenges in hepatitis B treatment include the rebound of hepatitis B virus (HBV)-related antigen levels after drug withdrawal and the immunosuppression caused by the virus. Herein, we demonstrate that the HBV-related antigen can be effectively inhibited and antiviral immunity can be successfully reactivated through codelivery of the small interfering RNA (siRNA) targeting HBV X protein (HBx) and the plasmid encoding interleukin 12 (pIL-12) to hepatocytes and immune cells. After being treated by the siRNA/pIL-12 codelivery system, HBx mRNA and hepatitis B surface antigen (HBsAg) are dramatically reduced in HepG2.215 cells. More importantly, the downregulated CD47 and programmed death ligand 1 (PD-L1) and the upregulated interferon-β promoter stimulator-1 (IPS-1), retinoic acid-inducible gene-1 (RIG-1), CD80, and human leukocyte antigen-1 (HLA-1) in treated HepG2.215 cells indicate that the immunosuppression is reversed by the codelivery system. Furthermore, the codelivery system results in inhibition of extracellular regulated protein kinases (ERK) and phosphoinositide-3-kinase (PI3K)/protein kinase B (Akt) pathways, as well as downregulation of B-cell lymphoma-2 (Bcl-2) and upregulation of p53, implying its potential in preventing the progression of HBV-induced HCC. In addition, J774A.1 macrophages treated by the codelivery system were successfully differentiated into the M1 phenotype and expressed enhanced cytokines with anti-hepatitis B effects such as interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α). Therefore, we believe that codelivery of siRNA and pIL-12 can effectively inhibit hepatitis B virus, reverse virus-induced immunosuppression, reactivate antiviral immunity, and hinder the progression of HBV-induced hepatocellular carcinoma. This investigation provides a promising approach for the synergistic treatment of HBV infection.
Collapse
|
24
|
Kuipery A, Sanchez Vasquez JD, Mehrotra A, Feld JJ, Janssen HLA, Gehring AJ. Immunomodulation and RNA interference alter hepatitis B virus-specific CD8 T-cell recognition of infected HepG2-NTCP. Hepatology 2022; 75:1539-1550. [PMID: 34743340 DOI: 10.1002/hep.32230] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/13/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS CD8 T cells are essential in controlling HBV infection. Viral control is dependent on efficient recognition of HBV-infected hepatocytes by CD8 T cells, which can induce direct lysis of infected hepatocytes. In addition, CD8 T cells produce interferon (IFN)-γ, which mediates noncytopathic viral clearance. Innate immunomodulators and HBV-targeted RNA interference (RNAi) are being developed to treat chronic hepatitis B (CHB), but may modify HBV antigen presentation and impact CD8 T-cell recognition, in addition to their primary mechanisms of action. APPROACH AND RESULTS HBV-infected HepG2-NTCP cells were treated with tenofovir disoproxil fumarate (TDF), Toll-like receptor (TLR) 7/8 agonists, TLR7/8 conditioned media (CM) collected from immune cells, or RNAi using short interfering RNAs. The effect of these treatments on antigen presentation was measured through coculture with CD8 T cells recognizing human leukocyte antigen-A0201 restricted epitopes, HBc18-27 or HBs183-191. Cytokine profiles of TLR7/8 CM were measured using a cytometric bead array. TDF reduced viral replication, but not CD8 T-cell recognition, of infected cells. Direct exposure of infected HepG2-NTCP to TLR7/8 agonists had no impact on T-cell recognition. Exposure of infected HepG2-NTCP to TLR7/8 CM enhanced HBV-specific CD8 T-cell recognition through type 1 interferon (IFN) and IFN-γ-dependent mechanisms. RNAi rapidly suppressed HBV-DNA, HBcAg, and HBsAg expression, impairing recognition by HBV-specific CD8 T cells. CONCLUSIONS Immunomodulation and RNAi, but not nucleos(t)ide analogues, alter the recognition of infected HepG2-NTCP by HBV-specific CD8 T cells. Understanding these changes will inform combination treatments for CHB.
Collapse
Affiliation(s)
- Adrian Kuipery
- Department of ImmunologyUniversity of TorontoTorontoOntarioCanada
- Toronto Center for Liver DiseaseToronto General Hospital Research InstituteUniversity Health NetworkTorontoOntarioCanada
| | - Juan Diego Sanchez Vasquez
- Department of ImmunologyUniversity of TorontoTorontoOntarioCanada
- Toronto Center for Liver DiseaseToronto General Hospital Research InstituteUniversity Health NetworkTorontoOntarioCanada
| | - Aman Mehrotra
- Toronto Center for Liver DiseaseToronto General Hospital Research InstituteUniversity Health NetworkTorontoOntarioCanada
| | - Jordan J Feld
- Toronto Center for Liver DiseaseToronto General Hospital Research InstituteUniversity Health NetworkTorontoOntarioCanada
| | - Harry L A Janssen
- Toronto Center for Liver DiseaseToronto General Hospital Research InstituteUniversity Health NetworkTorontoOntarioCanada
| | - Adam J Gehring
- Department of ImmunologyUniversity of TorontoTorontoOntarioCanada
- Toronto Center for Liver DiseaseToronto General Hospital Research InstituteUniversity Health NetworkTorontoOntarioCanada
| |
Collapse
|
25
|
Toll-like Receptor Response to Hepatitis C Virus Infection: A Recent Overview. Int J Mol Sci 2022; 23:ijms23105475. [PMID: 35628287 PMCID: PMC9141274 DOI: 10.3390/ijms23105475] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 02/05/2023] Open
Abstract
Hepatitis C virus (HCV) infection remains a major global health burden, causing chronic hepatitis, cirrhosis, and hepatocellular carcinoma. Toll-like receptors (TLRs) are evolutionarily conserved pattern recognition receptors that detect pathogen-associated molecular patterns and activate downstream signaling to induce proinflammatory cytokine and chemokine production. An increasing number of studies have suggested the importance of TLR responses in the outcome of HCV infection. However, the exact role of innate immune responses, including TLR response, in controlling chronic HCV infection remains to be established. A proper understanding of the TLR response in HCV infection is essential for devising new therapeutic approaches against HCV infection. In this review, we discuss the progress made in our understanding of the host innate immune response to HCV infection, with a particular focus on the TLR response. In addition, we discuss the mechanisms adopted by HCV to avoid immune surveillance mediated by TLRs.
Collapse
|
26
|
Identification and validation of ecto-5' nucleotidase as an immunotherapeutic target in multiple myeloma. Blood Cancer J 2022; 12:50. [PMID: 35365613 PMCID: PMC8976016 DOI: 10.1038/s41408-022-00635-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/21/2021] [Accepted: 01/05/2022] [Indexed: 11/30/2022] Open
Abstract
Interaction of plasmacytoid dendritic cells (pDCs) with multiple myeloma (MM) cells, T- or NK-effector cells in the bone marrow (BM) microenvironment induces tumor cell growth, as well as inhibits innate and adaptive immune responses. Defining pDC-MM interaction-triggered immunosuppressive mechanism(s) will enable design of interventional therapies to augment anti-MM immunity. In the present study, we show that pDC-MM interactions induce metabolic enzyme Ecto-5' Nucleotidase/CD73 in both pDCs and MM cells. Gene expression database from MM patients showed that CD73 levels inversely correlate with overall survival. Using our pDC-MM coculture models, we found that blockade of CD73 with anti-CD73 Abs: decreases adenosine levels; activates MM patient pDCs; triggers cytotoxic T lymphocytes (CTL) activity against autologous patient MM cells. Combination of anti-CD73 Abs and an immune-stimulating agent TLR-7 agonist enhances autologous MM-specific CD8+ CTL activity. Taken together, our preclinical data suggest that the therapeutic targeting of CD73, alone or in combination with TLR-7 agonist, represents a promising novel strategy to restore host anti-MM immunity.
Collapse
|
27
|
Zhang X, Su H, Yu H, Ding J, Deng W, Qin B, Zhou C, Dou J, Guo M. A Polysaccharide From Eupolyphaga sinensis Walker With Anti-HBV Activities In Vitro and In Vivo. Front Pharmacol 2022; 13:827128. [PMID: 35308231 PMCID: PMC8928433 DOI: 10.3389/fphar.2022.827128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
Hepatitis B virus (HBV) infection remains a major global threat to human health worldwide. Recently, the Chinese medicines with antiviral properties and low toxicity have been a concern. In our previous study, Eupolyphaga sinensis Walker polysaccharide (ESPS) has been isolated and characterized, while its antiviral effect on HBV remained unclear. The anti-HBV activity of ESPS and its regulatory pathway were investigated in vitro and in vivo. The results showed that ESPS significantly inhibited the production of HBsAg, HBeAg, and HBV DNA in the supernatants of HepG2.2.15 in a dose-dependent manner; HBV RNA and core protein expression were also decreased by ESPS. The in vivo studies using HBV transgenic mice further revealed that ESPS (20 and 40 mg/kg/2 days) significantly reduced the levels HBsAg, HBeAg, and HBV DNA in the serum, as well as HBV DNA and HBV RNA in mice liver. In addition, ESPS activated the Toll-like receptor 4 (TLR4) pathway; elevated levels of IFN-β, TNF-α, and IL-6 in the serum were observed, indicating that the anti-HBV effect of ESPS was achieved by potentiating innate immunity function. In conclusion, our study shows that ESPS is a potential anti-HBV ingredient and is of great value in the development of new anti-HBV drugs.
Collapse
Affiliation(s)
- Xue Zhang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Huiling Su
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Haifei Yu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jialu Ding
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Wanyu Deng
- College of Life Science, Shangrao Normal University, Shangrao, China
- Department of Biliary Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bo Qin
- Shaoxing Women and Children's Hospital, Shaoxing, China
| | - Changlin Zhou
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jie Dou
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Min Guo
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
28
|
Obermann HL, Lederbogen II, Steele J, Dorna J, Sander LE, Engelhardt K, Bakowsky U, Kaufmann A, Bauer S. RNA-Cholesterol Nanoparticles Function as Potent Immune Activators via TLR7 and TLR8. Front Immunol 2022; 12:658895. [PMID: 35126343 PMCID: PMC8814444 DOI: 10.3389/fimmu.2021.658895] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 12/27/2021] [Indexed: 12/30/2022] Open
Abstract
The innate immune system senses viral and bacterial ribonucleic acid (RNA) via pattern recognition receptors (PRR) leading to subsequent activation of the immune system. One group of RNA sensors is formed by endosomal/lysosomal Toll-like receptors (TLR) such as TLR7 and TLR8. During viral or bacterial infection, immunostimulatory RNA is part of the pathogen reaching the endosomal/lysosomal compartment after cellular uptake. Synthetic single-stranded or double-stranded oligoribonucleotides (ORN) can mimic RNA from pathogens and are widely used as activating ligands for TLR7 and TLR8. However, one limitation in the use of synthetic ORN driven immune stimulation is the need for transfection reagents for RNA delivery into cells. Here we demonstrate that the conjugation of cholesterol to a double-stranded version of immunostimulatory RNA40 strongly enhanced RNA uptake into monocytes and plasmacytoid dendritic cells when compared to naked RNA. Cholesterol-conjugated RNA (RNA-chol) formed nanoparticles that were superior to RNA-liposomes complexes in regard to induction of type I interferon from human and murine plasmacytoid dendritic cells as well as proinflammatory cytokine production (e.g. TNF-α, IL12p70 or IL-6) in human monocytes. Furthermore, the RNA40-chol induced cytokines in human monocyte cultures supported TH1 and TFH cell differentiation underscoring a strong adjuvant function of RNA-chol nanoparticles for adaptive immune responses. In summary, cholesterol-conjugated immunostimulatory RNA forms nanoparticles and functions as a potent immune adjuvant in human and murine immune cells. It further simplifies the use of immunostimulatory RNA by avoiding the need for liposomal transfection reagents.
Collapse
Affiliation(s)
| | - Ines I Lederbogen
- Institute for Immunology, Philipps-University Marburg, Marburg, Germany
| | - Jenny Steele
- Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jens Dorna
- Institute for Immunology, Philipps-University Marburg, Marburg, Germany
| | - Leif Erik Sander
- Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Konrad Engelhardt
- Department of Pharmaceutics and Biopharmaceutics, Philipps-University Marburg, Marburg, Germany
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, Philipps-University Marburg, Marburg, Germany
| | - Andreas Kaufmann
- Institute for Immunology, Philipps-University Marburg, Marburg, Germany
| | - Stefan Bauer
- Institute for Immunology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
29
|
Khalil FO, Alsebaey A, Kasemy ZA, Abdelmageed SM, Bedair HM, Abdelsattar S. IL28B, TLR7 SNPs, and cytomegalovirus infection are risk factors for advanced liver disease in chronic hepatitis C patients. Expert Rev Anti Infect Ther 2022. [DOI: https://doi.org/10.1080/14787210.2021.1935239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Fatma Omar Khalil
- Department of Microbiology and Immunology, National Liver Institute, Egypt
| | - Ayman Alsebaey
- Department of Hepatology and Gastroenterology, National Liver Institute, Egypt
| | | | | | - Hanan Mosaad Bedair
- Department of Clinical Pathology, National Liver Institute, Menoufia University, Shebeen El-Koom, Egypt
| | - Shimaa Abdelsattar
- Department of Clinical Biochemistry and Molecular Diagnostics, National Liver Institute, Egypt
| |
Collapse
|
30
|
Khalil FO, Alsebaey A, Kasemy ZA, Abdelmageed SM, Bedair HM, Abdelsattar S. IL28B, TLR7 SNPs, and cytomegalovirus infection are risk factors for advanced liver disease in chronic hepatitis C patients. Expert Rev Anti Infect Ther 2022; 20:121-129. [PMID: 34047252 DOI: 10.1080/14787210.2021.1935239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/24/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Chronic hepatitis C (CHC) is a leading cause of cirrhosis and hepatocellular carcinoma (HCC). This study aimed to study the association of IL28B, toll-like receptor (TLR) 7, cytomegalovirus and advanced liver disease. METHODS Four groups were included; control (n = 125, 25.9%), CHC (n = 114, 23.6%), liver cirrhosis (n = 120, 24.8%), and HCC (n = 124, 25.7%). RESULTS In CHC group, patients were mainly F1 (60%) followed by F2. IL28B genotype CC percentage was higher in control group than the CHC and cirrhosis groups. CT and TT genotypes were higher in the CHC and cirrhosis groups than control group. The C allele was higher in the control group than the CHC, cirrhosis and HCC groups and the opposite with the T allele. Control and CHC had same TLR7 alleles. Cirrhosis patients and HCC had lower TLR 7 A allele and higher G allele than the control group. Both cirrhosis and HCC groups had statistically significant higher percentage of the AG and GG genotypes than the control group. Patients with HCC had higher cytomegalovirus infection percentage than cirrhosis and CHC group (38.7% vs 20% vs 16.7%), respectively. CONCLUSION IL28B, TLR7 SNPs and cytomegalovirus infection are risk factors for advanced liver disease in hepatitis C patients.
Collapse
Affiliation(s)
- Fatma Omar Khalil
- Department of Microbiology and Immunology, National Liver Institute, Egypt
| | - Ayman Alsebaey
- Department of Hepatology and Gastroenterology, National Liver Institute, Egypt
| | | | | | - Hanan Mosaad Bedair
- Department of Clinical Pathology, National Liver Institute, Menoufia University, Shebeen El-Koom, Egypt
| | - Shimaa Abdelsattar
- Department of Clinical Biochemistry and Molecular Diagnostics, National Liver Institute, Egypt
| |
Collapse
|
31
|
STING signaling activation inhibits HBV replication and attenuates the severity of liver injury and HBV-induced fibrosis. Cell Mol Immunol 2022; 19:92-107. [PMID: 34811496 PMCID: PMC8752589 DOI: 10.1038/s41423-021-00801-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/22/2021] [Indexed: 01/03/2023] Open
Abstract
The covalently closed circular DNA (cccDNA) of HBV plays a crucial role in viral persistence and is also a risk factor for developing HBV-induced diseases, including liver fibrosis. Stimulator of interferon genes (STING), a master regulator of DNA-mediated innate immune activation, is a potential therapeutic target for viral infection and virus-related diseases. In this study, agonist-induced STING signaling activation in macrophages was revealed to inhibit cccDNA-mediated transcription and HBV replication via epigenetic modification in hepatocytes. Notably, STING activation could efficiently attenuate the severity of liver injury and fibrosis in a chronic recombinant cccDNA (rcccDNA) mouse model, which is a proven suitable research platform for HBV-induced fibrosis. Mechanistically, STING-activated autophagic flux could suppress macrophage inflammasome activation, leading to the amelioration of liver injury and HBV-induced fibrosis. Overall, the activation of STING signaling could inhibit HBV replication through epigenetic suppression of cccDNA and alleviate HBV-induced liver fibrosis through the suppression of macrophage inflammasome activation by activating autophagic flux in a chronic HBV mouse model. This study suggests that targeting the STING signaling pathway may be an important therapeutic strategy to protect against persistent HBV replication and HBV-induced fibrosis.
Collapse
|
32
|
Lang-Meli J, Neumann-Haefelin C, Thimme R. Immunotherapy and therapeutic vaccines for chronic HBV infection. Curr Opin Virol 2021; 51:149-157. [PMID: 34710645 DOI: 10.1016/j.coviro.2021.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/08/2021] [Accepted: 10/07/2021] [Indexed: 12/17/2022]
Abstract
Chronic hepatitis B virus (HBV) infection is a major global health burden causing severe complications like liver cirrhosis or hepatocellular carcinoma. Curative treatment options are lacking. Therefore, there is an urgent need for new therapeutic options. Immunotherapy with the goal to restore dysfunctional HBV-specific T cell immunity is an interesting new therapeutic strategy. Based on current evidence on dysfunction of the HBV-specific CD8+ T cell response in chronic HBV infection, we will review the growing field of immunotherapeutic approaches for treatment of chronic HBV infection. The review will focus on therapies targeting T cells and will cover checkpoint inhibitors, T cell engineering, Toll-like receptor agonists and therapeutic vaccination.
Collapse
Affiliation(s)
- Julia Lang-Meli
- Dept. of Medicine II, Medical Center - University of Freiburg and Faculty of Medicine, University Hospital Freiburg, Freiburg, Germany; IMM-PACT Programm, Faculty of Medicine, University Hospital Freiburg, Freiburg, Germany
| | - Christoph Neumann-Haefelin
- Dept. of Medicine II, Medical Center - University of Freiburg and Faculty of Medicine, University Hospital Freiburg, Freiburg, Germany
| | - Robert Thimme
- Dept. of Medicine II, Medical Center - University of Freiburg and Faculty of Medicine, University Hospital Freiburg, Freiburg, Germany.
| |
Collapse
|
33
|
Suresh M, Li B, Huang X, Korolowicz KE, Murreddu MG, Gudima SO, Menne S. Agonistic Activation of Cytosolic DNA Sensing Receptors in Woodchuck Hepatocyte Cultures and Liver for Inducing Antiviral Effects. Front Immunol 2021; 12:745802. [PMID: 34671360 PMCID: PMC8521114 DOI: 10.3389/fimmu.2021.745802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/13/2021] [Indexed: 12/11/2022] Open
Abstract
Immune modulation for the treatment of chronic hepatitis B (CHB) has gained more traction in recent years, with an increasing number of compounds designed for targeting different host pattern recognition receptors (PRRs). These agonistic molecules activate the receptor signaling pathway and trigger an innate immune response that will eventually shape the adaptive immunity for control of chronic infection with hepatitis B virus (HBV). While definitive recognition of HBV nucleic acids by PRRs during viral infection still needs to be elucidated, several viral RNA sensing receptors, including toll-like receptors 7/8/9 and retinoic acid inducible gene-I-like receptors, are explored preclinically and clinically as possible anti-HBV targets. The antiviral potential of viral DNA sensing receptors is less investigated. In the present study, treatment of primary woodchuck hepatocytes generated from animals with CHB with HSV-60 or poly(dA:dT) agonists resulted in increased expression of interferon-gamma inducible protein 16 (IFI16) or Z-DNA-binding protein 1 (ZBP1/DAI) and absent in melanoma 2 (AIM2) receptors and their respective adaptor molecules and effector cytokines. Cytosolic DNA sensing receptor pathway activation correlated with a decline in woodchuck hepatitis virus (WHV) replication and secretion in these cells. Combination treatment with HSV-60 and poly(dA:dT) achieved a superior antiviral effect over monotreatment with either agonist that was associated with an increased expression of effector cytokines. The antiviral effect, however, could not be enhanced further by providing additional type-I interferons (IFNs) exogenously, indicating a saturated level of effector cytokines produced by these receptors following agonism. In WHV-uninfected woodchucks, a single poly(dA:dT) dose administered via liver-targeted delivery was well-tolerated and induced the intrahepatic expression of ZBP1/DAI and AIM2 receptors and their effector cytokines, IFN-β and interleukins 1β and 18. Receptor agonism also resulted in increased IFN-γ secretion of peripheral blood cells. Altogether, the effect on WHV replication and secretion following in vitro activation of IFI16, ZBP1/DAI, and AIM2 receptor pathways suggested an antiviral benefit of targeting more than one cytosolic DNA receptor. In addition, the in vivo activation of ZBP1/DAI and AIM2 receptor pathways in liver indicated the feasibility of the agonist delivery approach for future evaluation of therapeutic efficacy against HBV in woodchucks with CHB.
Collapse
Affiliation(s)
- Manasa Suresh
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, United States
| | - Bin Li
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, United States
| | - Xu Huang
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, United States
| | - Kyle E Korolowicz
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, United States
| | - Marta G Murreddu
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, United States
| | - Severin O Gudima
- Department of Microbiology, Molecular Genetics & Immunology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Stephan Menne
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
34
|
Cheng Z, Lin P, Cheng N. HBV/HIV Coinfection: Impact on the Development and Clinical Treatment of Liver Diseases. Front Med (Lausanne) 2021; 8:713981. [PMID: 34676223 PMCID: PMC8524435 DOI: 10.3389/fmed.2021.713981] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/23/2021] [Indexed: 02/05/2023] Open
Abstract
Hepatitis B virus (HBV) infection is a common contributor to chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. Approximately 10% of people with human immunodeficiency virus (HIV) also have chronic HBV co-infection, owing to shared transmission routes. HIV/HBV coinfection accelerates the progression of chronic HBV to cirrhosis, end-stage liver disease, or hepatocellular carcinoma compared to chronic HBV mono-infection. HBV/HIV coinfection alters the natural history of hepatitis B and renders the antiviral treatment more complex. In this report, we conducted a critical review on the epidemiology, natural history, and pathogenesis of liver diseases related to HBV/HIV coinfection. We summarized the novel therapeutic options for these coinfected patients.
Collapse
Affiliation(s)
- Zhimeng Cheng
- Department of Bile Duct Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Panpan Lin
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Nansheng Cheng
- Department of Bile Duct Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
35
|
Riedl T, Faure-Dupuy S, Rolland M, Schuehle S, Hizir Z, Calderazzo S, Zhuang X, Wettengel J, Lopez AM, Barnault R, Mirakaj V, Prokosch S, Heide D, Leuchtenbergeg C, Schneider M, Heßling B, Stottmeier B, Wessbecher IM, Schirmacher P, McKeating JA, Protzer U, Durantel D, Lucifora J, Dejardin E, Heikenwalder M. Hypoxia-Inducible Factor 1 Alpha-Mediated RelB/APOBEC3B Down-regulation Allows Hepatitis B Virus Persistence. Hepatology 2021; 74:1766-1781. [PMID: 33991110 PMCID: PMC7611739 DOI: 10.1002/hep.31902] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/16/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Therapeutic strategies against HBV focus, among others, on the activation of the immune system to enable the infected host to eliminate HBV. Hypoxia-inducible factor 1 alpha (HIF1α) stabilization has been associated with impaired immune responses. HBV pathogenesis triggers chronic hepatitis-related scaring, leading inter alia to modulation of liver oxygenation and transient immune activation, both factors playing a role in HIF1α stabilization. APPROACH AND RESULTS We addressed whether HIF1α interferes with immune-mediated induction of the cytidine deaminase, apolipoprotein B mRNA editing enzyme catalytic subunit 3B (APOBEC3B; A3B), and subsequent covalently closed circular DNA (cccDNA) decay. Liver biopsies of chronic HBV (CHB) patients were analyzed by immunohistochemistry and in situ hybridization. The effect of HIF1α induction/stabilization on differentiated HepaRG or mice ± HBV ± LTβR-agonist (BS1) was assessed in vitro and in vivo. Induction of A3B and subsequent effects were analyzed by RT-qPCR, immunoblotting, chromatin immunoprecipitation, immunocytochemistry, and mass spectrometry. Analyzing CHB highlighted that areas with high HIF1α levels and low A3B expression correlated with high HBcAg, potentially representing a reservoir for HBV survival in immune-active patients. In vitro, HIF1α stabilization strongly impaired A3B expression and anti-HBV effect. Interestingly, HIF1α knockdown was sufficient to rescue the inhibition of A3B up-regulation and -mediated antiviral effects, whereas HIF2α knockdown had no effect. HIF1α stabilization decreased the level of v-rel reticuloendotheliosis viral oncogene homolog B protein, but not its mRNA, which was confirmed in vivo. Noteworthy, this function of HIF1α was independent of its partner, aryl hydrocarbon receptor nuclear translocator. CONCLUSIONS In conclusion, inhibiting HIF1α expression or stabilization represents an anti-HBV strategy in the context of immune-mediated A3B induction. High HIF1α, mediated by hypoxia or inflammation, offers a reservoir for HBV survival in vivo and should be considered as a restricting factor in the development of immune therapies.
Collapse
Affiliation(s)
- Tobias Riedl
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Suzanne Faure-Dupuy
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany,Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Maude Rolland
- Laboratory of Molecular Immunology and Signal Transduction, GIGA-Institute, University of Liège, Liège, Belgium
| | - Svenja Schuehle
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Zohier Hizir
- Laboratory of Molecular Immunology and Signal Transduction, GIGA-Institute, University of Liège, Liège, Belgium
| | - Silvia Calderazzo
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Xiaodong Zhuang
- Nuffield Department of Medicine, University of Oxford, Oxford, and Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Jochen Wettengel
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
| | - Alexander Martin Lopez
- Laboratory of Molecular Immunology and Signal Transduction, GIGA-Institute, University of Liège, Liège, Belgium
| | - Romain Barnault
- Departement of Anesthesiology and Intensive Care Medecine, Molecular Intensive Care Medicine, University Hospital Tübingen, Eberhard-Karls-University, DE-72076, Tuebingen, Germany
| | - Valbona Mirakaj
- Departement of Anesthesiology and Intensive Care Medecine, Molecular Intensive Care Medicine, University Hospital Tübingen, Eberhard-Karls-University, DE-72076, Tuebingen, Germany
| | - Sandra Prokosch
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Danijela Heide
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Corinna Leuchtenbergeg
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Schneider
- Mass spectrometry based Protein Analysis Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bernd Heßling
- Mass spectrometry based Protein Analysis Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Benjamin Stottmeier
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany,German Center for Infection Research (DZIF), partner site Heidelberg, Heidelberg, Germany
| | - Isabel M. Wessbecher
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany,Tissue Bank of the German Center for Infection Research (DZIF), Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany,Tissue Bank of the German Center for Infection Research (DZIF), Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jane A McKeating
- Nuffield Department of Medicine, University of Oxford, Oxford, and Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Ulrike Protzer
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
| | - David Durantel
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), University of Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard (CLB), Lyon, France
| | - Julie Lucifora
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), University of Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard (CLB), Lyon, France
| | - Emmanuel Dejardin
- Laboratory of Molecular Immunology and Signal Transduction, GIGA-Institute, University of Liège, Liège, Belgium,Corresponding authors: Prof. Dr. Mathias Heikenwälder, Division Chronic Inflammation and Cancer (F180), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120 Heidelberg, Germany. Tel.: +49 6221 42-3891, Fax: +49 6221 42-3899, ; Dr. Dejardin Emmanuel, Laboratory of Molecular Immunology and Signal Transduction, University of Liège, GIGA Institute, Avenue de hôpital, 1, CHU, B34, 4000 Liege, Belgium, Tel: +32 4 3664472, Fax: +32 4 3664534,
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany,Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany,Corresponding authors: Prof. Dr. Mathias Heikenwälder, Division Chronic Inflammation and Cancer (F180), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120 Heidelberg, Germany. Tel.: +49 6221 42-3891, Fax: +49 6221 42-3899, ; Dr. Dejardin Emmanuel, Laboratory of Molecular Immunology and Signal Transduction, University of Liège, GIGA Institute, Avenue de hôpital, 1, CHU, B34, 4000 Liege, Belgium, Tel: +32 4 3664472, Fax: +32 4 3664534,
| |
Collapse
|
36
|
Jiao Q, Xu W, Guo X, Liu H, Liao B, Zhu X, Chen C, Yang F, Wu L, Xie C, Peng L. NLRX1 can counteract innate immune response induced by an external stimulus favoring HBV infection by competitive inhibition of MAVS-RLRs signaling in HepG2-NTCP cells. Sci Prog 2021; 104:368504211058036. [PMID: 34825857 PMCID: PMC10461377 DOI: 10.1177/00368504211058036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION This study is aimed at the determination of the effect of the immune-regulatory factor NLRX1 on the antiviral activity of hepatocytes against an external stimuli favoring hepatitis B virus infection, and to explore its mechanism of action. METHODS A HepG2-NTCP model was established using the LV003 lentivirus. Cells were transfected using an overexpression vector and NLRX1 siRNA to achieve overexpression and interference of NLRX1 expression (OV-NLRX1, si-NLRX1). Levels of HBsAg and HBcAg were determined using Western blotting analysis and immunohistochemical analysis. The levels of hepatitis B virus DNA and hepatitis B virus cccDNA were determined by real-time quantitative polymerase chain reaction. The expression and transcriptional activity of IFN-α, IFN-β, and IL-6 were measured using real-time quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, and promoter-luciferase reporter plasmids. Co-immunoprecipitation was used to determine the effect of NLRX1 on the interaction between MAVS and RIG-1. Western blotting was used to obtain the phosphorylation of essential proteins in the MAVS-RLRs signaling pathways. RESULTS NLRX1 promoted HepG2-NTCP cell hepatitis B virus infection. Compared to the control group, the levels of HBsAg, HBcAg, hepatitis B virus cccDNA, and hepatitis B virus DNA increased in the OV-NLRX1 group and decreased in the si-NLRX1. Co-immunoprecipitation results showed that NLRX1 competitively inhibited the interaction between MAVS and RIG-1, and inhibited the phosphorylation of p65, IRF3, and IRF7. Additionally, NLRX1 reduced the transcription activity and expression levels of the final products: IFN-α, IFN-β, and IL-6. CONCLUSIONS NLRX1 can counteract innate immune response induced by an external stimuli favoring hepatitis B virus infection by competitive inhibition of MAVS-RLRs signaling in HepG2-NTCP cells. Inhibition of the MAVS-RLR-mediated signaling pathways leads to a decline in the expression levels of I-IFN and IL-6.
Collapse
Affiliation(s)
- Qian Jiao
- Department of Infectious Diseases,
Third Affiliated Hospital, Sun Yat-sen University, China
- Infectious Disease Center, Guangzhou Eighth People’s
Hospital, Guangzhou Medical University, China
| | - Wenxiong Xu
- Department of Infectious Diseases,
Third Affiliated Hospital, Sun Yat-sen University, China
| | - Xiaoyan Guo
- Department of Infectious Diseases,
Third Affiliated Hospital, Sun Yat-sen University, China
| | - Huiyuan Liu
- Infectious Disease Center, Guangzhou Eighth People’s
Hospital, Guangzhou Medical University, China
| | - Baolin Liao
- Infectious Disease Center, Guangzhou Eighth People’s
Hospital, Guangzhou Medical University, China
| | - Xiang Zhu
- Department of Infectious Diseases,
Third Affiliated Hospital, Sun Yat-sen University, China
| | - Chuming Chen
- Department of Infectious Diseases, Third People’s Hospital of
Shenzhen, China
| | - Fangji Yang
- Department of Infectious Diseases,
Third Affiliated Hospital, Sun Yat-sen University, China
| | - Lina Wu
- Department of Infectious Diseases,
Third Affiliated Hospital, Sun Yat-sen University, China
| | - Chan Xie
- Department of Infectious Diseases,
Third Affiliated Hospital, Sun Yat-sen University, China
| | - Liang Peng
- Department of Infectious Diseases,
Third Affiliated Hospital, Sun Yat-sen University, China
| |
Collapse
|
37
|
Kayesh MEH, Kohara M, Tsukiyama-Kohara K. Toll-Like Receptor Response to Hepatitis B Virus Infection and Potential of TLR Agonists as Immunomodulators for Treating Chronic Hepatitis B: An Overview. Int J Mol Sci 2021; 22:10462. [PMID: 34638802 PMCID: PMC8508807 DOI: 10.3390/ijms221910462] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection remains a major global health problem. The immunopathology of the disease, especially the interplay between HBV and host innate immunity, is poorly understood. Moreover, inconsistent literature on HBV and host innate immunity has led to controversies. However, recently, there has been an increase in the number of studies that have highlighted the link between innate immune responses, including Toll-like receptors (TLRs), and chronic HBV infection. TLRs are the key sensing molecules that detect pathogen-associated molecular patterns and regulate the induction of pro- and anti-inflammatory cytokines, thereby shaping the adaptive immunity. The suppression of TLR response has been reported in patients with chronic hepatitis B (CHB), as well as in other models, including tree shrews, suggesting an association of TLR response in HBV chronicity. Additionally, TLR agonists have been reported to improve the host innate immune response against HBV infection, highlighting the potential of these agonists as immunomodulators for enhancing CHB treatment. In this study, we discuss the current understanding of host innate immune responses during HBV infection, particularly focusing on the TLR response and TLR agonists as immunomodulators.
Collapse
Affiliation(s)
- Mohammad Enamul Hoque Kayesh
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan;
- Department of Microbiology and Public Health, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal 8210, Bangladesh
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan;
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan;
| |
Collapse
|
38
|
Bartoli A, Gabrielli F, Tassi A, Cursaro C, Pinelli A, Andreone P. Treatments for HBV: A Glimpse into the Future. Viruses 2021; 13:1767. [PMID: 34578347 PMCID: PMC8473442 DOI: 10.3390/v13091767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/17/2021] [Accepted: 08/24/2021] [Indexed: 12/16/2022] Open
Abstract
The hepatitis B virus is responsible for most of the chronic liver disease and liver cancer worldwide. As actual therapeutic strategies have had little success in eradicating the virus from hepatocytes, and as lifelong treatment is often required, new drugs targeting the various phases of the hepatitis B virus (HBV) lifecycle are currently under investigation. In this review, we provide an overview of potential future treatments for HBV.
Collapse
Affiliation(s)
- Alessandra Bartoli
- Department of Medical and Surgical Sciences, Division of Internal Medicine, Maternal-Infantile and Adult, University of Modena and Reggio Emilia, 41126 Modena, Italy; (A.B.); (F.G.); (A.T.); (C.C.); (A.P.)
- Postgraduate School of Allergy and Clinical Immunology, University of Modena and Reggio Emilia, 41126 Modena, Italy
| | - Filippo Gabrielli
- Department of Medical and Surgical Sciences, Division of Internal Medicine, Maternal-Infantile and Adult, University of Modena and Reggio Emilia, 41126 Modena, Italy; (A.B.); (F.G.); (A.T.); (C.C.); (A.P.)
- Postgraduate School of Internal Medicine, University of Modena and Reggio Emilia, 41126 Modena, Italy
| | - Andrea Tassi
- Department of Medical and Surgical Sciences, Division of Internal Medicine, Maternal-Infantile and Adult, University of Modena and Reggio Emilia, 41126 Modena, Italy; (A.B.); (F.G.); (A.T.); (C.C.); (A.P.)
- Postgraduate School of Internal Medicine, University of Modena and Reggio Emilia, 41126 Modena, Italy
| | - Carmela Cursaro
- Department of Medical and Surgical Sciences, Division of Internal Medicine, Maternal-Infantile and Adult, University of Modena and Reggio Emilia, 41126 Modena, Italy; (A.B.); (F.G.); (A.T.); (C.C.); (A.P.)
| | - Ambra Pinelli
- Department of Medical and Surgical Sciences, Division of Internal Medicine, Maternal-Infantile and Adult, University of Modena and Reggio Emilia, 41126 Modena, Italy; (A.B.); (F.G.); (A.T.); (C.C.); (A.P.)
- Postgraduate School of Allergy and Clinical Immunology, University of Modena and Reggio Emilia, 41126 Modena, Italy
| | - Pietro Andreone
- Department of Medical and Surgical Sciences, Division of Internal Medicine, Maternal-Infantile and Adult, University of Modena and Reggio Emilia, 41126 Modena, Italy; (A.B.); (F.G.); (A.T.); (C.C.); (A.P.)
- Postgraduate School of Allergy and Clinical Immunology, University of Modena and Reggio Emilia, 41126 Modena, Italy
| |
Collapse
|
39
|
Broadly neutralizing antibodies combined with latency-reversing agents or immune modulators as strategy for HIV-1 remission. Curr Opin HIV AIDS 2021; 15:309-315. [PMID: 32675575 DOI: 10.1097/coh.0000000000000641] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW Antiretroviral therapy (ART) is extremely effective in controlling HIV-1 infection; however, ART is not curative. Here, we review broadly neutralizing anti-HIV-1 antibodies (bNAbs) combined with latency-reversing agents (LRAs) or immune modulators as strategy for achieving long-term HIV-1 remission. RECENT FINDINGS Clinical trials testing the effect of a single intervention such as a LRA 'shock and kill', immune modulator or bNAbs among HIV-1 infected individuals on long-term suppressive ART have not lead to long-term HIV-1 remission when ART is stopped. Novel combinations of interventions designed to eliminate infected cells and enhance immune-effector functions are being investigated. Findings in nonhuman primates (NHPs) of such combinations are very promising and clinical trials are now ongoing. These trials will provide the first indication of the efficacy of combinations of bNAbs and LRA or immune modulators for achieving durable HIV-1 remission. SUMMARY bNAbs facilitate the elimination of HIV-1 infected cells and boost immune responses. Preclinical findings show that these effects can be harnessed by simultaneous administration of LRAs or immune modulators such as Toll-like receptor agonists. The clinical success of such combination strategies may be impacted by factors such as immune exhaustion, bNAbs sensitivity as well as the pharmacodynamics of the investigational compounds.
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW Antiviral therapy for chronic hepatitis B infection is rarely curative, thus research in HBV cure strategies is a priority. Drug development and testing has been hampered by the lack of robust cell culture systems and small animal models. This review summarizes existing models for HBV cure research and focuses on recent developments since 2017 until today. RECENT FINDINGS The field has progressed in the development of cell culture and animal models to study HBV. Although early cell culture systems relied on transfection of HBV genomes in hepatoma cell lines, novel models expressing the entry receptor for HBV are susceptible to infection. Improved culture conditions for primary human hepatocytes, the primary target of HBV, have enabled the screening and validation of novel antivirals. Mouse models grafted with partially humanized livers are suitable for testing viral entry inhibitors or direct acting antivirals, and can be reconstituted with human immune cells to analyze immunotherapies. Other immunocompetent models include mice transduced with HBV genomes or woodchucks infected with their native hepatitis virus. SUMMARY Model systems for HBV research have helped lay the groundwork for the development and optimization of antiviral and immune-based therapeutic approaches that are now moving to clinical trials.
Collapse
|
41
|
Pisano MB, Giadans CG, Flichman DM, Ré VE, Preciado MV, Valva P. Viral hepatitis update: Progress and perspectives. World J Gastroenterol 2021; 27:4018-4044. [PMID: 34326611 PMCID: PMC8311538 DOI: 10.3748/wjg.v27.i26.4018] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/11/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
Viral hepatitis, secondary to infection with hepatitis A, B, C, D, and E viruses, are a major public health problem and an important cause of morbidity and mortality. Despite the huge medical advances achieved in recent years, there are still points of conflict concerning the pathogenesis, immune response, development of new and more effective vaccines, therapies, and treatment. This review focuses on the most important research topics that deal with issues that are currently being solved, those that remain to be solved, and future research directions. For hepatitis A virus we will address epidemiology, molecular surveillance, new susceptible populations as well as environmental and food detections. In the case of hepatitis B virus, we will discuss host factors related to disease, diagnosis, therapy, and vaccine improvement. On hepatitis C virus, we will focus on pathogenesis, immune response, direct action antivirals treatment in the context of solid organ transplantation, issues related to hepatocellular carcinoma development, direct action antivirals resistance due to selection of resistance-associated variants, and vaccination. Regarding hepatitis D virus, we describe diagnostic methodology, pathogenesis, and therapy. Finally, for hepatitis E virus, we will address epidemiology (including new emerging species), diagnosis, clinical aspects, treatment, the development of a vaccine, and environmental surveillance.
Collapse
Affiliation(s)
- María B Pisano
- Virology Institute, CONICET, School of Medical Sciences, National University of Córdoba, Cordoba X5016, Argentina
| | - Cecilia G Giadans
- Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP) CONICET-GCBA, Laboratory of Molecular Biology, Pathology Division, Ricardo Gutiérrez Children’s Hospital, CABA C1425, Buenos Aires, Argentina
| | - Diego M Flichman
- Institute of Biomedical Investigations in Retrovirus and AIDS (INBIRS), School of Medicine, University of Buenos Aires, CONICET, CABA C1121ABG, Buenos Aires, Argentina
| | - Viviana E Ré
- Virology Institute, CONICET, School of Medical Sciences, National University of Córdoba, Cordoba X5016, Argentina
| | - María V Preciado
- Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP) CONICET-GCBA, Laboratory of Molecular Biology, Pathology Division, Ricardo Gutiérrez Children’s Hospital, CABA C1425, Buenos Aires, Argentina
| | - Pamela Valva
- Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP) CONICET-GCBA, Laboratory of Molecular Biology, Pathology Division, Ricardo Gutiérrez Children’s Hospital, CABA C1425, Buenos Aires, Argentina
| |
Collapse
|
42
|
Qu B, Brown RJP. Strategies to Inhibit Hepatitis B Virus at the Transcript Level. Viruses 2021; 13:v13071327. [PMID: 34372533 PMCID: PMC8310268 DOI: 10.3390/v13071327] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 12/11/2022] Open
Abstract
Approximately 240 million people are chronically infected with hepatitis B virus (HBV), despite four decades of effective HBV vaccination. During chronic infection, HBV forms two distinct templates responsible for viral transcription: (1) episomal covalently closed circular (ccc)DNA and (2) host genome-integrated viral templates. Multiple ubiquitous and liver-specific transcription factors are recruited onto these templates and modulate viral gene transcription. This review details the latest developments in antivirals that inhibit HBV gene transcription or destabilize viral transcripts. Notably, nuclear receptor agonists exhibit potent inhibition of viral gene transcription from cccDNA. Small molecule inhibitors repress HBV X protein-mediated transcription from cccDNA, while small interfering RNAs and single-stranded oligonucleotides result in transcript degradation from both cccDNA and integrated templates. These antivirals mediate their effects by reducing viral transcripts abundance, some leading to a loss of surface antigen expression, and they can potentially be added to the arsenal of drugs with demonstrable anti-HBV activity. Thus, these candidates deserve special attention for future repurposing or further development as anti-HBV therapeutics.
Collapse
Affiliation(s)
- Bingqian Qu
- Division of Veterinary Medicine, Paul Ehrlich Institute, 63225 Langen, Germany
- European Virus Bioinformatics Center, 07743 Jena, Germany
- Correspondence: (B.Q.); (R.J.P.B.)
| | - Richard J. P. Brown
- Division of Veterinary Medicine, Paul Ehrlich Institute, 63225 Langen, Germany
- Correspondence: (B.Q.); (R.J.P.B.)
| |
Collapse
|
43
|
Amin OE, Colbeck EJ, Daffis S, Khan S, Ramakrishnan D, Pattabiraman D, Chu R, Micolochick Steuer H, Lehar S, Peiser L, Palazzo A, Frey C, Davies J, Javanbakht H, Rosenberg WM, Fletcher SP, Maini MK, Pallett LJ. Therapeutic Potential of TLR8 Agonist GS-9688 (Selgantolimod) in Chronic Hepatitis B: Remodeling of Antiviral and Regulatory Mediators. Hepatology 2021; 74:55-71. [PMID: 33368377 PMCID: PMC8436741 DOI: 10.1002/hep.31695] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/13/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS GS-9688 (selgantolimod) is a toll-like receptor 8 agonist in clinical development for the treatment of chronic hepatitis B (CHB). Antiviral activity of GS-9688 has previously been evaluated in vitro in HBV-infected hepatocytes and in vivo in the woodchuck model of CHB. Here we evaluated the potential of GS-9688 to boost responses contributing to viral control and to modulate regulatory mediators. APPROACH AND RESULTS We characterized the effect of GS-9688 on immune cell subsets in vitro in peripheral blood mononuclear cells of healthy controls and patients with CHB. GS-9688 activated dendritic cells and mononuclear phagocytes to produce IL-12 and other immunomodulatory mediators, inducing a comparable cytokine profile in healthy controls and patients with CHB. GS-9688 increased the frequency of activated natural killer (NK) cells, mucosal-associated invariant T cells, CD4+ follicular helper T cells, and, in about 50% of patients, HBV-specific CD8+ T cells expressing interferon-γ. Moreover, in vitro stimulation with GS-9688 induced NK-cell expression of interferon-γ and TNF-α, and promoted hepatocyte lysis. We also assessed whether GS-9688 inhibited immunosuppressive cell subsets that might enhance antiviral efficacy. Stimulation with GS-9688 reduced the frequency of CD4+ regulatory T cells and monocytic myeloid-derived suppressor cells (MDSCs). Residual MDSCs expressed higher levels of negative immune regulators, galectin-9 and programmed death-ligand 1. Conversely, GS-9688 induced an expansion of immunoregulatory TNF-related apoptosis-inducing ligand+ NK cells and degranulation of arginase-I+ polymorphonuclear MDSCs. CONCLUSIONS GS-9688 induces cytokines in human peripheral blood mononuclear cells that are able to activate antiviral effector function by multiple immune mediators (HBV-specific CD8+ T cells, CD4+ follicular helper T cells, NK cells, and mucosal-associated invariant T cells). Although reducing the frequency of some immunoregulatory subsets, it enhances the immunosuppressive potential of others, highlighting potential biomarkers and immunotherapeutic targets to optimize the antiviral efficacy of GS-9688.
Collapse
Affiliation(s)
- Oliver E. Amin
- Division of Infection & ImmunityInstitute of Immunity & TransplantationUniversity College LondonLondonUnited Kingdom
| | - Emily J. Colbeck
- Division of Infection & ImmunityInstitute of Immunity & TransplantationUniversity College LondonLondonUnited Kingdom
| | | | | | | | | | - Ruth Chu
- Gilead Sciences Inc.Foster CityCA
| | | | - Sophie Lehar
- Gilead Sciences Inc.Foster CityCA
- Present address:
Genentech Inc.South San FranciscoCA
| | - Leanne Peiser
- Gilead Sciences Inc.Foster CityCA
- Present address:
Bristol Myers SquibbSeattleWA
| | | | - Christian Frey
- Gilead Sciences Inc.Foster CityCA
- Present address:
Ideaya Biosciences Inc.South San FranciscoCA
| | - Jessica Davies
- Division of Infection & ImmunityInstitute of Immunity & TransplantationUniversity College LondonLondonUnited Kingdom
| | - Hassan Javanbakht
- Gilead Sciences Inc.Foster CityCA
- Present address:
SQZ BiotechnologiesWatertownMA
| | | | | | - Mala K. Maini
- Division of Infection & ImmunityInstitute of Immunity & TransplantationUniversity College LondonLondonUnited Kingdom
| | - Laura J. Pallett
- Division of Infection & ImmunityInstitute of Immunity & TransplantationUniversity College LondonLondonUnited Kingdom
| |
Collapse
|
44
|
Tsai TY, Huang MT, Sung PS, Peng CY, Tao MH, Yang HI, Chang WC, Yang AS, Yu CM, Lin YP, Bau CY, Huang CJ, Pan MH, Wu CY, Hsiao CD, Yeh YH, Duan S, Paulson JC, Hsieh SL. SIGLEC-3 (CD33) serves as an immune checkpoint receptor for HBV infection. J Clin Invest 2021; 131:e141965. [PMID: 34060491 DOI: 10.1172/jci141965] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 04/14/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic hepatitis B (CHB) infection is rarely eradicated by current antiviral nucleos(t)ide analogues. We found that α2,6-biantennary sialoglycans of HBV surface antigen (HBsAg) bound human SIGLEC-3 (CD33) by IP and ELISA, and the binding affinity between SIGLEC-3 and α2,6-biantennary sialoglycans was determined by biolayer interferometry (equilibrium dissociation constant [KD]: 1.95 × 10-10 ± 0.21 × 10-10 M). Moreover, HBV activated SIGLEC-3 on myeloid cells and induced immunosuppression by stimulating immunoreceptor tyrosine-based inhibitory motif phosphorylation and SHP-1/-2 recruitment via α2,6-biantennary sialoglycans on HBsAg. An antagonistic anti-SIGLEC-3 mAb reversed this effect and enhanced cytokine production in response to TLR-7 agonist GS-9620 in PBMCs from CHB patients. Moreover, anti-SIGLEC-3 mAb alone was able to upregulate the expression of molecules involved in antigen presentation, such as CD80, CD86, CD40, MHC-I, MHC-II, and PD-L1 in CD14+ cells. Furthermore, SIGLEC-3 SNP rs12459419 C, which expressed a higher amount of SIGLEC-3, was associated with increased risk of hepatocellular carcinoma (HCC) in CHB patients (HR: 1.256, 95% CI: 1.027-1.535, P = 0.0266). Thus, blockade of SIGLEC-3 is a promising strategy to reactivate host immunity to HBV and lower the incidence of HCC in the CHB patient population.
Collapse
Affiliation(s)
- Tsung-Yu Tsai
- PhD Program for Translational Medicine, China Medical University and Academia Sinica, Taichung, Taiwan.,Center for Digestive Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | | | - Pei-Shan Sung
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Cheng-Yuan Peng
- Center for Digestive Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan.,School of Medicine, China Medical University, Taichung, Taiwan
| | - Mi-Hua Tao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hwai-I Yang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Wei-Chiao Chang
- Department of Clinical Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - An-Suei Yang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chung-Ming Yu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Ya-Ping Lin
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Ching-Yu Bau
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chih-Jen Huang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Mei-Hung Pan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chung-Yi Wu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Yi-Hung Yeh
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Shiteng Duan
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| | - James C Paulson
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| | - Shie-Liang Hsieh
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute for Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
45
|
Golsaz-Shirazi F, Shokri F. Cross talk between hepatitis B virus and innate immunity of hepatocytes. Rev Med Virol 2021; 32:e2256. [PMID: 34021666 DOI: 10.1002/rmv.2256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 12/13/2022]
Abstract
Innate immunity plays a major role in controlling viral infections. Recent exploration of sodium taurocholate co-transporting polypeptide receptor as specific hepatitis B virus (HBV) receptor in human hepatocytes has provided appropriate cell culture tools to study the innate immunity of hepatocytes and its cross talk with HBV. In this review, we give a brief update on interaction between HBV and innate immunity using the currently available in vitro cellular models that support the complete life cycle of HBV. We will discuss how HBV can act as a 'stealth' virus to counteract the innate immune responses mediated by the pathogen recognition receptors of hepatocytes and escape the first line of surveillance of the host immune system. We give an overview of the cellular components of innate immunity that present in these in vitro models and discuss how activating these innate immunity components may contribute to the eradication of HBV infection.
Collapse
Affiliation(s)
- Forough Golsaz-Shirazi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
46
|
Huang X, Zhang X, Lu M. Recent trends in the development of Toll-like receptor 7/8-targeting therapeutics. Expert Opin Drug Discov 2021; 16:869-880. [PMID: 33678093 DOI: 10.1080/17460441.2021.1898369] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Toll-like receptor (TLR) 7 and TLR8 are functionally localized to endosomes and recognize specific RNA sequences. They play crucial roles in initiating innate and adaptive immune responses. TLR7/8 activation protects the host against invading pathogens and enhances immune responses. In contrast, sustained TLR7/8 signaling leads to immune overreaction. Therefore, agonists or antagonists targeting TLR7/8 signaling are favorable drug candidates for the treatment of immune disorders.Areas covered: Basic knowledge about TLR7 and TLR8 and their signaling pathways are briefly reviewed. Various therapeutic agents have been designed to activate or antagonize TLR7/8 signaling pathways, and their safety and efficacy for the treatment of multiple diseases have been investigated in preclinical animal models and clinical trials. TLR7/8 agonists exhibit potent antiviral activity and regulate anti-tumor immune responses. TLR7 agonists have also been used as adjuvants to improve vaccine immunogenicity and generate greater seroprotection. TLR7/8 antagonists are promising candidates for the treatment of autoimmune and inflammatory diseases.Expert opinion: TLR7/8 pathways are favorable targets for immunological therapies. Future research should concentrate on the optimization of drug safety, efficiency, and specificity. Detailed mechanistic studies will contribute to the development of TLR7/8 immunomodulators and novel therapeutic strategies.
Collapse
Affiliation(s)
- Xuan Huang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyong Zhang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mengji Lu
- Institute of Virology, University Hospital of Essen, Essen, Germany
| |
Collapse
|
47
|
Lim CS, Sozzi V, Littlejohn M, Yuen LK, Warner N, Betz-Stablein B, Luciani F, Revill PA, Brown CM. Quantitative analysis of the splice variants expressed by the major hepatitis B virus genotypes. Microb Genom 2021; 7:mgen000492. [PMID: 33439114 PMCID: PMC8115900 DOI: 10.1099/mgen.0.000492] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatitis B virus (HBV) is a major human pathogen that causes liver diseases. The main HBV RNAs are unspliced transcripts that encode the key viral proteins. Recent studies have shown that some of the HBV spliced transcript isoforms are predictive of liver cancer, yet the roles of these spliced transcripts remain elusive. Furthermore, there are nine major HBV genotypes common in different regions of the world, these genotypes may express different spliced transcript isoforms. To systematically study the HBV splice variants, we transfected human hepatoma cells, Huh7, with four HBV genotypes (A2, B2, C2 and D3), followed by deep RNA-sequencing. We found that 13-28 % of HBV RNAs were splice variants, which were reproducibly detected across independent biological replicates. These comprised 6 novel and 10 previously identified splice variants. In particular, a novel, singly spliced transcript was detected in genotypes A2 and D3 at high levels. The biological relevance of these splice variants was supported by their identification in HBV-positive liver biopsy and serum samples, and in HBV-infected primary human hepatocytes. Interestingly the levels of HBV splice variants varied across the genotypes, but the spliced pregenomic RNA SP1 and SP9 were the two most abundant splice variants. Counterintuitively, these singly spliced SP1 and SP9 variants had a suboptimal 5' splice site, supporting the idea that splicing of HBV RNAs is tightly controlled by the viral post-transcriptional regulatory RNA element.
Collapse
Affiliation(s)
- Chun Shen Lim
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Vitina Sozzi
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Margaret Littlejohn
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Lilly K.W. Yuen
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Nadia Warner
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Brigid Betz-Stablein
- Systems Medicine, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Present address: Dermatology Research Centre, Diamantina Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Fabio Luciani
- Systems Medicine, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Peter A. Revill
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - Chris M. Brown
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
48
|
Jeng WJ, Lok ASF. Is Cure of Hepatitis B Infection a Mission Possible? HEPATITIS B VIRUS AND LIVER DISEASE 2021:475-495. [DOI: 10.1007/978-981-16-3615-8_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
49
|
Sun S, Yang Q, Sheng Y, Fu Y, Sun C, Deng C. Investigational drugs with dual activity against HBV and HIV (Review). Exp Ther Med 2020; 21:35. [PMID: 33262821 PMCID: PMC7690342 DOI: 10.3892/etm.2020.9467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/14/2020] [Indexed: 12/17/2022] Open
Abstract
Chronic hepatitis B (CHB) and acquired immunodeficiency syndrome (AIDS) are global public health problems that pose a significant health burden. Human immunodeficiency virus (HIV) and hepatitis B virus (HBV) coinfection is common, as these viruses have similar transmission routes, such as blood transmission, sexual transmission and mother-to-child transmission. Coinfection frequently leads to accelerated disease progression. For individuals coinfected with HIV/HBV, combination antiretroviral therapy containing dual anti-HBV drugs is recommended. Certain studies have also indicated the benefits of antiretroviral drugs with anti-HBV activity in patients with coinfection. A total of four Food and Drug Administration-approved HIV drugs also have anti-HBV activity; namely, emtricitabine, lamivudine, tenofovir disoproxil fumarate and tenofovir alafenamide, which are all nucleoside reverse transcriptase inhibitors. However, various issues, including drug resistance and side effects, limit their application. Therefore, it is necessary to develop more drugs with dual activity against HBV and HIV. The present review outlines the mechanisms, safety and efficacy of certain drugs that have been investigated for this purpose.
Collapse
Affiliation(s)
- Shiyu Sun
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Department of Tuberculosis, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Department of Infection and Immunity Laboratory, Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Qing Yang
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Department of Tuberculosis, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Department of Infection and Immunity Laboratory, Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yunjian Sheng
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Department of Tuberculosis, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Department of Infection and Immunity Laboratory, Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yi Fu
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Department of Gastrointestinal Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Changfeng Sun
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Department of Tuberculosis, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Department of Infection and Immunity Laboratory, Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Cunliang Deng
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Department of Tuberculosis, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Department of Infection and Immunity Laboratory, Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
50
|
Hartman GD, Kuduk SD, Espiritu C, Lam AM. P450s under Restriction (PURE) Screen Using HepaRG and Primary Human Hepatocytes for Discovery of Novel HBV Antivirals. ACS Med Chem Lett 2020; 11:1919-1927. [PMID: 33062174 DOI: 10.1021/acsmedchemlett.9b00630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/26/2020] [Indexed: 12/13/2022] Open
Abstract
Herein is reported a novel screening paradigm PURE (P450s under restriction) for the identification and optimization of hits as part of a hepatitis B virus (HBV) antiviral discovery program. To closely represent in vivo hepatocytes, differentiated HepaRG cells (dHRGs) and primary human hepatocytes (PHHs) were used as the basis for an HBV infection system. However, a significant challenge arose during potency evaluation in using cultured dHRGs and PHHs as screening platforms because, as with hepatocytes in vivo, these cells express active cytochrome P450 enzymes and thus can metabolize test compounds. The observed antiviral effects may be the cumulative result of a dynamic pool of parent compound and metabolites thus confounding structure activity relationship (SAR) interpretation and subsequent optimization design initiatives. We show here that PURE methodology restricts metabolism of HBV-infected dHRGs and PHHs and thus provides highly informative potency data for decision-making on key representative antiviral compounds.
Collapse
Affiliation(s)
- George D. Hartman
- Novira Therapeutics, a Janssen Pharmaceutical Company, 1400 McKean Road, Spring House, Pennsylvania 19477, United States
| | - Scott D. Kuduk
- Novira Therapeutics, a Janssen Pharmaceutical Company, 1400 McKean Road, Spring House, Pennsylvania 19477, United States
| | - Christine Espiritu
- Novira Therapeutics, a Janssen Pharmaceutical Company, 1400 McKean Road, Spring House, Pennsylvania 19477, United States
| | - Angela M. Lam
- Novira Therapeutics, a Janssen Pharmaceutical Company, 1400 McKean Road, Spring House, Pennsylvania 19477, United States
| |
Collapse
|