1
|
Støy S, Schnabl B. Role of Intestinal Microbiome in Potentiating Inflammation and Predicting Outcomes in Alcohol-Associated Cirrhosis. Gastroenterol Clin North Am 2025; 54:453-467. [PMID: 40348498 PMCID: PMC12066832 DOI: 10.1016/j.gtc.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
In patients with alcohol-associated cirrhosis, the intestinal microbiome composition is disturbed with a loss of beneficial functions and an increase in pathobionts. These changes are associated with disease severity and decompensation, due in part to the exacerbation of liver inflammation by an altered microbiome. Microbes or their antigens may translocate to the liver to potentiate the activation of immune cells and thereby contribute to inflammatory injury. Moreover, microbes may aggravate liver disease through the production of toxins or metabolites, via the effects on bile acids or the intestinal immune system.
Collapse
Affiliation(s)
- Sidsel Støy
- Department of Medicine, University of California San Diego, La Jolla, CA, USA; Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA; Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
2
|
Puhakka E, Ahmed H, Haikonen R, Leclercq S, Hanhineva K, Maccioni L, Amadieu C, Lehtonen M, Männistö V, Rysä J, Stärkel P, Kärkkäinen O. Serum Metabolite Profile in Progressive Versus Nonprogressive Alcohol-Related Liver Disease: A Cross-Sectional Metabolomics Study. Liver Int 2025; 45:e70128. [PMID: 40358071 PMCID: PMC12070861 DOI: 10.1111/liv.70128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 04/22/2025] [Accepted: 04/26/2025] [Indexed: 05/15/2025]
Abstract
BACKGROUND AND AIMS Alcohol-related liver disease (ALD) is a major cause of mortality and disability-adjusted life years. It is not fully understood why a small proportion of patients develop progressive forms of ALD (e.g., fibrosis and cirrhosis). Differences in the metabolic processes could be behind the individual progression of ALD. Our aim was to examine differences in serum metabolome between patients with nonprogressive ALD and patients with an early form of progressive ALD. METHODS The study had three study groups: progressive ALD (alcohol-related steatohepatitis or early-stage fibrosis, n = 50), nonprogressive ALD (simple steatosis, n = 50) and healthy controls (n = 32). Both ALD groups took part in a voluntary alcohol rehabilitation programme. A nontargeted metabolomics analysis and targeted analysis of short-chain fatty acids were done to the serum samples taken on the day of admission. RESULTS We found 111 significantly (p < 0.0005) altered identified metabolites between the study groups. Our main finding was that levels of glycine-conjugated bile acids (Cohen's d = 0.90-0.91), glutamic acid (d = 1.01), 7-methylguanine (d = 0.77) and several phosphatidylcholines (d = 0.61-0.85) were elevated in the progressive ALD group in comparison to the nonprogressive ALD group. Glycine-conjugated bile acids, glutamic acid and 7-methylguanine also positively correlated with increased levels of aspartate aminotransferase, alanine aminotransferase, gamma-glutamyl transferase, cell death biomarker M65 and liver stiffness. CONCLUSIONS Our results indicate that the enterohepatic cycle of glycine-conjugated bile acids, as well as lipid and energy metabolism, is altered in early forms of progressive ALD. These metabolic processes could be a target for preventing the progression of ALD.
Collapse
Affiliation(s)
- Eemeli Puhakka
- School of PharmacyUniversity of Eastern FinlandKuopioFinland
| | - Hany Ahmed
- Food Sciences Unit, Department of Life TechnologiesUniversity of TurkuTurkuFinland
| | - Retu Haikonen
- Institute of Public Health and Clinical NutritionUniversity of Eastern FinlandKuopioFinland
| | - Sophie Leclercq
- Laboratory of Nutritional Psychiatry, Institute of Neuroscience, UCLouvainUniversité Catholique de LouvainBrusselsBelgium
| | - Kati Hanhineva
- Food Sciences Unit, Department of Life TechnologiesUniversity of TurkuTurkuFinland
- Institute of Public Health and Clinical NutritionUniversity of Eastern FinlandKuopioFinland
| | - Luca Maccioni
- National Institute of Alcohol Abuse and AlcoholismBethesdaMarylandUSA
| | | | - Marko Lehtonen
- School of PharmacyUniversity of Eastern FinlandKuopioFinland
| | - Ville Männistö
- Institute of Clinical MedicineUniversity of Eastern FinlandKuopioFinland
- Department of MedicineKuopio University HospitalKuopioFinland
| | - Jaana Rysä
- School of PharmacyUniversity of Eastern FinlandKuopioFinland
| | - Peter Stärkel
- Department of Hepato‐Gastro‐EnterologyCliniques Universitaires Saint LucBrusselsBelgium
- Laboratory of Hepato‐Gastroenterology, Institute de Recherche Expérimentale et CliniqueUniversité Catholique de LouvainBrusselsBelgium
| | - Olli Kärkkäinen
- School of PharmacyUniversity of Eastern FinlandKuopioFinland
| |
Collapse
|
3
|
Feng J, He L, Ma X, Yin X, Mueller EG, Zhou Z, Feng W, McClain CJ, Zhang X. Comparison of liver bile acid profiles in chronic alcohol feeding and NIAAA binge-on-chronic alcohol feeding mouse models. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1262:124650. [PMID: 40413821 DOI: 10.1016/j.jchromb.2025.124650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 05/09/2025] [Accepted: 05/13/2025] [Indexed: 05/27/2025]
Abstract
Alcohol-associated liver disease (ALD) is associated with disturbances in bile acid (BA) metabolism. Several mouse models have been established to mimic human ALD in the clinical setting for mechanistic investigations, and differences in BA metabolism between these models have not been systematically studied. We quantified BA alterations by liquid chromatography-mass spectrometry (LC-MS) in the livers of two widely used mouse models: the chronic Lieber-DeCarli ethanol diet (CLD) model and the National Institute on Alcohol Abuse and Alcoholism binge-on-chronic alcohol feeding (NIAAA) model, both of which aim to mimic the early stages of human ALD. Statistical analysis showed that total BA levels did not change significantly in either model. However, unconjugated BAs were elevated in both models, and glycol-conjugated BAs were significantly increased only in the NIAAA model. The deconjugation capacity of ursodeoxycholic acid (UDCA) and β-muricholic acid (β-MCA) was increased in the CLD model, whereas that of cholic acid (CA) and lithocholic acid (LCA) was increased in the NIAAA model. NIAAA mice showed increased FXR affinity, implying that the classical biosynthetic pathway of hepatic BAs was inhibited. In conclusion, although total BA levels remained unchanged in the early stages of ALD in both models, the BA composition was more altered in the NIAAA model than in the CLD model, suggesting that different ALD mouse models may exhibit divergent regulatory mechanisms for BA metabolism.
Collapse
Affiliation(s)
- Jing Feng
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA; Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA; Hepatobiology & Toxicology COBRE, University of Louisville, Louisville, KY 40202, USA; Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, KY 40208, USA
| | - Liqing He
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA; Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA; Hepatobiology & Toxicology COBRE, University of Louisville, Louisville, KY 40202, USA; Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, KY 40208, USA
| | - Xipeng Ma
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA; Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA; Hepatobiology & Toxicology COBRE, University of Louisville, Louisville, KY 40202, USA; Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, KY 40208, USA
| | - Xinmin Yin
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA; Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA; Hepatobiology & Toxicology COBRE, University of Louisville, Louisville, KY 40202, USA; Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, KY 40208, USA
| | - Eugene G Mueller
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA
| | - Zhanxiang Zhou
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, Greensboro, NC 27412, USA; Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC 27412, USA
| | - Wenke Feng
- Department of Structural & Cellular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Craig J McClain
- Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA; Hepatobiology & Toxicology COBRE, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY 40202, USA; Department of Medicine, University of Louisville, Louisville, KY 40202, USA; Robley Rex Louisville VAMC, Louisville, KY 40206, USA
| | - Xiang Zhang
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA; Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA; Hepatobiology & Toxicology COBRE, University of Louisville, Louisville, KY 40202, USA; Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, KY 40208, USA; Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
4
|
Yan S, Yin XM. Cholestasis in Alcohol-Associated Liver Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2025:S0002-9440(25)00155-5. [PMID: 40350058 DOI: 10.1016/j.ajpath.2025.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/11/2025] [Accepted: 04/22/2025] [Indexed: 05/14/2025]
Abstract
Alcohol-associated liver disease (ALD) is a leading cause of liver-related morbidity and mortality. ALD covers a spectrum of diseases, ranging from mild and reversible hepatic steatosis to the development of fibrosis, cirrhosis, and alcohol-associated hepatitis (AH). AH is marked by a rapid onset of jaundice and elevated serum levels of aspartate aminotransferase in individuals with heavy alcohol use. It can progress to acute-on-chronic liver failure, with a mortality rate of approximately 30% within the first month. Unfortunately, treatment options for AH are still limited. Cholestasis refers to an impairment in bile formation or flow, leading to clinical symptoms, such as fatigue, pruritus, and jaundice. Cholestasis and biliary dysfunction are commonly seen in patients with AH and can significantly worsen the prognosis. However, the mechanisms and roles of cholestasis in ALD are not yet fully understood. In this review, we will summarize recent findings and explore the potential roles and mechanisms of cholestasis in the progression of ALD.
Collapse
Affiliation(s)
- Shengmin Yan
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana.
| | - Xiao-Ming Yin
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
5
|
Fouad OA, Zaghlol DF, Sweed DM, Saber MA, Sira MM. Hepatic Expression of Fibroblast Growth Factor 19 Significantly Correlates With Serum Bile Acids in Neonatal Cholestasis. Pediatr Dev Pathol 2025; 28:179-189. [PMID: 40012171 DOI: 10.1177/10935266251322941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
BACKGROUND Bile acids in the ileum act as a feedback regulator of their own synthesis by inducing the release of ileal fibroblast growth factor 19 (FGF19), which inhibits the cholesterol-7-alpha hydroxylase enzyme. In cholestasis, this feedback mechanism is dysregulated. FGF19 is not expressed in the healthy liver. We aimed to assess the hepatic expression of FGF19 in neonatal cholestasis (NC) and its relation to serum bile acids. METHODS The study included 41 patients with NC. FGF19 immunohistochemical staining in liver tissue (hepatocytes, endothelial cells, bile ducts, and bile canaliculi) was evaluated as negative, weak, moderate, and strong staining. FGF19 staining in 6 liver samples from explants of children with Crigler-Najjar syndrome type-1 served as controls. RESULTS Hepatocyte, endothelial, and canalicular FGF19 expression was significantly higher in cholestasis group compared to controls (P = .039, .006, and .028 respectively). Serum bile acids had significant correlation with hepatocyte FGF19, endothelial, and bile duct FGF19 expressions (P = .002, .003, and .01, respectively) but not with canalicular FGF19 expression. Hepatocyte FGF19 expression significantly associated with cholestasis severity in terms of serum total bilirubin, direct bilirubin, and aspartate transaminase levels (P = .01, .02, and .02, respectively). CONCLUSION Hepatic FGF19 expression significantly upregulated in NC and correlated with cholestasis severity.
Collapse
Affiliation(s)
- Ola A Fouad
- Department of Pediatric Hepatology, Gastroenterology and Nutrition, National Liver Institute, Menoufia University, Menoufia, Egypt
| | - Doaa F Zaghlol
- Department of Pediatric Hepatology, Gastroenterology and Nutrition, National Liver Institute, Menoufia University, Menoufia, Egypt
| | - Dina M Sweed
- Department of Pathology, National Liver Institute, Menoufia University, Menoufia, Egypt
| | - Magdy A Saber
- Department of Pediatric Hepatology, Gastroenterology and Nutrition, National Liver Institute, Menoufia University, Menoufia, Egypt
| | - Mostafa M Sira
- Department of Pediatric Hepatology, Gastroenterology and Nutrition, National Liver Institute, Menoufia University, Menoufia, Egypt
| |
Collapse
|
6
|
Chen G, Chen L, Li X, Mohammadi M. FGF-based drug discovery: advances and challenges. Nat Rev Drug Discov 2025; 24:335-357. [PMID: 39875570 DOI: 10.1038/s41573-024-01125-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2024] [Indexed: 01/30/2025]
Abstract
The fibroblast growth factor (FGF) family comprises 15 paracrine-acting and 3 endocrine-acting polypeptides, which govern a multitude of processes in human development, metabolism and tissue homeostasis. Therapeutic endocrine FGFs have recently advanced in clinical trials, with FGF19 and FGF21-based therapies on the cusp of approval for the treatment of primary sclerosing cholangitis and metabolic syndrome-associated steatohepatitis, respectively. By contrast, while paracrine FGFs were once thought to be promising drug candidates for wound healing, burns, tissue repair and ischaemic ailments based on their potent mitogenic and angiogenic properties, repeated failures in clinical trials have led to the widespread perception that the development of paracrine FGF-based drugs is not feasible. However, the observation that paracrine FGFs can exert FGF hormone-like metabolic activities has restored interest in these FGFs. The recent structural elucidation of the FGF cell surface signalling machinery and the formulation of a new threshold model for FGF signalling specificity have paved the way for therapeutically harnessing paracrine FGFs for the treatment of a range of metabolic diseases.
Collapse
Affiliation(s)
- Gaozhi Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lingfeng Chen
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Moosa Mohammadi
- Institute of Cell Growth Factor, Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health, Wenzhou, Zhejiang, China.
| |
Collapse
|
7
|
Özdirik B, Berger H, Tonetti FR, Cabré N, Treichel N, Clavel T, Tacke F, Sigal M, Schnabl B. Faecal Cytolysin is Associated With Worse Survival in Patients With Primary Sclerosing Cholangitis. Liver Int 2025; 45:e16181. [PMID: 40083245 DOI: 10.1111/liv.16181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 03/16/2025]
Abstract
BACKGROUND AND AIMS Primary sclerosing cholangitis (PSC) is an immune-related cholangiopathy without treatment options beyond liver transplantation. The gut-liver axis, especially the role of gut microbes, has emerged as a crucial pathway contributing to PSC pathogenesis. Recent research has revealed Enterococcus (E.) faecalis and its virulence factor cytolysin to increase mortality risk in patients with alcohol-associated hepatitis. Thus, we studied the role of enterococci, particularly E. faecalis and its virulence factor genes cytolysin and gelatinase, in faecal samples from patients with PSC. METHODS To assess the relevance of Enterococcus species, we performed 16S rRNA gene amplicon analysis in faecal samples from 60 patients with PSC. We validated our findings by qPCR of faecal microbial DNA in an extended cohort of 105 patients with PSC, 104 patients with inflammatory bowel disease (IBD) and 68 healthy subjects. RESULTS High-throughput 16S rRNA amplicon analysis revealed an increased relative abundance of enterococci in PSC patients compared with healthy controls and IBD patients, respectively, (p < 0.0001). PSC patients with high enterococci abundance had a decreased probability of transplant-free survival (p = 0.028). E. faecalis and its virulence factors cytolysin and gelatinase were more abundant in patients with PSC. Higher faecal cytolysin was associated with lower overall survival (p = 0.04), while survival was independent of gelatinase levels. CONCLUSION Our data highlight the association of E. faecalis and faecal cytolysin with lower survival in patients with PSC. These data should prompt further research into the pathogenic role of cytolysin-positive E. faecalis, and to explore its role as a potential therapeutic target.
Collapse
Affiliation(s)
- Burcin Özdirik
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Hilmar Berger
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Fernanda Raya Tonetti
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Noemí Cabré
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Nicole Treichel
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Thomas Clavel
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Sigal
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, California, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, California, USA
| |
Collapse
|
8
|
Yang F, Li X, Sun J, Pang X, Sun Q, Lu Y. Regulatory mechanisms of the probiotic-targeted gut-liver axis for the alleviation of alcohol-related liver disease: a review. Crit Rev Food Sci Nutr 2025:1-22. [PMID: 39905925 DOI: 10.1080/10408398.2025.2455954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Alcohol abuse-triggered alcohol-related liver disease (ALD) has become as a global public health concern that substantially affects the well-being and clinical status of patients. Although modern medicine provides various treatments for ALD, their effectiveness is limited and can lead to adverse side effects. Probiotics have been employed to prevent, alleviate, and even treat ALD, with promising results. However, few comprehensive reviews are available on how they mitigate ALD by targeting the gut-liver axis. This review systematically clarifies the specific mediators of the gut-liver axis in healthy states. It also describes the alterations observed in ALD. Furthermore, this review thoroughly summarizes the underlying mechanisms through which probiotics act on the gut-liver axis to relieve ALD. It also discusses the current status and challenges faced in clinical research applications. Finally, we discuss the challenges and future prospects of using probiotics to treat ALD. This review improves our understanding of ALD and supports the development and application of probiotics that target the gut-liver axis for therapeutic use.
Collapse
Affiliation(s)
- Feiyu Yang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiangfei Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Jing Sun
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Xinyi Pang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Quancai Sun
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, USA
| | - Yingjian Lu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| |
Collapse
|
9
|
Budkowska M, Ostrycharz-Jasek E, Cecerska-Heryć E, Dołęgowska K, Siennicka A, Nazarewski Ł, Rykowski P, Dołęgowska B. The Impact of Human Liver Transplantation on the Concentration of Fibroblast Growth Factors: FGF19 and FGF21. Int J Mol Sci 2025; 26:1299. [PMID: 39941067 PMCID: PMC11818808 DOI: 10.3390/ijms26031299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/24/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
The multitude of processes in which the liver participates makes it vulnerable to many serious diseases, which can lead to chronic organ failure. Modern medicine bases the treatment of end-stage liver failure on liver transplantation. To ensure the proper functioning of the transplanted liver, a balance of cellular and immunological processes and appropriate concentrations of many different factors are necessary, including, among others, fibroblast growth factors (FGFs). Over the last several years, studies have focused on some FGF growth factors, i.e., FGF19 and FGF21. These two growth factors belong to the FGF19 subfamily, and we concentrate on these two factors in our work. These factors diffuse away from the site of secretion into the blood, acting as hormones. FGF19 is a growth factor with a high therapeutic potential, involved in the homeostasis of bile acids necessary to maintain the proper function of the transplanted liver. FGF21, in turn, plays an important role in regulating lipid and glucose homeostasis. This study aimed to evaluate changes in the concentration of growth factors FGF19 and FGF21 in the plasma of 84 patients before, 24 h, and 2 weeks after liver transplantation (ELISA test was used). Additionally, the correlations of the basic laboratory parameters-alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transpeptidase (GGTP), alkaline phosphatase (ALP), total bilirubin, C-reactive protein (CRP), albumin and hemoglobin (Hb)-with FGF19 and FGF21 were determined. Our studies noted statistically significant changes in FGF19 and FGF21 concentrations before, 24 h, and 2 weeks after liver transplantation. The highest values for FGF19 before liver transplantation and the lowest values 24 h after this surgery were observed for FGF21; the highest concentrations were observed the day after liver transplantation, and the lowest were observed immediately before surgery. Observations of increases and decreases in the concentration of the examined factors at individual time points (before and after transplantation) allow us to suspect that FGF19 has an adaptive and protective function toward the transplanted liver. At the same time, FGF21 may affect the regenerative mechanisms of the damaged organ.
Collapse
Affiliation(s)
- Marta Budkowska
- Department of Medical Analytics, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Ewa Ostrycharz-Jasek
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland;
- Doctoral School, University of Szczecin, 70-383 Szczecin, Poland
- Molecular Biology and Biotechnology Center, University of Szczecin, 71-412 Szczecin, Poland
| | - Elżbieta Cecerska-Heryć
- Department of Laboratory Medicine, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (E.C.-H.); (B.D.)
| | - Katarzyna Dołęgowska
- Department of Immunology Diagnostics, Pomeranian Medical University, Al. Powstanców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Aldona Siennicka
- Department of Medical Analytics, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Łukasz Nazarewski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, ul Banacha 1a, 02-097 Warsaw, Poland; (Ł.N.); (P.R.)
| | - Paweł Rykowski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, ul Banacha 1a, 02-097 Warsaw, Poland; (Ł.N.); (P.R.)
| | - Barbara Dołęgowska
- Department of Laboratory Medicine, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (E.C.-H.); (B.D.)
| |
Collapse
|
10
|
Shmet M, Amasha M, Khattib A, Schweitzer R, Khatib S, Hamudi J, Halabi M, Khatib S. Untargeted metabolomics reveals biomarkers for the diagnosis of coronary artery plaques as observed by coronary cardiac computed tomography. Biofactors 2025; 51:e2156. [PMID: 39878362 DOI: 10.1002/biof.2156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 12/18/2024] [Indexed: 01/31/2025]
Abstract
Atherosclerosis is a major cause of morbidity and mortality worldwide; in Israel, ischemic heart disease is the second leading cause of death for both genders aged 45 and above. Atherosclerosis involves stiffening of the arteries due to the accumulation of lipids and oxidized lipids on the blood vessel walls, triggering the development of artery plaque. Coronary artery disease (CAD) is the most common manifestation of atherosclerosis. The prevalence of CAD in the general population remains high, despite efforts to improve the identification of risk factors and preventive treatments. The discovery of new biomarkers is vital to improving the diagnosis of CAD and its risk factors. We aimed to identify novel biomarkers that could provide an early diagnosis of coronary artery atherosclerotic plaques, their type, and the percentage of stenosis. We used an untargeted metabolomics approach to identify potential biomarkers that could enable highly sensitive and specific CAD detection. The study consisted of 109 patients who underwent cardiac computed tomography angiography at the Cardiology Department of Ziv Medical Center. Fifty-four patients were diagnosed with coronary atherosclerotic plaques (CAD group), and 55 without plaques used control. Untargeted metabolomics using LC-MS/MS revealed 2560 metabolites in the patients' serum: 106 showed statistically significant upregulation in the serum of the CAD group compared with the healthy control group (p < 0.05). These metabolites belonged to the following chemical families: acyl-carnitines, cyclodipeptides, lysophosphatidylcholine, and primary bile acids. In contrast, 98 metabolites displayed statistically significant downregulation in the serum of the CAD group compared with the control group, belonging to the following chemical families: GABA amino acids and derivatives (inhibitory neurotransmitters), lipids, and secondary bile acids. Our comprehensive untargeted serum metabolomic analysis revealed biomarkers that can be used for the diagnosis of patients with CAD. Further cohort studies with a larger number of participants are needed to validate the detected biomarkers.
Collapse
Affiliation(s)
- Manar Shmet
- Natural Products and Analytical Chemistry Laboratory, MIGAL - Galilee Research Institute, Kiryat Shemona, Israel
- Department of Biotechnology, Tel-Hai College, Qiryat Shemona, Israel
| | | | - Ali Khattib
- Natural Products and Analytical Chemistry Laboratory, MIGAL - Galilee Research Institute, Kiryat Shemona, Israel
- The Rappaport Family Institute for Research in the Medical Science and Rambam Medical Center, Haifa, Israel
| | - Ron Schweitzer
- Natural Products and Analytical Chemistry Laboratory, MIGAL - Galilee Research Institute, Kiryat Shemona, Israel
| | | | | | | | - Soliman Khatib
- Natural Products and Analytical Chemistry Laboratory, MIGAL - Galilee Research Institute, Kiryat Shemona, Israel
- Department of Biotechnology, Tel-Hai College, Qiryat Shemona, Israel
| |
Collapse
|
11
|
Li W, Gao W, Yan S, Yang L, Zhu Q, Chu H. Gut Microbiota as Emerging Players in the Development of Alcohol-Related Liver Disease. Biomedicines 2024; 13:74. [PMID: 39857657 PMCID: PMC11761646 DOI: 10.3390/biomedicines13010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 12/23/2024] [Accepted: 12/29/2024] [Indexed: 01/27/2025] Open
Abstract
The global incidence and mortality rates of alcohol-related liver disease are on the rise, reflecting a growing health concern worldwide. Alcohol-related liver disease develops due to a complex interplay of multiple reasons, including oxidative stress generated during the metabolism of ethanol, immune response activated by immunogenic substances, and subsequent inflammatory processes. Recent research highlights the gut microbiota's significant role in the progression of alcohol-related liver disease. In patients with alcohol-related liver disease, the relative abundance of pathogenic bacteria, including Enterococcus faecalis, increases and is positively correlated with the level of severity exhibited by alcohol-related liver disease. Supplement probiotics like Lactobacillus, as well as Bifidobacterium, have been found to alleviate alcohol-related liver disease. The gut microbiota is speculated to trigger specific signaling pathways, influence metabolite profiles, and modulate immune responses in the gut and liver. This research aimed to investigate the role of gut microorganisms in the onset and advancement of alcohol-related liver disease, as well as to uncover the underlying mechanisms by which the gut microbiota may contribute to its development. This review outlines current treatments for reversing gut dysbiosis, including probiotics, fecal microbiota transplantation, and targeted phage therapy. Particularly, targeted therapy will be a vital aspect of future alcohol-related liver disease treatment. It is to be hoped that this article will prove beneficial for the treatment of alcohol-related liver disease.
Collapse
Affiliation(s)
- Wei Li
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Clinical Research Center for Infectious Diseases, Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan 430023, China;
| | - Wenkang Gao
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (W.G.); (S.Y.); (L.Y.)
| | - Shengqi Yan
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (W.G.); (S.Y.); (L.Y.)
| | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (W.G.); (S.Y.); (L.Y.)
| | - Qingjing Zhu
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Clinical Research Center for Infectious Diseases, Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan 430023, China;
| | - Huikuan Chu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (W.G.); (S.Y.); (L.Y.)
| |
Collapse
|
12
|
Li Y, Dai C, Yang H, Zeng H, Ruan Y, Dai M, Hao J, Wang L, Yan X, Ji F. Cross-sectional and Mendelian randomization study of fibroblast growth factor 19 reveals causal associations with metabolic diseases. J Gastroenterol Hepatol 2024; 39:2872-2879. [PMID: 39091021 DOI: 10.1111/jgh.16687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/29/2024] [Accepted: 07/13/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND AND AIM Fibroblast growth factor 19 (FGF19) is an intestinal-derived factor that plays a role in metabolic diseases. We performed a differential study of circulating FGF19 levels and investigated the causal effects of FGF19 on metabolic diseases using Mendelian randomization (MR). METHODS Firstly, 958 subjects were included in the physical examination center of affiliated hospital from January 2019 to January 2021. Dividing the subjects into different subgroups to compare FGF19 levels. We conducted a two-sample MR analysis of genetically predicted circulating FGF19 in relation to alcohol, cardiovascular and metabolic biomarkers and diseases, and liver function biomarkers using publicly available genome-wide association study summary statistics data. RESULTS The circulating FGF19 levels in nonalcoholic fatty liver disease (NAFLD) patients were lower than those without NAFLD (P < 0.001). The FGF19 levels in participants with obese were lower than those without obese (P < 0.001). In two-sample MR analyses, genetically predicted higher circulating FGF19 levels was significantly associated with lower aspartate aminotransferase, γ-glutamyltransferase, triglycerides, total cholesterol, low-density lipoprotein, and C-reactive protein concentrations (P < 0.05) and a negative correlation with cardiovascular disease and cirrhosis whereas a positive association with type 2 diabetes mellitus (P < 0.05). CONCLUSIONS Our study found that circulating FGF19 levels were lower in NAFLD and obese populations. Additionally, our MR research results support the causal effects of FGF19 on improved liver function, lipids, and reduced the occurrence of inflammation, cardiovascular disease, and cirrhosis. We found a positive correlation with diabetes, which may indicate a compensatory increase in regulating above FGF19 resistance states in humans.
Collapse
Affiliation(s)
- Yan Li
- Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Central Laboratory, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Changyong Dai
- Department of Infectious Diseases, Huaian Hospital of Huaian City, Huaian, Jiangsu, China
| | - Haiqing Yang
- Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Huang Zeng
- Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yuhua Ruan
- Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Mingjia Dai
- Department of Infection and Hepatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jungui Hao
- Department of Infection and Hepatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Liping Wang
- Department of Infection and Hepatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xuebing Yan
- Department of Infection and Hepatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Fang Ji
- Department of Infection and Hepatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
13
|
Yan S, Lin Z, Ma M, Arasteh A, Yin XM. Cholestatic insult triggers alcohol-associated hepatitis in mice. Hepatol Commun 2024; 8:e0566. [PMID: 39445893 PMCID: PMC11512636 DOI: 10.1097/hc9.0000000000000566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/11/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Alcohol-associated hepatitis (AH) is a severe, potentially life-threatening form of alcohol-associated liver disease with limited therapeutic options. Existing evidence shows that biliary dysfunction and cholestasis are common in patients with AH and are associated with poorer prognosis. However, the role of cholestasis in the development of AH is largely unknown. We aimed to examine the hypothesis that cholestasis can be an important etiology factor for AH. METHODS To study the interaction of cholestasis and alcohol, chronically ethanol (EtOH)-fed mice were challenged with a subtoxic dose of α-naphthylisothiocyanate (ANIT), a well-studied intrahepatic cholestasis inducer. Liver injury was measured by biochemical and histological methods. RNAseq was performed to determine hepatic transcriptomic changes. The impact of inflammation was assessed using an anti-LY6G antibody to deplete the neutrophils and DNase I to degrade neutrophil extracellular traps. RESULTS ANIT synergistically enhanced liver injury following a 4-week EtOH feeding with typical features of AH, including increased serum levels of ALT, AST, and total bile acids, cholestasis, necrosis, neutrophil infiltration, and accumulation of neutrophil extracellular traps. RNAseq revealed multiple genes uniquely altered in the livers of EtOH/ANIT-treated mice. Analysis of differentially expressed genes suggested an enrichment of genes related to inflammatory response. Anti-LY6G antibody or DNase I treatment significantly inhibited liver damage in EtOH/ANIT-treated mice. CONCLUSIONS Our results support the hypothesis that cholestasis can be a critical contributor to the pathogenesis of AH. A combined treatment of EtOH and ANIT in mice presents biochemical, histological, and molecular features similar to those found in patients with AH, suggesting that this treatment scheme can be a useful model for studying Alcohol-associated Cholestasis and Hepatitis (AlChoHep).
Collapse
|
14
|
Hamroun A, Boukrout N, Cauffiez C, Fellah S, Van der Hauwaert C, Pottier N, Mentaverri R, Zaworski J, Gnemmi V, Gibier JB, Letavernier E, Louvet A, Provôt F, Lenain R, Maanaoui M, Glowacki F, Lionet A. Severe hypophosphatemia induced by excessive production of FGF23 in acute hepatitis: from bedside to bench. Clin Kidney J 2024; 17:sfae307. [PMID: 39525686 PMCID: PMC11548962 DOI: 10.1093/ckj/sfae307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Indexed: 11/16/2024] Open
Abstract
Background Although hepatic production of FGF23 has been suggested in chronic settings, there are no data indicating hypophosphatemia resulting from acute hepatic FGF23 production. Based on two clinical observations of profound hypophosphatemia in the setting of acute hepatitis, our study investigates the hypothesis of acute FGF23 liver expression. Methods Retrospective analyses were conducted to estimate FGF23 liver expression both qualitatively (in situ hybridization) and quantitatively (relative FGF23 gene expression and protein production) on histological specimens of human and murine acute hepatitis livers, compared with controls of hepatic fibrosis or healthy liver. Results The index clinical case involves acute alcoholic hepatitis complicated by profound hypophosphatemia due to phosphate diabetes, revealing a major production of both FGF23 C-terminal fraction (cFGF23) and bio-intact form (iFGF23, 39 751 RU/mL, N: 21-91; and 228.6 pg/mL, N: 22.7-93.1, respectively). A second case of acute hepatitis related to erythrocytic protoporphyria also exhibited comparable abnormalities. In both cases, no other cause of renal phosphate wasting was identified, and the hydroelectrolytic disorders disappeared in parallel with normalization of the liver balance and FGF23 levels. Histological data of acute hepatitis compared with cirrhosis and healthy liver confirmed our hypothesis of hepatic FGF23 overproduction. Furthermore, mouse models showed a significant increase in FGF23 mRNA relative liver expression in acute hepatitis and a moderate increase in cirrhosis, compared with healthy liver (respectively 60.55 ± 16.75 and 3.70 ± 0.87 vs 1.00 ± 0.65, both P < .05). These findings were also confirmed at the protein level. Conclusion This translational study raises the hypothesis of renal phosphate wasting induced by excessive hepatic production of FGF23 in case of acute hepatitis.
Collapse
Affiliation(s)
- Aghiles Hamroun
- Nephrology, Public Health-Epidemiology, Lille University Hospital Center, Lille, France
- UMR1167 RID-AGE, Institut Pasteur de Lille, Inserm, Lille University, Lille University Hospital Center, Lille, France
| | - Nihad Boukrout
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277 – CANTHER – Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
| | - Christelle Cauffiez
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277 – CANTHER – Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
| | - Sandy Fellah
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277 – CANTHER – Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
| | - Cynthia Van der Hauwaert
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277 – CANTHER – Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
| | - Nicolas Pottier
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277 – CANTHER – Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
| | - Romuald Mentaverri
- Amiens University Hospital, Human Biology Center, Amiens, France
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Picardie Jules Verne University, Amiens, France
| | - Jeremy Zaworski
- Inserm, UMR S 1155, Physiology Unit, Hôpital Tenon, Sorbonne Université, Paris, France
| | - Viviane Gnemmi
- Service d'Anatomie Pathologique, Centre de Biologie Pathologique, CHU Lille, Lille, France
| | - Jean-Baptiste Gibier
- Service d'Anatomie Pathologique, Centre de Biologie Pathologique, CHU Lille, Lille, France
| | - Emmanuel Letavernier
- Inserm, UMR S 1155, Physiology Unit, Hôpital Tenon, Sorbonne Université, Paris, France
| | | | | | - Rémi Lenain
- Nephrology, Lille University Hospital Center, Lille, France
| | - Mehdi Maanaoui
- Nephrology, Lille University Hospital Center, Lille, France
| | - François Glowacki
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277 – CANTHER – Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
- Nephrology, Lille University Hospital Center, Lille, France
| | - Arnaud Lionet
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277 – CANTHER – Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
- Nephrology, Lille University Hospital Center, Lille, France
| |
Collapse
|
15
|
Wang XP, Mutchler SM, Carrisoza-Gaytan R, Nickerson AJ, Baty CJ, Al-Bataineh M, Vandevender A, Morimoto T, Srinivasan P, Tan RJ, Jurczak MJ, Satlin LM, Kashlan OB. Epithelial Na + Channel Activation after Bile Duct Ligation with Mineralocorticoid Receptor Blockade. J Am Soc Nephrol 2024; 35:1466-1477. [PMID: 38986682 PMCID: PMC11543011 DOI: 10.1681/asn.0000000000000442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024] Open
Abstract
Key Points Bile acids activate the epithelial Na+ channel (ENaC), which may lead to subsequent fluid retention in liver disease. Bile duct ligation with spironolactone increased ENaC-dependent Na+ and fluid retention without hormone-linked increased ENaC abundance. Counteracting bile acid ENaC activation may be effective for treating fluid retention in liver disease. Background Sodium and fluid retention in liver disease is classically thought to result from reduced effective circulating volume and stimulation of the renin-angiotensin-aldosterone system. However, evidence of fluid retention in patients without renin-angiotensin-aldosterone system activation suggests the involvement of additional mechanisms. In vitro , bile acids activate the epithelial Na+ channel (ENaC) found in the aldosterone-sensitive distal nephron. If this occurs in vivo , ENaC may become activated in liver disease even with antagonism of aldosterone signaling. Methods To test this, we performed bile duct ligation to induce liver disease and increase circulating bile acids in mice given spironolactone to antagonize aldosterone signaling. We analyzed effects on blood, urine, and body composition. We also determined the effects of taurocholic acid, a primary conjugated bile acid elevated in liver disease, on ion fluxes in microperfused rabbit collecting ducts. Results Bile duct ligation increased benzamil-sensitive natriuresis compared with sham, indicating ENaC activation. These effects were not explained by effects on ENaC expression, cleavage, or localization. Bile duct–ligated mice also gained significantly more fluid than sham-operated animals. Blocking ENaC reversed fluid gains in bile duct–ligated mice but had no effect in shams. In dissected collecting ducts from rabbits, which express ENaC, taurocholic acid stimulated net Na+ absorption. Conclusions Our results provide experimental evidence for a novel aldosterone-independent mechanism for sodium and fluid retention in liver disease.
Collapse
Affiliation(s)
- Xue-Ping Wang
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Stephanie M. Mutchler
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Andrew J. Nickerson
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Catherine J. Baty
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mohammad Al-Bataineh
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Amber Vandevender
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Tetsuji Morimoto
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
- Tohoku Medical and Pharmaceutical University Hospital, Sendai, Japan
| | - Priyanka Srinivasan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Roderick J. Tan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael J. Jurczak
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lisa M. Satlin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ossama B. Kashlan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
16
|
Torres S, Hardesty J, Barrios M, Garcia-Ruiz C, Fernandez-Checa JC, Singal AK. Mitochondria and Alcohol-Associated Liver Disease: Pathogenic Role and Target for Therapy. Semin Liver Dis 2024. [PMID: 39317216 DOI: 10.1055/a-2421-5658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Alcohol-associated liver disease (ALD) is one of the leading causes of chronic liver disease and a major cause of liver-related death. ALD is a multifactorial disease triggered by the oxidative metabolism of alcohol which leads to the activation of multiple factors that promote the progression from steatosis to more advanced stages like alcohol-associated steatohepatitis (AH) that culminate in alcohol-associated cirrhosis and hepatocellular carcinoma. Poor understanding of the complex heterogeneous pathology of ALD has limited drug development for this disease. Alterations in mitochondrial performance are considered a crucial event in paving the progression of ALD due to the crucial role of mitochondria in energy production, intermediate metabolism, calcium homeostasis, and cell fate decisions. Therefore, understanding the role of mitochondria in eliciting steatosis and progression toward AH may open the door to new opportunities for treatment. In this review, we will cover the physiological function of mitochondria, its contribution to ALD in experimental models and human disease, and explore whether targeting mitochondria may represent a game changer in the treatment of ALD.
Collapse
Affiliation(s)
- Sandra Torres
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Unidad Associada IMIM/IIBB-CSIC, Barcelona, Spain
- Liver Unit, Hospital Clinic i Provincial de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Josiah Hardesty
- Division of Gastroenterology and Hepatology, University of Louisville, Louisville, Kentucky
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, Kentucky
| | - Monica Barrios
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Unidad Associada IMIM/IIBB-CSIC, Barcelona, Spain
- Liver Unit, Hospital Clinic i Provincial de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Carmen Garcia-Ruiz
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Unidad Associada IMIM/IIBB-CSIC, Barcelona, Spain
- Liver Unit, Hospital Clinic i Provincial de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Jose C Fernandez-Checa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Unidad Associada IMIM/IIBB-CSIC, Barcelona, Spain
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Unidad Associada IMIM/IIBB-CSIC, Barcelona, Spain
- Liver Unit, Hospital Clinic i Provincial de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Ashwani K Singal
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Unidad Associada IMIM/IIBB-CSIC, Barcelona, Spain
- Division of Gastroenterology and Hepatology, University of Louisville, Louisville, Kentucky
- Transplant Hepatology, Trager Transplant Center and Jewish Hospital, University of Health, Louisville, Kentucky
- Department of Clinical Research, Robley Rex VA Medical Center, Louisville, Kentucky
| |
Collapse
|
17
|
Paudel D, Hao F, Goand UK, Tian S, Koehle AM, Nguyen LV, Tian Y, Patterson AD, Singh V. Elevated systemic total bile acids escalate susceptibility to alcohol-associated liver disease. iScience 2024; 27:110940. [PMID: 39398234 PMCID: PMC11467679 DOI: 10.1016/j.isci.2024.110940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/21/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024] Open
Abstract
Excessive alcohol consumption is a major global health problem. Individuals with alcoholic liver disease often exhibit elevated serum total bile acids (TBAs). Nevertheless, the extent to which high TBA contributes to alcohol-associated liver disease (AALD) remains elusive. To investigate this, wild-type mice were categorized into normal (nTBA) and high (hTBA) TBA groups. Both groups underwent chronic-binge ethanol feeding for 4 weeks, followed by additional weekly ethanol doses. Ethanol feeding worsened AALD in both male and female mice with elevated serum TBA, characterized by liver dysfunction and steatosis. Decreased hepatic expression of genes involved in mitochondrial β-oxidation and lipid transport in ethanol-fed hTBA mice suggests that altered fatty acid metabolism contributed to AALD. Our findings, which represent the first to link high serum TBA to increased AALD susceptibility, underscore the importance of proactive serum TBA screening as a valuable tool for identifying individuals at high risk of developing AALD.
Collapse
Affiliation(s)
- Devendra Paudel
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Fuhua Hao
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Umesh K. Goand
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Sangshan Tian
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Anthony M. Koehle
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Loi V. Nguyen
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Yuan Tian
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Andrew D. Patterson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Vishal Singh
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
- Center for Molecular Immunology and Infectious Disease, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
- One Health Microbiome Center, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
18
|
Li T, Chiang JYL. Bile Acid Signaling in Metabolic and Inflammatory Diseases and Drug Development. Pharmacol Rev 2024; 76:1221-1253. [PMID: 38977324 PMCID: PMC11549937 DOI: 10.1124/pharmrev.124.000978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024] Open
Abstract
Bile acids are the end products of cholesterol catabolism. Hepatic bile acid synthesis accounts for a major fraction of daily cholesterol turnover in humans. Biliary secretion of bile acids generates bile flow and facilitates biliary secretion of lipids, endogenous metabolites, and xenobiotics. In intestine, bile acids facilitate the digestion and absorption of dietary lipids and fat-soluble vitamins. Through activation of nuclear receptors and G protein-coupled receptors and interaction with gut microbiome, bile acids critically regulate host metabolism and innate and adaptive immunity and are involved in the pathogenesis of cholestasis, metabolic dysfunction-associated steatotic liver disease, alcohol-associated liver disease, type-2 diabetes, and inflammatory bowel diseases. Bile acids and their derivatives have been developed as potential therapeutic agents for treating chronic metabolic and inflammatory liver diseases and gastrointestinal disorders. SIGNIFICANCE STATEMENT: Bile acids facilitate biliary cholesterol solubilization and dietary lipid absorption, regulate host metabolism and immunity, and modulate gut microbiome. Targeting bile acid metabolism and signaling holds promise for treating metabolic and inflammatory diseases.
Collapse
Affiliation(s)
- Tiangang Li
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (T.L.); and Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (J.Y.L.C.)
| | - John Y L Chiang
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (T.L.); and Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (J.Y.L.C.)
| |
Collapse
|
19
|
Guo W, Zhong W, He L, Wei X, Hao L, Dong H, Yue R, Sun X, Yin X, Zhao J, Zhang X, Zhou Z. Reversal of hepatic accumulation of nordeoxycholic acid underlines the beneficial effects of cholestyramine on alcohol-associated liver disease in mice. Hepatol Commun 2024; 8:e0507. [PMID: 39082957 DOI: 10.1097/hc9.0000000000000507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/31/2024] [Indexed: 08/30/2024] Open
Abstract
BACKGROUND Dysregulation of bile acids (BAs) has been reported in alcohol-associated liver disease. However, the causal relationship between BA dyshomeostasis and alcohol-associated liver disease remains unclear. The study aimed to determine whether correcting BA perturbation protects against alcohol-associated liver disease and elucidate the underlying mechanism. METHODS BA sequestrant cholestyramine (CTM) was administered to C57BL/6J mice fed alcohol for 8 weeks to assess its protective effect and explore potential BA targets. The causal relationship between identified BA metabolite and cellular damage was examined in hepatocytes, with further manipulation of the detoxifying enzyme cytochrome p450 3A11. The toxicity of the BA metabolite was further validated in mice in an acute study. RESULTS We found that CTM effectively reversed hepatic BA accumulation, leading to a reversal of alcohol-induced hepatic inflammation, cell death, endoplasmic reticulum stress, and autophagy dysfunction. Specifically, nordeoxycholic acid (NorDCA), a hydrophobic BA metabolite, was identified as predominantly upregulated by alcohol and reduced by CTM. Hepatic cytochrome p450 3A11 expression was in parallel with NorDCA levels, being upregulated by alcohol and reduced by CTM. Moreover, CTM reversed alcohol-induced gut barrier disruption and endotoxin translocation. Mechanistically, NorDCA was implicated in causing endoplasmic reticulum stress, suppressing autophagy flux, and inducing cell injury, and such deleterious effects could be mitigated by cytochrome p450 3A11 overexpression. Acute NorDCA administration in mice significantly induced hepatic inflammation and injury along with disrupting gut barrier integrity, leading to subsequent endotoxemia. CONCLUSIONS Our study demonstrated that CTM treatment effectively reversed alcohol-induced liver injury in mice. The beneficial effects of BA sequestrant involve lowering toxic NorDCA levels. NorDCA not only worsens hepatic endoplasmic reticulum stress and inhibits autophagy but also mediates gut barrier disruption and systemic translocation of pathogen-associated molecular patterns in mice.
Collapse
Affiliation(s)
- Wei Guo
- Center for Translational Biomedical Research
| | - Wei Zhong
- Center for Translational Biomedical Research
- Department of Nutrition, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA
| | - Liqing He
- Department of Chemistry, University of Louisville, Louisville, Kentucky, USA
| | - Xiaoyuan Wei
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, USA
| | - Liuyi Hao
- Center for Translational Biomedical Research
| | - Haibo Dong
- Center for Translational Biomedical Research
| | - Ruichao Yue
- Center for Translational Biomedical Research
| | - Xinguo Sun
- Center for Translational Biomedical Research
| | - Xinmin Yin
- Department of Chemistry, University of Louisville, Louisville, Kentucky, USA
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, USA
| | - Xiang Zhang
- Department of Chemistry, University of Louisville, Louisville, Kentucky, USA
| | - Zhanxiang Zhou
- Center for Translational Biomedical Research
- Department of Nutrition, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA
| |
Collapse
|
20
|
Ali RO, Haddad JA, Quinn GM, Zhang GY, Townsend E, Scheuing L, Hill KL, Menkart M, Oringher JL, Umarova R, Rampertaap S, Rosenzweig SD, Koh C, Levy EB, Kleiner DE, Etzion O, Heller T. Taurine-conjugated bile acids and their link to hepatic S1PR2 play a significant role in hepatitis C-related liver disease. Hepatol Commun 2024; 8:e0478. [PMID: 38967598 PMCID: PMC11227361 DOI: 10.1097/hc9.0000000000000478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/26/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Bile acids mediate gut-liver cross-talk through bile acid receptors. Serum, hepatic, and microbial bile acid metabolism was evaluated in HCV-compensated chronic liver disease. METHODS Patients underwent liver biopsy; portal and peripheral blood were obtained before (HCVi), and 6 months after sustained virologic response (SVR), splenic blood was obtained only after SVR. The fecal microbiome and liver transcriptome were evaluated using RNA-Seq. Twenty-four bile acids were measured in serum, summed as free, taurine-conjugated bile acids (Tau-BAs), and glycine-conjugated bile acids. RESULTS Compared to SVR, HCVi showed elevated conjugated bile acids, predominantly Tau-BA, compounded in HCVi cirrhosis. In the liver, transcription of bile acids uptake, synthesis, and conjugation was decreased with increased hepatic spillover into systemic circulation in HCVi. There was no difference in the transcription of microbial bile acid metabolizing genes in HCVi. Despite an overall decrease, Tau-BA remained elevated in SVR cirrhosis, mainly in splenic circulation. Only conjugated bile acids, predominantly Tau-BA, correlated with serum proinflammatory markers and hepatic proinflammatory pathways, including NLRP3 and NFKB. Among hepatic bile acid receptors, disease-associated conjugated bile acids showed the strongest association with hepatic spingosine-1-phosphate receptor 2 (S1PR2). CONCLUSIONS Enhanced expression of hepatic S1PR2 in HCVi and HCVi-cirrhosis and strong associations of S1PR2 with Tau-BAs suggest pathological relevance of Tau-BA-hepatic S1PR2 signaling in chronic liver disease. These findings have therapeutic implications in chronic liver diseases.
Collapse
Affiliation(s)
- Rabab O. Ali
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - James A. Haddad
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Gabriella M. Quinn
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Grace Y. Zhang
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Elizabeth Townsend
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Lisa Scheuing
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kareen L. Hill
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Matthew Menkart
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jenna L. Oringher
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Regina Umarova
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Shakuntala Rampertaap
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Sergio D. Rosenzweig
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Christopher Koh
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Elliot B. Levy
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - David E. Kleiner
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ohad Etzion
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Theo Heller
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
21
|
Parthasarathy G, Malhi H, Bajaj JS. Therapeutic manipulation of the microbiome in liver disease. Hepatology 2024:01515467-990000000-00932. [PMID: 38922826 DOI: 10.1097/hep.0000000000000987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Myriad associations between the microbiome and various facets of liver physiology and pathology have been described in the literature. Building on descriptive and correlative sequencing studies, metagenomic studies are expanding our collective understanding of the functional and mechanistic role of the microbiome as mediators of the gut-liver axis. Based on these mechanisms, the functional activity of the microbiome represents an attractive, tractable, and precision medicine therapeutic target in several liver diseases. Indeed, several therapeutics have been used in liver disease even before their description as a microbiome-dependent approach. To bring successful microbiome-targeted and microbiome-inspired therapies to the clinic, a comprehensive appreciation of the different approaches to influence, collaborate with, or engineer the gut microbiome to coopt a disease-relevant function of interest in the right patient is key. Herein, we describe the various levels at which the microbiome can be targeted-from prebiotics, probiotics, synbiotics, and antibiotics to microbiome reconstitution and precision microbiome engineering. Assimilating data from preclinical animal models, human studies as well as clinical trials, we describe the potential for and rationale behind studying such therapies across several liver diseases, including metabolic dysfunction-associated steatotic liver disease, alcohol-associated liver disease, cirrhosis, HE as well as liver cancer. Lastly, we discuss lessons learned from previous attempts at developing such therapies, the regulatory framework that needs to be navigated, and the challenges that remain.
Collapse
Affiliation(s)
| | - Harmeet Malhi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jasmohan S Bajaj
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Central Virginia Veterans Healthcare System, Richmond, Virginia, USA
| |
Collapse
|
22
|
Ogino N, Leite MF, Guerra MT, Kruglov E, Asashima H, Hafler DA, Ito T, Pereira JP, Peiffer BJ, Sun Z, Ehrlich BE, Nathanson MH. Neutrophils insert elastase into hepatocytes to regulate calcium signaling in alcohol-associated hepatitis. J Clin Invest 2024; 134:e171691. [PMID: 38916955 PMCID: PMC11324315 DOI: 10.1172/jci171691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/20/2024] [Indexed: 06/27/2024] Open
Abstract
Neutrophil infiltration occurs in a variety of liver diseases, but it is unclear how neutrophils and hepatocytes interact. Neutrophils generally use granule proteases to digest phagocytosed bacteria and foreign substances or neutralize them in neutrophil extracellular traps. In certain pathological states, granule proteases play a destructive role against the host as well. More recently, nondestructive actions of neutrophil granule proteins have been reported, such as modulation of tissue remodeling and metabolism. Here, we report a completely different mechanism by which neutrophils act nondestructively, by inserting granules directly into hepatocytes. Specifically, elastase-containing granules were transferred to hepatocytes where elastase selectively degraded intracellular calcium channels to reduce cell proliferation without cytotoxicity. In response, hepatocytes increased expression of Serpin E2 and A3, which inhibited elastase activity. Elastase insertion was seen in patient specimens of alcohol-associated hepatitis, and the relationship between elastase-mediated ITPR2 degradation and reduced cell proliferation was confirmed in mouse models. Moreover, neutrophils from patients with alcohol-associated hepatitis were more prone to degranulation and more potent in reducing calcium channel expression than neutrophils from healthy individuals. This nondestructive and reversible action on hepatocytes defines a previously unrecognized role for neutrophils in the transient regulation of epithelial calcium signaling mechanisms.
Collapse
Affiliation(s)
- Noriyoshi Ogino
- Yale Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - M. Fatima Leite
- Yale Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA
- INCT - NanoBiofar – Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Mateus T. Guerra
- Yale Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Emma Kruglov
- Yale Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | - Takeshi Ito
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - João P. Pereira
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Brandon J. Peiffer
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zhaoli Sun
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Barbara E. Ehrlich
- Yale Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Pathology, New York University School of Medicine, New York, New York, USA
| | - Michael H. Nathanson
- Yale Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
23
|
Simbrunner B, Hofer BS, Schwabl P, Zinober K, Petrenko O, Fuchs C, Semmler G, Marculescu R, Mandorfer M, Datz C, Trauner M, Reiberger T. FXR-FGF19 signaling in the gut-liver axis is dysregulated in patients with cirrhosis and correlates with impaired intestinal defence. Hepatol Int 2024; 18:929-942. [PMID: 38332428 PMCID: PMC11126514 DOI: 10.1007/s12072-023-10636-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/22/2023] [Indexed: 02/10/2024]
Abstract
BACKGROUND AND AIMS Experimental studies linked dysfunctional Farnesoid X receptor (FXR)-fibroblast growth factor 19 (FGF19) signaling to liver disease. This study investigated key intersections of the FXR-FGF19 pathway along the gut-liver axis and their link to disease severity in patients with cirrhosis. METHODS Patients with cirrhosis undergoing hepatic venous pressure gradient measurement (cohort-I n = 107, including n = 53 with concomitant liver biopsy; n = 5 healthy controls) or colonoscopy with ileum biopsy (cohort-II n = 37; n = 6 controls) were included. Hepatic and intestinal gene expression reflecting FXR activation and intestinal barrier integrity was assessed. Systemic bile acid (BA) and FGF19 levels were measured. RESULTS Systemic BA and FGF19 levels correlated significantly (r = 0.461; p < 0.001) and increased with cirrhosis severity. Hepatic SHP expression decreased in patients with cirrhosis (vs. controls; p < 0.001), indicating reduced FXR activation in the liver. Systemic FGF19 (r = -0.512, p < 0.001) and BA (r = -0.487, p < 0.001) levels correlated negatively with hepatic CYP7A1, but not SHP or CYP8B1 expression, suggesting impaired feedback signaling in the liver. In the ileum, expression of FXR, SHP and FGF19 decreased in patients with cirrhosis, and interestingly, intestinal FGF19 expression was not linked to systemic FGF19 levels. Intestinal zonula occludens-1, occludin, and alpha-5-defensin expression in the ileum correlated with SHP and decreased in patients with decompensated cirrhosis as compared to controls. CONCLUSIONS FXR-FGF19 signaling is dysregulated at essential molecular intersections along the gut-liver axis in patients with cirrhosis. Decreased FXR activation in the ileum mucosa was linked to reduced expression of intestinal barrier proteins. These human data call for further mechanistic research on interventions targeting the FXR-FGF19 pathway in patients with cirrhosis. CLINICAL TRIAL NUMBER NCT03267615.
Collapse
Affiliation(s)
- Benedikt Simbrunner
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Hemodynamic Laboratory, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences, Vienna, Austria
| | - Benedikt S Hofer
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Hemodynamic Laboratory, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences, Vienna, Austria
| | - Philipp Schwabl
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Hemodynamic Laboratory, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences, Vienna, Austria
| | - Kerstin Zinober
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Hemodynamic Laboratory, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria
| | - Oleksandr Petrenko
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Hemodynamic Laboratory, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences, Vienna, Austria
| | - Claudia Fuchs
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Georg Semmler
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Hemodynamic Laboratory, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Rodrig Marculescu
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Mattias Mandorfer
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Hemodynamic Laboratory, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Christian Datz
- Department of Internal Medicine, General Hospital Oberndorf, Teaching Hospital, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria.
- Vienna Hepatic Hemodynamic Laboratory, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria.
- Christian Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria.
- CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences, Vienna, Austria.
| |
Collapse
|
24
|
Koelfat KV, Schaap FG, van Mierlo KM, Leníček M, Sauer I, van der Kroft G, Röth AA, Bednarsch J, Amygdalos I, Lurje G, Dewulf MJ, Lang SA, Neumann UP, Olde Damink SW. Partial liver resection alters the bile salt-FGF19 axis in patients with perihilar cholangiocarcinoma: Implications for liver regeneration. Hepatol Commun 2024; 8:e0445. [PMID: 38836805 PMCID: PMC11155560 DOI: 10.1097/hc9.0000000000000445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/22/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Extended liver resection is the only treatment option for perihilar cholangiocarcinoma (pCCA). Bile salts and the gut hormone FGF19, both promoters of liver regeneration (LR), have not been investigated in patients undergoing resection for pCCA. We aimed to evaluate the bile salt-FGF19 axis perioperatively in pCCA and study its effects on LR. METHODS Plasma bile salts, FGF19, and C4 (bile salt synthesis marker) were assessed in patients with pCCA and controls (colorectal liver metastases), before and after resection on postoperative days (PODs) 1, 3, and 7. Hepatic bile salts were determined in intraoperative liver biopsies. RESULTS Partial liver resection in pCCA elicited a sharp decline in bile salt and FGF19 plasma levels on POD 1 and remained low thereafter, unlike in controls, where bile salts rose gradually. Preoperatively, suppressed C4 in pCCA normalized postoperatively to levels similar to those in the controls. The remnant liver volume and postoperative bilirubin levels were negatively associated with postoperative C4 levels. Furthermore, patients who developed postoperative liver failure had nearly undetectable C4 levels on POD 7. Hepatic bile salts strongly predicted hyperbilirubinemia on POD 7 in both groups. Finally, postoperative bile salt levels on day 7 were an independent predictor of LR. CONCLUSIONS Partial liver resection alters the bile salt-FGF19 axis, but its derailment is unrelated to LR in pCCA. Postoperative monitoring of circulating bile salts and their production may be useful for monitoring LR.
Collapse
Affiliation(s)
- Kiran V.K. Koelfat
- Department of General, Visceral and Transplant Surgery, University Hospital RWTH Aachen, Aachen, Germany
- Department of Surgery, Maastricht University Medical Centre & NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Frank G. Schaap
- Department of General, Visceral and Transplant Surgery, University Hospital RWTH Aachen, Aachen, Germany
- Department of Surgery, Maastricht University Medical Centre & NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Kim M.C. van Mierlo
- Department of Surgery, Maastricht University Medical Centre & NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Martin Leníček
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, General University Hospital in Prague, Charles University, Prague, Czech Republic
| | - Ilka Sauer
- Department of General, Visceral and Transplant Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Gregory van der Kroft
- Department of General, Visceral and Transplant Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Anjali A.J. Röth
- Department of General, Visceral and Transplant Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Jan Bednarsch
- Department of General, Visceral and Transplant Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Iakovos Amygdalos
- Department of General, Visceral and Transplant Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Georg Lurje
- Department of General, Visceral and Transplant Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Maxime J.L. Dewulf
- Department of Surgery, Maastricht University Medical Centre & NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Sven A. Lang
- Department of General, Visceral and Transplant Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Ulf P. Neumann
- Department of General, Visceral and Transplant Surgery, University Hospital RWTH Aachen, Aachen, Germany
- Department of Surgery, Maastricht University Medical Centre & NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Steven W.M. Olde Damink
- Department of General, Visceral and Transplant Surgery, University Hospital RWTH Aachen, Aachen, Germany
- Department of Surgery, Maastricht University Medical Centre & NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
25
|
Dicks LMT. Gut Bacteria Provide Genetic and Molecular Reporter Systems to Identify Specific Diseases. Int J Mol Sci 2024; 25:4431. [PMID: 38674014 PMCID: PMC11050607 DOI: 10.3390/ijms25084431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
With genetic information gained from next-generation sequencing (NGS) and genome-wide association studies (GWAS), it is now possible to select for genes that encode reporter molecules that may be used to detect abnormalities such as alcohol-related liver disease (ARLD), cancer, cognitive impairment, multiple sclerosis (MS), diabesity, and ischemic stroke (IS). This, however, requires a thorough understanding of the gut-brain axis (GBA), the effect diets have on the selection of gut microbiota, conditions that influence the expression of microbial genes, and human physiology. Bacterial metabolites such as short-chain fatty acids (SCFAs) play a major role in gut homeostasis, maintain intestinal epithelial cells (IECs), and regulate the immune system, neurological, and endocrine functions. Changes in butyrate levels may serve as an early warning of colon cancer. Other cancer-reporting molecules are colibactin, a genotoxin produced by polyketide synthetase-positive Escherichia coli strains, and spermine oxidase (SMO). Increased butyrate levels are also associated with inflammation and impaired cognition. Dysbiosis may lead to increased production of oxidized low-density lipoproteins (OX-LDLs), known to restrict blood vessels and cause hypertension. Sudden changes in SCFA levels may also serve as a warning of IS. Early signs of ARLD may be detected by an increase in regenerating islet-derived 3 gamma (REG3G), which is associated with changes in the secretion of mucin-2 (Muc2). Pro-inflammatory molecules such as cytokines, interferons, and TNF may serve as early reporters of MS. Other examples of microbial enzymes and metabolites that may be used as reporters in the early detection of life-threatening diseases are reviewed.
Collapse
Affiliation(s)
- Leon M T Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
26
|
Kennedy L. Fibroblast Growth Factor 19 in Alcohol-Associated Liver Disease: Bile Acids and Dysbiosis and Inflammation, Oh My! Cell Mol Gastroenterol Hepatol 2024; 18:159-160. [PMID: 38636549 PMCID: PMC11282410 DOI: 10.1016/j.jcmgh.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/20/2024]
Affiliation(s)
- Lindsey Kennedy
- Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana; Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
27
|
Jiang Q, Wang N, Lu S, Xiong J, Yuan Y, Liu J, Chen S. Targeting hepatic ceruloplasmin mitigates nonalcoholic steatohepatitis by modulating bile acid metabolism. J Mol Cell Biol 2024; 15:mjad060. [PMID: 37771074 PMCID: PMC10993722 DOI: 10.1093/jmcb/mjad060] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 09/30/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a condition that progresses from nonalcoholic fatty liver disease (NAFLD) and is characterized by hepatic fat accumulation, inflammation, and fibrosis. It has the potential to develop into cirrhosis and liver cancer, and currently no effective pharmacological treatment is available. In this study, we investigate the therapeutic potential of targeting ceruloplasmin (Cp), a copper-containing protein predominantly secreted by hepatocytes, for treating NASH. Our result show that hepatic Cp is remarkedly upregulated in individuals with NASH and the mouse NASH model. Hepatocyte-specific Cp ablation effectively attenuates the onset of dietary-induced NASH by decreasing lipid accumulation, curbing inflammation, mitigating fibrosis, and ameliorating liver damage. By employing transcriptomics and metabolomics approaches, we have discovered that hepatic deletion of Cp brings about remarkable restoration of bile acid (BA) metabolism during NASH. Hepatic deletion of Cp effectively remodels BA metabolism by upregulating Cyp7a1 and Cyp8b1, which subsequently leads to enhanced BA synthesis and notable alterations in BA profiles. In conclusion, our studies elucidate the crucial involvement of Cp in NASH, highlighting its significance as a promising therapeutic target for the treatment of this disease.
Collapse
Affiliation(s)
- Quanxin Jiang
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Ning Wang
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Sijia Lu
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jie Xiong
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yanmei Yuan
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Junli Liu
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Suzhen Chen
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| |
Collapse
|
28
|
Li T, Hasan MN, Gu L. Bile acids regulation of cellular stress responses in liver physiology and diseases. EGASTROENTEROLOGY 2024; 2:e100074. [PMID: 39027418 PMCID: PMC11257078 DOI: 10.1136/egastro-2024-100074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Bile acids are physiological detergents and signalling molecules that are critically implicated in liver health and diseases. Dysregulation of bile acid homeostasis alters cell function and causes cell injury in chronic liver diseases. Therapeutic agents targeting bile acid synthesis, transport and signalling hold great potential for treatment of chronic liver diseases. The broad cellular and physiological impacts of pharmacological manipulations of bile acid metabolism are still incompletely understood. Recent research has discovered new links of bile acid signalling to the regulation of autophagy and lysosome biology, redox homeostasis and endoplasmic reticulum stress. These are well-conserved mechanisms that allow cells to adapt to nutrient and organelle stresses and play critical roles in maintaining cellular integrity and promoting survival. However, dysregulation of these cellular pathways is often observed in chronic liver diseases, which exacerbates cellular dysfunction to contribute to disease pathogenesis. Therefore, identification of these novel links has significantly advanced our knowledge of bile acid biology and physiology, which is needed to understand the contributions of bile acid dysregulation in disease pathogenesis, establish bile acids as diagnostic markers and develop bile acid-based pharmacological interventions. In this review, we will first discuss the roles of bile acid dysregulation in the pathogenesis of chronic liver diseases, and then discuss the recent findings on the crosstalk of bile acid signalling and cellular stress responses. Future investigations are needed to better define the roles of these crosstalks in regulating cellular function and disease processes.
Collapse
Affiliation(s)
- Tiangang Li
- Department of Biochemistry and Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Mohammad Nazmul Hasan
- Department of Biochemistry and Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Lijie Gu
- Department of Biochemistry and Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
29
|
Kashlan OB, Wang XP, Sheng S, Kleyman TR. Epithelial Na + Channels Function as Extracellular Sensors. Compr Physiol 2024; 14:1-41. [PMID: 39109974 PMCID: PMC11309579 DOI: 10.1002/cphy.c230015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The epithelial Na + channel (ENaC) resides on the apical surfaces of specific epithelia in vertebrates and plays a critical role in extracellular fluid homeostasis. Evidence that ENaC senses the external environment emerged well before the molecular identity of the channel was reported three decades ago. This article discusses progress toward elucidating the mechanisms through which specific external factors regulate ENaC function, highlighting insights gained from structural studies of ENaC and related family members. It also reviews our understanding of the role of ENaC regulation by the extracellular environment in physiology and disease. After familiarizing the reader with the channel's physiological roles and structure, we describe the central role protein allostery plays in ENaC's sensitivity to the external environment. We then discuss each of the extracellular factors that directly regulate the channel: proteases, cations and anions, shear stress, and other regulators specific to particular extracellular compartments. For each regulator, we discuss the initial observations that led to discovery, studies investigating molecular mechanism, and the physiological and pathophysiological implications of regulation. © 2024 American Physiological Society. Compr Physiol 14:5407-5447, 2024.
Collapse
Affiliation(s)
- Ossama B. Kashlan
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Computational and Systems Biology, University
of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xue-Ping Wang
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shaohu Sheng
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Thomas R. Kleyman
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Cell Biology, University of Pittsburgh,
Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University
of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
30
|
Kong F, Dong R, Chen G, Sun S, Yang Y, Jiang J, Meng L, Chen H, Zhu J, Zheng S. Progress in Biomarkers Related to Biliary Atresia. J Clin Transl Hepatol 2024; 12:305-315. [PMID: 38426193 PMCID: PMC10899875 DOI: 10.14218/jcth.2023.00260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/12/2023] [Accepted: 01/02/2024] [Indexed: 03/02/2024] Open
Abstract
Biliary atresia (BA) is a congenital cholestatic disease that can seriously damage children's liver function. It is one of the main reasons for liver transplantation in children. Early diagnosis of BA is crucial to the prognosis of patients, but there is still a lack of reliable non-invasive diagnostic methods. Additionally, as some children are in urgent need of liver transplantation, evaluating the stage of liver fibrosis and postoperative native liver survival in children with BA using a straightforward, efficient, and less traumatic method is a major focus of doctors. In recent years, an increasing number of BA-related biomarkers have been identified and have shown great potential in the following three aspects of clinical practice: diagnosis, evaluation of the stage of liver fibrosis, and prediction of native liver survival. This review focuses on the pathophysiological function and clinical application of three novel BA-related biomarkers, namely MMP-7, FGF-19, and M2BPGi. Furthermore, progress in well-known biomarkers of BA such as gamma-glutamyltransferase, circulating cytokines, and other potential biomarkers is discussed, aiming to provide a reference for clinical practice.
Collapse
Affiliation(s)
- Fanyang Kong
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, and Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Rui Dong
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, and Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Gong Chen
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, and Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Song Sun
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, and Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Yifan Yang
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, and Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Jingying Jiang
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, and Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Lingdu Meng
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, and Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Huifen Chen
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, and Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Jiajie Zhu
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, and Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Shan Zheng
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, and Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| |
Collapse
|
31
|
Wang J, Wang X, Peng H, Dong Z, Liangpunsakul S, Zuo L, Wang H. Platelets in Alcohol-Associated Liver Disease: Interaction With Neutrophils. Cell Mol Gastroenterol Hepatol 2024; 18:41-52. [PMID: 38461963 PMCID: PMC11127035 DOI: 10.1016/j.jcmgh.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/12/2024]
Abstract
Alcohol-associated liver disease (ALD) is a major contributor to liver-related mortality globally. An increasing body of evidence underscores the pivotal role of platelets throughout the spectrum of liver injury and recovery, offering unique insights into liver homeostasis and pathobiology. Alcoholic-associated steatohepatitis is characterized by the infiltration of hepatic neutrophils. Recent studies have highlighted the extensive distance neutrophils travel through sinusoids to reach the liver injury site, relying on a platelet-paved endothelium for efficient crawling. The adherence of platelets to neutrophils is crucial for accurate migration from circulation to the inflammatory site. A gradual decline in platelet levels leads to diminished neutrophil recruitment. Platelets exhibit the ability to activate neutrophils. Platelet activation is heightened upon the release of platelet granule contents, which synergistically activate neutrophils through their respective receptors. The sequence culminates in the formation of platelet-neutrophil complexes and the release of neutrophil extracellular traps intensifies liver damage, fosters inflammatory immune responses, and triggers hepatotoxic processes. Neutrophil infiltration is a hallmark of alcohol-associated steatohepatitis, and the roles of neutrophils in ALD pathogenesis have been studied extensively, however, the involvement of platelets in ALD has received little attention. The current review consolidates recent findings on the intricate and diverse roles of platelets and neutrophils in liver pathophysiology and in ALD. Potential therapeutic strategies are highlighted, focusing on targeting platelet-neutrophil interactions and activation in ALD. The anticipation is that innovative methods for manipulating platelet and neutrophil functions will open promising avenues for future ALD therapy.
Collapse
Affiliation(s)
- Juan Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, Anhui, China
| | - Xianda Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, Anhui, China
| | - Haodong Peng
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China; The First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Zijian Dong
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, Anhui, China
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Li Zuo
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China; Laboratory of Molecular Biology, Department of Biochemistry, Anhui Medical University, Hefei, Anhui, China.
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
32
|
Ferrell JM, Dilts M, Pokhrel S, Stahl Z, Boehme S, Wang X, Chiang JYL. Fibroblast Growth Factor 19 Alters Bile Acids to Induce Dysbiosis in Mice With Alcohol-Induced Liver Disease. Cell Mol Gastroenterol Hepatol 2024; 18:71-87. [PMID: 38417701 PMCID: PMC11127034 DOI: 10.1016/j.jcmgh.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/01/2024]
Abstract
BACKGROUND & AIMS Excessive alcohol consumption can lead to alcohol-associated liver disease, a spectrum of conditions ranging from steatosis to fibrosis and cirrhosis. Bile acids regulate metabolic pathways by binding to cellular and nuclear receptors, and they also interact with the gut microbiome to control microbial overgrowth. Fibroblast growth factor 19 (FGF-19) is an ileum-derived hormone induced and released in response to bile acid activation of the nuclear receptor farnesoid X receptor. FGF-19 signaling is dysregulated with ethanol consumption and is increased in patients with alcoholic hepatitis. Here, we examined the effects of FGF-19 in a mouse model of chronic + binge ethanol feeding. METHODS After injection of adeno-associated virus-green fluorescent protein or AAV-FGF-19, female C57BL/6J mice were pair-fed a Lieber DeCarli liquid diet (5% v/v) or control diet for 10 days and were given a bolus gavage of 5% ethanol or maltose control to represent a binge drinking episode. Tissues were collected for analysis 9 hours after the binge. RESULTS Chronic + binge ethanol feeding induced steatosis regardless of FGF-19 expression. Interestingly, FGF-19 and ethanol resulted in significantly increased liver inflammation, as measured by Il6, Tgfβ, and Tnfα, compared with ethanol alone. Both ethanol and FGF-19 decreased bile acid synthesis, and FGF-19 significantly reduced secondary bile acids, leading to overgrowth of specific pathogenic bacteria including Enterococcus faecalis, Escherichia coli, and Clostridium perfringens. CONCLUSIONS Dysregulation of FGF-19 and consequent changes in bile acid synthesis and composition during alcohol consumption may be a contributing factor to alcohol-induced liver disease and dysbiosis.
Collapse
Affiliation(s)
- Jessica M Ferrell
- Department of Integrated Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio.
| | - Matthew Dilts
- Department of Integrated Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio
| | - Sabita Pokhrel
- Department of Integrated Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio
| | - Zachary Stahl
- Department of Integrated Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio
| | - Shannon Boehme
- Department of Integrated Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio
| | - Xinwen Wang
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown Ohio
| | - John Y L Chiang
- Department of Integrated Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio
| |
Collapse
|
33
|
Kronborg TM, Gao Q, Trošt K, Ytting H, O’Connell MB, Werge MP, Thing M, Gluud LL, Hamberg O, Møller S, Moritz T, Bendtsen F, Kimer N. Low sphingolipid levels predict poor survival in patients with alcohol-related liver disease. JHEP Rep 2024; 6:100953. [PMID: 38283758 PMCID: PMC10820332 DOI: 10.1016/j.jhepr.2023.100953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/08/2023] [Accepted: 10/20/2023] [Indexed: 01/30/2024] Open
Abstract
Background & Aims Alcohol-related hepatitis (AH) and alcohol-related cirrhosis are grave conditions with poor prognoses. Altered hepatic lipid metabolism can impact disease development and varies between different alcohol-related liver diseases. Therefore, we aimed to investigate lipidomics and metabolomics at various stages of alcohol-related liver diseases and their correlation with survival. Methods Patients with newly diagnosed alcohol-related cirrhosis, who currently used alcohol (ALC-A), stable outpatients with decompensated alcohol-related cirrhosis with at least 8 weeks of alcohol abstinence (ALC), and patients with AH, were compared with each other and with healthy controls (HC). Circulating lipids and metabolites were analysed using HPLC and mass spectrometry. Results Forty patients with ALC, 95 with ALC-A, 30 with AH, and 42 HC provided plasma. Lipid levels changed according to disease severity, with generally lower levels in AH and cirrhosis than in the HC group; this was most pronounced for AH, followed by ALC-A. Nine out of 10 free fatty acids differed between cirrhosis groups by relative increases of 0.12-0.66 in ALC compared with the ALC-A group (p <0.0005). For metabolomics, total bile acids increased by 19.7, 31.3, and 80.4 in the ALC, ALC-A, and AH groups, respectively, compared with HC (all p <0.0001). Low sphingolipid ([d42:1] and [d41:1]) levels could not predict 180-day mortality (AUC = 0.73, p = 0.95 and AUC = 0.73, p = 0.95) more accurately than the model for end-stage liver disease score (AUC = 0.71), but did predict 90-day mortality (AUC d42:1 = 0.922, AUC d41:1 = 0.893; pd42:1 = 0.005, pd41:1 = 0.007) more accurately than the MELD score AUCMELD = 0.70, pMELD = 0.19). Conclusions Alcohol-related severe liver disease is characterised by low lipid levels progressing with severity of liver disease, especially low sphingomyelins, which also associate to poor prognoses. Impact and implications Lipidomics has the potential to diagnose and risk stratify patients with liver diseases. Lipidomics differed between patients with alcohol-related hepatitis and alcohol-related cirrhosis with and without recent alcohol use. Furthermore, lipidomics could predict short-term mortality and might be suitable as a prognostic tool in the future. Clinical Trials Registration Scientific Ethics Committee of the Capital Region of Denmark, journal no. H-21013476.
Collapse
Affiliation(s)
| | - Qian Gao
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kajetan Trošt
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henriette Ytting
- Gastro Unit, Medical Division, University Hospital Hvidovre, Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Mira Thing
- Gastro Unit, Medical Division, University Hospital Hvidovre, Hvidovre, Denmark
| | - Lise Lotte Gluud
- Gastro Unit, Medical Division, University Hospital Hvidovre, Hvidovre, Denmark
| | - Ole Hamberg
- Medical Department, University Hospital of Zealand, Koege, Denmark
| | - Søren Møller
- Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Centre for Functional and Diagnostic Imaging and Research, Department of Clinical Physiology and Nuclear Medicine, Hvidovre Hospital, Hvidovre, Denmark
| | - Thomas Moritz
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Flemming Bendtsen
- Gastro Unit, Medical Division, University Hospital Hvidovre, Hvidovre, Denmark
| | - Nina Kimer
- Gastro Unit, Medical Division, University Hospital Hvidovre, Hvidovre, Denmark
| |
Collapse
|
34
|
Sosnowski K, Przybyłkowski A. Ethanol-induced changes to the gut microbiome compromise the intestinal homeostasis: a review. Gut Microbes 2024; 16:2393272. [PMID: 39224006 PMCID: PMC11376419 DOI: 10.1080/19490976.2024.2393272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
The intestine is the largest organ in terms of surface area in the human body. It is responsible not only for absorbing nutrients but also for protection against the external world. The gut microbiota is essential in maintaining a properly functioning intestinal barrier, primarily through producing its metabolites: short-chain fatty acids, bile acids, and tryptophan derivatives. Ethanol overconsumption poses a significant threat to intestinal health. Not only does it damage the intestinal epithelium, but, maybe foremostly, it changes the gut microbiome. Those ethanol-driven changes shift its metabolome, depriving the host of the protective effect the physiological gut microbiota has. This literature review discusses the impact of ethanol consumption on the gut, the gut microbiota, and its metabolome, providing a comprehensive overview of the mechanisms through which ethanol disrupts intestinal homeostasis and discussing potential avenues for new therapeutic intervention.
Collapse
Affiliation(s)
- Konrad Sosnowski
- Department of Gastroenterology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Adam Przybyłkowski
- Department of Gastroenterology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
35
|
Esparteiro D, Fouquet G, Courtois A, Jedraszak G, Marticho L, Gourdel M, Billon-Crossouard S, Croyal M, Naassila M, Nguyen-Khac E, Marcq I. Serum bile acids profiles are altered without change of the gut microbiota composition following a seven-day prednisolone therapy in severe alcoholic hepatitis. Gut Microbes 2024; 16:2382767. [PMID: 39078043 PMCID: PMC11290774 DOI: 10.1080/19490976.2024.2382767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/05/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024] Open
Abstract
Severe Alcoholic Hepatitis (sAH) is an acute form of liver injury caused by chronic and heavy alcohol drinking. A one-month corticosteroids course is the only sAH reference treatment, and its interactions with the Gut Microbiota (GM), which is a key contributor to liver injury, remain unknown. To evaluate the evolution of the GM in sAH patients, we retrospectively investigated the composition of the GM of 27 sAH patients at the Amiens University Hospital before (D0) and after (D7) a 7-day corticotherapy course using fecal metagenomics sequencing. We also quantified fecal Short-Chain Fatty Acids (SCFA) and fecal and serum Bile Acids (BA), as well as serum Lipopolysaccharide-Binding Protein (LBP). Overall, the community and taxonomical analyses did not reveal any GM evolution between D0 and D7, nor did the SCFA profiles analysis. However, in serum but not fecal samples, the ratio of glyco-conjugated to tauro-conjugated BA was significantly reduced at D7, independently of the response to treatment, while two BA were enriched in non-responder patients. LBP concentration significantly diminished between D0 and D7, which may indicate an improvement of the gut barrier. The stability of the GM of sAH is interesting in the perspective of new treatments based on GM modulation.
Collapse
Affiliation(s)
- Damien Esparteiro
- GRAP INSERM U1247, Universite de Picardie Jules Verne, Amiens, France
| | - Grégory Fouquet
- GRAP INSERM U1247, Universite de Picardie Jules Verne, Amiens, France
| | - Anoïsia Courtois
- GRAP INSERM U1247, Universite de Picardie Jules Verne, Amiens, France
| | | | - Léa Marticho
- CHU d’Amiens, Service d’Hépato-Gastro-Entérologie, Amiens, France
| | - Mathilde Gourdel
- CHU Nantes, CNRS, INSERM, BioCore, US16, SFR Bonamy, Nantes Université, Nantes, France
| | | | - Mikaël Croyal
- CHU Nantes, CNRS, INSERM, BioCore, US16, SFR Bonamy, Nantes Université, Nantes, France
- CRNH-Ouest Mass Spectrometry Core Facility, Nantes, France
- CNRS, INSERM, l’Institut du Thorax, Nantes Université, Nantes, France
| | - Mickaël Naassila
- GRAP INSERM U1247, Universite de Picardie Jules Verne, Amiens, France
| | - Eric Nguyen-Khac
- GRAP INSERM U1247, Universite de Picardie Jules Verne, Amiens, France
- CHU d’Amiens, Service d’Hépato-Gastro-Entérologie, Amiens, France
| | - Ingrid Marcq
- GRAP INSERM U1247, Universite de Picardie Jules Verne, Amiens, France
| |
Collapse
|
36
|
Nguyen TTP, Nguyen PL, Park SH, Jung CH, Jeon TI. Hydrogen Sulfide and Liver Health: Insights into Liver Diseases. Antioxid Redox Signal 2024; 40:122-144. [PMID: 37917113 DOI: 10.1089/ars.2023.0404] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Significance: Hydrogen sulfide (H2S) is a recently recognized gasotransmitter involved in physiological and pathological conditions in mammals. It protects organs from oxidative stress, inflammation, hypertension, and cell death. With abundant expression of H2S-production enzymes, the liver is closely linked to H2S signaling. Recent Advances: Hepatic H2S comes from various sources, including gut microbiota, exogenous sulfur salts, and endogenous production. Recent studies highlight the importance of hepatic H2S in liver diseases such as nonalcoholic fatty liver disease (NAFLD), liver injury, and cancer, particularly at advanced stages. Endogenous H2S production deficiency is associated with severe liver disease, while exogenous H2S donors protect against liver dysfunction. Critical Issues: However, the roles of H2S in NAFLD, liver injury, and liver cancer are still debated, and its effects depend on donor type, dosage, treatment duration, and cell type, suggesting a multifaceted role. This review aimed to critically evaluate H2S production, metabolism, mode of action, and roles in liver function and disease. Future Direction: Understanding H2S's precise roles and mechanisms in liver health will advance potential therapeutic applications in preclinical and clinical research. Targeting H2S-producing enzymes and exogenous H2S sources, alone or in combination with other drugs, could be explored. Quantifying endogenous H2S levels may aid in diagnosing and managing liver diseases. Antioxid. Redox Signal. 40, 122-144.
Collapse
Affiliation(s)
- Thuy T P Nguyen
- Department of Animal Science, College of Agriculture and Life Science, Chonnam National University, Gwangju, Republic of Korea
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Phuc L Nguyen
- Department of Animal Science, College of Agriculture and Life Science, Chonnam National University, Gwangju, Republic of Korea
| | - So-Hyun Park
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Republic of Korea
| | - Chang Hwa Jung
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Republic of Korea
| | - Tae-Il Jeon
- Department of Animal Science, College of Agriculture and Life Science, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
37
|
Wang A, Guan B, Zhang H, Xu H. Danger-associated metabolites trigger metaflammation: A crowbar in cardiometabolic diseases. Pharmacol Res 2023; 198:106983. [PMID: 37931790 DOI: 10.1016/j.phrs.2023.106983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/12/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
Cardiometabolic diseases (CMDs) are characterized by a series of metabolic disorders and chronic low-grade inflammation. CMDs contribute to a high burden of mortality and morbidity worldwide. Host-microbial metabolic regulation that triggers metaflammation is an emerging field of study that promotes a new perspective for perceiving cardiovascular risks. The term metaflammation denotes the entire cascade of immune responses activated by a new class of metabolites known as "danger-associated metabolites" (DAMs). It is being proposed by the present review for the first time. We summarize current studies covering bench to bedside aspects of DAMs to better understand CMDs in the context of DAMs. We have focused on the involvement of DAMs in the pathophysiological development of CMDs, including the disruption of immune homeostasis and chronic inflammation-triggered damage leading to CMD-related adverse events, as well as emerging therapeutic approaches for targeting DAM metabolism in CMDs.
Collapse
Affiliation(s)
- Anlu Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; National Clinical Research Center for Chinese Medicine Cardiology, Beijing 100091, China
| | - Baoyi Guan
- Department of Internal Medicine-Cardiovascular, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - He Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; National Clinical Research Center for Chinese Medicine Cardiology, Beijing 100091, China
| | - Hao Xu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; National Clinical Research Center for Chinese Medicine Cardiology, Beijing 100091, China.
| |
Collapse
|
38
|
Hsu CL, Schnabl B. The gut-liver axis and gut microbiota in health and liver disease. Nat Rev Microbiol 2023; 21:719-733. [PMID: 37316582 PMCID: PMC10794111 DOI: 10.1038/s41579-023-00904-3] [Citation(s) in RCA: 204] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2023] [Indexed: 06/16/2023]
Abstract
The trillions of microorganisms in the human intestine are important regulators of health, and disruptions in the gut microbial communities can cause disease. The gut, liver and immune system have a symbiotic relationship with these microorganisms. Environmental factors, such as high-fat diets and alcohol consumption, can disrupt and alter microbial communities. This dysbiosis can lead to dysfunction of the intestinal barrier, translocation of microbial components to the liver and development or progression of liver disease. Changes in metabolites produced by gut microorganisms can also contribute to liver disease. In this Review, we discuss the importance of the gut microbiota in maintenance of health and the alterations in microbial mediators that contribute to liver disease. We present strategies for modulation of the intestinal microbiota and/or their metabolites as potential treatments for liver disease.
Collapse
Affiliation(s)
- Cynthia L Hsu
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
39
|
Xiao L, Xu G, Chen S, He Y, Peng F, Yuan C. Kaempferol ameliorated alcoholic liver disease through inhibiting hepatic bile acid synthesis by targeting intestinal FXR-FGF15 signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155055. [PMID: 37678053 DOI: 10.1016/j.phymed.2023.155055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/16/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Alcoholic liver disease (ALD) is characterized by the disturbance of bile acids homeostasis, which further deteriorates ALD. Bile acid metabolism and its related signal molecules have become new therapeutic targets for alcoholic liver disease. This study aimed to investigate the impact of kaempferol (KAE) on ALD and elucidate its underlying mechanisms. METHODS C57BL/6 N mice were utilized to establish Binge-on-Chronic alcohol exposure mice model. KAE was administered as an interventional drug to chronic alcohol-fed mice for four weeks to assess its effects on liver damage and bile acid metabolism. And Z-Guggulsterone (Z-Gu), a global FXR inhibitor, was used to investigate the impact of intestinal FXR-FGF15 signal in ALD mice. Additionally, intestinal epithelial cells were exposed to alcohol or specific bile acid to induce the damage of FXR activity in vitro. The dual luciferase activity assay was employed to ascertain the interplay between KAE and FXR activity. RESULTS The results indicated that KAE treatment exhibited a significant hepatoprotective effect against chronic alcohol-fed mice. Accompanied by the intestinal FXR activation, the administration of KAE suppressed hepatic bile acid synthesis and promoted intestinal bile acid excretion in chronic ALD mice. And the notable alterations in total bile acid levels and composition were observed in mice after chronic alcohol feeding, which were reversed by KAE supplementation. And more, the protective effects of KAE on ALD mice were deprived by the inhibition of intestinal FXR activation. In vitro experiments demonstrated that KAE effectively activated FXR-FGF15 signaling, mitigated the damage to FXR activity in intestinal epithelial cells caused by alcohol or specific bile acids. Additionally, luciferase activity assays revealed that KAE directly promoted FXR expression, thereby enhancing FXR activity. CONCLUSION KAE treatment inhibited hepatic bile acids synthesis, maintained bile acids homeostasis in ALD mice by directly activating intestinal FXR-FGF15 signaling, which effectively alleviated liver injury induced by chronic alcohol consumption.
Collapse
Affiliation(s)
- Li Xiao
- College of Basic Medical Science, China Three Gorges University, Yichang, China; Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, College of Medicine and Health Sciences, China Three Gorges University, Yichang, China
| | - Guangfu Xu
- College of Basic Medical Science, China Three Gorges University, Yichang, China
| | - Silong Chen
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, College of Medicine and Health Sciences, China Three Gorges University, Yichang, China
| | - Yumin He
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, College of Medicine and Health Sciences, China Three Gorges University, Yichang, China
| | - Fan Peng
- College of Basic Medical Science, China Three Gorges University, Yichang, China
| | - Chengfu Yuan
- College of Basic Medical Science, China Three Gorges University, Yichang, China; Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, College of Medicine and Health Sciences, China Three Gorges University, Yichang, China.
| |
Collapse
|
40
|
Xiang Z, Wu J, Li J, Zheng S, Wei X, Xu X. Gut Microbiota Modulation: A Viable Strategy to Address Medical Needs in Hepatocellular Carcinoma and Liver Transplantation. ENGINEERING 2023; 29:59-72. [DOI: 10.1016/j.eng.2022.12.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
|
41
|
Kasper P, Lang S, Steffen HM, Demir M. Management of alcoholic hepatitis: A clinical perspective. Liver Int 2023; 43:2078-2095. [PMID: 37605624 DOI: 10.1111/liv.15701] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/11/2023] [Accepted: 08/07/2023] [Indexed: 08/23/2023]
Abstract
Alcohol-associated liver disease is the primary cause of liver-related mortality worldwide and one of the most common indications for liver transplantation. Alcoholic hepatitis represents the most acute and severe manifestation of alcohol-associated liver disease and is characterized by a rapid onset of jaundice with progressive inflammatory liver injury, worsening of portal hypertension, and an increased risk for multiorgan failure in patients with excessive alcohol consumption. Severe alcoholic hepatitis is associated with a poor prognosis and high short-term mortality. During the COVID-19 pandemic, rates of alcohol-associated hepatitis have increased significantly, underscoring that it is a serious and growing health problem. However, adequate management of alcohol-associated hepatitis and its complications in everyday clinical practice remains a major challenge. Currently, pharmacotherapy is limited to corticosteroids, although these have only a moderate effect on reducing short-term mortality. In recent years, translational studies deciphering key mechanisms of disease development and progression have led to important advances in the understanding of the pathogenesis of alcoholic hepatitis. Emerging pathophysiology-based therapeutic approaches include anti-inflammatory agents, modifications of the gut-liver axis and intestinal dysbiosis, epigenetic modulation, antioxidants, and drugs targeting liver regeneration. Concurrently, evidence is increasing that early liver transplantation is a safe treatment option with important survival benefits in selected patients with severe alcoholic hepatitis not responding to medical treatment. This narrative review describes current pathophysiology and management concepts of alcoholic hepatitis, provides an update on emerging treatment options, and focuses on the need for holistic and patient-centred treatment approaches to improve prognosis.
Collapse
Affiliation(s)
- Philipp Kasper
- Clinic for Gastroenterology and Hepatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Sonja Lang
- Clinic for Gastroenterology and Hepatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hans-Michael Steffen
- Clinic for Gastroenterology and Hepatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Münevver Demir
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| |
Collapse
|
42
|
Zheng J, Li Z, Xu H. Intestinal Microbiotas and Alcoholic Hepatitis: Pathogenesis and Therapeutic Value. Int J Mol Sci 2023; 24:14809. [PMID: 37834256 PMCID: PMC10573193 DOI: 10.3390/ijms241914809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Alcoholic hepatitis (AH) is a rapidly progressing and severe stage of alcoholic liver disease, presenting a grim prognosis. Extensive research has elucidated several underlying mechanisms that contribute to the development of AH, including metabolic alterations, immune stimulation, and intestinal dysbiosis. These pathological changes intricately intertwine during the progression of AH. Notably, recent studies have increasingly highlighted the pivotal role of alterations in the intestinal microbiota in the pathogenesis of AH. Consequently, future investigations should place significant emphasis on exploring the dynamics of intestinal microbiota. In this comprehensive review, we consolidate the primary causes of AH while underscoring the influence of gut microbes. Furthermore, by examining AH treatment strategies, we delineate the potential therapeutic value of interventions targeting the gut microbiota. Given the existing limitations in AH treatment options, we anticipate that this review will contribute to forthcoming research endeavors aimed at advancing AH treatment modalities.
Collapse
Affiliation(s)
- Jiazhen Zheng
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (J.Z.); (Z.L.)
| | - Ziyi Li
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (J.Z.); (Z.L.)
| | - Hengyi Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| |
Collapse
|
43
|
Wang XP, Mutchler SM, Carrisoza-Gáytan R, Al-Bataineh M, Baty CJ, Vandevender A, Srinivasan P, Tan RJ, Jurczak MJ, Satlin LM, Kashlan OB. Mineralocorticoid receptor-independent activation of ENaC in bile duct ligated mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.19.558474. [PMID: 37790468 PMCID: PMC10542149 DOI: 10.1101/2023.09.19.558474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Sodium and fluid retention in liver disease is classically thought to result from reduced effective circulating volume and stimulation of the renin-angiotensin-aldosterone system (RAAS). Aldosterone dives Na+ retention by activating the mineralocorticoid receptor and promoting the maturation and apical surface expression of the epithelial Na+ channel (ENaC), found in the aldosterone-sensitive distal nephron. However, evidence of fluid retention without RAAS activation suggests the involvement of additional mechanisms. Liver disease can greatly increase plasma and urinary bile acid concentrations and have been shown to activate ENaC in vitro. We hypothesize that elevated bile acids in liver disease activate ENaC and drive fluid retention independent of RAAS. We therefore increased circulating bile acids in mice through bile duct ligation (BDL) and measured effects on urine and body composition, while using spironolactone to antagonize the mineralocorticoid receptor. We found BDL lowered blood [K+] and hematocrit, and increased benzamil-sensitive natriuresis compared to sham, consistent with ENaC activation. BDL mice also gained significantly more body water. Blocking ENaC reversed fluid gains in BDL mice but had no effect in shams. In isolated collecting ducts from rabbits, taurocholic acid stimulated net Na+ absorption but had no effect on K+ secretion or flow-dependent ion fluxes. Our results provide experimental evidence for a novel aldosterone-independent mechanism for sodium and fluid retention in liver disease which may provide additional therapeutic options for liver disease patients.
Collapse
Affiliation(s)
- Xue-Ping Wang
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Stephanie M Mutchler
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Mohammad Al-Bataineh
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Catherine J Baty
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Amber Vandevender
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Priyanka Srinivasan
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Roderick J Tan
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael J Jurczak
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lisa M Satlin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ossama B Kashlan
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
44
|
Zhu L, Wang Y, Pan CQ, Xing H. Gut microbiota in alcohol-related liver disease: pathophysiology and gut-brain cross talk. Front Pharmacol 2023; 14:1258062. [PMID: 37601074 PMCID: PMC10436520 DOI: 10.3389/fphar.2023.1258062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 07/27/2023] [Indexed: 08/22/2023] Open
Abstract
Alcohol-related liver disease (ALD) from excessive alcohol intake has a unique gut microbiota profile. The disease progression-free survival in ALD patients has been associated with the degree of gut dysbiosis. The vicious cycles between gut dysbiosis and the disease progression in ALD including: an increase of acetaldehyde production and bile acid secretion, impaired gut barrier, enrichment of circulating microbiota, toxicities of microbiota metabolites, a cascade of pro-inflammatory chemokines or cytokines, and augmentation in the generation of reactive oxygen species. The aforementioned pathophysiology process plays an important role in different disease stages with a spectrum of alcohol hepatitis, ALD cirrhosis, neurological dysfunction, and hepatocellular carcinoma. This review aims to illustrate the pathophysiology of gut microbiota and clarify the gut-brain crosstalk in ALD, which may provide the opportunity of identifying target points for future therapeutic intervention in ALD.
Collapse
Affiliation(s)
- Lin Zhu
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yixuan Wang
- Division of Gastroenterology and Hepatology, BaoJi Central Hospital, Shaanxi, China
| | - Calvin Q. Pan
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Division of Gastroenterology and Hepatology, NYU Langone Health, New York University School of Medicine, New York, NY, United States
| | - Huichun Xing
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Center of Liver Diseases, Peking University Ditan Teaching Hospital, Beijing, China
| |
Collapse
|
45
|
Chao X, Wang S, Ma X, Zhang C, Qian H, Williams SN, Sun Z, Peng Z, Liu W, Li F, Sheshadri N, Zong WX, Ni HM, Ding WX. Persistent mTORC1 activation due to loss of liver tuberous sclerosis complex 1 promotes liver injury in alcoholic hepatitis. Hepatology 2023; 78:503-517. [PMID: 36999531 PMCID: PMC10363242 DOI: 10.1097/hep.0000000000000373] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/01/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND AND AIMS The aim of the study was to investigate the role and mechanisms of tuberous sclerosis complex 1 (TSC1) and mechanistic target of rapamycin complex 1 (mTORC1) in alcohol-associated liver disease. APPROACH AND RESULTS Liver-specific Tsc1 knockout (L- Tsc1 KO) mice and their matched wild-type mice were subjected to Gao-binge alcohol. Human alcoholic hepatitis (AH) samples were also used for immunohistochemistry staining, western blot, and quantitative real-time PCR (q-PCR) analysis. Human AH and Gao-binge alcohol-fed mice had decreased hepatic TSC1 and increased mTORC1 activation. Gao-binge alcohol markedly increased liver/body weight ratio and serum alanine aminotransferase levels in L- Tsc1 KO mice compared with Gao-binge alcohol-fed wild-type mice. Results from immunohistochemistry staining, western blot, and q-PCR analysis revealed that human AH and Gao-binge alcohol-fed L- Tsc1 KO mouse livers had significantly increased hepatic progenitor cells, macrophages, and neutrophils but decreased HNF4α-positive cells. Gao-binge alcohol-fed L- Tsc1 KO mice also developed severe inflammation and liver fibrosis. Deleting Tsc1 in cholangiocytes but not in hepatocytes promoted cholangiocyte proliferation and aggravated alcohol-induced ductular reactions, fibrosis, inflammation, and liver injury. Pharmacological inhibition of mTORC1 partially reversed hepatomegaly, ductular reaction, fibrosis, inflammatory cell infiltration, and liver injury in alcohol-fed L- Tsc1 KO mice. CONCLUSIONS Our findings indicate that persistent activation of mTORC1 due to the loss of cholangiocyte TSC1 promotes liver cell repopulation, ductular reaction, inflammation, fibrosis, and liver injury in Gao-binge alcohol-fed L- Tsc1 KO mice, which phenocopy the pathogenesis of human AH.
Collapse
Affiliation(s)
- Xiaojuan Chao
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Shaogui Wang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Xiaowen Ma
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Chen Zhang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Hui Qian
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Sha Neisha Williams
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Zhaoli Sun
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Zheyun Peng
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences; and Department of Pharmacology, School of Medicine, Wayne State University, Detroit, Michigan 48201, USA
| | - Wanqing Liu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences; and Department of Pharmacology, School of Medicine, Wayne State University, Detroit, Michigan 48201, USA
| | - Feng Li
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Namratha Sheshadri
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Wei-Xing Zong
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| |
Collapse
|
46
|
Jew MH, Hsu CL. Alcohol, the gut microbiome, and liver disease. J Gastroenterol Hepatol 2023; 38:1205-1210. [PMID: 37096652 PMCID: PMC11272486 DOI: 10.1111/jgh.16199] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/26/2023]
Abstract
The microorganisms inhabiting our gastrointestinal tract are critical for human health. Chronic heavy alcohol use can modulate the composition and function of the gut microbiota, thereby exacerbating end-organ damage via the gut-brain axis and the gut-liver axis. In this review, we summarize the bacterial, fungal, and viral gut microbial compositional changes associated with alcohol use and alcohol-associated liver disease and discuss the mechanisms of action by which gut dysbiosis reinforces alcohol use behavior and liver inflammation and injury. We also highlight important pre-clinical and clinical trials that target gut microbial-specific mechanisms for the treatment of alcohol use disorder and alcohol-associated liver disease.
Collapse
Affiliation(s)
- Michael H Jew
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Cynthia L Hsu
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
47
|
Fucho R, Solsona-Vilarrasa E, Torres S, Nuñez S, Insausti-Urkia N, Edo A, Calvo M, Bosch A, Martin G, Enrich C, García-Ruiz C, Fernandez-Checa JC. Zonal expression of StARD1 and oxidative stress in alcoholic-related liver disease. J Lipid Res 2023; 64:100413. [PMID: 37473919 PMCID: PMC10448177 DOI: 10.1016/j.jlr.2023.100413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/26/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023] Open
Abstract
Alcoholic-related liver disease (ALD) is one of the leading causes of chronic liver disease and morbidity. Unfortunately, the pathogenesis of ALD is still incompletely understood. StARD1 has emerged as a key player in other etiologies of chronic liver disease, and alcohol-induced liver injury exhibits zonal distribution. Here, we report that StARD1 is predominantly expressed in perivenous (PV) zone of liver sections from mice-fed chronic and acute-on-chronic ALD models compared to periportal (PP) area and is observed as early as 10 days of alcohol feeding. Ethanol and chemical hypoxia induced the expression of StARD1 in isolated primary mouse hepatocytes. The zonal-dependent expression of StARD1 resulted in the accumulation of cholesterol in mitochondria and increased lipid peroxidation in PV hepatocytes compared to PP hepatocytes, effects that were abrogated in PV hepatocytes upon hepatocyte-specific Stard1 KO mice. Transmission electron microscopy indicated differential glycogen and lipid droplets content between PP and PV areas, and alcohol feeding decreased glycogen content in both areas while increased lipid droplets content preferentially in PV zone. Moreover, transmission electron microscopy revealed that mitochondria from PV zone exhibited reduced length with respect to PP area, and alcohol feeding increased mitochondrial number, particularly, in PV zone. Extracellular flux analysis indicated lower maximal respiration and spared respiratory capacity in control PV hepatocytes that were reversed upon alcohol feeding. These findings reveal a differential morphology and functional activity of mitochondria between PP and PV hepatocytes following alcohol feeding and that StARD1 may play a key role in the zonal-dependent liver injury characteristic of ALD.
Collapse
Affiliation(s)
- Raquel Fucho
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Barcelona, Spain; Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; CIBEREHD, Madrid, Spain
| | - Estel Solsona-Vilarrasa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Barcelona, Spain; Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; CIBEREHD, Madrid, Spain
| | - Sandra Torres
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Barcelona, Spain; Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; CIBEREHD, Madrid, Spain
| | - Susana Nuñez
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Barcelona, Spain; Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; CIBEREHD, Madrid, Spain
| | - Naroa Insausti-Urkia
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Barcelona, Spain; Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; CIBEREHD, Madrid, Spain
| | - Albert Edo
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Barcelona, Spain; Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; CIBEREHD, Madrid, Spain
| | - Maria Calvo
- Advanced Optical Microscopy-Clinic Campus, Scientific and Technological Center, University of Barcelona, Barcelona, Spain
| | - Anna Bosch
- Advanced Optical Microscopy-Clinic Campus, Scientific and Technological Center, University of Barcelona, Barcelona, Spain
| | - Gemma Martin
- Advanced Optical Microscopy-Clinic Campus, Scientific and Technological Center, University of Barcelona, Barcelona, Spain
| | - Carlos Enrich
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Unit of Cell Biology, Departament of Biomedicine, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain; Center of Biomedical Research CELLEX, Barcelona, Spain
| | - Carmen García-Ruiz
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Barcelona, Spain; Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; CIBEREHD, Madrid, Spain.
| | - Jose C Fernandez-Checa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Barcelona, Spain; Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; CIBEREHD, Madrid, Spain; Department of Medicine, Keck School of Division of Gastrointestinal and Liver Disease, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
48
|
Long XQ, Liu MZ, Liu ZH, Xia LZ, Lu SP, Xu XP, Wu MH. Bile acids and their receptors: Potential therapeutic targets in inflammatory bowel disease. World J Gastroenterol 2023; 29:4252-4270. [PMID: 37545642 PMCID: PMC10401658 DOI: 10.3748/wjg.v29.i27.4252] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/19/2023] [Accepted: 06/21/2023] [Indexed: 07/13/2023] Open
Abstract
Chronic and recurrent inflammatory disorders of the gastrointestinal tract caused by a complex interplay between genetics and intestinal dysbiosis are called inflammatory bowel disease. As a result of the interaction between the liver and the gut microbiota, bile acids are an atypical class of steroids produced in mammals and traditionally known for their function in food absorption. With the development of genomics and metabolomics, more and more data suggest that the pathophysiological mechanisms of inflammatory bowel disease are regulated by bile acids and their receptors. Bile acids operate as signalling molecules by activating a variety of bile acid receptors that impact intestinal flora, epithelial barrier function, and intestinal immunology. Inflammatory bowel disease can be treated in new ways by using these potential molecules. This paper mainly discusses the increasing function of bile acids and their receptors in inflammatory bowel disease and their prospective therapeutic applications. In addition, we explore bile acid metabolism and the interaction of bile acids and the gut microbiota.
Collapse
Affiliation(s)
- Xiong-Quan Long
- Department of Gastroenterology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha 410005, Hunan Province, China
| | - Ming-Zhu Liu
- Department of Gastroenterology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha 410005, Hunan Province, China
| | - Zi-Hao Liu
- Department of Gastroenterology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha 410005, Hunan Province, China
| | - Lv-Zhou Xia
- Department of Gastroenterology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha 410005, Hunan Province, China
| | - Shi-Peng Lu
- Department of Gastroenterology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha 410005, Hunan Province, China
| | - Xiao-Ping Xu
- Department of Gastroenterology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha 410005, Hunan Province, China
| | - Ming-Hao Wu
- Department of Gastroenterology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha 410005, Hunan Province, China
| |
Collapse
|
49
|
Cabré N, Hartmann P, Llorente C, Kouno T, Wang Y, Zeng S, Kim HY, Zhang X, Kisseleva T, Iyer S, Kudumala S, Schnabl B. IgY antibodies against cytolysin reduce ethanol-induced liver disease in mice. Hepatology 2023; 78:295-306. [PMID: 36811393 PMCID: PMC10293100 DOI: 10.1097/hep.0000000000000324] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/11/2023] [Indexed: 02/24/2023]
Abstract
BACKGROUND AND AIMS Patients with severe alcohol-associated hepatitis have high morbidity and mortality. Novel therapeutic approaches are urgently needed. The aims of our study were to confirm the predictive value of cytolysin-positive Enterococcus faecalis ( E. faecalis ) for mortality in patients with alcohol-associated hepatitis and to assess the protective effect of specific chicken immunoglobulin Y (IgY) antibodies against cytolysin in vitro and in a microbiota-humanized mouse model of ethanol-induced liver disease. APPROACH AND RESULTS We investigated a multicenter cohort of 26 subjects with alcohol-associated hepatitis and confirmed our previous findings that the presence of fecal cytolysin-positive E. faecalis predicted 180-day mortality in those patients. After combining this smaller cohort with our previously published multicenter cohort, the presence of fecal cytolysin has a better diagnostic area under the curve, better other accuracy measures, and a higher odds ratio to predict death in patients with alcohol-associated hepatitis than other commonly used liver disease models. In a precision medicine approach, we generated IgY antibodies against cytolysin from hyperimmunized chickens. Neutralizing IgY antibodies against cytolysin reduced cytolysin-induced cell death in primary mouse hepatocytes. The oral administration of IgY antibodies against cytolysin decreased ethanol-induced liver disease in gnotobiotic mice colonized with stool from cytolysin-positive patients with alcohol-associated hepatitis. CONCLUSIONS E. faecalis cytolysin is an important mortality predictor in alcohol-associated hepatitis patients, and its targeted neutralization through specific antibodies improves ethanol-induced liver disease in microbiota-humanized mice.
Collapse
Affiliation(s)
- Noemí Cabré
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Phillipp Hartmann
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Division of Gastroenterology, Hepatology & Nutrition, Rady Children’s Hospital San Diego, San Diego, CA, USA
| | - Cristina Llorente
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Tetsuya Kouno
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Yanhan Wang
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| | - Suling Zeng
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| | - Hyun Young Kim
- Department of Surgery, University of California, San Diego, La Jolla, CA, USA
| | - Xinlian Zhang
- Division of Biostatistics and Bioinformatics, Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, USA
| | - Tatiana Kisseleva
- Department of Surgery, University of California, San Diego, La Jolla, CA, USA
| | | | | | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
50
|
Kaufmann B, Seyfried N, Hartmann D, Hartmann P. Probiotics, prebiotics, and synbiotics in nonalcoholic fatty liver disease and alcohol-associated liver disease. Am J Physiol Gastrointest Liver Physiol 2023; 325:G42-G61. [PMID: 37129252 PMCID: PMC10312326 DOI: 10.1152/ajpgi.00017.2023] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/03/2023]
Abstract
The use of probiotics, prebiotics, and synbiotics has become an important therapy in numerous gastrointestinal diseases in recent years. Modifying the gut microbiota, this therapeutic approach helps to restore a healthy microbiome. Nonalcoholic fatty liver disease and alcohol-associated liver disease are among the leading causes of chronic liver disease worldwide. A disrupted intestinal barrier, microbial translocation, and an altered gut microbiome metabolism, or metabolome, are crucial in the pathogenesis of these chronic liver diseases. As pro-, pre-, and synbiotics modulate these targets, they were identified as possible new treatment options for liver disease. In this review, we highlight the current findings on clinical and mechanistic effects of this therapeutic approach in nonalcoholic fatty liver disease and alcohol-associated liver disease.
Collapse
Affiliation(s)
- Benedikt Kaufmann
- Department of Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Nick Seyfried
- Department of Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Daniel Hartmann
- Department of Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Phillipp Hartmann
- Department of Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States
| |
Collapse
|