1
|
Sheng R, Zheng B, Zhang Y, Sun W, Yang C, Han J, Zeng M, Zhou J. MRI-based microvascular invasion prediction in mass-forming intrahepatic cholangiocarcinoma: survival and therapeutic benefit. Eur Radiol 2025; 35:4068-4079. [PMID: 39699676 DOI: 10.1007/s00330-024-11296-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/23/2024] [Accepted: 11/16/2024] [Indexed: 12/20/2024]
Abstract
OBJECTIVES To establish an MRI-based model for microvascular invasion (MVI) prediction in mass-forming intrahepatic cholangiocarcinoma (MF-iCCA) and further evaluate its potential survival and therapeutic benefit. METHODS One hundred and fifty-six pathologically confirmed MF-iCCAs with traditional surgery (121 in training and 35 in validation cohorts), 33 with neoadjuvant treatment and 57 with first-line systemic therapy were retrospectively included. Univariate and multivariate regression analyses were performed to identify the independent predictors for MVI in the traditional surgery group, and an MVI-predictive model was constructed. Survival analyses were conducted and compared between MRI-predicted MVI-positive and MVI-negative MF-iCCAs in different treatment groups. RESULTS Tumor multinodularity (odds ratio = 4.498, p < 0.001) and peri-tumor diffusion-weighted hyperintensity (odds ratio = 4.163, p < 0.001) were independently significant variables associated with MVI. AUC values for the predictive model were 0.760 [95% CI 0.674, 0.833] in the training cohort and 0.757 [95% CI 0.583, 0.885] in the validation cohort. Recurrence-free survival or progression-free survival of the MRI-predicted MVI-positive patients was significantly shorter than the MVI-negative patients in all three treatment groups (log-rank p < 0.001 to 0.046). The use of neoadjuvant therapy was not associated with improved postoperative recurrence-free survival for high-risk MF-iCCA patients in both MRI-predicted MVI-positive and MVI-negative groups (log-rank p = 0.79 and 0.27). Advanced MF-iCCA patients of the MRI-predicted MVI-positive group had significantly worse objective response rate than the MVI-negative group with systemic therapy (40.91% vs 76.92%, χ2 = 5.208, p = 0.022). CONCLUSION The MRI-based MVI-predictive model could be a potential biomarker for personalized risk stratification and survival prediction in MF-iCCA patients with varied therapies and may aid in candidate selection for systemic therapy. KEY POINTS Question Identifying intrahepatic cholangiocarcinoma (iCCA) patients at high risk for microvascular invasion (MVI) may inform prognostic risk stratification and guide clinical treatment decision. Findings We established an MRI-based predictive model for MVI in mass-forming-iCCA, integrating imaging features of tumor multinodularity and peri-tumor diffusion-weighted hyperintensity. Clinical relevance The MRI-based MVI-predictive model could be a potential biomarker for personalized risk stratification and survival prediction across varied therapies and may aid in therapeutic candidate selection for systemic therapy.
Collapse
Affiliation(s)
- Ruofan Sheng
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Medical Imaging, Shanghai, China
| | - Beixuan Zheng
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunfei Zhang
- Shanghai Institute of Medical Imaging, Shanghai, China
| | - Wei Sun
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chun Yang
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Medical Imaging, Shanghai, China
| | - Jing Han
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mengsu Zeng
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Shanghai Institute of Medical Imaging, Shanghai, China.
| | - Jianjun Zhou
- Department of Radiology, Zhongshan Hospital (Xiamen), Fudan University, Fujian, China
| |
Collapse
|
2
|
Wu JH, Fan YZ, Sun J, Duan XZ. Response to crizotinib in advanced intrahepatic cholangiocarcinoma with ZKSCAN1-MET fusion and MET amplification: case reports and literature review. Discov Oncol 2025; 16:1107. [PMID: 40517173 DOI: 10.1007/s12672-025-02930-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 06/05/2025] [Indexed: 06/16/2025] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is the second most prevalent liver cancer after hepatocellular carcinoma and is characterized by high malignancy and poor prognosis. Gemcitabine combined with cisplatin is the standard first-line therapy for metastatic or unresectable ICC. The combination of immunotherapy and targeted therapy represents a promising new direction for ICC treatment. Common genetic mutations in ICC include those in TP53, FGFR2, IDH1/2, and KRAS. MET alterations such as fusions and amplifications are rare in ICC. However, limited research has been conducted on the efficacy of specific MET inhibitors. We present two cases: the first with refractory ICC treated with a combination of immunotherapy and targeted therapy, harboring a ZKSCAN1-MET fusion and the second with a metastatic ICC with MET amplification. Both patients demonstrated a significant clinical response to crizotinib, a MET-specific tyrosine kinase inhibitor.
Collapse
Affiliation(s)
- Jian-Hui Wu
- Department of Radiation Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China
- Medical school of Chinese PLA General Hospital, Beijing, 100853, China
| | - Yu-Ze Fan
- Department of Radiation Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China
| | - Jing Sun
- Department of Radiation Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China.
| | - Xue-Zhang Duan
- Department of Radiation Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China.
- Medical school of Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
3
|
Morales-Galicia AE, Rincón-Sánchez MN, Ramírez-Mejía MM, Méndez-Sánchez N. Outcome prediction for cholangiocarcinoma prognosis: Embracing the machine learning era. World J Gastroenterol 2025; 31:106808. [DOI: 10.3748/wjg.v31.i21.106808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/15/2025] [Accepted: 05/12/2025] [Indexed: 06/06/2025] Open
Abstract
We read with great interest the study by Huang et al. Cholangiocarcinoma (CC) is the second most common type of primary liver tumor worldwide. Although surgical resection remains the primary treatment for this disease, almost 50% of patients experience relapse within 2 years after surgery, which negatively affects their prognosis. Key predictors can be used to identify several factors (e.g., tumor size, tumor location, tumor stage, nerve invasion, the presence of intravascular emboli) and their correlations with long-term survival and the risk of postoperative morbidity. In recent years, artificial intelligence (AI) has become a new tool for prognostic assessment through the integration of multiple clinical, surgical, and imaging parameters. However, a crucial question has arisen: Are we ready to trust AI with respect to clinical decisions? The study by Huang et al demonstrated that AI can predict preoperative textbook outcomes in patients with CC and highlighted the precision of machine learning algorithms using useful prognostic factors. This letter to the editor aimed to explore the challenges and potential impact of AI and machine learning in the prognostic assessment of patients with CC.
Collapse
Affiliation(s)
| | - Mariana N Rincón-Sánchez
- Faculty of Medicine “Dr. Jose Sierra Flores,” Northeastern University, Tampico 89337, Tamaulipas, Mexico
| | - Mariana M Ramírez-Mejía
- Plan of Combined Studies in Medicine, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04360, Mexico
- Liver Research Unit, Medica Sur Clinic and Foundation, Mexico City 14050, Mexico
| | - Nahum Méndez-Sánchez
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04360, Mexico
- Liver Research Unit, Medica Sur Clinic and Foundation, Mexico City 14050, Mexico
| |
Collapse
|
4
|
Zheng RJ, Li DL, Lin HM, Wang JF, Luo YM, Tang Y, Li F, Hu Y, Su S. Bibliometrics of artificial intelligence applications in hepatobiliary surgery from 2014 to 2024. World J Gastrointest Surg 2025; 17:104728. [DOI: 10.4240/wjgs.v17.i5.104728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/16/2025] [Accepted: 02/18/2025] [Indexed: 05/23/2025] Open
Abstract
BACKGROUND In recent years, the rapid development of artificial intelligence (AI) in hepatobiliary surgery research has led to an increase in articles exploring its benefits. We performed a bibliometric analysis of AI applications in hepatobiliary surgery to better delineate the contemporary state of AI application in hepatobiliary surgery and potential future trajectories.
AIM To provide clinical practitioners with a reliable reference point. It offers a detailed overview of the development of AI in hepatobiliary surgery by systematically examining the contributions of authors, countries, institutions, journals, and keywords in this domain over the last 10 years.
METHODS The academic resources utilized in this study were obtained from the Web of Science Core Collection database. The search results were subsequently integrated and imported into CiteSpace and VOSviewer software for the purpose of visual analysis.
RESULTS The study analyzed 2552 publications during 2014–2024. These publications collectively garnered 32 628 citations, averaging 15.66 citations per paper. The top contributor to this field was China. The USA had the highest citation count. The author with the highest citation count was Summers RM. In terms of the number of articles published, the leading journals were Medical Physics. Excluding the subject search terms, the most frequently used keywords included “classification”, “CT and “diagnosis”.
CONCLUSION This bibliometric analysis indicates that research on AI in hepatobiliary surgery has entered a period of rapid development, particularly in the domain of disease imaging diagnostics.
Collapse
Affiliation(s)
- Ru-Jun Zheng
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Dong-Lun Li
- Department of Nephrology, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - Hao-Min Lin
- Department of Hepatobiliary Pancreatic Surgery, Chengdu Sixth People’s Hospital, Chengdu 610000, Sichuan Province, China
| | - Jun-Feng Wang
- College of Computer Science, Sichuan University, Chengdu 610065, Sichuan Province, China
| | - Ya-Mei Luo
- School of Medical Information and Engineering, Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Yong Tang
- School of Computer Science and Engineering, University of Electronic Science and Technology, Chengdu 611731, Sichuan Province, China
| | - Fan Li
- College of Artificial Intelligence (CUIT Shuangliu Industrial College), Chengdu University of Information Technology, Chengdu 610225, Sichuan Province, China
- The Institute of Digital Health and Medical ITA Innovation Industry, Chengdu 610225, Sichuan Province, China
| | - Yue Hu
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
- Rehabilitation Medicine and Engineering Key Laboratory of Luzhou, Luzhou 646000, Sichuan Province, China
| | - Song Su
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| |
Collapse
|
5
|
Pizzuto E, Mancarella S, Gigante I, Serino G, Dituri F, Piccinno E, Fabregat I, Giannelli G. Inhibiting the TGF-β1 Pathway Reduces the Aggressiveness of Intrahepatic CCA HuCCT1 CD90-Positive Cells. Int J Mol Sci 2025; 26:4973. [PMID: 40507785 PMCID: PMC12155448 DOI: 10.3390/ijms26114973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 05/09/2025] [Accepted: 05/16/2025] [Indexed: 06/16/2025] Open
Abstract
Molecular mechanisms responsible for the poor prognosis in patients with intrahepatic cholangiocarcinoma (CCA) are still unknown, but stem cell marker Cluster Differentiation 90 (CD90) has been reported to be associated with a more aggressive cancer phenotype. In this scenario, the TGF-β1 signaling pathway likely has a role as master gene regulator. Aim of the study is to investigate the role of CD90 in iCCA aggressiveness. The molecular profile of HuCCT1/CD90+ and HuCCT1/CD90- cells was obtained through transcriptomic analysis (NGS). Bioinformatic data were confirmed in both cell lines by qRT-PCR and Western blot. Cells were treated with Gemcitabine in monotherapy or in combination with Galunisertib, a selective inhibitor of TGF-βRI, in 2D and 3D models. HuCCT1/CD90+ cells are more proliferative, less migratory, and resistant to Gemcitabine treatment. HuCCT1/CD90+ cells also express lower levels of TGF-β1 compared to /CD90- cell lines. Finally, HuCCT1/CD90+ cells are resistant to Gemcitabine, while the combination of Gemcitabine and Galunisertib displays a synergistic effect on HuCCT1/CD90+ cell proliferation. These results underline that CD90-induced Gemcitabine resistance can be overcome by adding a TGFβ1 inhibitor such as Galunisertib, thereby moving further toward a precision medicine approach in patients with iCCA.
Collapse
Affiliation(s)
- Elena Pizzuto
- Personalized Medicine Laboratory, National Institute of Gastroenterology “S. de Bellis” IRCCS Research Hospital, 70013 Castellana Grotte, Italy; (E.P.); (S.M.); (I.G.); (G.S.); (F.D.); (E.P.)
| | - Serena Mancarella
- Personalized Medicine Laboratory, National Institute of Gastroenterology “S. de Bellis” IRCCS Research Hospital, 70013 Castellana Grotte, Italy; (E.P.); (S.M.); (I.G.); (G.S.); (F.D.); (E.P.)
| | - Isabella Gigante
- Personalized Medicine Laboratory, National Institute of Gastroenterology “S. de Bellis” IRCCS Research Hospital, 70013 Castellana Grotte, Italy; (E.P.); (S.M.); (I.G.); (G.S.); (F.D.); (E.P.)
| | - Grazia Serino
- Personalized Medicine Laboratory, National Institute of Gastroenterology “S. de Bellis” IRCCS Research Hospital, 70013 Castellana Grotte, Italy; (E.P.); (S.M.); (I.G.); (G.S.); (F.D.); (E.P.)
| | - Francesco Dituri
- Personalized Medicine Laboratory, National Institute of Gastroenterology “S. de Bellis” IRCCS Research Hospital, 70013 Castellana Grotte, Italy; (E.P.); (S.M.); (I.G.); (G.S.); (F.D.); (E.P.)
| | - Emanuele Piccinno
- Personalized Medicine Laboratory, National Institute of Gastroenterology “S. de Bellis” IRCCS Research Hospital, 70013 Castellana Grotte, Italy; (E.P.); (S.M.); (I.G.); (G.S.); (F.D.); (E.P.)
| | - Isabel Fabregat
- TGF-β and Cancer Group—Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08860 L’Hospitalet de Llobregat, Spain;
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Gianluigi Giannelli
- Personalized Medicine Laboratory, National Institute of Gastroenterology “S. de Bellis” IRCCS Research Hospital, 70013 Castellana Grotte, Italy; (E.P.); (S.M.); (I.G.); (G.S.); (F.D.); (E.P.)
| |
Collapse
|
6
|
Xu Y, Sun J, Yan X, Mao Z, Chen Y. Prognosis of cholangiocarcinoma patients based on multiple patterns of programmed cell death, integrated analysis of the immune microenvironment and drug sensitivity. Front Genet 2025; 16:1457204. [PMID: 40438322 PMCID: PMC12116470 DOI: 10.3389/fgene.2025.1457204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 04/24/2025] [Indexed: 06/01/2025] Open
Abstract
Background Cholangiocarcinoma (CHOL) is a highly malignant bile duct cancer with a poor prognosis and rising incidence. Programmed cell death (PCD) plays a crucial role in cancer biology, influencing tumor immunity and treatment response. This study analyzes the impact of multiple PCD patterns on CHOL prognosis, tumor microenvironment (TME) and drug sensitivity. Methods RNA sequencing data from TCGA-CHOL and GSE107943 were analyzed to identify PCD-related genes. A PCD-associated Risk Score was constructed using Cox and Lasso regression analyses. The score's prognostic value was assessed through survival analysis, ROC curves, and functional annotation. Results We identified 111 differentially expressed PCD-related genes, including NCK2, BNIP3 and BIK, that constituted PCD-associated Risk Score and correlated with prognosis of CHOL. Functional analyses indicated enrichment in immune-related processes. High-risk patients showed increased immune cell infiltration and higher immune checkpoint expression, suggesting a benefit from immunotherapy. They also demonstrated greater sensitivity to several chemotherapeutic and targeted agents. Conclusion PCD-associated Risk Score is a robust prognostic tool for CHOL, influencing TME modulation and therapeutic response, and may guide personalized treatment strategies.
Collapse
Affiliation(s)
- Yupeng Xu
- Department of Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Jian Sun
- Department of Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xin Yan
- Department of Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhenliao Mao
- Department of Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiming Chen
- Department of Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
7
|
Melehy A, Agopian VG. Role of Liver Transplant in Primary and Secondary Liver Malignancies. Clin Liver Dis 2025; 29:217-234. [PMID: 40287268 DOI: 10.1016/j.cld.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Hepatocellular carcinoma (HCC) and cholangiocarcinoma are the primary hepatic malignancies with established pathways to transplantation and model for end-stage liver disease (MELD) exception points. Other tumors managed with liver transplantation (LT) include hepatic epithelioid hemangioendothelioma and fibrolamellar HCC. LT for metastatic neuroendocrine tumor has been established with patient selection criteria and a path to MELD exception points. Additionally, recent data on LT for patients with unresectable hepatic colorectal metastases demonstrate increasingly encouraging initial results.
Collapse
Affiliation(s)
- Andrew Melehy
- Department of Surgery, Dumont-UCLA Transplant and Liver Cancer Centers, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Vatche G Agopian
- Division of Liver and Pancreas Transplantation, Department of Surgery, Dumont-UCLA Transplant and Liver Cancer Centers, David Geffen School of Medicine at University of California, Los Angeles, CA, USA.
| |
Collapse
|
8
|
Yang N, Ma Z, Zhang L, Ji W, Xi Q, Li M, Jin L. Radiomics-based automated machine learning for differentiating focal liver lesions on unenhanced computed tomography. Abdom Radiol (NY) 2025; 50:2126-2139. [PMID: 39572431 PMCID: PMC11992001 DOI: 10.1007/s00261-024-04685-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 04/12/2025]
Abstract
BACKGROUND & AIMS Enhanced computed tomography (CT) is the primary method for focal liver lesion diagnosis. We aimed to use automated machine learning (AutoML) algorithms to differentiate between benign and malignant focal liver lesions on the basis of radiomics from unenhanced CT images. METHODS We enrolled 260 patients from 2 medical centers who underwent CT examinations between January 2017 and March 2023. This included 60 cases of hepatic malignancies, 93 cases of hepatic hemangiomas, 48 cases of hepatic abscesses, and 84 cases of hepatic cysts. The Pyradiomics method was used to extract radiomics features from unenhanced CT images. By using the mljar-supervised (MLJAR) AutoML framework, clinical, radiomics, and fusion models combining clinical and radiomics features were established. RESULTS In the training and validation sets, the area under the curve (AUC) values for the clinical, radiomics, and fusion models exceeded 0.900. In the external testing set, the respective AUC values for the clinical, radiomics, and fusion models were as follows: 0.88, 1.00, and 1.00 for hepatic cysts; 0.81, 0.90, and 0.97 for hepatic hemangiomas; 0.89, 0.98, and 0.92 for hepatic abscesses; and 0.23, 0.80, and 0.93 for hepatic malignancies. The diagnostic accuracy rates for hepatic cysts, hemangiomas, malignancies, and abscesses by radiologists in the external testing cohort were 0.96, 0.60, 0.79, and 0.66, respectively. CONCLUSION The fusion model based on noninvasive radiomics and clinical features of unenhanced CT images has high clinical value for distinguishing focal hepatic lesions.
Collapse
Affiliation(s)
- Nan Yang
- Department of Radiology, Huadong Hospital, Fudan University, Shanghai, China
| | - Zhuangxuan Ma
- Department of Radiology, Huadong Hospital, Fudan University, Shanghai, China
| | - Ling Zhang
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Wenbin Ji
- Radiology Department, Shanghai Electric Power Hospital, Shanghai, China
| | - Qian Xi
- Department of Radiology, Eye & ENT Hospital of Fudan University, Shanghai, China.
| | - Ming Li
- Department of Radiology, Huadong Hospital, Fudan University, Shanghai, China.
| | - Liang Jin
- Department of Radiology, Huadong Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Wang X, Duan W, Ma Z, Wen H, Mao X, Liu C. ETV4/ALYREF-mediated glycolytic metabolism through PKM2 enhances resistance to ferroptosis and promotes the development of intrahepatic cholangiocarcinoma. Cancer Metab 2025; 13:19. [PMID: 40264211 PMCID: PMC12013154 DOI: 10.1186/s40170-025-00387-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 04/07/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (ICC) is the second most common primary hepatocellular cancer. This study investigated whether ETV4, ALYREF, and PKM2 affect glycolytic metabolism and ferroptosis, thereby potentially influencing ICC. METHODS Bioinformatic analysis was used to explore the expression levels and prognosis of ETV4, ALYREF, and PKM2 in ICC and their regulatory relationships were confirmed using in vitro experiments. Glycolytic metabolism and ferroptosis were examined, and chromatin immunoprecipitation and RNA immunoprecipitation experiments were performed to verify whether the ETV4, PKM2, and ALYREF could bind. The effect of ETV4/ALYREF on ICC was further confirmed by in vivo experiments. RESULTS ETV4, ALYREF, and PKM2 were highly expressed in ICC. Overexpressed (oe)-ETV4 and oe-PKM2 promoted cell migration and increased glucose (GLU) utilization and lactate and intracellular adenosine triphosphate (ATP) production. Addition of the ferroptosis inducer Erastin to the above groups revealed that sh-ETV4 and sh-ALYREF increased lipid reactive oxygen species (ROS), malondialdehyde (MDA), and Fe2+ levels, and oe-PKM2 reversed these effects in the sh-ETV4 and sh-ALYREF groups. Oe-ETV4 promoted the expression of PKM2, whereas sh-ALYREF inhibited the same. ETV4 could bind to ALYREF and PKM2 promoter, and ALYREF could promote the stability of PKM2 in an m5C-dependent manner. In vivo, ETV4 promotes tumor growth and the expression of proteins related to glycolytic metabolism by regulating ALYREF. CONCLUSION ETV4 promotes ICC development and ferroptosis resistance by facilitating glycolytic metabolism, and regulating PKM2 transcription by directly binding to the PKM2 promoter. Additionally, it mediates m5C-dependent PKM2 stabilization by directly binding to ALYREF. This study identified a new potential therapeutic target for ICC.
Collapse
Affiliation(s)
- Xiaohui Wang
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, No. 61, Jiefang West Road, Furong District, Changsha, 410000, Hunan, China
| | - Wenbin Duan
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, No. 61, Jiefang West Road, Furong District, Changsha, 410000, Hunan, China
| | - Zhongzhi Ma
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, No. 61, Jiefang West Road, Furong District, Changsha, 410000, Hunan, China
| | - Haoquan Wen
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, No. 61, Jiefang West Road, Furong District, Changsha, 410000, Hunan, China
| | - Xianhai Mao
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, No. 61, Jiefang West Road, Furong District, Changsha, 410000, Hunan, China
- Department of Hepatobiliary and Intestinal Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410013, Changsha, China
| | - Changjun Liu
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, No. 61, Jiefang West Road, Furong District, Changsha, 410000, Hunan, China.
| |
Collapse
|
10
|
Feng B, Su W, Hu L, Yu M. MUC3A promotes the progression of cholangiocarcinoma through the MAPK/ERK pathway. Discov Oncol 2025; 16:493. [PMID: 40198406 PMCID: PMC11979082 DOI: 10.1007/s12672-025-02199-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/20/2025] [Indexed: 04/10/2025] Open
Abstract
AIM Cholangiocarcinoma (CCA) is the most common malignant tumor of the bile ducts. Due to its anatomical location, growth pattern, and lack of clear diagnostic criteria, it presents diagnostic challenges. Exploring its occurrence and development to find early markers and treatment targets is of great significance. METHODS To determine whether Mucin 3A (MUC3A) can regulate the occurrence and development of cholangiocarcinoma cells and its mechanism, we compared the expression levels of MUC3A between intrahepatic biliary epithelial cells and cholangiocarcinoma cells and constructed stable transfections of KONC (transfection negative control group) and MUC3A-KO1 and KO2 (transfection MUC3A knockout vectors) lentivirus in CCA cell lines. We investigated the effect of MUC3A on the proliferative capacity of cholangiocarcinoma cells using the CCK-8 assay and colony formation assay. The regulatory effect of MUC3A on the cell cycle of cholangiocarcinoma cells was examined using flow cytometry. The impact of MUC3A on the invasion and migration of cholangiocarcinoma cells was observed through scratch and Transwell assays. Additionally, the mechanism by which MUC3A regulates proliferation and metastasis of cholangiocarcinoma was explored using Western blot. RESULTS MUC3A is highly expressed in cholangiocarcinoma. MUC3A promotes the proliferation of cholangiocarcinoma cells by regulating the cell cycle. Additionally, MUC3A enhances the invasion and migration of cholangiocarcinoma cells by regulating the epithelial-mesenchymal transition. Furthermore, MUC3A regulates the proliferation and metastasis of cholangiocarcinoma cells through the ERK signaling pathway. CONCLUSIONS This study demonstrates that MUC3A regulates the proliferation and metastasis of cholangiocarcinoma cells through the ERK signaling pathway.
Collapse
Affiliation(s)
- Baijie Feng
- Fudan University Clinical Research Center for Cell-Based Immunotherapy & Department of Oncology, Fudan University Pudong Medical Center, 2800 Gongwei Road, Shanghai, 201399, People's Republic of China
| | - Wei Su
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Lina Hu
- Fudan University Clinical Research Center for Cell-Based Immunotherapy & Department of Oncology, Fudan University Pudong Medical Center, 2800 Gongwei Road, Shanghai, 201399, People's Republic of China
| | - Minghua Yu
- Fudan University Clinical Research Center for Cell-Based Immunotherapy & Department of Oncology, Fudan University Pudong Medical Center, 2800 Gongwei Road, Shanghai, 201399, People's Republic of China.
| |
Collapse
|
11
|
Zeng Q, Wang X, Liu J, Jiang Y, Cao G, Su K, Liu X. Application of machine learning models to explore prognosis and cause of death in advanced intrahepatic cholangiocarcinoma patients undergoing chemotherapy. Discov Oncol 2025; 16:490. [PMID: 40198481 PMCID: PMC11978561 DOI: 10.1007/s12672-025-02274-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/31/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND This study was aimed at examining the causes of death (CODs) in patients with advanced intrahepatic cholangiocarcinoma (ICC) undergoing chemotherapy (CT). In addition, machine learning models were incorporated to predict the treatment outcomes of patients with advanced ICC and identify the factors most closely related to prognosis. METHODS A total of 5564 patients (CT group, 3632; non-CT group, 1932) were included in the Surveillance Epidemiology and End Results registries between 2000 and 2020. The CODs were compared between the two groups before and after the inverse probability of treatment weighting (IPTW). Furthermore, seven machine learning models were utilized as predictive tools to select variable features, aiming to assess the therapeutic effectiveness in patients with advanced ICC. RESULTS After IPTW, the CT group exhibited a lower cumulative incidence of cholangiocarcinoma-related deaths (30%, 49%, and 73% vs. 59%, 66%, and 73%; P < 0.001), secondary malignant neoplasms (8.5%, 13%, and 20% vs. 19%, 22%, and 24%; P < 0.001), and other CODs (1.8%, 2.9%, and 4.4% vs. 4.1%, 4.6%, and 5.4%; P < 0.001) at 0.5-, 1-, and 3- years than the non-CT group, whereas the cumulative incidence of cardiovascular diseases (P = 0.4) was comparable between the two groups. Of the seven machine learning models, the random forest model showed the highest predictive effectiveness. This model verified that variables such as CT, radiotherapy, tumor dimensions, sex, and distant metastasis were strongly correlated with the prognosis of advanced ICC. CONCLUSIONS CT has improved the therapeutic efficacy of advanced ICC without significantly increasing other CODs. Furthermore, the analysis of various features using machine learning models has confirmed that the random forest model demonstrates the highest predictive performance.
Collapse
Affiliation(s)
- Qin Zeng
- Department of Oncology, Zigong First People's Hospital, Zigong, 643000, China
| | - Xin Wang
- Department of Oncology, Zigong First People's Hospital, Zigong, 643000, China
| | - Jun Liu
- Department of Oncology, Zigong First People's Hospital, Zigong, 643000, China
| | - Yiqing Jiang
- Department of Oncology, Zigong First People's Hospital, Zigong, 643000, China
| | - Guili Cao
- Department of Oncology, Zigong First People's Hospital, Zigong, 643000, China
| | - Ke Su
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoqin Liu
- Department of Oncology, Zigong First People's Hospital, Zigong, 643000, China.
| |
Collapse
|
12
|
Chen R, Ma C, Qian H, Xie X, Zhang Y, Lu D, Hu S, Zhang M, Liu F, Zou Y, Gao Q, Zhou H, Liu H, Lin M, Ge G, Gao D. Mutant KRAS and CK2 Cooperatively Stimulate SLC16A3 Activity to Drive Intrahepatic Cholangiocarcinoma Progression. Cancer Res 2025; 85:1253-1269. [PMID: 39854318 DOI: 10.1158/0008-5472.can-24-2097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/14/2024] [Accepted: 01/16/2025] [Indexed: 01/26/2025]
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is a lethal malignancy affecting the liver and biliary system. Enhanced understanding of the pathogenic mechanisms underlying iCCA tumorigenesis and the discovery of appropriate therapeutic targets are imperative to improve patient outcomes. In this study, we investigated the functions and regulations of solute carrier family 16 member 3 (SLC16A3), which has been reported to be a biomarker of poor prognosis in iCCA. High SLC16A3 expression was enriched in KRAS viral oncogene homolog-mutated iCCA tumors, and mutant KRAS elevated SLC16A3 expression via the PI3K-AKT-mTORC1-HIF1α pathway. SLC16A3 not only enhanced glycolysis but also induced epigenetic reprogramming to regulate iCCA progression. Phosphorylation of SLC16A3 at S436 was vital for its oncogenic function and was linked to iCCA progression. Casein kinase 2 (CK2) directly phosphorylated SLC16A3 at S436, and CK2 inhibition with CX-4945 (silmitasertib) reduced the growth of KRAS-mutated iCCA tumor xenografts and patient-derived organoids. Together, this study provides valuable insights into the diverse functions of SLC16A3 in iCCA and comprehensively elucidates the upstream regulatory mechanisms, providing potential therapeutic strategies for patients with iCCA with KRAS mutations. Significance: Characterization of the oncogenic function and regulators of SLC16A3 in intrahepatic cholangiocarcinogenesis revealed the potential of CK2 inhibitors as a promising treatment for KRAS-mutated tumors.
Collapse
Affiliation(s)
- Ran Chen
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of General Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Cuihong Ma
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haoran Qian
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinyu Xie
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuxue Zhang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dayun Lu
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shunjie Hu
- Department of Hepatobiliary Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mao Zhang
- Department of Hepatobiliary Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fen Liu
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yunhao Zou
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiang Gao
- Department of Hepatobiliary Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Hu Zhou
- University of Chinese Academy of Sciences, Beijing, China
- Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Hailong Liu
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of General Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Moubin Lin
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of General Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Gaoxiang Ge
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Daming Gao
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
13
|
Tang J, Yang Y, He Z, Wang C, Gao Z, Meng Y, Chen X, Wang Q, Zheng G, Hu J, Chang C. Construction of dual-targeted liposomes loaded with celastrol and their application in treating intrahepatic cholangiocarcinoma. Mater Today Bio 2025; 31:101581. [PMID: 40124341 PMCID: PMC11929942 DOI: 10.1016/j.mtbio.2025.101581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 01/29/2025] [Accepted: 02/14/2025] [Indexed: 03/25/2025] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a rare malignant tumor with limited treatment options. Celastrol (Cela) shows potential treatment for ICC, but its clinical use is hindered by poor water solubility and toxic side effects. To address these challenges and enhance its anti-tumor efficacy, we developed hyaluronic acid (HA)-coated triphenylphosphine complex-modified liposomes (HCTL) for accurate delivery of Cela to tumor cell mitochondria.HCTL enhances Cela's water solubility and demonstrates a high rate of encapsulation, stability, and sustained drug release behavior. Moreover, HCTL exhibits outstanding anti-ICC efficacy by efficiently inducing apoptosis in ICC cells via the mitochondrial pathway due to its precise targeting capabilities. In an in-situ ICC mouse model activated by hydrodynamic transfection of AKT and Yap, HCTL downregulates tumor-associated proliferative indices, attenuates the severity of liver injury and modulates the tumor microenvironment. Importantly, HCTL overcomes systemic toxicity associated with Cela. To sum up, HCTL is a potentially effective drug delivery system for ICC treatment.
Collapse
Affiliation(s)
- Jun Tang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Hubei Shizhen Laboratory, Wuhan, Hubei, 430061, China
- Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Yimeng Yang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Hubei Shizhen Laboratory, Wuhan, Hubei, 430061, China
- Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Zihan He
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Hubei Shizhen Laboratory, Wuhan, Hubei, 430061, China
- Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Chuting Wang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Hubei Shizhen Laboratory, Wuhan, Hubei, 430061, China
- Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Ziwei Gao
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Hubei Shizhen Laboratory, Wuhan, Hubei, 430061, China
- Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Yan Meng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Hubei Shizhen Laboratory, Wuhan, Hubei, 430061, China
- Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Xinyan Chen
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Qi Wang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Guohua Zheng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Hubei Shizhen Laboratory, Wuhan, Hubei, 430061, China
| | - Junjie Hu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Hubei Shizhen Laboratory, Wuhan, Hubei, 430061, China
- Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Cong Chang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Hubei Shizhen Laboratory, Wuhan, Hubei, 430061, China
| |
Collapse
|
14
|
Ren X, Wu Y, Song T, Yang Q, Zhou Q, Lin J, Xu L, Xiang B, Chen Z, Zhang Y. Clonorchis sinensis Promotes Intrahepatic Cholangiocarcinoma Progression by Activating FASN-Mediated Fatty Acid Metabolism. J Gastroenterol Hepatol 2025; 40:1004-1015. [PMID: 39806791 DOI: 10.1111/jgh.16879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/27/2024] [Accepted: 12/24/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND Clonorchis sinensis infection is an important risk factor for intrahepatic cholangiocarcinoma (ICC). C. sinensis positive (C.s+) ICC patients had much shorter overall survival (OS) compared with C. sinensis negative (C.s-) group. This study aims to explore the impact and underlying mechanism of C. sinensis infection on ICC progression. METHODS In this study, ICC patients underwent surgery from two medical centers enrolled. RNA sequencing was used to determine the downstream activated pathways and genes. Furthermore, we demonstrated the potential mechanism of C. sinensis infection in promoting ICC progression through in vitro co culture systems and two animal models. RESULTS Through RNA sequencing, we found fatty acid metabolism and the expression of fatty acid synthase (FASN), a key enzyme catalyzing long-chain fatty acid synthesis, were significantly elevated in C.s+ ICCs. Then, we found excretory/secretory products (ESPs) secreted by C. sinensis could significantly upregulate the expression of transcription factor E2F1, thereby promoting FASN expression and fatty acid synthesis in tumor cells, which ultimately accelerating tumor progression. However, the promotive effect disappeared when FASN was knocked down. Meanwhile, ESPs could promote tumor growth, increasing FASN expression and free fatty acid level in both subcutaneous and orthotopic mouse models. CONCLUSION This study indicates that C. sinensis infection could upregulate the level of FASN and activate fatty acid synthesis pathway, thereby accelerating ICC progression. This provides a new insight for the clinical treatment of ICC with C. sinensis infection.
Collapse
Affiliation(s)
- Xiaoxue Ren
- Department of Oncology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yanqing Wu
- Department of Gastroenterology and Hepatology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Tongtong Song
- Center of Hepato-Pancreato-Biliary Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Qingxia Yang
- Department of Oncology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Qianying Zhou
- Department of Oncology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jie Lin
- Second Department of General Surgery, Shunde Hospital, Southern Medical University, Foshan, China
| | - Lixia Xu
- Department of Oncology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Bangde Xiang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Zebin Chen
- Center of Hepato-Pancreato-Biliary Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ying Zhang
- Department of Oncology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
15
|
Huang Y, Ye Y, Yi T, Yuan C, Li D. CLDN18.2: a potential nanotherapeutic target for cholangiocarcinoma. Front Pharmacol 2025; 16:1559558. [PMID: 40206086 PMCID: PMC11979197 DOI: 10.3389/fphar.2025.1559558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/06/2025] [Indexed: 04/11/2025] Open
Abstract
Cholangiocarcinoma (CCA) is an extremely malignant and aggressive primary liver tumor that has become increasingly prevalent in recent years. Unfortunately, the prognosis for patients diagnosed with CCA remains exceptionally poor. Currently, the primary treatment options include surgery and chemotherapy. However, the effectiveness of postoperative chemotherapy is limited, characterized by a brief duration of remission and high rates of recurrence and metastasis, resulting in minimal survival benefits for patients. Therefore, there is an urgent need to develop new therapeutic strategies that are both safer and more effective. In recent years, as oncology research has progressed, Claudin 18.2 (CLDN18.2)-targeted therapy has emerged, showing promise for improving the survival of patients with CLDN18.2-positive cancers. Studies suggest that combining new agents targeting CLDN18.2 with standard cytotoxic therapies offers significant survival benefits in CLDN18.2-positive solid tumors, which is expected to provide a more effective treatment option for patients with advanced cholangiocarcinoma. While existing immune checkpoints or therapeutic targets have limitations, such as low positivity rates and minimal absolute improvement in patient survival time, drugs that target FGFR, IDH, and Her-2, along with antiangiogenic agents, have shown promise for patients with advanced malignancies affecting the bile ducts. Therefore, exploring these novel therapeutic strategies may yield new insights for precision treatment of cholangiocarcinoma in the future. This review aims to focus on the potential application of CLDN18.2 in treating solid tumors, particularly cholangiocarcinoma, to systematically summarize research progress related to this target and thoroughly examine its value in diagnosing, treating, and assessing the prognosis of cholangiocarcinoma.
Collapse
Affiliation(s)
- Yu Huang
- Department of Oncology, Yichang Central People’s Hospital and The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, China
| | - Yulu Ye
- Clinical Medical College, YouJiang Medical University for Nationalities, Baise, Guangxi, China
| | - Tingzhuang Yi
- Department of Oncology, Affiliated Hospital of YouJiang Medical University for Nationalities/Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, Baise, Guangxi, China
| | - Cheng Yuan
- Department of Oncology, Yichang Central People’s Hospital and The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, China
- Tumor Prevention and Treatment Center of Three Gorges University and Cancer Research Institute of Three Gorges University, Yichang, Hubei, China
- Clinical Medical Research Center for Precision Diagnosis and Treatment of Lung Cancer and Management of Advanced Cancer Pain of Hubei Province, Wuhan, China
| | - Daojun Li
- Department of Oncology, Yichang Central People’s Hospital and The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, China
- Tumor Prevention and Treatment Center of Three Gorges University and Cancer Research Institute of Three Gorges University, Yichang, Hubei, China
- Clinical Medical Research Center for Precision Diagnosis and Treatment of Lung Cancer and Management of Advanced Cancer Pain of Hubei Province, Wuhan, China
| |
Collapse
|
16
|
Huang TF, Luo C, Guo LB, Liu HZ, Li JT, Lin QZ, Fan RL, Zhou WP, Li JD, Lin KC, Tang SC, Zeng YY. Preoperative prediction of textbook outcome in intrahepatic cholangiocarcinoma by interpretable machine learning: A multicenter cohort study. World J Gastroenterol 2025; 31:100911. [PMID: 40124276 PMCID: PMC11924007 DOI: 10.3748/wjg.v31.i11.100911] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/10/2025] [Accepted: 02/13/2025] [Indexed: 03/13/2025] Open
Abstract
BACKGROUND To investigate the preoperative factors influencing textbook outcomes (TO) in Intrahepatic cholangiocarcinoma (ICC) patients and evaluate the feasibility of an interpretable machine learning model for preoperative prediction of TO, we developed a machine learning model for preoperative prediction of TO and used the SHapley Additive exPlanations (SHAP) technique to illustrate the prediction process. AIM To analyze the factors influencing textbook outcomes before surgery and to establish interpretable machine learning models for preoperative prediction. METHODS A total of 376 patients diagnosed with ICC were retrospectively collected from four major medical institutions in China, covering the period from 2011 to 2017. Logistic regression analysis was conducted to identify preoperative variables associated with achieving TO. Based on these variables, an EXtreme Gradient Boosting (XGBoost) machine learning prediction model was constructed using the XGBoost package. The SHAP (package: Shapviz) algorithm was employed to visualize each variable's contribution to the model's predictions. Kaplan-Meier survival analysis was performed to compare the prognostic differences between the TO-achieving and non-TO-achieving groups. RESULTS Among 376 patients, 287 were included in the training group and 89 in the validation group. Logistic regression identified the following preoperative variables influencing TO: Child-Pugh classification, Eastern Cooperative Oncology Group (ECOG) score, hepatitis B, and tumor size. The XGBoost prediction model demonstrated high accuracy in internal validation (AUC = 0.8825) and external validation (AUC = 0.8346). Survival analysis revealed that the disease-free survival rates for patients achieving TO at 1, 2, and 3 years were 64.2%, 56.8%, and 43.4%, respectively. CONCLUSION Child-Pugh classification, ECOG score, hepatitis B, and tumor size are preoperative predictors of TO. In both the training group and the validation group, the machine learning model had certain effectiveness in predicting TO before surgery. The SHAP algorithm provided intuitive visualization of the machine learning prediction process, enhancing its interpretability.
Collapse
Affiliation(s)
- Ting-Feng Huang
- Department of Hepatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, Fujian Province, China
| | - Cong Luo
- Department of Hepatopancreatobiliary Surgery, The People’s Hospital of Zizhong County, Neijiang 540045, Sichuan Province, China
| | - Luo-Bin Guo
- Department of Hepatopancreatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, Fujian Province, China
| | - Hong-Zhi Liu
- Department of Hepatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, Fujian Province, China
| | - Jiang-Tao Li
- Department of General Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Qi-Zhu Lin
- Department of Hepatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, Fujian Province, China
| | - Rui-Lin Fan
- Department of Hepatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, Fujian Province, China
| | - Wei-Ping Zhou
- Department of the 3rd Liver Surgery, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai 200438, China
| | - Jing-Dong Li
- The Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Ke-Can Lin
- Department of Hepatopancreatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, Fujian Province, China
| | - Shi-Chuan Tang
- Department of Hepatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, Fujian Province, China
| | - Yong-Yi Zeng
- Department of Hepatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, Fujian Province, China
| |
Collapse
|
17
|
Murakami T, Matsuyama R, Yabushita Y, Homma Y, Sawada Y, Miyake K, Kumamoto T, Takeda K, Maeda S, Yamanaka S, Endo I. Efficacy of Conversion Surgery for Initially Unresectable Biliary Tract Cancer That Has Responded to Down-Staging Chemotherapy. Cancers (Basel) 2025; 17:873. [PMID: 40075720 PMCID: PMC11898483 DOI: 10.3390/cancers17050873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/09/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Due to the limited efficacy of chemotherapy alone in the treatment of unresectable biliary tract cancer, we performed conversion surgery in patients with unresectable biliary tract cancer who responded to down-staging chemotherapy. METHODS Patients with unresectable biliary tract cancer who initiated chemotherapy between 2007 and 2018 were included in this study. We evaluated the short- and long-term outcomes of patients with initially unresectable biliary tract cancer who underwent conversion surgery. RESULTS A total of 101 patients with unresectable biliary tract cancers treated with chemotherapy were eligible for the present study. A total of 20 patients eventually underwent conversion surgery; these patients had locally advanced disease in 6 cases, liver metastasis in 6 cases, para-aortic lymph node metastasis in 5 cases, and peritoneal dissemination in 3 cases. The mean operative time was 823 min, and the mean intraoperative blood loss was 1902 mL. Histological R0 resections were performed in 17 patients. Postoperative complications of Clavien-Dindo grade IIIa or higher occurred in 10 patients, with no surgery-associated deaths. The 5-year survival rate was significantly higher in patients who underwent conversion surgery (65.0%) than in those who did not (4.3%, p < 0.001). CONCLUSIONS Conversion surgery for initially unresectable biliary tract cancer resulted in favorable overall survival and was safely performed despite its high surgical invasiveness. Conversion surgery for an initially unresectable biliary tract cancer is worth considering.
Collapse
Affiliation(s)
- Takashi Murakami
- Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan; (T.M.); (R.M.)
| | - Ryusei Matsuyama
- Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan; (T.M.); (R.M.)
| | - Yasuhiro Yabushita
- Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan; (T.M.); (R.M.)
| | - Yuki Homma
- Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan; (T.M.); (R.M.)
| | - Yu Sawada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan; (T.M.); (R.M.)
| | - Kentaro Miyake
- Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan; (T.M.); (R.M.)
| | - Takafumi Kumamoto
- Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan; (T.M.); (R.M.)
| | - Kazuhisa Takeda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan; (T.M.); (R.M.)
| | - Shin Maeda
- Department of Gastroenterology, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Shoji Yamanaka
- Department of Pathology, Yokohama City University Hospital, Yokohama 236-0004, Japan
| | - Itaru Endo
- Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan; (T.M.); (R.M.)
| |
Collapse
|
18
|
Zhong B, Du J, Liu F, Sun S. The Role of Yes-Associated Protein in Inflammatory Diseases and Cancer. MedComm (Beijing) 2025; 6:e70128. [PMID: 40066231 PMCID: PMC11892025 DOI: 10.1002/mco2.70128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 02/02/2025] [Accepted: 02/11/2025] [Indexed: 03/17/2025] Open
Abstract
Yes-associated protein (YAP) plays a central role in the Hippo pathway, primarily governing cell proliferation, differentiation, and apoptosis. Its significance extends to tumorigenesis and inflammatory conditions, impacting disease initiation and progression. Given the increasing relevance of YAP in inflammatory disorders and cancer, this study aims to elucidate its pathological regulatory functions in these contexts. Specifically, we aim to investigate the involvement and molecular mechanisms of YAP in various inflammatory diseases and cancers. We particularly focus on how YAP activation, whether through Hippo-dependent or independent pathways, triggers the release of inflammation and inflammatory mediators in respiratory, cardiovascular, and digestive inflammatory conditions. In cancer, YAP not only promotes tumor cell proliferation and differentiation but also modulates the tumor immune microenvironment, thereby fostering tumor metastasis and progression. Additionally, we provide an overview of current YAP-targeted therapies. By emphasizing YAP's role in inflammatory diseases and cancer, this study aims to enhance our understanding of the protein's pivotal involvement in disease processes, elucidate the intricate pathological mechanisms of related diseases, and contribute to future drug development strategies targeting YAP.
Collapse
Affiliation(s)
- Bing Zhong
- Department of Otolaryngology‐Head and Neck SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
| | - Jintao Du
- Department of Otolaryngology‐Head and Neck SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
| | - Feng Liu
- Department of Otolaryngology‐Head and Neck SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
| | - Silu Sun
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesChinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and ManagementWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| |
Collapse
|
19
|
Gu S, Zheng Y, Chen C, Liu J, Wang Y, Wang J, Li Y. Research progress on the molecular mechanisms of Saikosaponin D in various diseases (Review). Int J Mol Med 2025; 55:37. [PMID: 39717942 PMCID: PMC11722148 DOI: 10.3892/ijmm.2024.5478] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/04/2024] [Indexed: 12/25/2024] Open
Abstract
Bupleurum, a Traditional Chinese Medicine (TCM) herb, is widely used in China and other Asian countries to manage chronic liver inflammation and viral hepatitis. Saikosaponin D (SSD), a triterpenoid saponin extracted from Bupleurum, exhibits extensive pharmacological properties, including anti‑inflammatory, antioxidant, anti‑apoptotic, anti‑fibrotic and anti‑cancer effects, making it a therapeutic candidate for numerous diseases. Clarifying the targets and molecular mechanisms underlying TCM compounds is essential for scientifically validating TCM's therapeutic roles in disease prevention and treatment, as well as for identifying novel therapeutic targets and lead compounds. This analysis comprehensively examines SSD's mechanisms across various conditions, such as myocardial injury, pulmonary diseases, hepatic disorders, renal pathologies, neurological disorders, diabetes and cancer. In addition, challenges and potential solutions encountered in SSD research are addressed. SSD is posited as a promising monomer for multifaceted therapeutic applications and this article aims to enhance researchers' understanding of the current landscape of SSD studies, offering strategic insights to guide future investigations.
Collapse
Affiliation(s)
- Simin Gu
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Yiyuan Zheng
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Chong Chen
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Jing Liu
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Yanping Wang
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Junmin Wang
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Yong Li
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| |
Collapse
|
20
|
Guan C, Gao J, Zou X, Shi W, Hao Y, Ge Y, Xu Z, Yang C, Bi S, Jiang X, Kang P, Xu X, Zhong X. A Novel 167-Amino Acid Protein Encoded by CircPCSK6 Inhibits Intrahepatic Cholangiocarcinoma Progression via IKBα Ubiquitination. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409173. [PMID: 39836545 PMCID: PMC11904980 DOI: 10.1002/advs.202409173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 01/09/2025] [Indexed: 01/23/2025]
Abstract
Intrahepatic cholangiocarcinoma (ICC), a formidable challenge in oncology, demands innovative biomarkers and therapeutic targets. This research highlights the importance of the circular RNA (circRNA) circPCSK6 and its peptide derivative circPCSK6-167aa in ICC. CircPCSK6 is significantly downregulated in both ICC patients and mouse primary ICC models, and its lower expression is linked to adverse prognosis, highlighting its pivotal role in ICC pathogenesis. Functionally, this study elucidates the regulatory effect of circPCSK6-167aa on IκBα ubiquitination within the NF-κB pathway, which is mediated by its competitive binding to the E3 ligase RBBP6. This complex interaction leads to reduced activation of the NF-κB pathway, thereby curbing tumor cell proliferation, migration, invasion, stemness, and hepatic-lung metastasis in vivo. This groundbreaking discovery expands the understanding of circRNA-driven tumorigenesis through atypical signaling pathways. Additionally, this investigation identified EIF4A3 as a detrimental regulator of circPCSK6, exacerbating ICC malignancy. Importantly, by leveraging patient-derived xenograft (PDX), organoids, and organoid-derived PDX models, higher levels of circPCSK6-167aa enhance sensitivity to gemcitabine, indicating its potential to improve the effectiveness of chemotherapy. These insights emphasize the therapeutic promise of targeting circPCSK6-167aa, offering vital biological insights and clinical directions for developing cutting-edge therapeutic approaches, thus revealing innovative strategies and targets for future treatments.
Collapse
Affiliation(s)
- Canghai Guan
- General Surgery DepartmentThe 2nd Affiliated Hospital of Harbin Medical University148 Baojian StreetHarbinHeilongjiang Province150086China
- The Key Laboratory of Myocardial IschemiaHarbin Medical UniversityMinistry of Education148 Baojian StreetHarbinHeilongjiang150086China
| | - Jianjun Gao
- General Surgery DepartmentThe 2nd Affiliated Hospital of Harbin Medical University148 Baojian StreetHarbinHeilongjiang Province150086China
| | - Xinlei Zou
- General Surgery DepartmentThe 2nd Affiliated Hospital of Harbin Medical University148 Baojian StreetHarbinHeilongjiang Province150086China
| | - Wujiang Shi
- General Surgery DepartmentThe 2nd Affiliated Hospital of Harbin Medical University148 Baojian StreetHarbinHeilongjiang Province150086China
| | - Yunhe Hao
- General Surgery DepartmentThe 2nd Affiliated Hospital of Harbin Medical University148 Baojian StreetHarbinHeilongjiang Province150086China
| | - Yifei Ge
- General Surgery DepartmentThe 2nd Affiliated Hospital of Harbin Medical University148 Baojian StreetHarbinHeilongjiang Province150086China
| | - Zhaoqiang Xu
- General Surgery DepartmentThe 2nd Affiliated Hospital of Harbin Medical University148 Baojian StreetHarbinHeilongjiang Province150086China
| | - Chengru Yang
- General Surgery DepartmentThe 2nd Affiliated Hospital of Harbin Medical University148 Baojian StreetHarbinHeilongjiang Province150086China
| | - Shaowu Bi
- General Surgery DepartmentThe 2nd Affiliated Hospital of Harbin Medical University148 Baojian StreetHarbinHeilongjiang Province150086China
| | - Xingming Jiang
- General Surgery DepartmentThe 2nd Affiliated Hospital of Harbin Medical University148 Baojian StreetHarbinHeilongjiang Province150086China
| | - Pengcheng Kang
- General Surgery DepartmentThe 2nd Affiliated Hospital of Harbin Medical University148 Baojian StreetHarbinHeilongjiang Province150086China
| | - Xiaoxue Xu
- School of Health Administration Harbin Medical University148 Baojian StreetHarbinHeilongjiang Province150086China
| | - Xiangyu Zhong
- General Surgery DepartmentThe 2nd Affiliated Hospital of Harbin Medical University148 Baojian StreetHarbinHeilongjiang Province150086China
| |
Collapse
|
21
|
Liu QQ, Yan J, Ye YF, Yang CN, Chen ZJ, Lin HM, Zhang ZT, Zhang R. Efficacy and conversion outcome of chemotherapy combined with PD-1 inhibitor for patients with unresectable or recurrent gallbladder carcinoma: a real-world exploratory study. World J Surg Oncol 2025; 23:69. [PMID: 40022061 PMCID: PMC11869664 DOI: 10.1186/s12957-025-03703-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 02/03/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Gallbladder carcinoma (GBC) is an extremely aggressive tumor of the biliary tract with a bleak prognosis, and the evidence supporting the benefit of available systemic therapy for advanced GBC is scarce. Herein, this study intended to investigate the real-world outcome of chemotherapy combined with programmed death-1 (PD-1) inhibitor for the management of unresectable or recurrent GBC. METHODS From January 2018 to December 2023, consecutive patients who were treated with systematic treatment, including chemotherapy or the combination of chemotherapy plus PD-1 inhibitor, for unresectable or recurrent GBC were retrospectively identified. Clinical data regarding baseline characteristics, therapeutic response, adverse events (AEs), and oncological outcomes were collected. RESULTS The eligible patients were allocated to combination therapy arm (n = 46) and mono-chemotherapy arm (n = 19). After propensity score matching (PSM), 16 patients were allocated in each arm. The overall survival (OS) and progression-free survival (PFS) of combination therapy were marginally superior to mono-chemotherapy both before and after PSM. The combination therapy exhibited advantage over mono-chemotherapy in regards to partial response (PR) (before PSM: P = 0.009; after PSM: P = 0.037) and objective response rate (ORR) (before PSM: P = 0.006; after PSM: P = 0.015). In combined therapy cohort, 1 patient achieve a complete response, and 13 patients were assessed as appropriate for surgical excision, among which 1 patient refused further surgical intervention. CONCLUSIONS In patients with unresectable or recurrent GBC, the combination of chemotherapy and PD-1 inhibitor as first-line therapy exhibited prolonged OS and PFS, and increased PR and ORR over those receiving chemotherapy alone, with an acceptable toxicity profile. The combination therapy may be a potential conversion therapy in unresectable GBC patients.
Collapse
Affiliation(s)
- Qin-Qin Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, Guangdong, China
| | - Jian Yan
- Department of Hepatobiliary surgery, the Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Yan-Fang Ye
- Clinical Research Design Division, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Cai-Ni Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Zhi-Jun Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Hao-Ming Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | | | - Rui Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| |
Collapse
|
22
|
Chen P, Yang Z, Ning P, Yuan H, Qi Z, Li Q, Meng B, Zhang X, Yu H. To accurately predict lymph node metastasis in patients with mass-forming intrahepatic cholangiocarcinoma by using CT radiomics features of tumor habitat subregions. Cancer Imaging 2025; 25:19. [PMID: 40011960 PMCID: PMC11863903 DOI: 10.1186/s40644-025-00842-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 02/17/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND This study aims to introduce the concept of habitat subregions and construct an accurate prediction model by analyzing refined medical images, to predict lymph node metastasis (LNM) in patients with intrahepatic cholangiocarcinoma (ICC) before surgery, and to provide personalized support for clinical decision-making. METHODS Clinical, radiological, and pathological data from ICC patients were retrospectively collected. Using information from the arterial and venous phases of multisequence CT images, tumor habitat subregions were delineated through the K-means clustering algorithm. Radiomic features were extracted and screened, and prediction models based on different subregions were constructed and compared with traditional intratumoral models. Finally, a lymph node metastasis prediction model was established by integrating the features of several subregional models, and its performance was evaluated. RESULTS A total of 164 ICC patients were included in this study, 103 of whom underwent lymph node dissection. The patients were divided into LNM- and LNM + groups on the basis of lymph node status, and significant differences in white blood cell indicators were found between the two groups. Survival analysis revealed that patients with positive lymph nodes had significantly worse prognoses. Through cluster analysis, the optimal number of habitat subregions was determined to be 5, and prediction models based on different subregions were constructed. A comparison of the performance of each model revealed that the Habitat1 and Habitat5 models had excellent performance. The optimal model obtained by fusing the features of the Habitat1 and Habitat5 models had AUC values of 0.923 and 0.913 in the training set and validation set, respectively, demonstrating good predictive ability. Calibration curves and decision curve analysis further validated the superiority and clinical application value of the model. CONCLUSIONS This study successfully constructed an accurate prediction model based on habitat subregions that can effectively predict the lymph node metastasis of ICC patients preoperatively. This model is expected to provide personalized decision support to clinicians and help to optimize treatment plans and improve patient outcomes.
Collapse
Affiliation(s)
- Pengyu Chen
- Department of Hepatobiliary Surgery, Henan University People'S Hospital, Henan Provincial People'S Hospital, Zhengzhou, China
- Department of Hepatobiliary Surgery, Henan Provincial People's Hospital, Zhengzhou, China
| | - Zhenwei Yang
- Department of Hepatobiliary Surgery, Henan University People'S Hospital, Henan Provincial People'S Hospital, Zhengzhou, China
- Department of Hepatobiliary Surgery, Henan Provincial People's Hospital, Zhengzhou, China
| | - Peigang Ning
- Department of Radiology, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Hao Yuan
- Department of Hepatobiliary Surgery, Henan Provincial People's Hospital, Zhengzhou, China
| | - Zuochao Qi
- Department of Hepatobiliary Surgery, Henan Provincial People's Hospital, Zhengzhou, China
| | - Qingshan Li
- Department of Hepatobiliary Surgery, Henan Provincial People's Hospital, Zhengzhou, China
| | - Bo Meng
- Department of Hepatobiliary Surgery, Henan Cancer Hospital, Zhengzhou, China
| | - Xianzhou Zhang
- Department of Hepatobiliary Surgery, Henan Cancer Hospital, Zhengzhou, China
| | - Haibo Yu
- Department of Hepatobiliary Surgery, Henan University People'S Hospital, Henan Provincial People'S Hospital, Zhengzhou, China.
- Department of Hepatobiliary Surgery, Henan Provincial People's Hospital, Zhengzhou, China.
| |
Collapse
|
23
|
Zhang J, Ruan K, Chu Z, Wang X, Gu Y, Jin H, Zhang X, Liu Q, Yang J. Reprogramming of fatty acid metabolism: a hidden force regulating the occurrence and progression of cholangiocarcinoma. Cell Death Discov 2025; 11:72. [PMID: 39984452 PMCID: PMC11845788 DOI: 10.1038/s41420-025-02351-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/22/2025] [Accepted: 02/11/2025] [Indexed: 02/23/2025] Open
Abstract
Cholangiocarcinoma (CCA) is a malignant tumor that originates from the bile duct epithelium and with a poor outcome due to lack of effective early diagnostic methods. Surgical resection is the preferred method for cure, but treatment options are limited for advanced diseases, such as distant metastatic or locally progressive tumors. Therefore, it is urgent to explore other new treatment methods. As modern living standards rise, the acceptance of high-fat, high-protein, and high-carbohydrate diets is growing among the public, and the resulting metabolic abnormalities are intimately linked to the initiation and spread of tumors. Metabolic reprogramming is a key mechanism in the process of tumor development and progression and is closely related to cancer cell proliferation, metastasis and drug resistance. Fatty acid (FA) metabolism, an integral component of cancer cell metabolism, can provide an energy source for cancer cells and participate in cell signaling, the regulation of the immune response and the maintenance of homeostasis of the internal environment, which are closely linked to the development and progression of CCA. Therefore, a better understanding of FA metabolism may provide promising strategies for early diagnosis, prognostic assessment and targeted therapy for CCA patients. In this paper, we review the effects of FA metabolism on CCA development and progression, summarize related mechanisms and the existing clinical applications of targeted lipid metabolism in CCA, and explore new targets for CCA metabolic therapy.
Collapse
Affiliation(s)
- Jinglei Zhang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou, Zhejiang Province, 310053, China
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang Province, 310006, China
| | - Kaiyi Ruan
- Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
| | - Zhuohuan Chu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou, Zhejiang Province, 310053, China
| | - Xiang Wang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang Province, 310006, China
| | - Ye Gu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang Province, 310006, China
| | - Hangbin Jin
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang Province, 310006, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang Province, 310006, China
- Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang Province, 310006, China
| | - Xiaofeng Zhang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou, Zhejiang Province, 310053, China
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang Province, 310006, China
- Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang Province, 310006, China
- Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang Province, 310006, China
| | - Qiang Liu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang Province, 310006, China.
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang Province, 310006, China.
- Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang Province, 310006, China.
| | - Jianfeng Yang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou, Zhejiang Province, 310053, China.
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang Province, 310006, China.
- Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China.
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang Province, 310006, China.
- Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang Province, 310006, China.
| |
Collapse
|
24
|
Huang JT, Hu D, Hong X, Zhou WJ, Shen J, Lv PH, Zhu XL. Effectiveness and safety of transarterial chemoembolization combined with PD-1 inhibitors and lenvatinib for unresectable intrahepatic cholangiocarcinoma. Eur Radiol Exp 2025; 9:21. [PMID: 39966235 PMCID: PMC11836246 DOI: 10.1186/s41747-025-00563-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 01/24/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND The objective of this study was to evaluate the therapeutic effectiveness and safety of transarterial chemoembolization (TACE) combined with programmed cell death-1 (PD-1) inhibitors and lenvatinib in the treatment of unresectable intrahepatic cholangiocarcinoma (uICC). METHODS This multicenter retrospective study screened patients with uICC who underwent TACE in combination with PD-1 inhibitors and lenvatinib between January 2019 and June 2023. Tislelizumab or camrelizumab (200 mg) was intravenously administered every three weeks. The daily dose of lenvatinib was 8 mg for patients weighing < 60 kg and 12 mg for those weighing ≥ 60 kg. In cases of disease progression, the therapeutic strategy was adjusted based on the clinical condition and individual patient's treatment preferences. Options included transitioning to standard or supportive care or continuing treatment with TACE in combination with PD-1 inhibitors and lenvatinib. The primary outcomes were overall survival (OS) and progression-free survival (PFS), while secondary outcomes included the objective response rate (ORR), disease control rate (DCR), and the incidence of adverse events (AEs). RESULTS A total of 59 patients with uICC were included. Over a median follow-up period of 32.3 months, the median OS and PFS were 25.8 months (95% confidence interval [CI]: 17.9-33.7) and 9.5 months (95% CI: 7.9-11.0), respectively. The ORR was 55.9%, and the DCR was 96.6%. Grade 3 or four AEs were observed in 15 of 59 patients (25.4%). CONCLUSION TACE combined with PD-1 inhibitors and lenvatinib demonstrated a promising therapeutic potential with a manageable safety profile for patients with uICC. RELEVANCE STATEMENT The combination of TACE, PD-1 inhibitors, and lenvatinib represents a novel therapeutic option for patients with uICC. KEY POINTS TACE plus PD-1 inhibitors and lenvatinib represent a promising therapeutic strategy for uICC. The safety profile of TACE plus PD-1 inhibitors and lenvatinib was manageable. This study demonstrated improved outcomes compared to prior standard-of-care treatments.
Collapse
Affiliation(s)
- Jin-Tao Huang
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Di Hu
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xin Hong
- Department of Interventional Radiology, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Wen-Jie Zhou
- Department of Interventional Radiology, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Jian Shen
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Peng-Hua Lv
- Department of Interventional Radiology, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, China.
| | - Xiao-Li Zhu
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
25
|
De Santis A, Zhu L, Tao J, Reißfelder C, Schölch S. Molecular subtypes of intrahepatic cholangiocarcinoma. Trends Mol Med 2025:S1471-4914(25)00008-5. [PMID: 39955217 DOI: 10.1016/j.molmed.2025.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 02/17/2025]
Abstract
Intrahepatic cholangiocarcinoma (iCCA) presents in two clinically distinct subtypes: large duct (LD-iCCA) and small duct (SD-iCCA). These subtypes exhibit significant molecular, genetic, and histopathological differences that impact patient prognosis and treatment responsiveness. This review advocates for a subtype-specific approach to iCCA research and clinical management, including tailored therapeutic strategies that consider distinct genetic profiles and tumor microenvironments. Current therapeutic approaches hold promise, yet efficacy varies by subtype. Additionally, subtype-specific molecular diagnostics, including DNA methylation-based classifiers and transcriptomic sequencing, have shown potential in refining iCCA subclassification, thereby guiding precision medicine efforts. This article outlines existing clinical trials, key research trajectories, and future directions for developing more effective subtype-adapted therapies for iCCA.
Collapse
Affiliation(s)
- Alessandro De Santis
- JCCU Translational Surgical Oncology (A430), German Cancer Research Center (DKFZ), Heidelberg, Germany; DKFZ-Hector Cancer Institute, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Lei Zhu
- JCCU Translational Surgical Oncology (A430), German Cancer Research Center (DKFZ), Heidelberg, Germany; DKFZ-Hector Cancer Institute, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Jianxin Tao
- JCCU Translational Surgical Oncology (A430), German Cancer Research Center (DKFZ), Heidelberg, Germany; DKFZ-Hector Cancer Institute, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christoph Reißfelder
- DKFZ-Hector Cancer Institute, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sebastian Schölch
- JCCU Translational Surgical Oncology (A430), German Cancer Research Center (DKFZ), Heidelberg, Germany; DKFZ-Hector Cancer Institute, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
26
|
Zhang S, Zhang N, Wan T, He Y, Hao J, Liu Y, Liu Y, Chen B, Zhao W, Wang L, Luo D, Gao C, Yang Q. Oncometabolite D-2HG drives tumor metastasis and protumoral macrophage polarization by targeting FTO/m 6A/ANGPTL4/integrin axis in triple-negative breast cancer. J Exp Clin Cancer Res 2025; 44:41. [PMID: 39910592 PMCID: PMC11800637 DOI: 10.1186/s13046-025-03282-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/09/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND D-2-hydroxyglutarate (D-2HG), an oncometabolite derived from the tricarboxylic acid cycle. Previous studies have reported the diverse effects of D-2HG in pathophysiological processes, yet its role in breast cancer remains largely unexplored. METHODS We applied an advanced biosensor approach to detect the D-2HG levels in breast cancer samples. We then investigated the biological functions of D-2HG through multiple in vitro and in vivo assays. A joint MeRIP-seq and RNA-seq strategy was used to identify the target genes regulated by D-2HG-mediated N6-methyladenosine (m6A) modification. RNA pull-down assays were further applied to identify the reader that could specifically recognize the m6A modification on angiopoietin like 4 (ANGPTL4) mRNA and RNA immunoprecipitation was used to confirm the findings. RESULTS We found that D-2HG accumulated in triple-negative breast cancer (TNBC), exerting oncogenic effects both in vitro and in vivo by promoting TNBC cell growth and metastasis. Mechanistically, D-2HG enhanced global m6A RNA modifications in TNBC cells, notably upregulating m6A modification on ANGPTL4 mRNA, which was mediated by the inhibition of Fat-mass and obesity-associated protein (FTO), resulting in increased recognition of m6A-modified ANGPTL4 by YTH N6-methyladenosine RNA binding protein F1 (YTHDF1), thereby promoting the enhanced translation of ANGPTL4. As a secretory protein, ANGPTL4 subsequently activated the integrin-mediated JAK2/STAT3 signaling cascade in TNBC cells through autocrine signaling. Notably, the knockdown of ANGPTL4 or treatment with GLPG1087 (an integrin antagonist) significantly reduced D-2HG-induced proliferation and metastasis in TNBC cells. Additionally, ANGPTL4 was found to promote macrophage M2 polarization within the tumor microenvironment via paracrine signaling, further driving TNBC progression. The association of ANGPTL4 with poor prognosis in TNBC patients underscores its clinical relevance. CONCLUSIONS Our study unveils a previously unrecognized role for D-2HG-mediated RNA modification in TNBC progression and targeting the D-2HG/FTO/m6A/ANGPTL4/integrin axis can serve as a promising therapeutic target for TNBC patients.
Collapse
Affiliation(s)
- Siyue Zhang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, No. 107 Wenhuaxi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Ning Zhang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, No. 107 Wenhuaxi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Tong Wan
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, No. 107 Wenhuaxi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Yinqiao He
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, No. 107 Wenhuaxi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Jie Hao
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, No. 107 Wenhuaxi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Yiwei Liu
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, No. 107 Wenhuaxi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Yidong Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Bing Chen
- Biological Resource Center, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Wenjing Zhao
- Biological Resource Center, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Lijuan Wang
- Biological Resource Center, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Dan Luo
- Biological Resource Center, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Qifeng Yang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, No. 107 Wenhuaxi Road, Jinan, Shandong, 250012, People's Republic of China.
- Biological Resource Center, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China.
- Research Institute of Breast Cancer, Shandong University, Jinan, Shandong, 250012, People's Republic of China.
| |
Collapse
|
27
|
Xiao H, Wang J, Weng Z, Lin X, Shu M, Shen J, Sun P, Cai M, Xiang X, Li B, Wei L, Shi Y, Lai J, Kuang M, Yun J, Chen S, Peng S. A histopathology-based artificial intelligence system assisting the screening of genetic alteration in intrahepatic cholangiocarcinoma. Br J Cancer 2025; 132:195-202. [PMID: 39623041 PMCID: PMC11747625 DOI: 10.1038/s41416-024-02910-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Targeted therapy for intrahepatic cholangiocarcinoma (ICC) shows superior survival outcomes but patients with certain targetable alterations are no more than 20%. Genetic alteration screening for all ICC patients is of high cost and not routinely performed. This study intends to develop a histopathology-based artificial intelligence (AI)-assisted system for predicting genetic alteration of ICC. METHODS We constructed a Genetic Alteration Prediction (GAP) system based on multi-instance learning and self-supervised learning to predict genetic alterations using whole-slide images (WSIs) of H&E-stained slides. A total of 2069 WSIs from 232 ICC patients underwent surgery of the FAH-SYSU dataset were used for model construction and adjustment by five-fold cross-validation. Another 150 patients from three medical centres were used as independent external validations. We also compared the cost-effectiveness of GAP-assisted precise treatment and all-sequencing strategy to non-sequencing strategy. RESULTS The GAP was able to predict actionable genetic alterations of ICC, including FGFR2 and IDH. The area under the receiver operating characteristic curves (AUC) for FGFR2 and IDH were 0.754 and 0.713 in the internal dataset, and 0.724 and 0.656 in the external dataset, respectively. Furthermore, compared to giving chemotherapy without sequencing for every patient, GAP-assisted precise treatment could increase 1 progression-free quality-adjusted life month with a cost of $13871.72, the co-responding figure for all-sequencing strategy is $44538.93. Decision curve analysis showed that AI-assisted strategy provides better clinical benefits. CONCLUSIONS We constructed an AI-assisted genetic alteration screening system which is predictable to ICC actionable targets and has potential to assist precise targeted treatment of advanced ICC.
Collapse
Affiliation(s)
- Han Xiao
- Department of Medical Ultrasonics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianping Wang
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zongpeng Weng
- Department of Biology and Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaoxuan Lin
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Man Shu
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingxian Shen
- State Key Laboratory of Oncology in Southern China, Department of Medical Imaging, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Peng Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Muyan Cai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao Xiang
- Center of Hepato‑Pancreato‑Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
| | - Bin Li
- Clinical Trials Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lihong Wei
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yiyu Shi
- Department of CSE, University of Notre Dame, Notre Dame, IN, USA
| | - Jiaming Lai
- Center of Hepato‑Pancreato‑Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ming Kuang
- Center of Hepato‑Pancreato‑Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingping Yun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Shuling Chen
- Department of Medical Ultrasonics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Sui Peng
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- Clinical Trials Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
28
|
Zhan T, Betge J, Schulte N, Dreikhausen L, Hirth M, Li M, Weidner P, Leipertz A, Teufel A, Ebert MP. Digestive cancers: mechanisms, therapeutics and management. Signal Transduct Target Ther 2025; 10:24. [PMID: 39809756 PMCID: PMC11733248 DOI: 10.1038/s41392-024-02097-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/20/2024] [Accepted: 11/29/2024] [Indexed: 01/16/2025] Open
Abstract
Cancers of the digestive system are major contributors to global cancer-associated morbidity and mortality, accounting for 35% of annual cases of cancer deaths. The etiologies, molecular features, and therapeutic management of these cancer entities are highly heterogeneous and complex. Over the last decade, genomic and functional studies have provided unprecedented insights into the biology of digestive cancers, identifying genetic drivers of tumor progression and key interaction points of tumor cells with the immune system. This knowledge is continuously translated into novel treatment concepts and targets, which are dynamically reshaping the therapeutic landscape of these tumors. In this review, we provide a concise overview of the etiology and molecular pathology of the six most common cancers of the digestive system, including esophageal, gastric, biliary tract, pancreatic, hepatocellular, and colorectal cancers. We comprehensively describe the current stage-dependent pharmacological management of these malignancies, including chemo-, targeted, and immunotherapy. For each cancer entity, we provide an overview of recent therapeutic advancements and research progress. Finally, we describe how novel insights into tumor heterogeneity and immune evasion deepen our understanding of therapy resistance and provide an outlook on innovative therapeutic strategies that will shape the future management of digestive cancers, including CAR-T cell therapy, novel antibody-drug conjugates and targeted therapies.
Collapse
Affiliation(s)
- Tianzuo Zhan
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- DKFZ Hector Cancer Institute at University Medical Center Mannheim, Mannheim, Germany
- Mannheim Cancer Center, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Johannes Betge
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- DKFZ Hector Cancer Institute at University Medical Center Mannheim, Mannheim, Germany
- Mannheim Cancer Center, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Junior Clinical Cooperation Unit Translational Gastrointestinal Oncology and Preclinical Models, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nadine Schulte
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Mannheim Cancer Center, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lena Dreikhausen
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Michael Hirth
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Moying Li
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Philip Weidner
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Antonia Leipertz
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Andreas Teufel
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Matthias P Ebert
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
- DKFZ Hector Cancer Institute at University Medical Center Mannheim, Mannheim, Germany.
- Mannheim Cancer Center, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
29
|
Viganò L, Zanuso V, Fiz F, Cerri L, Laino ME, Ammirabile A, Ragaini EM, Viganò S, Terracciano LM, Francone M, Ieva F, Di Tommaso L, Rimassa L. CT-based radiogenomics of intrahepatic cholangiocarcinoma. Dig Liver Dis 2025; 57:118-124. [PMID: 39003163 DOI: 10.1016/j.dld.2024.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (ICC) is an aggressive disease with increasing incidence and its genetic alterations could be the target of systemic therapies. AIMS To elucidate if radiomics extracted from computed tomography (CT) may non-invasively predict ICC genetic alterations. METHODS All consecutive patients with a diagnosis of a mass-forming ICC (01/2016-06/2022) were considered. Inclusion criteria were availability of a high-quality contrast-enhanced CT and molecular profiling by NGS or FISH for FGFR2 fusion/rearrangement. The CT scan at diagnosis was considered. Genetic analyses were performed on surgical specimens (resectable patients) or biopsies (unresectable ones). The radiomic features were extracted using the LifeX software. Multivariate predictive models of the commonest genetic alterations were built. RESULTS In the 90 enrolled patients (58 NGS/32 FISH, median age 65 years), the most common genetic alterations were FGFR2 (20/90), IDH1 (10/58), and KRAS (9/58). At internal validation, the combined clinical-radiomic models achieved the best performance for the prediction of FGFR2 (AUC = 0.892) and IDH1 status (AUC = 0.819), outperforming the pure clinical and radiomic models. The radiomic model for predicting KRAS mutations achieved an AUC = 0.767 (vs. 0.660 of the clinical model) without further improvements with the addition of clinical features. CONCLUSIONS CT-based radiomics provides a reliable non-invasive prediction of ICC genetic status with a major impact on therapeutic strategies.
Collapse
Affiliation(s)
- Luca Viganò
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; Hepatobiliary Unit, Department of Minimally Invasive General & Oncologic Surgery, Humanitas Gavazzeni University Hospital, Bergamo, Italy.
| | - Valentina Zanuso
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Francesco Fiz
- Nuclear Medicine Unit, Department of Diagnostic Imaging, Ente Ospedaliero "Ospedali Galliera", Genoa, Italy; Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital, Tübingen, Germany
| | - Luca Cerri
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | | | - Angela Ammirabile
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; Department of Radiology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Elisa Maria Ragaini
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Samuele Viganò
- MOX laboratory, Department of Mathematics, Politecnico di Milano, Milan, Italy
| | - Luigi Maria Terracciano
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; Pathology Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Marco Francone
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; Department of Radiology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Francesca Ieva
- MOX laboratory, Department of Mathematics, Politecnico di Milano, Milan, Italy; CHDS - Center for Health Data Science, Human Technopole, Milan, Italy
| | - Luca Di Tommaso
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; Pathology Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Lorenza Rimassa
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
30
|
Liu B, Wang S, Wen T, Qiu H, Xiang L, Huang Z, Wu H, Li D, Li H. Developing a Prognostic Model for Intrahepatic Cholangiocarcinoma Patients With Elevated Preoperative Carbohydrate Antigen 19-9 Levels: Volume-Adjusted CA19-9 (VACA) as a Novel Biomarker. Cancer Control 2025; 32:10732748251317692. [PMID: 39946719 PMCID: PMC11826845 DOI: 10.1177/10732748251317692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/24/2024] [Accepted: 01/14/2025] [Indexed: 02/16/2025] Open
Abstract
PURPOSE The predictive sensitivity of carbohydrate antigen 19-9 (CA19-9) in assessing the prognosis of intrahepatic cholangiocarcinoma (ICC) remains inadequate. Integrating CA19-9 with tumor volume offers a potentially viable strategy for improving prognostic accuracy. This study aimed to develop a prognostic model utilizing volume-adjusted CA19-9 (VACA) for ICC patients. PATIENTS AND METHODS A retrospective analysis was conducted on data from 436 ICC patients. These patients from two centers were divided into the training (n = 291, Center 1) and validation (n = 145, Center 2) cohorts. Using the training cohort, univariate and multivariable Cox regression analyses were employed to identify clinicopathological characteristics significantly associated with overall survival (OS) and recurrence-free survival (RFS), which enabled the construction of prognostic nomograms both with and without VACA. The nomograms' discriminatory and calibration abilities were assessed using receiver operating characteristic (ROC) curves, decision curve analysis (DCA) curves, and calibration curves, applying both training and validation cohorts. RESULTS VACA emerged as an independent variable that significantly correlated with prognosis. The nomogram incorporating VACA demonstrated superior accuracy in predicting OS and RFS rates compared to the model without VACA. In the validation cohort, the nomogram with VACA yielded area under the ROC curve (AUC) values of 0.695 (95% CI = 0.597∼0.793) and 0.666 (95% CI = 0.559∼0.773) (1- year), 0.662 (95% CI = 0.518∼0.806) and 0.651 (95% CI = 0.446∼0.857) (3- years), and 0.701 (95% CI = 0.486∼0.916) and 0.703 (95% CI = 0.428∼0.978) (5- years) for OS and RFS, respectively, along with improved calibration and DCA curves. CONCLUSIONS VACA, formed by integrating tumor volume with CA19-9, exhibits promising prognostic capabilities. The nomogram incorporating data from two centers and utilizing VACA demonstrates robust prognostic performance and holds clinical utility. CONDENSED ABSTRACT Combining CA19-9 with tumor volume presents a potentially viable strategy for improving prognostic accuracy. The nomogram incorporating VACA demonstrates robust prognostic performance and holds clinical utility.
Collapse
Affiliation(s)
- Bo Liu
- Department of Hepatobiliary Pancreatic Tumor Center, Chongqing University Cancer Hospital, Chongqing, China
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Sheng Wang
- Department of Hepatobiliary Pancreatic Tumor Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Tao Wen
- Department of Hepatobiliary Pancreatic Tumor Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Haizhou Qiu
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Xiang
- Department of Hepatobiliary Pancreatic Tumor Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Zuotian Huang
- Department of Hepatobiliary Pancreatic Tumor Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Hong Wu
- Department of Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, China
| | - Dewei Li
- Department of Hepatobiliary Pancreatic Tumor Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Hui Li
- Department of Hepatobiliary Pancreatic Tumor Center, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
31
|
Yao W, Zhao K, Li X. Platelet stimulation-regulated expression of ILK and ITGB3 contributes to intrahepatic cholangiocarcinoma progression through FAK/PI3K/AKT pathway activation. Cell Mol Life Sci 2024; 82:19. [PMID: 39725790 DOI: 10.1007/s00018-024-05526-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024]
Abstract
OBJECTIVE Intrahepatic cholangiocarcinoma (iCCA) is a highly lethal hepatobiliary malignancy with an increasing incidence annually. Extensive research has elucidated the existence of a reciprocal interaction between platelets and cancer cells, which promotes tumor proliferation and metastasis. This study aims to investigate the function and mechanism underlying iCCA progression driven by the interplay between platelets and tumor cells, aiming to provide novel therapeutic strategies for iCCA. METHODS The associations between platelets and cancer development were investigated by analyzing the peripheral blood platelet count, degree of platelet activation and infiltration in the microenvironment of patients with iCCA. By co-culturing tumor cells with platelets, the influence of platelet stimulation on the epithelial-mesenchymal transition (EMT), proliferation, and metastasis of iCCA cells was assessed through in vitro and in vivo experiments. Quantitative proteomic profiling was conducted to identify key downstream targets that were altered in tumor cells following platelet stimulation. The RNA interference technique was utilized to investigate the impacts of gene silencing on the malignant biological behaviors of tumor cells. RESULTS Compared with healthy adults, patients with iCCA presented significantly higher levels of peripheral blood platelet counts, platelet activation and infiltration degrees, which were also found to be correlated with patient prognosis. Platelet stimulation greatly facilitated the EMT of iCCA cells, leading to enhanced proliferative and metastatic capabilities. Mechanistically, proteomic profiling identified a total of 67 up-regulated and 40 down-regulated proteins in iCCA cells co-cultured with platelets. Among these proteins, two elevated targets ILK and ITGB3, were further demonstrated to be partially responsible for platelet-induced iCCA progression, which might depend on their regulatory effects on FAK/PI3K/AKT signaling transduction. CONCLUSIONS Our data revealed that platelet-related indices were abnormally ascendant in iCCA patients compared to healthy adults. Co-culturing with platelets enhanced the progression of EMT, and the motility and viability of iCCA cells in vitro and in vivo. Proteomic profiling discovered that platelets promoted the development of iCCA through FAK/PI3K/AKT pathway by means of elevating the expression of ILK and ITGB3, indicating that both proteins are promising therapeutic targets for iCCA with the guidance of platelet-related indices.
Collapse
Affiliation(s)
- Wei Yao
- Department of Oncology Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Kai Zhao
- Department of Biliary and Pancreatic Surgery, Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Xiangyu Li
- Department of Thoracic Surgery Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
32
|
Hu Z, Wang X, Zhang X, Sun W, Mao J. An analysis of the global burden of gallbladder and biliary tract cancer attributable to high BMI in 204 countries and territories: 1990-2021. Front Nutr 2024; 11:1521770. [PMID: 39811677 PMCID: PMC11729382 DOI: 10.3389/fnut.2024.1521770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 12/04/2024] [Indexed: 01/06/2025] Open
Abstract
Background Gallbladder and biliary tract cancers (GBTCs) are aggressive with poor prognosis, often undetected until advanced stages. High Body Mass Index (BMI) is a significant risk factor, contributing substantially to GBTC mortality and Disability-Adjusted Life Years (DALYs). This study aimed to quantify the global burdens of GBTCs attributable to high BMI from 1990 to 2021, thereby developing more rational prevention and treatment strategies for GBTC. Methods Data were extracted from the Global Burden of Disease (GBD) 2021. Age-standardized rates of mortality (ASMR), and DALYs (ASDR) for GBTCs due to high BMI were calculated by years, genders, ages, geographical locations, and sociodemographic index (SDI). The estimated annual percentage change (EAPC) was calculated to evaluate the temporal trends from 1990 to 2021. Decomposition and frontier analyses were conducted to understand the driving forces behind burden changes and to identify top-performing countries. Inequality analysis was conducted to assess burden disparities across different SDI levels. The disease burden was forecasted through 2035 using the Bayesian age period cohort (BAPC) model. Results Globally, ASMR and ASDR for GBTCs related to high BMI decreased from 1990 to 2021; however, the absolute number of deaths and DALYs cases more than doubled, and similar patterns are projected to continue over the next 14 years in the absence of intervention. High SDI regions showed higher burdens due to higher obesity rates, population growth, and aging, while low SDI regions faced higher EAPCs due to limited resources. Moreover, this inequality has become more significant. Females were more susceptible across all age groups. Notable variations in burden management were observed among countries, with some low SDI nations demonstrating superior performance to high SDI countries. Conclusion Despite the decline in rates, the burden of GBTCs attributable to high BMI remains substantial, underscoring the need for targeted prevention strategies for high BMI, particularly in high SDI regions. Gender and age disparities necessitate tailored health interventions.
Collapse
Affiliation(s)
| | | | | | - Wuping Sun
- Department of Clinical Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jun Mao
- Department of Clinical Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
33
|
Zhang R, Tan Y, Liu M, Wang L. Lymph node metastasis of intrahepatic cholangiocarcinoma: the present and prospect of detection and dissection. Eur J Gastroenterol Hepatol 2024; 36:1359-1369. [PMID: 39475782 PMCID: PMC11527382 DOI: 10.1097/meg.0000000000002856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/06/2024] [Indexed: 11/02/2024]
Abstract
Intrahepatic cholangiocarcinoma (ICC) ranks as the second most primary liver cancer that often goes unnoticed with a high mortality rate. Hepatectomy is the main treatment for ICC, but only 15% of patients are suitable for surgery. Despite advancements in therapeutic approaches, ICC has an unfavorable prognosis, largely due to lymph node metastasis (LNM) that is closely linked to the elevated recurrence rates. Consequently, the identification of precise and suitable techniques for the detection and staging of LNM assumes paramount importance for ICC therapy. While preoperative imaging plays a crucial role in ICC diagnosis, its efficacy in accurately diagnosing LNM remains unsatisfactory. The inclusion of lymph node dissection as part of the hepatectomy procedures is significant for the accurate pathological diagnosis of LNM, although it continues to be a topic of debate. The concept of sentinel lymph node in ICC has presented a novel and potentially valuable approach for diagnosing LNM. This review aims to explore the current state and prospects of LNM in ICC, offering a promising avenue for enhancing the clinical diagnosis and treatment of ICC to improve patient prognosis.
Collapse
Affiliation(s)
- Ruoyu Zhang
- Department of Hepatobiliary Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Yunfei Tan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Unit III, Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute
| | - Mei Liu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liming Wang
- Department of Hepatobiliary Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| |
Collapse
|
34
|
Berardi G, Risi L, Muttillo EM, Aliseda D, Colasanti M, Ettorre GM, Viganò L. Anatomic Versus Non-anatomic Liver Resection for Intrahepatic Cholangiocarcinoma: A Systematic Review and Patient-Level Meta-Analysis. Ann Surg Oncol 2024; 31:9170-9182. [PMID: 39251512 DOI: 10.1245/s10434-024-16121-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/19/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND The current standard treatment for intrahepatic cholangiocarcinoma (ICC) involves complete liver resection with negative surgical margins and lymphadenectomy, followed by adjuvant chemotherapy. Debate is ongoing regarding the necessity of systematic anatomic resection (AR). This study aimed to summarize existing literature to determine whether AR leads to better oncologic outcomes than non-AR for patients with resectable ICC. METHODS A systematic literature review (PubMed, Embase, and Google Scholar) was performed until December 2023. Only studies comparing the oncologic outcomes of AR and non-AR for ICC using propensity score matching or inverse probability of treatment weighting were considered. A meta-analysis of aggregated data for perioperative variables and a reconstructed patient-level meta-analysis for survival data were performed. RESULTS Five articles were gathered (n = 930 patients after matching: 465 AR/465 non-AR patients). The overall survival (OS) rates were higher in the AR group than in the non-AR group at 1, 3, and 5 years (71.5%, 46.1% and 34.3% vs. 63.6%, 32.9%, and 24.8%, respectively; hazard ratio [HR] 0.74; 95% CI 0.63-0.87; P < 0.001). The same results were observed for the disease-free survival (DFS) rates (58.3%, 33.4%, and 24.5% for AR vs. 45.6%, 23.1%, and 17.4% for non-AR; HR 0.74; 95% CI 0.63-0.86; P < 0.001). The results were confirmed in the two-stage meta-analysis for OS (HR 0.73; P < 0.001) and DFS (HR 0.73; P < 0.001). No differences were observed between the two approaches in terms of operative time, intraoperative blood loss, overall and major morbidity, and hospital length of stay. CONCLUSIONS By pooling the available evidence, the current study demonstrated that AR for ICC patients is associated with better OS and DFS without any negative impact on postoperative outcomes.
Collapse
Affiliation(s)
- Giammauro Berardi
- Department of General Surgery and Transplantation, San Camillo Forlanini Hospital of Rome, Rome, Italy
| | - Luca Risi
- Hepatobiliary Unit, Department of Minimally Invasive General and Oncologic Surgery, Humanitas Gavazzeni University Hospital, Bergamo, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Edoardo Maria Muttillo
- Department of General Surgery and Transplantation, San Camillo Forlanini Hospital of Rome, Rome, Italy
| | - Daniel Aliseda
- Department of General Surgery and Transplantation, Clinica Universidad de Navarra, Pamplona, Spain
| | - Marco Colasanti
- Department of General Surgery and Transplantation, San Camillo Forlanini Hospital of Rome, Rome, Italy
| | - Giuseppe Maria Ettorre
- Department of General Surgery and Transplantation, San Camillo Forlanini Hospital of Rome, Rome, Italy
| | - Luca Viganò
- Hepatobiliary Unit, Department of Minimally Invasive General and Oncologic Surgery, Humanitas Gavazzeni University Hospital, Bergamo, Italy.
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.
| |
Collapse
|
35
|
Harrison JM, Visser BC. Cholangiocarcinoma. Surg Clin North Am 2024; 104:1281-1293. [PMID: 39448128 DOI: 10.1016/j.suc.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Management of intrahepatic cholangiocarcinoma relies on a thorough understanding of the tumor's location and proximity to critical vasculobiliary structures. Mid-common bile duct tumors may require hemihepatectomy or pancreatoduodenectomy based on the status of the intraoperative frozen section. Distal common bile tumors are treated with pancreatoduodenectomy. When appropriate, volumetric assessment of the remnant liver should be performed to identify cases requiring preoperative liver augmentation strategies. A similar strategy should be employed for perihilar tumors, which require a right trisegmentectomy with bilioenteric reconstruction to achieve a negative margin. Adjuvant systemic therapy is recommended and increasing usage of neoadjuvant treatment is being incorporated into borderline resectable or regionally advanced cases.
Collapse
Affiliation(s)
- Jon M Harrison
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Shanford Univeristy Hospital, 300 Pasteur Drive, H3680, Stanford, CA 94305-5655, USA
| | - Brendan C Visser
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Shanford Univeristy Hospital, 300 Pasteur Drive, H3680, Stanford, CA 94305-5655, USA.
| |
Collapse
|
36
|
Maly M, Vanwalleghem L, Van Den Eeckhaut A, De Wilde V. Cancer of unknown primary and BRAF V600E meeting the BEACON combination: A case report. Mol Clin Oncol 2024; 21:88. [PMID: 39391046 PMCID: PMC11462391 DOI: 10.3892/mco.2024.2786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 08/29/2024] [Indexed: 10/12/2024] Open
Abstract
The diagnostic work-up of cancer of unknown primary (CUP) is a challenging task; in addition, only a little data on BRAF targeting in CUP are currently available. Traditionally, the identification of favourable and unfavourable CUP subsets directs the choice of treatment. The present article reports the case of a 50-year-old male patient presenting with a BRAF-mutated CUP, a rare and generally unfavourable subset. Based on imaging, immunohistochemistry and a high value of carbohydrate antigen 19-9, an upper gastrointestinal profile was initially presumed. After disease progression on treatment with a first-line platinum-based doublet chemotherapy, a significant response was documented after treatment with the BEACON combination. The present case report highlighted the paradigm shift in diagnosis and treatment of CUP from a histology-based approach to molecular profiling with the introduction of precision medicine.
Collapse
Affiliation(s)
- Marlies Maly
- Department of Gastroenterology and Hepatology, Ghent University Hospital, 9000 Ghent, Belgium
- Department of Gastroenterology and Hepatology, AZ Sint-Jan, 8000 Bruges, Belgium
| | | | | | - Vincent De Wilde
- Department of Gastroenterology and Hepatology, AZ Sint-Jan, 8000 Bruges, Belgium
| |
Collapse
|
37
|
Zhuang YZ, Tong LQ, Sun XY. Is 26S proteasome non-ATPase regulatory subunit 6 a potential molecular target for intrahepatic cholangiocarcinoma? World J Hepatol 2024; 16:1219-1224. [PMID: 39606166 PMCID: PMC11586744 DOI: 10.4254/wjh.v16.i11.1219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/29/2024] [Accepted: 10/14/2024] [Indexed: 11/06/2024] Open
Abstract
In this editorial we comment on the article by Tang et al published in the recent issue of World Journal of Hepatology. Drug therapy of intrahepatic cholangiocarcinoma (iCCA) poses an enormous challenge since only a small proportion of patients demonstrate beneficial responses to therapeutic agents. Thus, there has been a sustained search for novel molecular targets for iCCA. The study by Tang et al evaluated the role of 26S proteasome non-ATPase regulatory subunit 6 (PSMD6), a 19S regulatory subunit of the proteasome, in human iCCA cells and specimens. The authors employed clustered regularly interspaced short palindromic repeat (CRISPR) knockout screening technology integrated with the computational CERES algorithm, and analyzed the human protein atlas (THPA) database and tissue microarrays. The results show that PSMD6 is a gene essential for the proliferation of 17 iCCA cell lines, and PSMD6 protein was overexpressed in iCCA tissues without a significant correlation with the clinicopathological parameters. The authors conclude that PSMD6 may play a promoting role in iCCA. The major limitations and defects of this study are the lack of detailed information of CRISPR knockout screening, in vivo experiments, and a discussion of plausible mechanistic cues, which, therefore, dampen the significance of the results. Further studies are required to verify PSMD6 as a molecular target for developing novel therapeutics for iCCA. In addition, the editorial article summarizes the latest advances in molecular targeted drugs and recently emerging immunotherapy in the clinical management of iCCA, development of proteasome inhibitors for cancer therapy, and advantages of CRISPR screening technology, computational methods, and THPA database as experimental tools for fighting cancer. We hope that these comments may provide some clues for those engaged in the field of basic and clinical research into iCCA.
Collapse
Affiliation(s)
- Yong-Zhi Zhuang
- Department of Oncology, The Fifth Affiliated Hospital of Harbin Medical University, Daqing 163316, Heilongjiang Province, China
| | - Li-Quan Tong
- Department of General Surgery, The Fifth Affiliated Hospital of Harbin Medical University, Daqing 163316, Heilongjiang Province, China
| | - Xue-Ying Sun
- Hepatosplenic Surgery Center, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand.
| |
Collapse
|
38
|
Ma D, Wei P, Liu H, Hao J, Chen Z, Chu Y, Li Z, Shi W, Yuan Z, Cheng Q, Gao J, Zhu J, Li Z. Multi-omics-driven discovery of invasive patterns and treatment strategies in CA19-9 positive intrahepatic cholangiocarcinoma. J Transl Med 2024; 22:1031. [PMID: 39548460 PMCID: PMC11568536 DOI: 10.1186/s12967-024-05854-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (ICC) is a malignant tumor with a poor prognosis, predominantly CA19-9 positive. High CA19-9 levels correlate with increased aggressiveness and worse outcomes. This study employs multi-omics analysis to reveal molecular features and identify therapeutic targets of CA19-9 positive ICC, aiming to support individualized treatment. METHODS Data from seven clinical cohorts, two whole-exome sequencing cohorts, six RNA sequencing/microarray cohorts, one proteomic cohort, 20 single-cell RNA sequencing samples, and one spatial transcriptome sample were analyzed. Key findings were validated on tissue microarrays from 52 ICC samples. RESULTS CA19-9 positive ICC exhibited poorer OS (median 24.1 v.s. 51.5 months) and RFS (median 11.7 v.s. 28.2 months) compared to negative group (all P < 0.05). Genomic analysis revealed a higher KRAS mutation frequency in the positive group and a greater prevalence of IDH1/2 mutations in the negative group (all P < 0.05). Transcriptomic analysis indicated upregulated glycolysis pathways in CA19-9 positive ICC. Single-cell analysis identified specific glycolysis-related cell subclusters associated with poor prognosis, including Epi_SLC2A1, CAF_VEGFA, and Mph_SPP1. Higher hypoxia in the CA19-9 positive group led to metabolic reprogramming and promoted these cells' formation. These cells formed interactive communities promoting epithelial-mesenchymal transition (EMT) and angiogenesis. Drug sensitivity analysis identified six potential therapeutic drugs. CONCLUSIONS This study systematically elucidated the clinical, genomic, transcriptomic, and immune features of CA19-9 positive ICC. It reveals glycolysis-associated cellular communities and their cancer-promoting mechanisms, enhancing our understanding of ICC and laying the groundwork for individualized therapeutic strategies.
Collapse
Affiliation(s)
- Delin Ma
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of HCC and Liver Cirrhosis, Peking University People's Hospital, Beijing, China
- Peking University Center of Liver Cancer Diagnosis and Treatment, Peking University People's Hospital, Beijing, China
- Peking University Institute of Organ Transplantation, Peking University People's Hospital, Beijing, China
| | - Pengcheng Wei
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of HCC and Liver Cirrhosis, Peking University People's Hospital, Beijing, China
- Peking University Center of Liver Cancer Diagnosis and Treatment, Peking University People's Hospital, Beijing, China
- Peking University Institute of Organ Transplantation, Peking University People's Hospital, Beijing, China
| | - Hengkang Liu
- Peking University-Yunnan Baiyao International Medical Research Center, Beijing, 100191, China
| | - Jialing Hao
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of HCC and Liver Cirrhosis, Peking University People's Hospital, Beijing, China
- Peking University Center of Liver Cancer Diagnosis and Treatment, Peking University People's Hospital, Beijing, China
- Peking University Institute of Organ Transplantation, Peking University People's Hospital, Beijing, China
| | - Zhuomiaoyu Chen
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of HCC and Liver Cirrhosis, Peking University People's Hospital, Beijing, China
- Peking University Center of Liver Cancer Diagnosis and Treatment, Peking University People's Hospital, Beijing, China
- Peking University Institute of Organ Transplantation, Peking University People's Hospital, Beijing, China
| | - Yingming Chu
- Peking University First Hospital, Beijing, 100191, China
| | - Zuyin Li
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of HCC and Liver Cirrhosis, Peking University People's Hospital, Beijing, China
- Peking University Center of Liver Cancer Diagnosis and Treatment, Peking University People's Hospital, Beijing, China
- Peking University Institute of Organ Transplantation, Peking University People's Hospital, Beijing, China
| | - Wenzai Shi
- Department of Hepatobiliary Surgery, Peking University International Hospital, Life Park Road No.1 Life Science Park of Zhong Guancun, Chang Ping District, Beijing, 102206, China
| | - Zhigao Yuan
- Department of General Surgery, Civil Aviation General Hospital, Beijing, 100123, China
| | - Qian Cheng
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of HCC and Liver Cirrhosis, Peking University People's Hospital, Beijing, China
- Peking University Center of Liver Cancer Diagnosis and Treatment, Peking University People's Hospital, Beijing, China
- Peking University Institute of Organ Transplantation, Peking University People's Hospital, Beijing, China
| | - Jie Gao
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of HCC and Liver Cirrhosis, Peking University People's Hospital, Beijing, China
- Peking University Center of Liver Cancer Diagnosis and Treatment, Peking University People's Hospital, Beijing, China
- Peking University Institute of Organ Transplantation, Peking University People's Hospital, Beijing, China
| | - Jiye Zhu
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China.
- Beijing Key Laboratory of HCC and Liver Cirrhosis, Peking University People's Hospital, Beijing, China.
- Peking University Center of Liver Cancer Diagnosis and Treatment, Peking University People's Hospital, Beijing, China.
- Peking University Institute of Organ Transplantation, Peking University People's Hospital, Beijing, China.
| | - Zhao Li
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China.
- Beijing Key Laboratory of HCC and Liver Cirrhosis, Peking University People's Hospital, Beijing, China.
- Peking University Center of Liver Cancer Diagnosis and Treatment, Peking University People's Hospital, Beijing, China.
- Peking University Institute of Organ Transplantation, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
39
|
Lyu SI, Plum PS, Fretter C, Simon AG, Bedau T, Knipper K, Thomas MN, Stippel D, Wagner BJ, Bruns C, Waldschmidt D, Büttner R, Drebber U, Quaas A. Therapy-relevant MDM2 amplification in cholangiocarcinomas in Caucasian patients. Ther Adv Med Oncol 2024; 16:17588359241288123. [PMID: 39525665 PMCID: PMC11550496 DOI: 10.1177/17588359241288123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/13/2024] [Indexed: 11/16/2024] Open
Abstract
Background Cholangiocarcinomas (CCA) are a group of aggressive malignancies with poor prognosis. The distinct subtypes are related to different etiologies and genetic aberrations that are subject to targeted therapies. Mouse double minute 2 homolog (MDM2) is a potent inhibitor of tumor suppressor p53 and is proven to be altered in certain carcinomas. Novel targeted drugs, such as the MDM2-p53 antagonist Brigimadlin, have shown promising results for therapeutic efficacy in patients with MDM2 amplification and wild-type TP53. Objectives This study therefore aimed to characterize CCAs regarding their MDM2 status, compare the concordance between fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC) methods, and elucidate the role of MDM2 amplification in prognosis and other clinicopathological characteristics. Design Retrospective cohort study. Methods All patients (n = 52) were diagnosed with CCA and received surgical resection with curative intention at the University Hospital of Cologne. Samples were analyzed retrospectively for MDM2 amplification with FISH and IHC. We correlated results with pre-existing molecular as well as clinical data. Results We included 52 patients with primary CCA, three of which showed positive MDM2 amplification (5.8%). MDM2 amplification was present only in the intrahepatic CCA type and all patients with positive MDM2 amplification exhibited normal p53 status. Among the large-duct subtypes of intrahepatic CCAs, patients with positive MDM2 amplification demonstrated better survival than patients with negative MDM2 amplification (p = 0.041). Of the patients with MDM2 amplification, two underwent adjuvant therapy post-surgery (66.7%). There was a strong correlation between MDM2 amplification and positive protein expression in IHC. There were no identifiable molecular co-alterations of MDM2 with FGFR2 or SWI/SNF complex alterations. Conclusion Real-world evidence in our Caucasian patient population confirmed that a significant number of intrahepatic CCAs showcase MDM2 amplification, qualifying for a personalized therapy option with Brigimadlin. MDM2 amplification must therefore be considered in the context of personalized molecular testing in CCA.
Collapse
Affiliation(s)
- Su Ir Lyu
- Faculty of Medicine and University Hospital of Cologne, Institute of Pathology, University of Cologne, Kerpener Str. 62, Cologne 50937, Germany
| | - Patrick Sven Plum
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, Leipzig, Germany
| | - Caroline Fretter
- Faculty of Medicine and University Hospital of Cologne, Institute of Pathology, University of Cologne, Cologne, Germany
| | - Adrian Georg Simon
- Faculty of Medicine and University Hospital of Cologne, Institute of Pathology, University of Cologne, Cologne, Germany
| | - Tillmann Bedau
- Faculty of Medicine and University Hospital of Cologne, Institute of Pathology, University of Cologne, Cologne, Germany
| | - Karl Knipper
- Faculty of Medicine and University Hospital of Cologne, Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Michael N. Thomas
- Faculty of Medicine and University Hospital of Cologne, Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Dirk Stippel
- Faculty of Medicine and University Hospital of Cologne, Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Britta Janina Wagner
- Faculty of Medicine and University Hospital of Cologne, Institute of Pathology, University of Cologne, Cologne, Germany
| | - Christiane Bruns
- Faculty of Medicine and University Hospital of Cologne, Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Dirk Waldschmidt
- Faculty of Medicine and University Hospital of Cologne, Department of Gastroenterology and Hepatology, University of Cologne, Cologne, Germany
| | - Reinhard Büttner
- Faculty of Medicine and University Hospital of Cologne, Institute of Pathology, University of Cologne, Cologne, Germany
| | - Uta Drebber
- Faculty of Medicine and University Hospital of Cologne, Institute of Pathology, University of Cologne, Cologne, Germany
| | - Alexander Quaas
- Faculty of Medicine and University Hospital of Cologne, Institute of Pathology, University of Cologne, Cologne, Germany
| |
Collapse
|
40
|
Areewong S, Suppramote O, Prasopporn S, Jirawatnotai S. Exploiting acquired vulnerability to develop novel treatments for cholangiocarcinoma. Cancer Cell Int 2024; 24:362. [PMID: 39501277 PMCID: PMC11539612 DOI: 10.1186/s12935-024-03548-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/26/2024] [Indexed: 11/08/2024] Open
Abstract
Cholangiocarcinoma (CCA) presents a formidable therapeutic challenge due to its extensive heterogeneity and plasticity, which inevitably lead to acquired resistance to current treatments. However, recent evidence suggests that acquired drug resistance is associated with a fitness cost resulting from the myriad of acquired alterations under the selective pressure of the primary treatment. Consequently, CCA patients with acquired resistance are more susceptible to alternative therapies that are ineffective as monotherapies. This phenomenon, termed "acquired vulnerability," has garnered significant interest in drug development, as the acquired alterations could potentially be exploited therapeutically. This review elucidates the modes of acquired vulnerability, methods for identifying and exploiting acquired vulnerabilities in cancer (particularly in CCA), and strategies to enhance the clinical efficacy of drug combinations by leveraging the principle of acquired vulnerability. Identifying acquired vulnerabilities may pave the way for novel drug combinations to effectively treat highly heterogeneous and adaptable malignancies such as CCA.
Collapse
Affiliation(s)
- Sirayot Areewong
- Siriraj Center of Research Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine, Siriraj Hospital, Mahidol University, 2 Wanglang Rd., 11th Floor Srisavarindhira Building, Bangkok Noi, 10700, Bangkok, Thailand
| | - Orawan Suppramote
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, 906 Kampangpetch 6 Rd., Talat Bang Khen, Lak Si, 10210, Bangkok, Thailand
| | - Sunisa Prasopporn
- Siriraj Center of Research Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine, Siriraj Hospital, Mahidol University, 2 Wanglang Rd., 11th Floor Srisavarindhira Building, Bangkok Noi, 10700, Bangkok, Thailand
| | - Siwanon Jirawatnotai
- Siriraj Center of Research Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine, Siriraj Hospital, Mahidol University, 2 Wanglang Rd., 11th Floor Srisavarindhira Building, Bangkok Noi, 10700, Bangkok, Thailand.
- Faculty of Pharmacy, Silpakorn University, 6 Ratchamankanai Road., Phra Pathom Chedi Sub-district, Mueang District, 73000, Nakhon Pathom, Thailand.
| |
Collapse
|
41
|
Guan C, Zou X, Gao X, Liu S, Gao J, Shi W, Dong Q, Jiang X, Zhong X. Feedback loop LINC00511-YTHDF2-SOX2 regulatory network drives cholangiocarcinoma progression and stemness. MedComm (Beijing) 2024; 5:e743. [PMID: 39445001 PMCID: PMC11496568 DOI: 10.1002/mco2.743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 08/02/2024] [Accepted: 08/18/2024] [Indexed: 10/25/2024] Open
Abstract
Cholangiocarcinoma (CCA) was identified as a malignant tumor with rising incidence and mortality rates, and the roles of long noncoding RNA (lncRNA) in CCA remained not entirely clear. In this study, LINC00511 had high expression in CCA, which was closely related to poor prognosis. Knockdown of LINC00511 significantly inhibited cell malignant biological behaviors. It also affected the stemness of CCA, evidenced by decreased SOX2 protein expression. Moreover, the study revealed the interaction of LINC00511, YTHDF2, and SOX2 in CCA. Specifically, LINC00511 facilitated the formation of a complex with YTHDF2 on SOX2 mRNA, which uniquely enhances the mRNA's stability through m6A methylation sites. This stabilization appears crucial for maintaining malignant behaviors in CCA cells. Additionally, LINC00511 modulated SOX2 expression via the PI3K/AKT signaling pathway. Meanwhile, SOX2 can also promote LINC00511 expression as an upstream transcription factor, thereby confirming a positive feedback loop formed by LINC00511, YTHDF2, and SOX2, which plays a significant role in the occurrence and development of CCA. Finally, the study successfully constructed two patient-derived xenograft models, revealing the vital role of LINC00511 in CCA development. In summary, this research provides a comprehensive understanding of the role of LINC00511 in the pathogenesis of CCA.
Collapse
Affiliation(s)
- Canghai Guan
- Department of General SurgeryThe 2nd Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang ProvinceChina
| | - Xinlei Zou
- Department of General SurgeryThe 2nd Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang ProvinceChina
| | - Xin Gao
- Department of General SurgeryThe 2nd Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang ProvinceChina
| | - Sidi Liu
- Department of General SurgeryThe 2nd Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang ProvinceChina
| | - Jianjun Gao
- Department of General SurgeryThe 2nd Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang ProvinceChina
| | - Wujiang Shi
- Department of General SurgeryThe 2nd Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang ProvinceChina
| | - Qingfu Dong
- Department of General SurgeryThe 2nd Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang ProvinceChina
| | - Xingming Jiang
- Department of General SurgeryThe 2nd Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang ProvinceChina
| | - Xiangyu Zhong
- Department of General SurgeryThe 2nd Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang ProvinceChina
| |
Collapse
|
42
|
Zhu S, Jin Y, Zhang J, Zhou M, Liu B, Liu X, Shen J, Chen C. Nomograms predicting benefit after immunotherapy in oral bifidobacteria supplementation ICC patients: a retrospective study. BMC Cancer 2024; 24:1274. [PMID: 39402531 PMCID: PMC11476933 DOI: 10.1186/s12885-024-12982-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
PURPOSE The objective of this study was to develop nomograms for predicting outcomes following immunotherapy in patients diagnosed with intrahepatic cholangiocarcinoma (ICC). PATIENTS AND METHODS A retrospective analysis was conducted on data from 75 ICC patients who received immunotherapy at Jinling Hospital and Drum Hospital. The discriminative power, accuracy, and clinical applicability of the nomograms were assessed using the concordance index (C-index), calibration curve, and decision curve analysis (DCA). The predictive performance of the nomograms for overall survival (OS) and progression-free survival (PFS) was evaluated using the area under the receiver operating characteristic (ROC) curve. Kaplan-Meier curves were also generated for validation purposes. RESULTS Multivariable analysis identified independent prognostic factors for OS, including CA19-9 levels, portal vein tumor thrombus (PVTT) grade, bifidobacteria administration, and surgery. The C-index of the nomogram for OS prediction was 0.722 (95% confidence interval [CI]: 0.661-0.783). Independent prognostic factors for PFS included CA19-9 levels, albumin, and bilirubin, with a C-index of 0.678 (95% CI: 0.612-0.743) for the nomogram predicting PFS. Calibration curves demonstrated strong concordance between predicted and observed outcomes, while DCA and Kaplan-Meier curves further supported the clinical utility of the nomogram. CONCLUSION The nomogram developed in this study demonstrated favorable performance in predicting the prognosis of ICC patients undergoing immunotherapy. Additionally, our findings, for the first time, identified probiotics as a potential prognostic marker for immunotherapy. This prognostic model has the potential to enhance patient selection for immunotherapy and improve clinical decision-making.
Collapse
Affiliation(s)
- Sihui Zhu
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, 210008, Jiangsu Province, China
- The Comprehensive Cancer Centre of Nanjing International Hospital, Medical School of Nanjing University, Nanjing, 210019, Jiangsu Province, China
| | - Yuncheng Jin
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, 210008, Jiangsu Province, China
| | - Juan Zhang
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, 210008, Jiangsu Province, China
| | - Minzheng Zhou
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, 210008, Jiangsu Province, China
- The Comprehensive Cancer Centre of Nanjing International Hospital, Medical School of Nanjing University, Nanjing, 210019, Jiangsu Province, China
| | - Baorui Liu
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, 210008, Jiangsu Province, China
| | - Xiufeng Liu
- Department of Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, 210002, China.
| | - Jie Shen
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, 210008, Jiangsu Province, China.
- The Comprehensive Cancer Centre of Nanjing International Hospital, Medical School of Nanjing University, Nanjing, 210019, Jiangsu Province, China.
| | - Chao Chen
- Department of Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, 210002, China.
| |
Collapse
|
43
|
Ma X, Zhou Y, Li R, Ding X, Li D, Pan T, Zhang F, Li W. Targeting Hippo/YAP in intrahepatic cholangiocarcinoma: Promising molecules in cancer therapy. Mol Carcinog 2024; 63:1866-1873. [PMID: 39092765 DOI: 10.1002/mc.23791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/08/2024] [Accepted: 06/26/2024] [Indexed: 08/04/2024]
Abstract
The tumorigenesis of intrahepatic cholangiocarcinoma (ICC) has been identified to be exceptionally involved in dysregulated Hippo/Yes-associated protein (YAP) signaling pathway (Hippo/YAP). Hippo/YAP functions as a master regulator engaged in a plethora of physiological and oncogenic processes as well. Therefore, the aberrant Hippo/YAP could serve as an Achilles' heel regarding the molecular therapeutic avenues for ICC patients. Herein, we comprehensively review the recent studies about the underlying mechanism of disrupted Hippo/YAP in ICC, how diagnostic values could be utilized upon the critical genes in this pathway, and what opportunities could be given upon this target pathway.
Collapse
Affiliation(s)
- Xing Ma
- Department of Nuclear Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Yangyang Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruping Li
- Department of Nuclear Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Xianmin Ding
- Department of Nuclear Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Deyu Li
- Department of Nuclear Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Tingting Pan
- Department of Nuclear Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Fuqiang Zhang
- Department of Nuclear Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Wenliang Li
- Department of Nuclear Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
44
|
Cocozza MA, Dajti E, Braccischi L, Modestino F, Reimer P, Cucchetti A, Barbara G, Mosconi C. Survival After Transarterial Radioembolization in Patients with Unresectable Intrahepatic Cholangiocarcinoma: An Updated Meta-analysis and Meta-regression. Cardiovasc Intervent Radiol 2024; 47:1313-1324. [PMID: 39187651 PMCID: PMC11486776 DOI: 10.1007/s00270-024-03825-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 07/25/2024] [Indexed: 08/28/2024]
Abstract
PURPOSE Transarterial radioembolization (TARE) has emerged as a promising therapeutic approach for unresectable intrahepatic cholangiocarcinoma (ICCA). We updated our previous meta-analysis with meta-regression to explore the efficacy of TARE in the context of ICCA. METHODS We searched PubMed and Scopus for studies published up to September 1, 2023. The primary outcome was overall survival. Secondary outcomes were tumor overall response rate, severe adverse events, and downstaging to surgery. Meta-analysis employed a random-effects model, and meta-regression was utilized to explore sources of heterogeneity. RESULTS We included 27 studies, involving 1365 patients. Pooled survival estimates at 1, 2, and 3 years were 52.6%, 27%, and 16.8%, respectively. Meta-regression revealed that the proportion of patients naïve to treatment was the only pre-TARE predictor of survival (1-, 2-, and 3-year survival of 70%, 45%, and 36% for treatment-naïve patients, mean survival 19.7 months vs. 44%, 18%, and 7% for non-naïve patients, mean survival 12.2 months). Overall response according to RECIST 1.1 and mRECIST was 19.6% and 67%, respectively. Effective downstaging to surgery was possible in varying rates (3-54%); the mean survival in these patients was 34.8 months (1-, 2-, and 3-year survival of 100%, 87%, and 64%). About 45.7% of patients experienced adverse events, but only 5.9% were severe. CONCLUSIONS Our study benchmarked the survival rates of patients undergoing TARE for unresectable ICCA and showed that this is a valid option in these patients, especially if naïve to previous treatments. Downstaging to surgery is feasible in selected patients with promising results.
Collapse
Affiliation(s)
- Maria Adriana Cocozza
- Division of Interventional Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Elton Dajti
- Gastroenterology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy.
| | - Lorenzo Braccischi
- Division of Interventional Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesco Modestino
- Division of Interventional Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Peter Reimer
- Department of General and Oncologic Surgery, Morgagni-Pierantoni Hospital, AUSL Romagna, Forlì, Italy
| | - Alessandro Cucchetti
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Städtisches Klinikum Karlsruhe, Institute for Diagnostic and Interventional Radiology, Academic Teaching Hospital the University of Freiburg, Moltkestraße 90, 76133, Karlsruhe, Germany
| | - Giovanni Barbara
- Gastroenterology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Cristina Mosconi
- Division of Interventional Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| |
Collapse
|
45
|
Yang L, Niu K, Wang J, Shen W, Jiang R, Liu L, Song W, Wang X, Zhang X, Zhang R, Wei D, Fan M, Jia L, Tao K. Nucleolin lactylation contributes to intrahepatic cholangiocarcinoma pathogenesis via RNA splicing regulation of MADD. J Hepatol 2024; 81:651-666. [PMID: 38679071 DOI: 10.1016/j.jhep.2024.04.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 04/03/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND & AIMS Intrahepatic cholangiocarcinoma (iCCA) is a fatal malignancy of the biliary system. The lack of a detailed understanding of oncogenic signaling or global gene expression alterations has impeded clinical iCCA diagnosis and therapy. The role of protein lactylation, a newly unraveled post-translational modification that orchestrates gene expression, remains largely elusive in the pathogenesis of iCCA. METHODS Proteomics analysis of clinical iCCA specimens and adjacent tissues was performed to screen for proteins aberrantly lactylated in iCCA. Mass spectrometry, macromolecule interaction and cell behavioral studies were employed to identify the specific lactylation sites on the candidate protein(s) and to decipher the downstream mechanisms responsible for iCCA development, which were subsequently validated using a xenograft tumor model and clinical samples. RESULTS Nucleolin (NCL), the most abundant RNA-binding protein in the nucleolus, was identified as a functional lactylation target that correlates with iCCA occurrence and progression. NCL was lactylated predominantly at lysine 477 by the acyltransferase P300 in response to a hyperactivity of glycolysis, and promoted the proliferation and invasion of iCCA cells. Mechanistically, lactylated NCL bound to the primary transcript of MAP kinase-activating death domain protein (MADD) and led to efficient translation of MADD by circumventing alternative splicing that generates a premature termination codon. NCL lactylation, MADD translation and subsequent ERK activation promoted xenograft tumor growth and were associated with overall survival in patients with iCCA. CONCLUSION NCL is lactylated to upregulate MADD through an RNA splicing-dependent mechanism, which potentiates iCCA pathogenesis via the MAPK pathway. Our findings reveal a novel link between metabolic reprogramming and canonical tumor-initiating events, and uncover biomarkers that can potentially be used for prognostic evaluation or targeted treatment of iCCA. IMPACT AND IMPLICATIONS Intrahepatic cholangiocarcinoma (iCCA) is a highly aggressive liver malignancy with largely uncharacterized pathogenetic mechanisms. Herein, we demonstrated that glycolysis promotes P300-catalyzed lactylation of nucleolin, which upregulates MAP kinase-activating death domain protein (MADD) through precise mRNA splicing and activates ERK signaling to drive iCCA development. These findings unravel a novel link between metabolic rewiring and canonical oncogenic pathways, and reveal new biomarkers for prognostic assessment and targeting of clinical iCCA.
Collapse
Affiliation(s)
- Long Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Kunwei Niu
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jianlin Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Weiwei Shen
- Department of Oncology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Rui Jiang
- Department of Anesthesiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Lu Liu
- College of Life Sciences, Northwest University, Xi'an, China
| | - Wenjie Song
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xudan Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xuan Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Ruohan Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Dan Wei
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Ming Fan
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Lintao Jia
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China.
| | - Kaishan Tao
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
46
|
Liu J, Bai S, Sun Y, Hu L, Ge R, Xue F. Chemotherapy combined with regorafenib and immune checkpoint inhibitors as a first-line treatment for patients with advanced biliary tract cancer: a single arm phase II trial. Front Immunol 2024; 15:1449211. [PMID: 39359732 PMCID: PMC11445073 DOI: 10.3389/fimmu.2024.1449211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/27/2024] [Indexed: 10/04/2024] Open
Abstract
Objective This study aimed to investigate the efficacy, long-term prognosis and safety of combining chemotherapy with regorafenib and immune checkpoint inhibitors as first-line treatment for patients with advanced biliary tract carcinoma (BTC). Methods In this single arm phase II trial, twenty-nine patients with advanced BTC were included, all of whom received gemcitabine-based chemotherapy combined with regorafenib and immune checkpoint inhibitors as the first-line treatment. And the study analyzed anti-tumor efficacy, long-term prognosis, and adverse reactions. Results Among the patients, 0 patient achieved complete response, 18 patients (62.1%) achieved partial response, 8 patients (27.6%) had stable disease, and 3 patients (10.3%) experienced progressive disease. The corresponding objective response rate (ORR) was 18/29 (62.1%), and the disease control rate (DCR) was 26/29 (89.7%). The median overall survival (OS) was 16.9 months (95% confidence interval [CI]: 12.0 -21.8) and the median progress free survival (PFS) was 10.2 months (95% CI: 7.8- 12.6). The 1-year OS and PFS were 65% (95% CI: 0.479-0.864) and 41% (95% CI: 0.234-0.656), respectively. The incidence of adverse reactions was 27/29 (93.1%), and the incidence of grade III/IV adverse reactions was 5/29 (17.2%). Conclusion The combination of chemotherapy, regorafenib, and immune checkpoint inhibitors as a first-line treatment for patients with advanced BTC may has good anti-tumor efficacy without causing serious adverse reactions, and can significantly improve the long-term prognosis.
Collapse
Affiliation(s)
- Jianwei Liu
- Department of Hepatic Surgery II, Third Affiliated Hospital of Naval Medical University (Eastern Hepatobiliary Surgery Hospital), Shanghai, China
| | - Shilei Bai
- Department of Hepatic Surgery II, Third Affiliated Hospital of Naval Medical University (Eastern Hepatobiliary Surgery Hospital), Shanghai, China
| | - Yanfu Sun
- Department of Hepatic Surgery II, Third Affiliated Hospital of Naval Medical University (Eastern Hepatobiliary Surgery Hospital), Shanghai, China
| | - Lei Hu
- Department of Hepatic Surgery I, Third Affiliated Hospital of Naval Medical University (Eastern Hepatobiliary Surgery Hospital), Shanghai, China
| | - Ruiliang Ge
- Department of Biliary Tract IV, Third Affiliated Hospital of Naval Medical University (Eastern Hepatobiliary Surgery Hospital), Shanghai, China
| | - Feng Xue
- Department of Hepatic Surgery II, Third Affiliated Hospital of Naval Medical University (Eastern Hepatobiliary Surgery Hospital), Shanghai, China
| |
Collapse
|
47
|
Fiz F, Rossi N, Langella S, Conci S, Serenari M, Ardito F, Cucchetti A, Gallo T, Zamboni GA, Mosconi C, Boldrini L, Mirarchi M, Cirillo S, Ruzzenente A, Pecorella I, Russolillo N, Borzi M, Vara G, Mele C, Ercolani G, Giuliante F, Cescon M, Guglielmi A, Ferrero A, Sollini M, Chiti A, Torzilli G, Ieva F, Viganò L. Radiomics of Intrahepatic Cholangiocarcinoma and Peritumoral Tissue Predicts Postoperative Survival: Development of a CT-Based Clinical-Radiomic Model. Ann Surg Oncol 2024; 31:5604-5614. [PMID: 38797789 DOI: 10.1245/s10434-024-15457-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/28/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND For many tumors, radiomics provided a relevant prognostic contribution. This study tested whether the computed tomography (CT)-based textural features of intrahepatic cholangiocarcinoma (ICC) and peritumoral tissue improve the prediction of survival after resection compared with the standard clinical indices. METHODS All consecutive patients affected by ICC who underwent hepatectomy at six high-volume centers (2009-2019) were considered for the study. The arterial and portal phases of CT performed fewer than 60 days before surgery were analyzed. A manual segmentation of the tumor was performed (Tumor-VOI). A 5-mm volume expansion then was applied to identify the peritumoral tissue (Margin-VOI). RESULTS The study enrolled 215 patients. After a median follow-up period of 28 months, the overall survival (OS) rate was 57.0%, and the progression-free survival (PFS) rate was 34.9% at 3 years. The clinical predictive model of OS had a C-index of 0.681. The addition of radiomic features led to a progressive improvement of performances (C-index of 0.71, including the portal Tumor-VOI, C-index of 0.752 including the portal Tumor- and Margin-VOI, C-index of 0.764, including all VOIs of the portal and arterial phases). The latter model combined clinical variables (CA19-9 and tumor pattern), tumor indices (density, homogeneity), margin data (kurtosis, compacity, shape), and GLRLM indices. The model had performance equivalent to that of the postoperative clinical model including the pathology data (C-index of 0.765). The same results were observed for PFS. CONCLUSIONS The radiomics of ICC and peritumoral tissue extracted from preoperative CT improves the prediction of survival. Both the portal and arterial phases should be considered. Radiomic and clinical data are complementary and achieve a preoperative estimation of prognosis equivalent to that achieved in the postoperative setting.
Collapse
Affiliation(s)
- Francesco Fiz
- Nuclear Medicine Unit, Department of Diagnostic Imaging, Ente Ospedaliero "Ospedali Galliera", Genoa, Italy
- Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital, Tübingen, Germany
| | - Noemi Rossi
- MOX Laboratory, Department of Mathematics, Politecnico di Milano, Milan, Italy
| | - Serena Langella
- Department of Digestive and Hepatobiliary Surgery, Mauriziano Umberto I Hospital, Turin, Italy
| | - Simone Conci
- Division of General and Hepatobiliary Surgery, Department of Surgical Sciences, Dentistry, Gynaecology and Pediatrics, University Hospital G.B. Rossi, University of Verona, Verona, Italy
| | - Matteo Serenari
- General Surgery and Transplant Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Sant'Orsola-Malpighi Hospital, Bologna, Italy
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Francesco Ardito
- Hepatobiliary Surgery Unit, A. Gemelli Hospital, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alessandro Cucchetti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Department of General Surgery, Morgagni-Pierantoni Hospital, Forlì, Italy
| | - Teresa Gallo
- Department of Radiology, Mauriziano Umberto I Hospital, Turin, Italy
| | - Giulia A Zamboni
- Department of Radiology, University Hospital G.B. Rossi, University of Verona, Verona, Italy
| | - Cristina Mosconi
- Department of Radiology, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Luca Boldrini
- Department of Radiology, Radiation Oncology and Hematology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | | | - Stefano Cirillo
- Department of Radiology, Mauriziano Umberto I Hospital, Turin, Italy
| | - Andrea Ruzzenente
- Division of General and Hepatobiliary Surgery, Department of Surgical Sciences, Dentistry, Gynaecology and Pediatrics, University Hospital G.B. Rossi, University of Verona, Verona, Italy
| | - Ilaria Pecorella
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Nadia Russolillo
- Department of Digestive and Hepatobiliary Surgery, Mauriziano Umberto I Hospital, Turin, Italy
| | - Martina Borzi
- Department of Radiology, University Hospital G.B. Rossi, University of Verona, Verona, Italy
| | - Giulio Vara
- Department of Radiology, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Caterina Mele
- Hepatobiliary Surgery Unit, A. Gemelli Hospital, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giorgio Ercolani
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Department of General Surgery, Morgagni-Pierantoni Hospital, Forlì, Italy
| | - Felice Giuliante
- Hepatobiliary Surgery Unit, A. Gemelli Hospital, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Matteo Cescon
- General Surgery and Transplant Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Sant'Orsola-Malpighi Hospital, Bologna, Italy
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Alfredo Guglielmi
- Division of General and Hepatobiliary Surgery, Department of Surgical Sciences, Dentistry, Gynaecology and Pediatrics, University Hospital G.B. Rossi, University of Verona, Verona, Italy
| | - Alessandro Ferrero
- Department of Digestive and Hepatobiliary Surgery, Mauriziano Umberto I Hospital, Turin, Italy
| | - Martina Sollini
- Department of Nuclear Medicine, IRCCS San Raffaele, Milan, Italy
- Faculty of Medicine, Università Vita-Salute San Raffaele, Milan, Italy
| | - Arturo Chiti
- Department of Nuclear Medicine, IRCCS San Raffaele, Milan, Italy
- Faculty of Medicine, Università Vita-Salute San Raffaele, Milan, Italy
| | - Guido Torzilli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Division of Hepatobiliary and General Surgery, Department of Surgery, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Francesca Ieva
- MOX Laboratory, Department of Mathematics, Politecnico di Milano, Milan, Italy
- CHDS - Center for Health Data Science, Human Technopole, Milan, Italy
| | - Luca Viganò
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.
- Hepatobiliary Unit, Department of Minimally Invasive General and Oncologic Surgery, Humanitas Gavazzeni University Hospital, Bergamo, Italy.
| |
Collapse
|
48
|
Zhou C, Huang P, Wu F, Xiao Y, Yang C, Zeng M. How to differentiate between combined hepatocellular carcinoma-cholangiocarcinoma and intrahepatic cholangiocarcinoma with rim arterial phase hyperenhancement? Abdom Radiol (NY) 2024; 49:3015-3023. [PMID: 38427077 DOI: 10.1007/s00261-024-04194-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/06/2024] [Accepted: 01/12/2024] [Indexed: 03/02/2024]
Abstract
PURPOSE To analyze and compare the differences in MRI features between combined hepatocellular carcinoma-cholangiocarcinoma (cHCC-CCA) and intrahepatic cholangiocarcinoma (iCCA) with arterial phase peripheral enhancement, so as to provide valuable references for preoperative differential diagnosis. METHODS Seventy cHCC-CCA patients and 74 iCCA patients confirmed by pathology were included in this study. Their contrast-enhanced MRI showed rim arterial phase hyperenhancement (Rim APHE). The differences of clinicopathological data and MRI features between cHCC-CCA and iCCA were compared. Then, the sensitivity, specificity, and area under curve (AUC) were also analyzed and compared. RESULTS Seventy cHCC-CCA patients (mean age, 55.7 ± 10.6 years) and 74 iCCA patients (mean age, 61.1 ± 10.5 years) were evaluated. In this study, univariable and multivariable regression analysis showed that AFP > 20 ng/ml (OR = 5.824, p = 0.006), enhancing capsule (OR = 7.252, p = 0.001), and mosaic architecture (OR = 32.732, p < 0.001) were independent risk factors of cHCC-CCA with Rim APHE. However, only hepatic capsule retraction (OR = 0.091, p < 0.001) was an independent predictor of iCCA. In addition, combining AFP > 20 ng/ml with enhancing capsule (96.7% vs. 79.2%, p < 0.001) and/or mosaic architecture (96.4% vs. 94.7%, p < 0.001) can improve the sensitivity of differentiating cHCC-CCA (vs. iCCA) with Rim APHE. CONCLUSION The combination of elevated AFP and MRI features, such as enhancing capsule and mosaic architecture, will help in preoperative differential diagnosis of cHCC-CCA and iCCA with Rim APHE.
Collapse
Affiliation(s)
- Changwu Zhou
- Department of Radiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Shanghai Institute of Medical Imaging, Shanghai, China
- Department of Radiology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
- Department of Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Peng Huang
- Department of Radiology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
- Department of Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fei Wu
- Department of Radiology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
- Department of Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuyao Xiao
- Department of Radiology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
- Department of Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chun Yang
- Shanghai Institute of Medical Imaging, Shanghai, China.
- Department of Radiology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, China.
- Department of Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Mengsu Zeng
- Shanghai Institute of Medical Imaging, Shanghai, China.
- Department of Radiology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, China.
- Department of Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
49
|
Porreca V, Barbagallo C, Corbella E, Peres M, Stella M, Mignogna G, Maras B, Ragusa M, Mancone C. Unveil Intrahepatic Cholangiocarcinoma Heterogeneity through the Lens of Omics and Multi-Omics Approaches. Cancers (Basel) 2024; 16:2889. [PMID: 39199659 PMCID: PMC11352949 DOI: 10.3390/cancers16162889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is recognized worldwide as the second leading cause of morbidity and mortality among primary liver cancers, showing a continuously increasing incidence rate in recent years. iCCA aggressiveness is revealed through its rapid and silent intrahepatic expansion and spread through the lymphatic system leading to late diagnosis and poor prognoses. Multi-omics studies have aggregated information derived from single-omics data, providing a more comprehensive understanding of the phenomena being studied. These approaches are gradually becoming powerful tools for investigating the intricate pathobiology of iCCA, facilitating the correlation between molecular signature and phenotypic manifestation. Consequently, preliminary stratifications of iCCA patients have been proposed according to their "omics" features opening the possibility of identifying potential biomarkers for early diagnosis and developing new therapies based on personalized medicine (PM). The focus of this review is to provide new and advanced insight into the molecular pathobiology of the iCCA, starting from single- to the latest multi-omics approaches, paving the way for translating new basic research into therapeutic practices.
Collapse
Affiliation(s)
- Veronica Porreca
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (E.C.); (M.P.)
| | - Cristina Barbagallo
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.B.); (M.S.); (M.R.)
| | - Eleonora Corbella
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (E.C.); (M.P.)
| | - Marco Peres
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (E.C.); (M.P.)
| | - Michele Stella
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.B.); (M.S.); (M.R.)
| | - Giuseppina Mignogna
- Department of Biochemistry Science, Sapienza University of Rome, 00185 Rome, Italy; (G.M.); (B.M.)
| | - Bruno Maras
- Department of Biochemistry Science, Sapienza University of Rome, 00185 Rome, Italy; (G.M.); (B.M.)
| | - Marco Ragusa
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.B.); (M.S.); (M.R.)
| | - Carmine Mancone
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (E.C.); (M.P.)
| |
Collapse
|
50
|
Song Y, Boerner T, Drill E, Shin P, Kumar S, Sigel C, Cercek A, Kemeny N, Abou-Alfa G, Iacobuzio-Donahue C, Cowzer D, Schultz N, Walch H, Balachandran V, Groot Koerkamp B, Kingham P, Soares K, Wei A, D'Angelica M, Drebin J, Chandwani R, Harding JJ, Jarnagin W. A Novel Approach to Quantify Heterogeneity of Intrahepatic Cholangiocarcinoma: The Hidden-Genome Classifier. Clin Cancer Res 2024; 30:3499-3511. [PMID: 38864854 PMCID: PMC11326964 DOI: 10.1158/1078-0432.ccr-24-0657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/01/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024]
Abstract
PURPOSE Intrahepatic cholangiocarcinoma (IHC) is a heterogeneous tumor. The hidden-genome classifier, a supervised machine learning-based algorithm, was used to quantify tumor heterogeneity and improve classification. EXPERIMENTAL DESIGN A retrospective review of 1,370 patients with IHC, extrahepatic cholangiocarcinoma (EHC), gallbladder cancer (GBC), hepatocellular carcinoma (HCC), or biphenotypic tumors was conducted. A hidden-genome model classified 527 IHC based on genetic similarity to EHC/GBC or HCC. Genetic, histologic, and clinical data were correlated. RESULTS In this study, 410 IHC (78%) had >50% genetic homology with EHC/GBC; 122 (23%) had >90% homology ("biliary class"), characterized by alterations of KRAS, SMAD4, and CDKN2A loss; 117 IHC (22%) had >50% genetic homology with HCC; and 30 (5.7%) had >90% homology ("HCC class"), characterized by TERT alterations. Patients with biliary- versus non-biliary-class IHC had median overall survival (OS) of 1 year (95% CI, 0.77, 1.5) versus 1.8 years (95% CI, 1.6, 2.0) for unresectable disease and 2.4 years (95% CI, 2.1, NR) versus 5.1 years (95% CI, 4.8, 6.9) for resectable disease. Large-duct IHC (n = 28) was more common in the biliary class (n = 27); the HCC class was composed mostly of small-duct IHC (64%, P = 0.02). The hidden genomic classifier predicted OS independent of FGFR2 and IDH1 alterations. By contrast, the histology subtype did not predict OS. CONCLUSIONS IHC genetics form a spectrum with worse OS for tumors genetically aligned with EHC/GBC. The classifier proved superior to histologic subtypes for predicting OS independent of FGFR2 and IDH1 alterations. These results may explain the differential treatment responses seen in IHC and may direct therapy by helping stratify patients in future clinical trials.
Collapse
Affiliation(s)
- Yi Song
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Thomas Boerner
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Esther Drill
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Paul Shin
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sandeep Kumar
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Carlie Sigel
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Andrea Cercek
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nancy Kemeny
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ghassan Abou-Alfa
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Darren Cowzer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nikolaus Schultz
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Henry Walch
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Vinod Balachandran
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Bas Groot Koerkamp
- Department of Surgery, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Peter Kingham
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kevin Soares
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alice Wei
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael D'Angelica
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jeffrey Drebin
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Rohit Chandwani
- Department of Surgery, Weill Cornell Medicine, New York, New York
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, New York
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - James J Harding
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - William Jarnagin
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|