1
|
Li Z, Guan Y, Gao J, Zhu L, Zeng Z, Jing Q, Wan Q, Fan Q, Ren X, Pei H, Zhang D, Rong Y, Rong Z, He J, Zhang Y, Li N, Chen P, Sun L, Xu B, Nie Y, Deng Y. PPDPF-mediated regulation of BCAA metabolism enhances mTORC1 activity and drives cholangiocarcinoma progression. Oncogene 2025; 44:1415-1433. [PMID: 40025229 DOI: 10.1038/s41388-025-03320-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/30/2025] [Accepted: 02/19/2025] [Indexed: 03/04/2025]
Abstract
Tumor cells display profound changes in the metabolism of branched-chain amino acids (BCAA). However, how these changes are regulated to facilitate tumorigenesis is not yet completely understood. Here, we identified pancreatic progenitor cell differentiation and proliferation factor (PPDPF) as a BCAA-responsive protein through extensive screening using stable isotope labeling with amino acids in cell culture (SILAC). PPDPF is upregulated in cholangiocarcinoma to enhance the malignant phenotype of cholangiocarcinoma cells by activating the mTORC1 signaling pathway. Metabolic flux analysis and mechanistic studies revealed that PPDPF prevented the interaction between MCCA and MCCB, thus inhibiting leucine catabolism and activating mTORC1 signaling. Moreover, upon amino acid starvation, ariadne RBR E3 ubiquitin protein ligase 2 (ARIH2) and OTU deubiquitinase 4 (OTUD4) cooperatively regulated the stability of the PPDPF protein by modulating its ubiquitination. Additionally, monocytes/macrophage-derived IL-10 increased the BCAA content in cholangiocarcinoma cells and stabilized the PPDPF protein, even under amino acid starvation conditions. Knockout of PPDPF or restriction of leucine intake significantly inhibits the progression of cholangiocarcinoma in a mouse model. Collectively, we discovered a novel role for PPDPF in promoting the progression of cholangiocarcinoma by activating mTORC1 signaling through the inhibition of leucine catabolism. The present study suggests that targeting PPDPF or decreasing dietary leucine intake may provide a new strategy to improve the treatment efficacy of cholangiocarcinoma.
Collapse
Affiliation(s)
- Zhi Li
- Key Laboratory of Molecular Radiation Oncology (Xiangya Hospital, Central South University), Changsha, China
- Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Changsha, China
- Institute of Cancer Research, National Clinical Research Center for Geriatric Disorders (Xiangya), Xiangya Hospital, Central South University, Changsha, China
| | - Yidi Guan
- Key Laboratory of Molecular Radiation Oncology (Xiangya Hospital, Central South University), Changsha, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Gao
- Key Laboratory of Molecular Radiation Oncology (Xiangya Hospital, Central South University), Changsha, China
- Shanghai Key Laboratory of Thoracic Tumor Biotherapy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lan Zhu
- NHC Key Laboratory of Pulmonary Immune-related Diseases, Guizhou Provincial People's Hospital, Guiyang, China
| | - Zimei Zeng
- Shanghai Key Laboratory of Thoracic Tumor Biotherapy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianyu Jing
- NHC Key Laboratory of Pulmonary Immune-related Diseases, Guizhou Provincial People's Hospital, Guiyang, China
| | - Quan Wan
- NHC Key Laboratory of Pulmonary Immune-related Diseases, Guizhou Provincial People's Hospital, Guiyang, China
| | - Qi Fan
- Shanghai Key Laboratory of Thoracic Tumor Biotherapy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinxin Ren
- Cancer Center, Department of Pathology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Haiping Pei
- Key Laboratory of Molecular Radiation Oncology (Xiangya Hospital, Central South University), Changsha, China
| | - Dexiang Zhang
- Department of General Surgery, Zhongshan Xuhui Hospital Affiliated to Fudan University, Shanghai, China
| | - Yefei Rong
- The Department of Emergency Surgery, the Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhuoxian Rong
- Key Laboratory of Molecular Radiation Oncology (Xiangya Hospital, Central South University), Changsha, China
| | - Junju He
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yuefang Zhang
- Songjiang Research Institute, Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nan Li
- Department of Hepatic Surgery I (Ward I), Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Pan Chen
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Lunquan Sun
- Key Laboratory of Molecular Radiation Oncology (Xiangya Hospital, Central South University), Changsha, China.
- Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Changsha, China.
- Institute of Cancer Research, National Clinical Research Center for Geriatric Disorders (Xiangya), Xiangya Hospital, Central South University, Changsha, China.
| | - Bin Xu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.
| | - Yingjie Nie
- Department of Research, the University of HongKong-Shenzhen Hospital, Shenzhen, China.
| | - Yuezhen Deng
- Shanghai Key Laboratory of Thoracic Tumor Biotherapy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Yangjiang Key Laboratory of Respiratory Disease, People's Hospital of Yangjiang, 529500, Yangjiang, Guangdong, China.
| |
Collapse
|
2
|
Marzioni M, Maroni L, Aabakken L, Carpino G, Groot Koerkamp B, Heimbach J, Khan S, Lamarca A, Saborowski A, Vilgrain V, Nault JC. EASL Clinical Practice Guidelines on the management of extrahepatic cholangiocarcinoma. J Hepatol 2025:S0168-8278(25)00162-X. [PMID: 40348685 DOI: 10.1016/j.jhep.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Accepted: 03/12/2025] [Indexed: 05/14/2025]
Abstract
Recent years have witnessed significant advances in the imaging, molecular profiling, and systemic treatment of cholangiocarcinoma (CCA). Despite this progress, the early detection, precise classification, and effective management of CCA remain challenging. Owing to recent developments and the significant differences in CCA subtypes, EASL commissioned a panel of experts to draft evidence-based recommendations on the management of extrahepatic CCA, comprising distal and perihilar CCA. Particular attention is given to the need for accurate classification systems, the integration of emerging molecular insights, and practical strategies for diagnosis and treatment that reflect real-world clinical scenarios.
Collapse
|
3
|
Yamada D, Kobayashi S, Doki Y, Eguchi H. Genomic landscape of biliary tract cancer and corresponding targeted treatment strategies. Int J Clin Oncol 2025:10.1007/s10147-025-02761-x. [PMID: 40281353 DOI: 10.1007/s10147-025-02761-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025]
Abstract
Biliary tract cancers (BTCs) are classified on the basis of their anatomical origin, and the feasibility of surgical resection depends on the tumor location and extent of progression. However, for unresectable BTCs, systemic therapy has been uniformly applied. Gemcitabine and cisplatin (GC) therapy and GC-based therapies were established as the first-line standard BTC treatment. However, no highly effective second-line therapy has been established, and the prognosis remains poor, highlighting the need for further therapeutic advancements. Meanwhile, the era of precision medicine has expanded the use of genetic testing, leading to the identification of actionable molecular targets in BTC. Several targeted therapies, including FGFR inhibitors and IDH1 inhibitors, have been developed, offering new second-line treatment options and the potential for first-line use in appropriate cases. Notably, the frequency of these genetic alterations varies depending on the tumor location, demonstrating the molecular heterogeneity of BTC. Therefore, it has been recognized that a tailored treatment approach for each BTC patient may be more effective than uniform systemic therapy. Consequently, although routine genetic testing before initiating systemic treatment is currently limited by the medical environment (e.g., cost, accessibility, regional differences), it is recommended in ESMO guideline and might be increasingly advocated. However, BTC harbors a wide range of genetic alterations, and numerous targeted therapies are being developed accordingly. This review provides an overview of the reported genetic alterations in BTC, the frequencies of these alterations, and the corresponding targeted therapies, emphasizing the evolving role of precision medicine in BTC treatment.
Collapse
Affiliation(s)
- Daisaku Yamada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2E2, Yamadaoka, Suita City, Osaka, 565-0871, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2E2, Yamadaoka, Suita City, Osaka, 565-0871, Japan.
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2E2, Yamadaoka, Suita City, Osaka, 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2E2, Yamadaoka, Suita City, Osaka, 565-0871, Japan
| |
Collapse
|
4
|
Yu HJ, Moon MH. Direct lipid analysis of exosomes in serum by online miniaturized asymmetrical flow field-flow fractionation and electrospray ionization-mass spectrometry: Application to extrahepatic cholangiocarcinoma. J Chromatogr A 2025; 1746:465778. [PMID: 39970688 DOI: 10.1016/j.chroma.2025.465778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/21/2025]
Abstract
Exosomes are submicron-sized extracellular vesicles involved in immune regulation, tumor metastasis, and cellular communication. Their lipid composition, distinct from parental cells, plays a crucial role in diseases like cancer. However, lipidomic analysis of exosomes, particularly in complex samples like blood, requires advanced techniques. This study optimizes miniaturized flow field-flow fractionation (mFlFFF) coupled with electrospray ionization mass spectrometry (ESI-MS) for direct lipidomic analysis of exosomes in serum. The mFlFFF technique resolves exosomes for size-based lipid analysis without prior extraction. Lipidomic profiling of serum exosomes from patients with extrahepatic cholangiocarcinoma (eCCA) identified over 1000 lipid species, with 64 showing significant changes compared to healthy controls. Target lipids were analyzed by mFlFFF-ESI-MS, revealing 35 species that distinguish eCCA patients from controls, suggesting their potential as biomarkers. Elevated levels of lysophosphatidylcholine, phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol (PI) were observed in the eCCA group, indicating lipid alterations linked to cancer progression and inflammation. Notably, PI 38:4, involved in the release of arachidonic acid, highlights its role in inflammatory processes associated with cancer. This study demonstrates the potential of mFlFFF-ESI-MS for lipidomic analysis of exosomes and offers a non-invasive approach for cancer diagnosis, with future implications for therapeutic targeting of lipid pathways in cholangiocarcinoma.
Collapse
Affiliation(s)
- Hye Ju Yu
- Department of Chemistry, Yonsei University, Seoul, 03722, South Korea
| | - Myeong Hee Moon
- Department of Chemistry, Yonsei University, Seoul, 03722, South Korea.
| |
Collapse
|
5
|
Su P, Han Y, Yi J, Hou Y, Xiao Y. Research status and frontiers in liver cancer immunotherapy: a bibliometric perspective on highly cited literature. Front Oncol 2025; 15:1587252. [PMID: 40276056 PMCID: PMC12018336 DOI: 10.3389/fonc.2025.1587252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 03/14/2025] [Indexed: 04/26/2025] Open
Abstract
Background Liver cancer is one of the major causes of cancer-related death in the world. As a breakthrough therapy, immunotherapy had significantly improved the prognosis of patients. However, the current research status and research hotspots in the field of liver cancer immunotherapy still lack systematic review. Based on the bibliometric analysis of highly cited papers, this study intended to reveal the current research status, research hotspots and future research trends in this field. Objective The purpose of this study was to analyze the national/regional contributions, authors and institutions cooperation network, keywords clustering and keywords burst analysis of highly cited papers on liver cancer immunotherapy through bibliometrics, so as to clarify the research frontier and development direction, and provide objective data support for future research direction and clinical practice. Methods The highly cited papers on liver cancer immunotherapy from the Web of Science core collection up to February 23, 2025 were retrieved, and 232 studies were included. CiteSpace was used to build a knowledge map, analyze the distribution of years, countries, authors, institutions and cooperation networks, and identify research hotspots and emerging trends through keyword clustering and burst detection. Results The number of highly cited papers continued to increase from 2014 and reached a peak in 2022. China and the United States had the highest number of publications and the centrality of cooperation networks. The author with the highest number of papers was Llovet, Josep M, whose research direction mainly focused on immune checkpoint inhibitor combination therapy and molecular typing. The author with the highest cooperation network centrality was Duda, Dan G, whose research team focused on tumor microenvironment regulation. Harvard University and the University of Barcelona played an important central role in the institutional collaboration. Keywords analysis showed that immune checkpoint inhibitors, tumor microenvironment and combination therapy were the core of liver cancer immunotherapy. Burst keywords such as cell lung cancer, pembrolizumab, advanced melanoma, blockade, lymphocytes, etc. had revealed the research frontier of liver cancer immunotherapy research. Conclusion The research on liver cancer immunotherapy had made multi-dimensional progress, with China and the United States leading the global cooperation. The main research directions were the combination strategy of immunization, the regulation of tumor microenvironment and the exploration of novel targets. In the future, it is necessary to optimize treatment resistance solutions, integrate interdisciplinary resources, and promote the development of precision and personalized treatment.
Collapse
Affiliation(s)
- Pan Su
- Teaching and Research Section of Clinical Nursing, Xiangya Hospital, Central South University, Changsha, China
| | - Yeqiong Han
- Teaching and Research Section of Clinical Nursing, Xiangya Hospital, Central South University, Changsha, China
| | - Jindong Yi
- Teaching and Research Section of Clinical Nursing, Xiangya Hospital, Central South University, Changsha, China
| | - Yu Hou
- Department of Pulmonology, Children’s Hospital, National Clinical Research Center For Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Yao Xiao
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
- International Joint Research Center of Minimally Invasive Endoscopic Technology Equipment & Standards, Xiangya Hospital, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
6
|
Ni C, Hua R, Yang Y, Liang J, Liu W, Wang L, Yao X, Li A, Yu L, Feng R, Lv D, Qin Z, Zhai W. Single-cell transcriptomic analysis reveals prognosis-related stromal signatures that potentiate stratification of patients with extrahepatic cholangiocarcinoma. BMC Gastroenterol 2025; 25:235. [PMID: 40205358 PMCID: PMC11983802 DOI: 10.1186/s12876-025-03829-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 03/28/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Extrahepatic cholangiocarcinoma (eCCA) is a rare but refractory cancer with dense desmoplasia. Prognosis-associated stromal cells in eCCA remain poorly characterized. Here, we profiled the tumor cellular composition and identified prognosis-related stromal signatures by single-cell RNA sequencing (scRNA-seq) in eCCA. ECCA patients were further stratified into different categories based on identified stromal signatures. METHODS Using scRNA-seq, we profiled the transcriptomes of 37,498 individual cells from eight eCCA biopsies, including five tumor tissues and three paired adjacent normal tissues. Bulk RNA sequencing (bRNA-seq) was also performed on 43 eCCA tumor tissues. Stromal cell composition and heterogeneity were examined through differential gene expression and gene set enrichment analyses. By assessing the expression levels of marker genes in bRNA-seq data, the correlation of stromal cell clusters with survival was explored. The GSVA scores of the cell-specific signature genes of the prognosis-related stromal cell subtypes were calculated and used to stratify eCCA patients. RESULTS The results revealed that tumor stroma in eCCA were composed of hematopoietic progenitor-like cells (HPLCs), fibroblasts (Fb), Schwann cells (Sch), endothelial cells and immune cells. Prognosis-associated stromal cell subpopulations included MKI67 + HPLC, TMEM158 + C3-Fb, FOXP3 + regulatory T cells (Treg), SLIT2 + Sch, TPSD1 + C2-mast cells (MC) and CTSG + C3-MC. Based on these stromal signatures, the eCCA tumors were categorized into three classes: proliferative Group 1 with enrichment of MKI67 + HPLC, inflammatory and fibrotic Group 2 with enrichment of TPSD1 + C2- MC, FOXP3 + Treg and TMEM158 + C3-Fb, and neuronal Group 3 with enrichment of SLIT2 + Sch and CTSG + C3-MC. ECCA patients in Group 3 had a better prognosis when compared to Group 1 and 2, reflecting different impact of stromal subtypes on tumor progression. CONCLUSION Single-cell transcriptomic analysis reveals prognosis-related stromal signatures that potentiate the stratification of eCCA into proliferative, inflammatory and fibrotic, and neuronal phenotypes, which has important implications on molecular classification and exploring therapeutic targets in eCCA.
Collapse
Affiliation(s)
- Chen Ni
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Henan China-Germany International Joint Laboratory of Tumor Immune Microenvironment and Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| | - Rulin Hua
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Yuanyuan Yang
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Henan China-Germany International Joint Laboratory of Tumor Immune Microenvironment and Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Jialu Liang
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Key Lab of Digestive Organ Transplantation of Henan Province, Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou Key Laboratory of Hepatobiliary and Pancreatic Disease and Organ Transplantation, Zhengzhou, Henan, 450052, China
| | - Wentao Liu
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Key Lab of Digestive Organ Transplantation of Henan Province, Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou Key Laboratory of Hepatobiliary and Pancreatic Disease and Organ Transplantation, Zhengzhou, Henan, 450052, China
| | - Linlin Wang
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Henan China-Germany International Joint Laboratory of Tumor Immune Microenvironment and Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xiaohan Yao
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Henan China-Germany International Joint Laboratory of Tumor Immune Microenvironment and Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Anqi Li
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Henan China-Germany International Joint Laboratory of Tumor Immune Microenvironment and Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Long Yu
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Key Lab of Digestive Organ Transplantation of Henan Province, Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou Key Laboratory of Hepatobiliary and Pancreatic Disease and Organ Transplantation, Zhengzhou, Henan, 450052, China
| | - Ruo Feng
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450000, China
| | - Dekang Lv
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, 116044, China.
| | - Zhihai Qin
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Henan China-Germany International Joint Laboratory of Tumor Immune Microenvironment and Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| | - Wenlong Zhai
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Key Lab of Digestive Organ Transplantation of Henan Province, Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou Key Laboratory of Hepatobiliary and Pancreatic Disease and Organ Transplantation, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
7
|
Soliman N, Maqsood A, Connor AA. Role of genomics in liver transplantation for cholangiocarcinoma. Curr Opin Organ Transplant 2025; 30:158-170. [PMID: 39917813 DOI: 10.1097/mot.0000000000001209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize the current knowledge of cholangiocarcinoma molecular biology and to suggest a framework for implementation of next-generation sequencing in all stages of liver transplantation. This is timely as recent guidelines recommend increased use of these technologies with promising results. RECENT FINDINGS The main themes covered here address germline and somatic genetic alterations recently discovered in cholangiocarcinoma, particularly those associated with prognosis and treatment responses, and nascent efforts to translate these into contemporary practice in the peri-liver transplantation period. SUMMARY Early efforts to translate molecular profiling to cholangiocarcinoma care demonstrate a growing number of potentially actionable alterations. Still lacking is a consensus on what biomarkers and technologies to adopt, at what scale and cost, and how to integrate them most effectively into care with the ambition of increasing the number of patients eligible for liver transplantation and improving their long-term outcomes.
Collapse
Affiliation(s)
- Nadine Soliman
- Department of Surgery
- J. C. Walter Jr. Transplant Center, Houston Methodist Hospital
- Houston Methodist Academic Institute
| | - Anaum Maqsood
- Department of Medicine
- Neill Cancer Center, Houston Methodist Hospital, Houston, Texas
| | - Ashton A Connor
- Department of Surgery
- J. C. Walter Jr. Transplant Center, Houston Methodist Hospital
- Houston Methodist Academic Institute
- Neill Cancer Center, Houston Methodist Hospital, Houston, Texas
- Department of Surgery, Weill Cornell Medicine, Cornell University, New York, New York, USA
| |
Collapse
|
8
|
Soliman N, Connor AA, Saharia A, Kodali S, Elaileh A, Patel K, Semaan S, Basra T, Victor DW, Simon CJ, Cheah YL, Hobeika MJ, Mobley CM, Divatia M, Dhingra S, Schwartz M, Maqsood A, Heyne K, Abdelrahim M, Javle M, Vauthey JN, Gaber AO, Ghobrial RM. Neoadjuvant Multiagent Systemic Therapy Approach to Liver Transplantation for Perihilar Cholangiocarcinoma. Transplant Direct 2025; 11:e1760. [PMID: 39936132 PMCID: PMC11809964 DOI: 10.1097/txd.0000000000001760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/12/2024] [Indexed: 02/13/2025] Open
Abstract
Background Perihilar cholangiocarcinoma (phCCA) has excellent outcomes following liver transplantation (LT). Neoadjuvant radiation-based locoregional therapy is standard-of-care. Gemcitabine and cisplatin (gem/cis) combination systemic therapies have improved outcomes in advanced settings, but their efficacy pre-LT has not been studied. Methods We review our experience following neoadjuvant gem/cis alone versus radiation-based approaches. Patients with phCCA undergoing LT at a single center between January 2008 and February 2023 were identified retrospectively. Neoadjuvant therapy was categorized as gem/cis systemic therapy (ST) alone, or any ST and radiotherapy (RT). Outcomes were posttransplant overall survival (OS), recurrence-free survival (RFS), waitlist time, and pathologic tumor response. Results During study period, 27 phCCA patients underwent LT. One patient decompensated with neoadjuvant therapy and was excluded. Median age was 61 y (interquartile range, 53-68 y) and 14 (54%) were male. Of 26 patients, 12 (46%) received ST and 14 (54%) RT. Six RT patients received gem/cis ST. Median waitlist time was 199 d (interquartile range, 98-405 d) and did not differ by neoadjuvant regimen. Explanted tumors were predominantly T1 stage, without lymphovascular invasion or nodal involvement. Neither pathologic features nor percent tumor necrosis differed by regimen. OS probabilities at 1 and 3 y were 84% and 55% for the cohort. There was no significant difference in OS and RFS when stratified by regimen. Conclusions Post-LT OS, RFS, waitlist time, and tumor response were similar in the 2 groups. Patients with phCCA who do not undergo RT may still be considered for LT under appropriate institution-based protocols that adhere to other established criteria.
Collapse
Affiliation(s)
- Nadine Soliman
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom
| | - Ashton A. Connor
- Department of Surgery, Houston Methodist Hospital, Houston, TX
- Department of Surgery, Weill Cornell Medical College, New York, NY
| | - Ashish Saharia
- Department of Surgery, Houston Methodist Hospital, Houston, TX
- Department of Surgery, Weill Cornell Medical College, New York, NY
| | - Sudha Kodali
- Sherrie and Alan Conover Center for Liver Disease and Transplantation, Department of Medicine, Houston Methodist Hospital, Houston, TX
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Ahmed Elaileh
- Department of Surgery, Houston Methodist Hospital, Houston, TX
| | - Khush Patel
- Department of Surgery, Houston Methodist Hospital, Houston, TX
| | - Samar Semaan
- Department of Surgery, Houston Methodist Hospital, Houston, TX
| | - Tamneet Basra
- Sherrie and Alan Conover Center for Liver Disease and Transplantation, Department of Medicine, Houston Methodist Hospital, Houston, TX
| | - David W. Victor
- Sherrie and Alan Conover Center for Liver Disease and Transplantation, Department of Medicine, Houston Methodist Hospital, Houston, TX
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | | | - Yee Lee Cheah
- Department of Surgery, Houston Methodist Hospital, Houston, TX
| | - Mark J. Hobeika
- Department of Surgery, Houston Methodist Hospital, Houston, TX
- Department of Surgery, Weill Cornell Medical College, New York, NY
| | - Constance M. Mobley
- Department of Surgery, Houston Methodist Hospital, Houston, TX
- Sherrie and Alan Conover Center for Liver Disease and Transplantation, Department of Medicine, Houston Methodist Hospital, Houston, TX
| | - Mukul Divatia
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX
| | - Sadhna Dhingra
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX
| | - Mary Schwartz
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX
| | - Anaum Maqsood
- Division of Medical Oncology, Department of Medicine, Houston Methodist Hospital, Houston, TX
| | - Kirk Heyne
- Department of Medicine, Weill Cornell Medical College, New York, NY
- Division of Medical Oncology, Department of Medicine, Houston Methodist Hospital, Houston, TX
| | - Maen Abdelrahim
- Department of Medicine, Weill Cornell Medical College, New York, NY
- Division of Medical Oncology, Department of Medicine, Houston Methodist Hospital, Houston, TX
| | - Milind Javle
- Department of Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jean-Nicolas Vauthey
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - A. Osama Gaber
- Department of Surgery, Houston Methodist Hospital, Houston, TX
- Department of Surgery, Weill Cornell Medical College, New York, NY
| | - R. Mark Ghobrial
- Department of Surgery, Houston Methodist Hospital, Houston, TX
- Department of Surgery, Weill Cornell Medical College, New York, NY
| |
Collapse
|
9
|
Guest RV, Goeppert B, Nault JC, Sia D. Morphomolecular Pathology and Genomic Insights into the Cells of Origin of Cholangiocarcinoma and Combined Hepatocellular-Cholangiocarcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:345-361. [PMID: 39341365 PMCID: PMC11841493 DOI: 10.1016/j.ajpath.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 10/01/2024]
Abstract
Cholangiocarcinomas are a highly heterogeneous group of malignancies that, despite recent progress in the understanding of their molecular pathogenesis and clinical management, continue to pose a major challenge to public health. The traditional view posits that cholangiocarcinomas derive from the neoplastic transformation of cholangiocytes lining the biliary tree. However, increasing genetic and experimental evidence has recently pointed to a more complex, and nuanced, scenario for the potential cell of origin of cholangiocarcinomas. Hepatocytes as well as hepatic stem/progenitor cells are being considered as additional potential sources, depending on microenvironmental contexts, including liver injury. The hypothesis of potentially diverse cells of origin for cholangiocarcinoma, albeit controversial, is certainly not surprising given the plasticity of the cells populating the liver as well as the existence of liver cancer subtypes with mixed histologic and molecular features. This review carefully examines the current pathologic, genomic, and experimental evidence supporting the existence of multiple cells of origin of liver and biliary tract cancers, with particular focus on cholangiocarcinoma and combined hepatocellular-cholangiocarcinoma.
Collapse
Affiliation(s)
- Rachel V Guest
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Benjamin Goeppert
- Institute of Pathology, RKH Klinikum Ludwigsburg, Ludwigsburg, Germany; Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Jean-Charles Nault
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Team "Functional Genomics of Solid Tumors", Equipe labellisée Ligue Nationale Contre le Cancer, Labex OncoImmunology, Paris, France; Liver Unit, Avicenne Hospital, APHP, University Sorbonne Paris Nord, Bobigny, France
| | - Daniela Sia
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
10
|
Macias RIR, Kanzaki H, Berasain C, Avila MA, Marin JJG, Hoshida Y. The Search for Risk, Diagnostic, and Prognostic Biomarkers of Cholangiocarcinoma and Their Biological and Clinicopathologic Significance. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:422-436. [PMID: 39103092 PMCID: PMC11841489 DOI: 10.1016/j.ajpath.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/01/2024] [Accepted: 06/20/2024] [Indexed: 08/07/2024]
Abstract
Cholangiocarcinomas (CCAs) are a heterogeneous group of malignant tumors that originate from the biliary tract. They are usually diagnosed in advanced stages, leading to a poor prognosis for affected patients. As CCA often arises as a sporadic cancer in individuals lacking specific risk factors or with heterogeneous backgrounds, and there are no defined high-risk groups, the implementation of effective surveillance programs for CCA is problematic. The identification and validation of new biomarkers useful for risk stratification, diagnosis, prognosis, and prediction of treatment response remains an unmet need for patients with CCA, even though numerous studies have been conducted lately to try to discover and validate CCA biomarkers. In this review, we overview the available information about the different types of biomarkers that have been investigated in recent years using minimally invasive biospecimens (blood, serum/plasma, bile, and urine) and their potential usefulness in diagnosis, prognosis, and risk stratification. It is widely accepted that early detection of CCA will impact patients' outcomes, by improving survival rates, quality of life, and the possibility of less invasive and/or curative treatments; however, challenges to its translation and clinical application for patients with CCA need to be resolved.
Collapse
Affiliation(s)
- Rocio I R Macias
- Experimental Hepatology and Drug Targeting Group, University of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases, Carlos III National Institute of Health, Madrid, Spain.
| | - Hiroaki Kanzaki
- Division of Digestive and Liver Diseases, Department of Internal Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Carmen Berasain
- Center for the Study of Liver and Gastrointestinal Diseases, Carlos III National Institute of Health, Madrid, Spain; Hepatology Laboratory, Solid Tumors Program, Center for Applied Medical Research, Cancer Center University of Navarra, Pamplona, Spain
| | - Matias A Avila
- Center for the Study of Liver and Gastrointestinal Diseases, Carlos III National Institute of Health, Madrid, Spain; Hepatology Laboratory, Solid Tumors Program, Center for Applied Medical Research, Cancer Center University of Navarra, Pamplona, Spain
| | - Jose J G Marin
- Experimental Hepatology and Drug Targeting Group, University of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases, Carlos III National Institute of Health, Madrid, Spain
| | - Yujin Hoshida
- Division of Digestive and Liver Diseases, Department of Internal Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
11
|
Krasinskas AM. Diagnostic Pearls and Pitfalls in the Evaluation of Small Biopsies From the Bile Duct and Ampulla. Arch Pathol Lab Med 2025; 149:e47-e53. [PMID: 39603257 DOI: 10.5858/arpa.2024-0160-ra] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2024] [Indexed: 11/29/2024]
Abstract
CONTEXT.— Histopathologic evaluation of bile duct and ampullary biopsies can be challenging. Biopsies from these sites are often tiny, scant, and/or fragmented. When assessing these biopsies, there is significant overlap between reactive atypia and malignancy, in situ precursor lesions can be misinterpreted as malignancy, and nonprimary tumors can mimic primary disease. OBJECTIVE.— To provide diagnostic pearls and pitfalls in the evaluation of small biopsies from the biliary tract. DATA SOURCES.— Literature review of published studies and the author's own observations. CONCLUSIONS.— Because the procedures for obtaining specimens from the bile duct and ampulla are invasive, pathologists need to try to make definitive diagnoses. Diagnostic clues/pearls, ancillary studies, and recognition of various pitfalls can assist in providing accurate and confident diagnoses.
Collapse
Affiliation(s)
- Alyssa M Krasinskas
- From the Department of Pathology and Laboratory Medicine, Emory University Hospital, Atlanta, Georgia
| |
Collapse
|
12
|
Nie J, Zhang S, Guo Y, Liu C, Shi J, Wu H, Na R, Liang Y, Yu S, Quan F, Liu K, Li M, Zhou M, Zhao Y, Li X, Luo S, Zhang Q, Wang G, Zhang Y, Yao Y, Xiao Y, Tai S, Zheng T. Mapping of the T-cell Landscape of Biliary Tract Cancer Unravels Anatomic Subtype-Specific Heterogeneity. Cancer Res 2025; 85:704-722. [PMID: 39570809 DOI: 10.1158/0008-5472.can-24-1173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/24/2024] [Accepted: 11/13/2024] [Indexed: 02/18/2025]
Abstract
Biliary tract cancer (BTC), encompassing diseases such as intrahepatic (ICC), extrahepatic cholangiocarcinoma (ECC), and gallbladder cancer, is not only increasing but also poses a significant and urgent health threat due to its high malignancy. Genomic differences point to the possibility that these subtypes represent distinct diseases. Elucidation of the specific distribution of T-cell subsets, critical to cancer immunity, across these diseases could provide better insights into the unique biology of BTC subtypes and help identify potential precision medicine strategies. To address this, we conducted single-cell RNA sequencing and T-cell receptor sequencing on CD3+ T cells from 36 samples from 16 patients with BTC across all subtypes and analyzed 355 pathologic slides to examine the spatial distribution of T cells and tertiary lymphoid structures. Compared with ICC and gallbladder cancer, ECC possessed a unique immune profile characterized by T-cell exhaustion, elevated CXCL13 expression in CD4+ T helper-like and CD8+CXCL13+ exhausted T cells, more mature tertiary lymphoid structures, and fewer desert immunophenotypes. Conversely, ICC displayed an inflamed immunophenotype with an enrichment of IFN-related pathways and high expression of LGALS1 in activated regulatory T cells, associated with immunosuppression. Inhibition of LGALS1 reduced tumor growth and regulatory T-cell prevalence in ICC mouse models. Overall, this study unveils T-cell diversity across BTC subtypes at the single-cell and spatial level that could open paths for tailored immunotherapies. Significance: Single-cell and spatial analyses detailed the T-cell characteristics specific to anatomic subtypes of biliary tract cancer, identifying unique immunologic features that could potentially be harnessed to improve patient outcomes.
Collapse
Affiliation(s)
- Jianhua Nie
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Molecular Oncology in Heilongjiang, Harbin, China
| | - Shuyuan Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Molecular Oncology in Heilongjiang, Harbin, China
| | - Ying Guo
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Molecular Oncology in Heilongjiang, Harbin, China
| | - Caiqi Liu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Molecular Oncology in Heilongjiang, Harbin, China
| | - Jiaqi Shi
- Key Laboratory of Molecular Oncology in Heilongjiang, Harbin, China
- Department of Phase 1 Trials Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Haotian Wu
- Department of Hepatic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ruisi Na
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Molecular Oncology in Heilongjiang, Harbin, China
| | - Yingjian Liang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shan Yu
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fei Quan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Kun Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Mingwei Li
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Molecular Oncology in Heilongjiang, Harbin, China
| | - Meng Zhou
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Molecular Oncology in Heilongjiang, Harbin, China
| | - Ying Zhao
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Molecular Oncology in Heilongjiang, Harbin, China
| | - Xuehan Li
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Molecular Oncology in Heilongjiang, Harbin, China
| | - Shengnan Luo
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Molecular Oncology in Heilongjiang, Harbin, China
| | - Qian Zhang
- Department of Abdominal Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Guangyu Wang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yanqiao Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yuanfei Yao
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Molecular Oncology in Heilongjiang, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
| | - Yun Xiao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Sheng Tai
- Department of Hepatic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tongsen Zheng
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Molecular Oncology in Heilongjiang, Harbin, China
- Department of Phase 1 Trials Center, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
13
|
Chung T, Oh S, Won J, Park J, Yoo JE, Hwang HK, Choi GH, Kang CM, Han DH, Kim S, Park YN. Genomic and transcriptomic signatures of sequential carcinogenesis from papillary neoplasm to biliary tract cancer. J Hepatol 2025:S0168-8278(25)00013-3. [PMID: 39832657 DOI: 10.1016/j.jhep.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/23/2024] [Accepted: 01/01/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND & AIMS Papillary neoplasms of the biliary tree, including intraductal papillary neoplasms (IPNs) and intracholecystic papillary neoplasms (ICPNs), are recognized as precancerous lesions. However, the genetic characteristics underlying sequential carcinogenesis remain unclear. METHODS Whole-exome sequencing was performed on 166 neoplasms (33 intrahepatic IPNs, 44 extrahepatic IPNs, and 89 ICPNs), and 41 associated carcinomas. Nine available cases were also subjected to spatial transcriptomic analysis. RESULTS Mutations in the MAPK (48%), genomic integrity maintenance (42%), and Wnt/β-catenin (33%) pathways were prevalent in intrahepatic IPNs, extrahepatic IPNs, and ICPNs, respectively. KRAS mutations were enriched in intrahepatic IPNs (42%, p <0.001), whereas SMAD4 mutations were enriched in extrahepatic IPNs (21%, p = 0.005). ICPNs frequently exhibit CTNNB1 mutations, particularly in low-grade lesions. Mutational signature analysis revealed that SBS1 and SBS5 signatures were homogeneously enriched in intrahepatic IPNs, in contrast to the heterogeneous distribution of SBS1, SBS2, SBS5, SBS13, SBS7b, and SBS23 in extrahepatic IPNs and ICPNs. Copy number aberrations gradually increased from low-to high-grade intraepithelial neoplasia and eventually to carcinoma. Phylogenetic analysis revealed that 89% of carcinomas were derived from IPNs/ICPNs through sequential carcinogenesis, with the majority sharing driver mutations between the IPN/ICPN and the carcinoma. Furthermore, multifocal, independent carcinogenesis events were observed in IPNs/ICPNs, resulting in mutationally distinct carcinoma lesions. Carcinogenesis of IPN/ICPN occurs in multiple subclones through mutational accumulation and transcriptomic alterations that affect vascular development, cell morphogenesis, extracellular matrix organization, and growth factor response. CONCLUSIONS With the largest IPN/ICPN cohort reported to date, our study provides a genome- and spatial transcriptome-level portrait of sequential carcinogenesis and differences in the anatomical location of biliary papillary neoplasms. IMPACT AND IMPLICATIONS Biliary tract cancer is a fatal malignancy. However, the genome-level sequential progression from intraepithelial neoplasia to carcinoma has not yet been evaluated in a sufficiently large cohort. Papillary lesions of the bile duct and gallbladder are collectively termed intraductal papillary neoplasms of the bile duct and intracholecystic papillary neoplasms, respectively. They are primarily diagnosed based on histopathological studies. This study provides a comprehensive mutational and spatial transcriptomic landscape of papillary neoplasms of the bile duct and gallbladder. The results of this study offer insights into the mechanism of sequential carcinogenesis in papillary biliary tract tumors, pathology-genomic correlations, and potential therapeutic targets.
Collapse
Affiliation(s)
- Taek Chung
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seungho Oh
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jeongsoo Won
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jiho Park
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jeong Eun Yoo
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ho Kyoung Hwang
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Gi Hong Choi
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chang Moo Kang
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dai Hoon Han
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sangwoo Kim
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea; POSTECH Biotechnology Center, Pohang University of Science and Technology, Pohang, Republic of Korea.
| | - Young Nyun Park
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
14
|
Xie X, Fang Z, Zhang H, Wang Z, Li J, Jia Y, Shang L, Cao F, Li F. The role of N(6)-methyladenosine (m6a) modification in cancer: recent advances and future directions. EXCLI JOURNAL 2025; 24:113-150. [PMID: 39967906 PMCID: PMC11830918 DOI: 10.17179/excli2024-7935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/18/2024] [Indexed: 02/20/2025]
Abstract
N(6)-methyladenosine (m6A) modification is the most abundant and prevalent internal modification in eukaryotic mRNAs. The role of m6A modification in cancer has become a hot research topic in recent years and has been widely explored. m6A modifications have been shown to regulate cancer occurrence and progression by modulating different target molecules. This paper reviews the recent research progress of m6A modifications in cancer and provides an outlook on future research directions, especially the development of molecularly targeted drugs. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Xiaozhou Xie
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhen Fang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Haoyu Zhang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zheng Wang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jie Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuchen Jia
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Liang Shang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Feng Cao
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Fei Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Zhan T, Betge J, Schulte N, Dreikhausen L, Hirth M, Li M, Weidner P, Leipertz A, Teufel A, Ebert MP. Digestive cancers: mechanisms, therapeutics and management. Signal Transduct Target Ther 2025; 10:24. [PMID: 39809756 PMCID: PMC11733248 DOI: 10.1038/s41392-024-02097-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/20/2024] [Accepted: 11/29/2024] [Indexed: 01/16/2025] Open
Abstract
Cancers of the digestive system are major contributors to global cancer-associated morbidity and mortality, accounting for 35% of annual cases of cancer deaths. The etiologies, molecular features, and therapeutic management of these cancer entities are highly heterogeneous and complex. Over the last decade, genomic and functional studies have provided unprecedented insights into the biology of digestive cancers, identifying genetic drivers of tumor progression and key interaction points of tumor cells with the immune system. This knowledge is continuously translated into novel treatment concepts and targets, which are dynamically reshaping the therapeutic landscape of these tumors. In this review, we provide a concise overview of the etiology and molecular pathology of the six most common cancers of the digestive system, including esophageal, gastric, biliary tract, pancreatic, hepatocellular, and colorectal cancers. We comprehensively describe the current stage-dependent pharmacological management of these malignancies, including chemo-, targeted, and immunotherapy. For each cancer entity, we provide an overview of recent therapeutic advancements and research progress. Finally, we describe how novel insights into tumor heterogeneity and immune evasion deepen our understanding of therapy resistance and provide an outlook on innovative therapeutic strategies that will shape the future management of digestive cancers, including CAR-T cell therapy, novel antibody-drug conjugates and targeted therapies.
Collapse
Affiliation(s)
- Tianzuo Zhan
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- DKFZ Hector Cancer Institute at University Medical Center Mannheim, Mannheim, Germany
- Mannheim Cancer Center, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Johannes Betge
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- DKFZ Hector Cancer Institute at University Medical Center Mannheim, Mannheim, Germany
- Mannheim Cancer Center, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Junior Clinical Cooperation Unit Translational Gastrointestinal Oncology and Preclinical Models, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nadine Schulte
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Mannheim Cancer Center, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lena Dreikhausen
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Michael Hirth
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Moying Li
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Philip Weidner
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Antonia Leipertz
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Andreas Teufel
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Matthias P Ebert
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
- DKFZ Hector Cancer Institute at University Medical Center Mannheim, Mannheim, Germany.
- Mannheim Cancer Center, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
16
|
Cammarota A, Balsano R, Pressiani T, Bozzarelli S, Rimassa L, Lleo A. The Immune-Genomics of Cholangiocarcinoma: A Biological Footprint to Develop Novel Immunotherapies. Cancers (Basel) 2025; 17:272. [PMID: 39858054 PMCID: PMC11763448 DOI: 10.3390/cancers17020272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Cholangiocarcinoma (CCA) represents approximately 3% of all gastrointestinal cancers and is a highly heterogeneous and aggressive malignancy originating from the epithelial cells of the biliary tree. CCA is classified by anatomical location into intrahepatic (iCCA), extrahepatic (eCCA), gallbladder cancer (GBC), and ampullary cancers. Although considered a rare tumor, CCA incidence has risen globally, particularly due to the increased diagnosis of iCCA. Genomic and immune profiling studies have revealed significant heterogeneity within CCA, leading to the identification of molecular subtypes and actionable genetic alterations in 40-60% of cases, particularly in iCCA. Among these, FGFR2 rearrangements or fusions (7-15%) and IDH1 mutations (10-20%) are common in iCCA, while HER2 amplifications/overexpression are more frequent in eCCA and GBC. The tumor-immune microenvironment (TIME) of CCAs plays an active role in the pathogenesis and progression of the disease, creating a complex and plastic environment dominated by immune-suppressive populations. Among these, cancer-associated fibroblasts (CAFs) are a key component of the TIME and are associated with worse survival due to their role in maintaining a poorly immunogenic landscape through the deposition of stiff extracellular matrix and release of pro-tumor soluble factors. Improved understanding of CCA tumor biology has driven the development of novel treatments. Combination therapies of cisplatin and gemcitabine with immune checkpoint inhibitors (ICIs) have replaced the decade-long standard doublet chemotherapy, becoming the new standard of care in patients with advanced CCA. However, the survival improvements remain modest prompting research into more effective ways to target the TIME of CCAs. As key mechanisms of immune evasion in CCA are uncovered, novel immune molecules emerge as potential therapeutic targets. Current studies are exploring strategies targeting multiple immune checkpoints, angiogenesis, and tumor-specific antigens that contribute to immune escape. Additionally, the success of ICIs in advanced CCA has led to interest in their application in earlier stages of the disease, such as in adjuvant and neoadjuvant settings. This review offers a comprehensive overview of the immune biology of CCAs and examines how this knowledge has guided clinical drug development, with a focus on both approved and emergent treatment strategies.
Collapse
Affiliation(s)
- Antonella Cammarota
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, 20090 Pieve Emanuele, Italy; (R.B.); (L.R.)
| | - Rita Balsano
- Department of Biomedical Sciences, Humanitas University, 20090 Pieve Emanuele, Italy; (R.B.); (L.R.)
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (T.P.); (S.B.)
| | - Tiziana Pressiani
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (T.P.); (S.B.)
| | - Silvia Bozzarelli
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (T.P.); (S.B.)
| | - Lorenza Rimassa
- Department of Biomedical Sciences, Humanitas University, 20090 Pieve Emanuele, Italy; (R.B.); (L.R.)
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (T.P.); (S.B.)
| | - Ana Lleo
- Department of Biomedical Sciences, Humanitas University, 20090 Pieve Emanuele, Italy; (R.B.); (L.R.)
- Division of Internal Medicine and Hepatology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| |
Collapse
|
17
|
Dai Y, Dong C, Wang Z, Zhou Y, Wang Y, Hao Y, Chen P, Liang C, Li G. Infiltrating T lymphocytes and tumor microenvironment within cholangiocarcinoma: immune heterogeneity, intercellular communication, immune checkpoints. Front Immunol 2025; 15:1482291. [PMID: 39845973 PMCID: PMC11750830 DOI: 10.3389/fimmu.2024.1482291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 12/17/2024] [Indexed: 01/24/2025] Open
Abstract
Cholangiocarcinoma is the second most common primary liver cancer, and its global incidence has increased in recent years. Radical surgical resection and systemic chemotherapy have traditionally been the standard treatment options. However, the complexity of cholangiocarcinoma subtypes often presents a challenge for early diagnosis. Additionally, high recurrence rates following radical treatment and resistance to late-stage chemotherapy limit the benefits for patients. Immunotherapy has emerged as an effective strategy for treating various types of cancer, and has shown efficacy when combined with chemotherapy for cholangiocarcinoma. Current immunotherapies targeting cholangiocarcinoma have predominantly focused on T lymphocytes within the tumor microenvironment, and new immunotherapies have yielded unsatisfactory results in clinical trials. Therefore, it is essential to achieve a comprehensive understanding of the unique tumor microenvironment of cholangiocarcinoma and the pivotal role of T lymphocytes within it. In this review, we describe the heterogeneous immune landscape and intercellular communication in cholangiocarcinoma and summarize the specific distribution of T lymphocytes. Finally, we review potential immune checkpoints in cholangiocarcinoma.
Collapse
Affiliation(s)
- Yunyan Dai
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Chenyang Dong
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Zhiming Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yunpeng Zhou
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yi Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yi Hao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Pinggui Chen
- Department of Nuclear Medicine, Nanyang First People’s Hospital, Nanyang, Henan, China
| | - Chaojie Liang
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
- Department of biliary and Pancreatic Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Gaopeng Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
18
|
Tang CY, Lin YT, Yeh YC, Chung SY, Chang YC, Hung YP, Chen SC, Chen MH, Chiang NJ. The correlation between LAG-3 expression and the efficacy of chemoimmunotherapy in advanced biliary tract cancer. Cancer Immunol Immunother 2025; 74:41. [PMID: 39751894 PMCID: PMC11699023 DOI: 10.1007/s00262-024-03878-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/30/2024] [Indexed: 01/04/2025]
Abstract
In our previous phase II T1219 trial for advanced biliary tract cancer (ABTC), the combination of nivolumab with modified gemcitabine and S-1 exhibited promising efficacy, while the programmed-death-ligand-1 (PD-L1) expression did not predict chemoimmunotherapy efficacy. Lymphocyte-activation-gene-3 (LAG-3), a negative immune checkpoint, is frequently co-expressed with PD-L1. This study assessed the predictive value of LAG-3 expression in ABTC patients who received chemoimmunotherapy. We analyzed 44 formalin-fixed ABTC samples using immunohistochemical staining for PD-L1 and LAG-3 and correlated them with the clinical efficacy of chemoimmunotherapy. Digital spatial profiling was conducted in selected regions of interest to examine immune cell infiltration and checkpoint expression in six cases. Three public BTC datasets were used for analysis: TCGA-CHOL, GSE32225, and GSE132305. LAG-3 positivity was observed in 38.6% of the ABTC samples and was significantly correlated with PD-L1 positivity (P < 0.001). The objective response rate (ORR) was significantly higher in LAG-3-positive tumors than in LAG-3-negative tumors (70.6% vs. 33.3%, P = 0.029). The LAG-3 expression level was associated with an increased ORR (33%, 58%, and 100% for LAG-3 < 1%, 1-9%, and ≥ 10%, respectively; P = 0.018) and a deeper therapeutic response (20.1%, 38.6%, and 57.6% for the same respective groups; P = 0.04). LAG-3 expression is positively correlated with the expression of numerous immune checkpoints. Enrichment of CD8+ T cells was observed in LAG-3-positive BTC, indicating that LAG-3 expression may serve as a biomarker for identifying immune-inflamed tumors and predicting the therapeutic response to chemoimmunotherapy in ABTC.
Collapse
Affiliation(s)
- Cheng-Yu Tang
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Road, Beitou District, Taipei, 112201, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Ting Lin
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Road, Beitou District, Taipei, 112201, Taiwan
| | - Yi-Chen Yeh
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shin-Yi Chung
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Road, Beitou District, Taipei, 112201, Taiwan
| | - Yu-Chan Chang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Ping Hung
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Road, Beitou District, Taipei, 112201, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - San-Chi Chen
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Road, Beitou District, Taipei, 112201, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Huang Chen
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Road, Beitou District, Taipei, 112201, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Nai-Jung Chiang
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Road, Beitou District, Taipei, 112201, Taiwan.
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan.
| |
Collapse
|
19
|
Elurbide J, Colyn L, Latasa MU, Uriarte I, Mariani S, Lopez-Pascual A, Valbuena E, Castello-Uribe B, Arnes-Benito R, Adan-Villaescusa E, Martinez-Perez LA, Azkargorta M, Elortza F, Wu H, Krawczyk M, Schneider KM, Sangro B, Aldrighetti L, Ratti F, Casadei Gardini A, Marin JJG, Amat I, Urman JM, Arechederra M, Martinez-Chantar ML, Trautwein C, Huch M, Cubero FJ, Berasain C, G Fernandez-Barrena M, Avila MA. Identification of PRMT5 as a therapeutic target in cholangiocarcinoma. Gut 2024; 74:116-127. [PMID: 39266051 PMCID: PMC12056590 DOI: 10.1136/gutjnl-2024-332998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/14/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a very difficult-to-treat cancer. Chemotherapies are little effective and response to immune checkpoint inhibitors is limited. Therefore, new therapeutic strategies need to be identified. OBJECTIVE We characterised the enzyme protein arginine-methyltransferase 5 (PRMT5) as a novel therapeutic target in CCA. DESIGN We evaluated the expression of PRMT5, its functional partner MEP50 and methylthioadenosine phosphorylase (MTAP)-an enzyme that modulates the sensitivity of PRMT5 to pharmacological inhibitors-in human CCA tissues. PRMT5-targeting drugs, currently tested in clinical trials for other malignancies, were assessed in human CCA cell lines and organoids, as well as in two immunocompetent CCA mouse models. Transcriptomic, proteomic and functional analyses were performed to explore the underlying antitumoural mechanisms. RESULTS PRMT5 and MEP50 proteins were correlatively overexpressed in most CCA tissues. MTAP was absent in 25% of intrahepatic CCA. PRMT5-targeting drugs markedly inhibited CCA cell proliferation, synergising with cisplatin and gemcitabine and hindered the growth of cholangiocarcinoma organoids. PRMT5 inhibition blunted the expression of oncogenic genes involved in chromatin remodelling and DNA repair, consistently inducing the formation of RNA loops and promoting DNA damage. Treatment with PRMT5-targeting drugs significantly restrained the growth of experimental CCA without adverse effects and concomitantly induced the recruitment of CD4 and CD8 T cells to shrinking tumourous lesions. CONCLUSION PRMT5 and MEP50 are frequently upregulated in human CCA, and PRMT5-targeting drugs have significant antitumoural efficacy in clinically relevant CCA models. Our findings support the evaluation of PRMT5 inhibitors in clinical trials, including their combination with cytotoxic and immune therapies.
Collapse
Affiliation(s)
- Jasmin Elurbide
- Hepatology Laboratory, CIMA-University of Navarra, Pamplona, Spain
- CIBEREHD, Madrid, Spain
| | - Leticia Colyn
- Hepatology Laboratory, CIMA-University of Navarra, Pamplona, Spain
| | - Maria U Latasa
- Hepatology and Gene Therapy, Cima. University of Navarra, Pamplona, Spain
| | - Iker Uriarte
- Hepatology Laboratory, CIMA-University of Navarra, Pamplona, Spain
- CIBEREHD, Madrid, Spain
| | - Stefano Mariani
- Hepatology Laboratory, CIMA-University of Navarra, Pamplona, Spain
- Oncology, University Hospital of Cagliari Department of Medicine, Cagliari, Italy
| | - Amaya Lopez-Pascual
- Hepatology Laboratory, CIMA-University of Navarra, Pamplona, Spain
- IdiSNA, Pamplona, Spain
| | | | | | - Robert Arnes-Benito
- Max-Plank Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Luz A Martinez-Perez
- Hepatology Laboratory, CIMA-University of Navarra, Pamplona, Spain
- Universidad de Guadalajara Centro Universitario de Ciencias de la Salud, Guadalajara, Mexico
| | - Mikel Azkargorta
- Proteomics Platform, Bizkaia Science and Technology Park, Derio, Spain
| | - Felix Elortza
- Proteomics Platform, CIC bioGUNE, ProteoRed-ISCIII, Bizkaia Science and Technology Park, CIC bioGUNE, Bizkaia, Spain
| | - Hanghang Wu
- Immunology, Ophthalmology and ENT, Complutense University of Madrid Faculty of Medicine, Madrid, Spain
| | - Marcin Krawczyk
- Department of Gastroenterology, Hepatology and Transplant Medicine, Medical Faculty, University of Duisburg-Essen, Essen, Germany
- Laboratory of Metabolic Liver Diseases, Medical University of Warsaw, Warszawa, Poland
| | - Kai Markus Schneider
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Bruno Sangro
- Liver Unit, Dept. of Internal Medicine, Clinica Universitaria de Navarra, Pamplona, Spain
| | | | - Francesca Ratti
- Hepatobiliary surgery division, San Raffaele Hospital, Milano, Italy
| | | | - Jose J G Marin
- CIBEREHD, Madrid, Spain
- HEVEFARM, Physiology and Pharmacology, IBSAL, CIBERehd, University of Salamanca, Salamanca, Spain
| | - Irene Amat
- Department of Pathology, Navarra University Hospital Complex, Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Jesus M Urman
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
- Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, Pamplona, Spain
| | | | - Maria Luz Martinez-Chantar
- CIBEREHD, Madrid, Spain
- Liver Disease Lab, BRTA CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), CICbioGUNE, Derio, Spain
| | | | - Meritxell Huch
- Max-Plank Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | - Francisco Javier Cubero
- CIBEREHD, Madrid, Spain
- Immunology, Ophthalmology and ENT. Health Research Institute Gregorio Marañón (IiSGM), Complutense University of Madrid Faculty of Medicine, Madrid, Spain
| | - Carmen Berasain
- Division of Hepatology and Gene Therapy, CIMA University of Navarra, Pamplona, Spain
| | | | | |
Collapse
|
20
|
Laface C, Fina E, Ricci AD, Guven DC, Ambrogio F, De Summa S, Vitale E, Massafra R, Brunetti O, Rizzo A. Immunobiology of biliary tract cancer and recent clinical findings in approved and upcoming immune checkpoint inhibitors. Expert Opin Biol Ther 2024; 24:1363-1374. [PMID: 39545466 DOI: 10.1080/14712598.2024.2431088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 11/17/2024]
Abstract
INTRODUCTION Recently, immunotherapy has offered new hope for treating biliary tract cancer (BTC). However, several issues are to be considered, including the lack of validated predictive biomarkers that could help to identify patient groups which are most likely to benefit from such therapeutic approaches. AREAS COVERED In the current article, we will provide an overview of recent results and ongoing and future research directions of immunotherapy in BTC, with a special focus on recently published, practice-changing data, and ongoing active and recruiting clinical trials. EXPERT OPINION At this moment, dozens of clinical trials in phases I to III are evaluating the role of cancer immunotherapy in this setting, with the hope of adding more therapeutic options for BTC patients. Future research must focus on the development of novel agents and combinations, but the validation of biomarkers remains an urgent need. As more research results emerge, novel combinatorial strategies are destined to further transform the treatment paradigm for this heterogeneous and aggressive tumor type.
Collapse
Affiliation(s)
- Carmelo Laface
- Azienda Sanitaria Provinciale, Reggio Calabria (RC), Italy
| | - Emanuela Fina
- Thoracic Surgery Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Angela Dalia Ricci
- Medical Oncology Unit, National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, Castellana Grotte, Italy
| | - Deniz Can Guven
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
- Medical Oncology Clinic, Elazig City Hospital, Health Sciences University, Elazig, Turkey
| | - Francesca Ambrogio
- Section of Dermatology, Department of Biomedical Science and Human Oncology, University of Bari, Bari, Italy
| | - Simona De Summa
- Molecular Diagnostics and Pharmacogenetics Unit, IRCCS Istituto Tumori, "Giovanni Paolo II", Bari, Italy
| | - Elsa Vitale
- Scientific Directorate, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Raffaella Massafra
- Scientific Directorate, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Oronzo Brunetti
- S.S.D. C.O.r.O. Bed Management Presa in Carico, TDM, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Alessandro Rizzo
- S.S.D. C.O.r.O. Bed Management Presa in Carico, TDM, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| |
Collapse
|
21
|
Li Y, Yu J, Zhang Y, Peng C, Song Y, Liu S. Advances in targeted therapy of cholangiocarcinoma. Ann Med 2024; 56:2310196. [PMID: 38359439 PMCID: PMC10877652 DOI: 10.1080/07853890.2024.2310196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 01/20/2024] [Indexed: 02/17/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a malignant tumor originating in the bile duct and its branching epithelium. Due to its high heterogeneity, there are no specific clinical indications at the early stage, the diagnosis is often in advanced CCA. With surgical resection, the 5-year postoperative survival rate (long-term survival rate) is very poor. The regimen of gemcitabine combined with platinum has been used as the first-line chemotherapy for advanced patients. In recent years, targeted therapy for a variety of malignant tumors has made great progress, showing good efficacy and safety in advanced CCA. However, the current targeted therapy of CCA still has many challenges, such as adverse reactions, drug resistance, and individual differences. Therefore, the researches need to further explore the targeted therapy mechanism of CCA malignancies in depth, develop more effective and safe drugs, and accurately formulate plans based on patient characteristics to further improve patient prognosis in the future. This article reviews the recent progress of targeted therapy for CCA, aiming to provide a strategy for the research and clinical work of targeted therapy for CCA.
Collapse
Affiliation(s)
- Yuhang Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Jianfeng Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
- Central Laboratory, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province, China
| | - Yujing Zhang
- Central Laboratory, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province, China
| | - Chuang Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
- Hunan Provincial Key Laboratory of Biliary Disease Prevention and Treatment, Changsha, Hunan Province, China
- Clinical Medical Technology Research Center of Hunan Provincial for Biliary Disease Prevention and Treatment, Changsha, Hunan Province, China
| | - Yinghui Song
- Central Laboratory, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province, China
| | - Sulai Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
- Central Laboratory, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province, China
- Hunan Provincial Key Laboratory of Biliary Disease Prevention and Treatment, Changsha, Hunan Province, China
- Clinical Medical Technology Research Center of Hunan Provincial for Biliary Disease Prevention and Treatment, Changsha, Hunan Province, China
| |
Collapse
|
22
|
Bai M, Wang R, Huang C, Zhong R, Jiang N, Fu W, Mi N, Gao L, Jin Y, Ma H, Cao J, Yu H, Jing Q, Zhang C, Yue P, Zhang Y, Lin Y, Zhang H, Meng W. Biological and genetic characterization of a newly established human primary multidrug-resistant distal cholangiocarcinoma cell line, CBC3T-6. Sci Rep 2024; 14:29661. [PMID: 39613883 DOI: 10.1038/s41598-024-81392-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024] Open
Abstract
Distal cholangiocarcinoma is a rare and highly aggressive malignant tumor. The inherent tumor characteristics and growth pattern of cancer cells pose a challenge for diagnosis and treatment. Chemotherapy resistance leads to limited treatment options for patients with advanced cholangiocarcinoma. However, drug resistance studies in cholangiocarcinoma are often limited by the use of preclinical models that do not accurately replicate the essential features of the disease. In this study, we established and characterized a primary multidrug-resistant distal cholangiocarcinoma cell line, CBC3T-6. STR profiling indicated no evidence of cross-contamination. This cell line remains stable during long-term in vitro culture and is characterized by short doubling times and rapid subcutaneous tumor formation in mice. In addition, among the first-line anticancer drugs for cholangiocarcinoma, CBC3T-6 cells showed varying degrees of resistance to gemcitabine, oxaliplatin, cisplatin, and 5-FU. Whole exome sequencing analysis revealed that CBC3T-6 cells contained a variety of potentially pathogenic somatic cell mutations, such as TP53 and KRAS mutations. ABCB1 mutation as a possible therapeutic target for multidrug resistance. In conclusion, CBC3T-6 cells can be used as a useful tool to study the mechanism of cholangiocarcinoma and develop new therapeutic strategies for multidrug resistance.
Collapse
Affiliation(s)
- Mingzhen Bai
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Ruoshui Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Chongfei Huang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Ruyang Zhong
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Ningzu Jiang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Wenkang Fu
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Ningning Mi
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Long Gao
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Yuyao Jin
- The Sixth Clinical Medical School of Guangzhou Medical University, Guangzhou, China
| | - Haidong Ma
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Jie Cao
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Haiying Yu
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730030, China
- Gansu Province Key Laboratory of Biological Therapy and Regenerative Medicine Transformation, Lanzhou, China
| | - Qiang Jing
- Department of Pathology, First Hospital of Lanzhou University, Donggang District, Lanzhou, China
| | - Chao Zhang
- Department of Orthopedics, The First Hospital of Lanzhou University, Lanzhou, China
| | - Ping Yue
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Yong Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Yanyan Lin
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Hengwei Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730030, China.
| | - Wenbo Meng
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730030, China.
- Gansu Province Key Laboratory of Biological Therapy and Regenerative Medicine Transformation, Lanzhou, China.
| |
Collapse
|
23
|
Dreyer VJ, Shi JX, Rose M, Onyuro MT, Steib F, Hilgers L, Seillier L, Dietrich J, Riese J, Meurer SK, Weiskirchen R, Neumann U, Heij L, Luedde T, Loosen SH, Lurje I, Lurje G, Gaisa NT, Jonigk D, Bednarsch J, Dahl E, Brüchle NO. High Expression of the Tumor Suppressor Protein ITIH5 in Cholangiocarcinomas Correlates with a Favorable Prognosis. Cancers (Basel) 2024; 16:3647. [PMID: 39518085 PMCID: PMC11545166 DOI: 10.3390/cancers16213647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Cholangiocarcinoma (CCA) are aggressive bile duct cancers with a poor prognosis for which there are only few established prognostic biomarkers and molecular targets available. The gene ITIH5, a known class II tumor suppressor gene (C2TSG), encodes a secreted protein of the extracellular matrix mediating tumor suppressive properties. Recently, it was surprisingly found that the ITIH5 protein is specifically upregulated in CCAs and that ITIH5 detection in blood could be an excellent liquid biopsy marker for indicating the presence of a CCA tumor in a patient. We therefore investigated whether patients with CCAs with abundant versus low ITIH5 protein expression also differ in their prognosis. Methods: To clarify this question, a large CCA cohort (n = 175) was examined using immunohistochemistry on a tissue microarray (TMA). Results: Abundant ITIH5 expression in CCA was associated with favorable survival, a low UICC stage and the absence of perineural invasion (PNI). Conclusions: ITIH5 has biomarker potential not only for the early detection of CCA from blood-based liquid biopsies but also as a prognostic tissue biomarker for risk stratification. Our results suggest that the upregulation of ITIH5 is particularly abundant in intrahepatic CCAs (iCCA). The mechanisms mediating the strong initial upregulation of ITIH5 during the oncogenic transformation of bile duct cells are still unclear.
Collapse
Affiliation(s)
- Verena J. Dreyer
- Institute of Pathology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (V.J.D.); (J.-X.S.); (M.R.); (M.T.O.); (F.S.); (L.H.); (L.S.); (J.D.); (J.R.); (N.T.G.); (D.J.); (N.O.B.)
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), 52074 Aachen, Germany
| | - Jia-Xin Shi
- Institute of Pathology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (V.J.D.); (J.-X.S.); (M.R.); (M.T.O.); (F.S.); (L.H.); (L.S.); (J.D.); (J.R.); (N.T.G.); (D.J.); (N.O.B.)
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), 52074 Aachen, Germany
| | - Michael Rose
- Institute of Pathology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (V.J.D.); (J.-X.S.); (M.R.); (M.T.O.); (F.S.); (L.H.); (L.S.); (J.D.); (J.R.); (N.T.G.); (D.J.); (N.O.B.)
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), 52074 Aachen, Germany
- Institute of Pathology, University Hospital, University of Ulm, 89081 Ulm, Germany
| | - Maureen T. Onyuro
- Institute of Pathology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (V.J.D.); (J.-X.S.); (M.R.); (M.T.O.); (F.S.); (L.H.); (L.S.); (J.D.); (J.R.); (N.T.G.); (D.J.); (N.O.B.)
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), 52074 Aachen, Germany
| | - Florian Steib
- Institute of Pathology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (V.J.D.); (J.-X.S.); (M.R.); (M.T.O.); (F.S.); (L.H.); (L.S.); (J.D.); (J.R.); (N.T.G.); (D.J.); (N.O.B.)
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), 52074 Aachen, Germany
| | - Lars Hilgers
- Institute of Pathology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (V.J.D.); (J.-X.S.); (M.R.); (M.T.O.); (F.S.); (L.H.); (L.S.); (J.D.); (J.R.); (N.T.G.); (D.J.); (N.O.B.)
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), 52074 Aachen, Germany
| | - Lancelot Seillier
- Institute of Pathology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (V.J.D.); (J.-X.S.); (M.R.); (M.T.O.); (F.S.); (L.H.); (L.S.); (J.D.); (J.R.); (N.T.G.); (D.J.); (N.O.B.)
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), 52074 Aachen, Germany
| | - Jana Dietrich
- Institute of Pathology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (V.J.D.); (J.-X.S.); (M.R.); (M.T.O.); (F.S.); (L.H.); (L.S.); (J.D.); (J.R.); (N.T.G.); (D.J.); (N.O.B.)
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), 52074 Aachen, Germany
| | - Janik Riese
- Institute of Pathology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (V.J.D.); (J.-X.S.); (M.R.); (M.T.O.); (F.S.); (L.H.); (L.S.); (J.D.); (J.R.); (N.T.G.); (D.J.); (N.O.B.)
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), 52074 Aachen, Germany
| | - Steffen K. Meurer
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, 52074 Aachen, Germany; (S.K.M.); (R.W.)
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, 52074 Aachen, Germany; (S.K.M.); (R.W.)
| | - Ulf Neumann
- Department of Surgery and Transplantation, University Hospital Essen, 45147 Essen, Germany; (U.N.); (L.H.); (J.B.)
| | - Lara Heij
- Department of Surgery and Transplantation, University Hospital Essen, 45147 Essen, Germany; (U.N.); (L.H.); (J.B.)
- Department of Pathology, University Hospital Essen, 45147 Essen, Germany
- Department of Renal and Hypertensive Disorders, Rheumatological and Immunological Diseases (Medical Clinic II), Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Centre, 3015 CN Rotterdam, The Netherlands
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (T.L.); (S.H.L.)
| | - Sven H. Loosen
- Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (T.L.); (S.H.L.)
| | - Isabella Lurje
- Department of Hepatology and Gastroenterology, Campus Charité Mitte and Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany;
| | - Georg Lurje
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany;
| | - Nadine T. Gaisa
- Institute of Pathology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (V.J.D.); (J.-X.S.); (M.R.); (M.T.O.); (F.S.); (L.H.); (L.S.); (J.D.); (J.R.); (N.T.G.); (D.J.); (N.O.B.)
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), 52074 Aachen, Germany
- Institute of Pathology, University Hospital, University of Ulm, 89081 Ulm, Germany
| | - Danny Jonigk
- Institute of Pathology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (V.J.D.); (J.-X.S.); (M.R.); (M.T.O.); (F.S.); (L.H.); (L.S.); (J.D.); (J.R.); (N.T.G.); (D.J.); (N.O.B.)
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), 52074 Aachen, Germany
- German Center for Lung Research (DZL), BREATH, 30625 Hanover, Germany
| | - Jan Bednarsch
- Department of Surgery and Transplantation, University Hospital Essen, 45147 Essen, Germany; (U.N.); (L.H.); (J.B.)
| | - Edgar Dahl
- Institute of Pathology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (V.J.D.); (J.-X.S.); (M.R.); (M.T.O.); (F.S.); (L.H.); (L.S.); (J.D.); (J.R.); (N.T.G.); (D.J.); (N.O.B.)
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), 52074 Aachen, Germany
| | - Nadina Ortiz Brüchle
- Institute of Pathology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (V.J.D.); (J.-X.S.); (M.R.); (M.T.O.); (F.S.); (L.H.); (L.S.); (J.D.); (J.R.); (N.T.G.); (D.J.); (N.O.B.)
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), 52074 Aachen, Germany
| |
Collapse
|
24
|
Sugiyanto RN, Metzger C, Inal A, Truckenmueller F, Gür K, Eiteneuer E, Huth T, Fraas A, Heinze I, Kirkpatrick J, Sticht C, Albrecht T, Goeppert B, Poth T, Pusch S, Mehrabi A, Schirmacher P, Ji J, Ori A, Roessler S. Proteomic profiling reveals CEACAM6 function in driving gallbladder cancer aggressiveness through integrin receptor, PRKCD and AKT/ERK signaling. Cell Death Dis 2024; 15:780. [PMID: 39468006 PMCID: PMC11519453 DOI: 10.1038/s41419-024-07171-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 10/08/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024]
Abstract
Gallbladder cancer (GBC) presents as an aggressive malignancy with poor patient outcome. Like other epithelial cancers, the mechanisms of GBC cancer progression remain vague and efforts in finding targeted therapies fall below expectations. This study combined proteomic analysis of formalin-fixed paraffin-embedded (FFPE) GBC samples, functional and molecular characterization of potential oncogenes and identification of potential therapeutic strategies for GBC. We identified Carcinoembryonic Antigen-related Cell Adhesion Molecule 6 (CEACAM6) as one of the significantly most upregulated proteins in GBC. CEACAM6 overexpression has been observed in other cancer entities but the molecular function remains unclear. Our functional analyses in vitro and in vivo mouse models revealed that CEACAM6 supported the initial steps of cancer progression and metastasis by decreasing cell adhesion and promoting migration and invasion of GBC cells. Conversely, CEACAM6 knockdown abolished GBC aggressiveness by increasing cell adhesion while reducing cell migration, cell proliferation, and colony formation. BirA-BioID followed by mass-spectrometry revealed Integrin Beta-1 (ITGB1) and Protein Kinase C Delta (PRKCD) as direct molecular and functional partners of CEACAM6 supporting GBC cell migration. ERK and AKT signaling and their downstream target genes were regulated by CEACAM6 and thus the treatment with AKT inhibitor capivasertib or ERK inhibitor ulixertinib mitigated the CEACAM6-induced migration. These findings demonstrate that CEACAM6 is crucially involved in gallbladder cancer progression by promoting migration and inhibiting cell adhesion through ERK and AKT signaling providing specific options for treatment of CEACAM6-positive cancers.
Collapse
Affiliation(s)
- Raisatun Nisa Sugiyanto
- Institute of Pathology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Carmen Metzger
- Institute of Pathology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Aslihan Inal
- Institute of Pathology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Felicia Truckenmueller
- Institute of Pathology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Kira Gür
- Institute of Pathology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Eva Eiteneuer
- Institute of Pathology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Thorben Huth
- Institute of Pathology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Angelika Fraas
- Institute of Pathology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Ivonne Heinze
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | | | - Carsten Sticht
- NGS Core Facility, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Thomas Albrecht
- Institute of Pathology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
- Liver Cancer Centre Heidelberg (LCCH), Heidelberg, Germany
| | - Benjamin Goeppert
- Institute of Pathology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
- Institute of Pathology and Neuropathology, RKH Hospital Ludwigsburg, Ludwigsburg, Germany
| | - Tanja Poth
- Center for Model System and Comparative Pathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Stefan Pusch
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Arianeb Mehrabi
- Liver Cancer Centre Heidelberg (LCCH), Heidelberg, Germany
- Department of General Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
- Liver Cancer Centre Heidelberg (LCCH), Heidelberg, Germany
| | - Junfang Ji
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Alessandro Ori
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Stephanie Roessler
- Institute of Pathology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany.
- Liver Cancer Centre Heidelberg (LCCH), Heidelberg, Germany.
| |
Collapse
|
25
|
Orzan RI, Țigu AB, Nechita VI, Nistor M, Agoston R, Gonciar D, Pojoga C, Seicean A. Circulating miR-18a and miR-532 Levels in Extrahepatic Cholangiocarcinoma. J Clin Med 2024; 13:6177. [PMID: 39458127 PMCID: PMC11509052 DOI: 10.3390/jcm13206177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Cholangiocarcinoma (CCA) is a highly aggressive cancer of the bile ducts with a poor prognosis and limited diagnostic markers. This study aims to investigate the potential of miR-18a and miR-532 as biomarkers for CCA by exploring their correlations with clinical parameters and traditional tumor markers such as CA19.9, CEA, and AFP. Methods: This study involved a cohort of patients diagnosed with CCA. Serum levels of miR-18a and miR-532 were measured and analyzed in relation to various clinical parameters, including age, tumor markers, and histological features. Results: Serum levels of miR-18a and miR-532 were upregulated in patients with extrahepatic cholangiocarcinoma (eCCA) compared to healthy controls (p < 0.05). MiR-18a and miR-532 levels were correlated with each other (p = 0.011, Spearman's rho = 0.482) but showed no significant correlation with age or traditional tumor markers (CA19.9, CEA, AFP). No significant differences in miR-18a and miR-532 levels were observed concerning tumor localization or histological grading. For predicting tumor resectability, miR-532 at a cut-off point of 2.12 showed a sensitivity of 72.73%, specificity of 81.25%, and an AUC of 71.3%, while miR-18a, at a cut-off of 1.83, had a sensitivity of 63.64%, specificity of 75%, and an AUC of 59.7%. ROC curve analysis suggested moderate diagnostic potential for miR-18a and miR-532, with AUC values of 0.64 and 0.689, respectively. Conclusions: Although miR-18a and miR-532 showed significant upregulation in eCCA patients compared to healthy controls, they did not demonstrate significant associations with key clinical parameters, limiting their effectiveness as standalone diagnostic biomarkers. Further research involving larger, multi-center cohorts and additional molecular markers is necessary to validate these findings and explore the broader diagnostic potential of miRNAs in CCA.
Collapse
Affiliation(s)
- Rares Ilie Orzan
- 3rd Department of Internal Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Victor Babes Street, No. 8, 400347 Cluj-Napoca, Romania
- Regional Institute of Gastroenterology and Hepatology, Croitorilor Street, No. 19–21, 400394 Cluj-Napoca, Romania
| | - Adrian Bogdan Țigu
- Department of Translational Medicine, Institute of Medical Research and Life Sciences—MEDFUTURE, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Vlad-Ionuț Nechita
- Department of Medical Informatics and Biostatistics, “Iuliu Hațieganu” University of Medicine and Pharmacy, Louis Pasteur Street, No. 6, 400349 Cluj-Napoca, Romania
| | - Madalina Nistor
- Department of Translational Medicine, Institute of Medical Research and Life Sciences—MEDFUTURE, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Renata Agoston
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Victor Babes Street, No. 8, 400347 Cluj-Napoca, Romania
| | - Diana Gonciar
- Pathological Anatomy Discipline, Department of Morphological Sciences, “Iuliu Hatieganu” University of Medicine and Pharmacy, Clinicilor Street, No. 3–5, 400006 Cluj-Napoca, Romania
| | - Cristina Pojoga
- Regional Institute of Gastroenterology and Hepatology, Croitorilor Street, No. 19–21, 400394 Cluj-Napoca, Romania
- Department of Clinical Psychology and Psychotherapy, Babeș-Bolyai University, Sindicatelor Street, No. 7, 400029 Cluj-Napoca, Romania
| | - Andrada Seicean
- 3rd Department of Internal Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Victor Babes Street, No. 8, 400347 Cluj-Napoca, Romania
- Regional Institute of Gastroenterology and Hepatology, Croitorilor Street, No. 19–21, 400394 Cluj-Napoca, Romania
| |
Collapse
|
26
|
Di Stasi V, Contaldo A, Birtolo LI, Shahini E. Interplay of Cardiometabolic Syndrome and Biliary Tract Cancer: A Comprehensive Analysis with Gender-Specific Insights. Cancers (Basel) 2024; 16:3432. [PMID: 39410050 PMCID: PMC11476000 DOI: 10.3390/cancers16193432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/05/2024] [Accepted: 10/09/2024] [Indexed: 10/20/2024] Open
Abstract
BTC overall incidence is globally increasing. CCA, including its subtypes, is a form of BTC. MetS, obesity, MASLD, and diabetes are all linked to CCA in interconnected ways. The link between obesity and CCA is less well-defined in Eastern countries as compared to Western. Although more research is needed to determine the relationship between MASLD and extrahepatic CCA (eCCA), MASLD may be a concurrent risk factor for intrahepatic CCA, particularly in populations with established or unidentified underlying liver disease. Interestingly, the risk of biliary tract cancer (BTC) seemed to be higher in patients with shorter diabetes durations who were not treated with insulin. Therefore, early detection and prevention of chronic liver disease, as well as additional intervention studies, will undoubtedly be required to determine whether improvements to MetS, weight loss, and diabetes therapy can reduce the risk and progression of BTC. However, further studies are needed to understand how reproductive hormones are involved in causing BTC and to develop consistent treatment for patients. Finally, it is critical to carefully assess the cardiological risk in BTC patients due to their increased intrinsic cardiovascular risk, putting them at risk for thrombotic complications, cardiovascular death, cardiac metastasis, and nonbacterial thrombotic endocarditis. This review aimed to provide an updated summary of the relation between the abovementioned cardio-metabolic conditions and BTC.
Collapse
Affiliation(s)
- Vincenza Di Stasi
- Center of Nutrition for the Research and the Care of Obesity and Metabolic Diseases, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy;
| | - Antonella Contaldo
- Gastroenterology Unit, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy;
| | - Lucia Ilaria Birtolo
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Umberto I Hospital, Sapienza University of Rome, 00185 Rome, Italy;
| | - Endrit Shahini
- Gastroenterology Unit, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy;
| |
Collapse
|
27
|
Deiana C, Ricci C, Vahabi M, Ali M, Brandi G, Giovannetti E. Advances in target drugs and immunotherapy for biliary tract cancer. Expert Rev Gastroenterol Hepatol 2024; 18:605-630. [PMID: 39544174 DOI: 10.1080/17474124.2024.2416230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 10/09/2024] [Indexed: 11/17/2024]
Abstract
INTRODUCTION After years of treatment stagnation in biliary tract cancers (BTC), there has been a notable shift with the emergence of targeted therapies and immunotherapy, leading to substantial progress in tackling this aggressive disease. AREAS COVERED We provide a comprehensive overview of the target therapies that are already part of the treatment algorithm for BTC, such as FGFR, IDH, and HER2 inhibitors. Additionally, we delve into some less known targets that are being explored, such as KRAS proto-oncogene, MAPK cascade, PI3K/AKT/mTOR pathway and novel molecules directed against P53, claudin, histones, and mitochondrial metabolism. Furthermore, we discuss agnostic drugs and analyze the efficacy data available for BTC specifically. We also examine the expanding world of immunotherapy, with an eye on predictive factors of response for immune checkpoint inhibitors, and on novel immune drugs such as chimeric antigen receptor (CAR)-T and vaccines. EXPERT OPINION In the expert opinion, we discuss the problem of the scarcity of patients eligible for target therapies and how can clinical trials be designed to overcome this challenge. We also summarize the most promising trials that have the potential to change clinical practice both for immunotherapies and target drugs.
Collapse
Affiliation(s)
- Chiara Deiana
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Chiara Ricci
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Mahrou Vahabi
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Mahsoem Ali
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
- Department of Surgery, Amsterdam UMC, Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Giovanni Brandi
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
- Cancer Pharmacology Lab, Associazione Italiana per la Ricerca sul Cancro (AIRC) Start-Up Unit, Fondazione Pisana per la Scienza, Pisa, Italy
| |
Collapse
|
28
|
Zhao B, Gu Y, Shi D, Chen X, Li Y. Elucidating the molecular markers and biological pathways associated with extrahepatic cholangiocarcinoma: a transcriptome sequencing study. Front Oncol 2024; 14:1417374. [PMID: 39355132 PMCID: PMC11442168 DOI: 10.3389/fonc.2024.1417374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 08/26/2024] [Indexed: 10/03/2024] Open
Abstract
Background Cholangiocarcinoma is a malignancy with high aggressiveness, and extrahepatic cholangiocarcinoma (ECCA) represents the predominant subtype. However, the molecular architecture and underlying pathogenic mechanisms of ECCA remain poorly understood. The objective of this study is to elucidate the molecular markers and biological pathways associated with ECCA. Methods In order to identify the factors influencing ECCA, we conducted transcriptome sequencing on a cohort of 8 surgically resected ECCA specimens. To validate our findings, we integrated data from The Cancer Genome Atlas and Gene Expression Omnibus (GEO) databases using batch integration analysis. Finally, we confirmed our results using clinical samples. Results The findings of this study reveal that through the analysis of sequencing data, we have successfully identified the genes that are differentially expressed and have a significant role in the development of ECCA. Utilizing the Weighted Gene Co-expression Network Analysis approach, we have integrated these identified gene modules with the GEO dataset, leading to the identification of four key genes (PTGDS, ITIH2, LSAMP, HBB) that are strongly associated with the progression-free survival of ECCA. We screened a key gene LSAMP from four genes using immunohistochemistry. The gene primarily participate in crucial biological processes such as the ECCA cell cycle and DNA replication. The qRT-PCR reaction and Western Blot conducted on the tissues provided confirmation of the expression levels of the gene, which exhibited consistency with the outcomes of our analysis. Conclusions Our study has successfully identified potential biomarkers LSAMP for ECCA, which can serve as valuable tools for early detection and targeted therapeutic interventions in clinical settings.
Collapse
Affiliation(s)
- Bin Zhao
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Yanmei Gu
- Department of the Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Daixiu Shi
- Department of Nursing, Lanzhou University Second Hospital, Lanzhou, China
| | - Xiaokang Chen
- Department of the Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yumin Li
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
29
|
Panaampon J, Sungwan P, Fujikawa S, Sampattavanich S, Jirawatnotai S, Okada S. Trastuzumab, a monoclonal anti-HER2 antibody modulates cytotoxicity against cholangiocarcinoma via multiple mechanisms. Int Immunopharmacol 2024; 138:112612. [PMID: 38968862 DOI: 10.1016/j.intimp.2024.112612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/16/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
Cholangiocarcinoma (CCA) is an aggressive and fatal cancer. The prognosis is very poor and no optimal chemotherapy has been established. Human epidermal growth factor receptor 2 (HER2, neu, and erbB2) is highly-expressed in breast cancer and is expressed in many other tumors but poorly expressed in CCA. The anti-HER2 antibody, trastuzumab, has been used for the treatment of HER2-positive breast and gastric cancer. In this study, we examined the surface expression of HER2 on seven Thai liver-fluke-associated CCA cell lines by flow cytometry, and found all of these CCA cells were weakly positive for HER2. MTT assay revealed that trastuzumab directly suppressed the growth of CCA. By using FcR-bearing recombinant Jurkat T-cell-expressing firefly luciferase gene under the control of NFAT response elements, we defined the activities of antibody-dependent cytotoxicity (ADCC) and antibody-dependent cell phagocytosis (ADCP). ADCC was confirmed by using expanded NK cells. ADCP was confirmed by using mouse peritoneal macrophages and human monocyte-derived macrophages as effector cells. Rabbit serum was administered to test the complement-dependent cytotoxicity (CDC) activity of trastuzumab. Finally, we evaluated the efficacy of trastuzumab in in vivo patient-derived cell xenograft and patient-derived xenograft (PDX) models. Our results showed that a distinct population of CCA (liver-fluke-associated CCA) expressed HER2. Trastuzumab demonstrated a potent inhibitory effect on even HER2 weakly positive CCA both in vitro and in vivo via multiple mechanisms. Thus, HER2 is a promising target in anti-CCA therapy, and trastuzumab can be considered a promising antibody immunotherapy agent for the treatment of CCA.
Collapse
Affiliation(s)
- Jutatip Panaampon
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan; Division of Hematologic Neoplasia, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Prin Sungwan
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Sawako Fujikawa
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Somponnat Sampattavanich
- Siriraj Center of Research Excellence for Precision Medicine and Systems Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Siwanon Jirawatnotai
- Siriraj Center of Research Excellence for Precision Medicine and Systems Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan; Institute of Industrial Nanomaterials, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan.
| |
Collapse
|
30
|
Chen F, Sheng J, Li X, Gao Z, Hu L, Chen M, Fei J, Song Z. Tumor-associated macrophages: orchestrators of cholangiocarcinoma progression. Front Immunol 2024; 15:1451474. [PMID: 39290697 PMCID: PMC11405194 DOI: 10.3389/fimmu.2024.1451474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a rare but highly invasive cancer, with its incidence rising in recent years. Currently, surgery remains the most definitive therapeutic option for CCA. However, similar to other malignancies, most CCA patients are not eligible for surgical intervention at the time of diagnosis. The chemotherapeutic regimen of gemcitabine combined with cisplatin is the standard treatment for advanced CCA, but its effectiveness is often hampered by therapeutic resistance. Recent research highlights the remarkable plasticity of tumor-associated macrophages (TAMs) within the tumor microenvironment (TME). TAMs play a crucial dual role in either promoting or suppressing tumor development, depending on the factors that polarize them toward pro-tumorigenic or anti-tumorigenic phenotypes, as well as their interactions with cancer cells and other stromal components. In this review, we critically examine recent studies on TAMs in CCA, detailing the expression patterns and prognostic significance of different TAM subtypes in CCA, the mechanisms by which TAMs influence CCA progression and immune evasion, and the potential for reprogramming TAMs to enhance anticancer therapies. This review aims to provide a framework for deeper future research.
Collapse
Affiliation(s)
- Fei Chen
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Jian Sheng
- Department of Research and Teaching, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Xiaoping Li
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Zhaofeng Gao
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Lingyu Hu
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Minjie Chen
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Jianguo Fei
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Zhengwei Song
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
31
|
Zhu M, Qu M, Lv S, Zhang J, Zhang Y, Pan F. Letter to the Editor: Enhancing the rigor and impact of cholangiocarcinoma research: Addressing key concerns in the PTPN9-FGFR2 interaction study. Hepatology 2024; 80:E44-E45. [PMID: 38913552 PMCID: PMC11332367 DOI: 10.1097/hep.0000000000000932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 06/26/2024]
Affiliation(s)
- Meng Zhu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Mengqi Qu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Shengxia Lv
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Jinfang Zhang
- Cancer Center, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Yongsheng Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Fuzhen Pan
- Cancer Center, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| |
Collapse
|
32
|
Li MY, Liu YH, Wei F, Zhang P, Sun XD, Wang M, Du XH, Ye JF, Qiu W, Shi XJ, Ji B, Wang YC, Jiang C, Chai WG, Huang B, Liu XK, Chen QM, Fu Y, Hu XT, Chen LG, He JX, Chai KY, Gou ZM, Yang T, Wang GY, Jiang YF, Fan ZQ, Lv GY. Identification of prognostic biomarkers for cholangiocarcinoma by combined analysis of molecular characteristics of clinical MVI subtypes and molecular subtypes. Genomics 2024; 116:110889. [PMID: 38901654 DOI: 10.1016/j.ygeno.2024.110889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/27/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024]
Abstract
Cholangiocarcinoma (CCA) is widely noted for its high degree of malignancy, rapid progression, and limited therapeutic options. This study was carried out on transcriptome data of 417 CCA samples from different anatomical locations. The effects of lipid metabolism related genes and immune related genes as CCA classifiers were compared. Key genes were derived from MVI subtypes and better molecular subtypes. Pathways such as epithelial mesenchymal transition (EMT) and cell cycle were significantly activated in MVI-positive group. CCA patients were classified into three (four) subtypes based on lipid metabolism (immune) related genes, with better prognosis observed in lipid metabolism-C1, immune-C2, and immune-C4. IPTW analysis found that the prognosis of lipid metabolism-C1 was significantly better than that of lipid metabolism-C2 + C3 before and after correction. KRT16 was finally selected as the key gene. And knockdown of KRT16 inhibited proliferation, migration and invasion of CCA cells.
Collapse
Affiliation(s)
- Ming-Yue Li
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Ya-Hui Liu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Feng Wei
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Ping Zhang
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiao-Dong Sun
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Meng Wang
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiao-Hong Du
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Jun-Feng Ye
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Wei Qiu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiao-Ju Shi
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Bai Ji
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Ying-Chao Wang
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Chao Jiang
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Wen-Gang Chai
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Bo Huang
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Xing-Kai Liu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Qing-Min Chen
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Yu Fu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Xin-Tong Hu
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Genetic Diagnosis Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Li-Guo Chen
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Genetic Diagnosis Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Jia-Xue He
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Genetic Diagnosis Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Kai-Yuan Chai
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhao-Ming Gou
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Tian Yang
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China; Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Navy Medical University), Shanghai, China
| | - Guang-Yi Wang
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Yan-Fang Jiang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Genetic Diagnosis Center, First Hospital of Jilin University, Changchun, Jilin, China.
| | - Zhong-Qi Fan
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China.
| | - Guo-Yue Lv
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
33
|
Tamada H, Uehara T, Yoshizawa T, Iwaya M, Asaka S, Nakajima T, Kamakura M, Ota H. Exploring LGR5 as a prognostic marker of extrahepatic cholangiocarcinoma: insights from expression analysis and clinical correlations. Diagn Pathol 2024; 19:116. [PMID: 39198902 PMCID: PMC11350935 DOI: 10.1186/s13000-024-01537-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5) is a cancer stem cell (CSC) marker of colorectal cancer and may be a CSC marker of other cancer types. Few studies have been conducted on LGR5 expression in extrahepatic cholangiocarcinoma (ECC). METHODS We analyzed LGR5 expression using RNAscope, a highly sensitive RNA in situ hybridization technique. Fifty-three ECCs were selected from the medical archives at Shinshu University Hospital and analyzed using a tissue microarray. LGR5 expression levels were divided into expression and no expression groups. LGR5 expression and clinicopathological characteristics were analyzed. RESULTS Among 25 cases, no LGR5-positive dots were identified. Among 28 cases, some LGR5-positive dots were observed in carcinoma cells, together with a wide range of LGR5-positive cells. LGR5 expression was conspicuous in glandular duct formations. Well- to moderately differentiated types showed significantly higher LGR5 expression than the poorly differentiated type (p = 0.0268). LGR5 expression was associated with good overall survival (p = 0.0219) and good disease-free survival (DFS) (p = 0.0228). High LGR5 expression was associated with well- to moderately-differentiated types, indicating a favorable prognosis. In terms of DFS, multivariate analysis showed that high LGR5 expression was an independent favorable prognostic factor (p = 0.0397). CONCLUSIONS These findings suggest that LGR5 is a promising, novel prognostic marker.
Collapse
Affiliation(s)
- Hisashi Tamada
- Department of Pathology, Nagano Red Cross Hospital, Nagano, Japan
- Department of Laboratory Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Takeshi Uehara
- Department of Laboratory Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan.
| | - Takahiro Yoshizawa
- Department of Gastroenterological, Pediatric and Transplant Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Mai Iwaya
- Department of Laboratory Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Shiho Asaka
- Department of Laboratory Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
- Department of Laboratory Medicine, Nagano Children's Hospital, Azumino, Japan
| | - Tomoyuki Nakajima
- Department of Laboratory Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Masato Kamakura
- Department of Gastroenterology, Nagano Red Cross Hospital, Nagano, Japan
| | - Hiroyoshi Ota
- Department of Laboratory Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
- Department of Biomedical Laboratory Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| |
Collapse
|
34
|
Pirenne S, Manzano-Núñez F, Loriot A, Cordi S, Desmet L, Aydin S, Hubert C, Toffoli S, Limaye N, Sempoux C, Komuta M, Gatto L, Lemaigre FP. Spatial transcriptomics profiling of gallbladder adenocarcinoma: a detailed two-case study of progression from precursor lesions to cancer. BMC Cancer 2024; 24:1025. [PMID: 39164619 PMCID: PMC11334592 DOI: 10.1186/s12885-024-12770-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/06/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Most studies on tumour progression from precursor lesion toward gallbladder adenocarcinoma investigate lesions sampled from distinct patients, providing an overarching view of pathogenic cascades. Whether this reflects the tumourigenic process in individual patients remains insufficiently explored. Genomic and epigenomic studies suggest that a subset of gallbladder cancers originate from biliary intraepithelial neoplasia (BilIN) precursor lesions, whereas others form independently from BilINs. Spatial transcriptomic data supporting these conclusions are missing. Moreover, multiple areas with precursor or adenocarcinoma lesions can be detected within the same pathological sample. Yet, knowledge about intra-patient variability of such lesions is lacking. METHODS To characterise the spatial transcriptomics of gallbladder cancer tumourigenesis in individual patients, we selected two patients with distinct cancer aetiology and whose samples simultaneously displayed multiple areas of normal epithelium, BilINs and adenocarcinoma. Using GeoMx digital spatial profiling, we characterised the whole transcriptome of a high number of regions of interest (ROIs) per sample in the two patients (24 and 32 ROIs respectively), with each ROI covering approximately 200 cells of normal epithelium, low-grade BilIN, high-grade BilIN or adenocarcinoma. Human gallbladder organoids and cell line-derived tumours were used to investigate the tumour-promoting role of genes. RESULTS Spatial transcriptomics revealed that each type of lesion displayed limited intra-patient transcriptomic variability. Our data further suggest that adenocarcinoma derived from high-grade BilIN in one patient and from low-grade BilIN in the other patient, with co-existing high-grade BilIN evolving via a distinct process in the latter case. The two patients displayed distinct sequences of signalling pathway activation during tumour progression, but Semaphorin 4 A (SEMA4A) expression was repressed in both patients. Using human gallbladder-derived organoids and cell line-derived tumours, we provide evidence that repression of SEMA4A promotes pseudostratification of the epithelium and enhances cell migration and survival. CONCLUSION Gallbladder adenocarcinoma can develop according to patient-specific processes, and limited intra-patient variability of precursor and cancer lesions was noticed. Our data suggest that repression of SEMA4A can promote tumour progression. They also highlight the need to gain gene expression data in addition to histological information to avoid understimating the risk of low-grade preneoplastic lesions.
Collapse
Affiliation(s)
- Sophie Pirenne
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, Brussels, B1-7503, 1200, Belgium
- Department of Imaging & Pathology, UZ Herestraat 49, Leuven, 3000, Belgium
| | - Fátima Manzano-Núñez
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, Brussels, B1-7503, 1200, Belgium
| | - Axelle Loriot
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, Brussels, B1-7503, 1200, Belgium
| | - Sabine Cordi
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, Brussels, B1-7503, 1200, Belgium
| | - Lieven Desmet
- Support en Méthodologie et Calcul Statistique, Université catholique de Louvain, Voie du Roman Pays 20, Louvain-la-Neuve, 1348, Belgium
| | - Selda Aydin
- Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Hippocrate 75, Brussels, 1200, Belgium
- Department of Pathology, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, Brussels, 1200, Belgium
| | - Catherine Hubert
- Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Hippocrate 75, Brussels, 1200, Belgium
- Department of Medical Oncology, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, Brussels, 1200, Belgium
| | - Sébastien Toffoli
- Institut de Pathologie et de Génétique, Avenue Georges Lemaître 25, Charleroi, 6041, Belgium
| | - Nisha Limaye
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, Brussels, B1-7503, 1200, Belgium
| | - Christine Sempoux
- Institute of Pathology, Lausanne University Hospital CHUV, University of Lausanne, Rue du Bugnon 25, Lausanne, 1011, Switzerland
| | - Mina Komuta
- Department of Pathology, School of Medicine, International University of Health and Welfare, Narita Hospital, Narita, Japan
| | - Laurent Gatto
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, Brussels, B1-7503, 1200, Belgium
| | - Frédéric P Lemaigre
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, Brussels, B1-7503, 1200, Belgium.
| |
Collapse
|
35
|
Porreca V, Barbagallo C, Corbella E, Peres M, Stella M, Mignogna G, Maras B, Ragusa M, Mancone C. Unveil Intrahepatic Cholangiocarcinoma Heterogeneity through the Lens of Omics and Multi-Omics Approaches. Cancers (Basel) 2024; 16:2889. [PMID: 39199659 PMCID: PMC11352949 DOI: 10.3390/cancers16162889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is recognized worldwide as the second leading cause of morbidity and mortality among primary liver cancers, showing a continuously increasing incidence rate in recent years. iCCA aggressiveness is revealed through its rapid and silent intrahepatic expansion and spread through the lymphatic system leading to late diagnosis and poor prognoses. Multi-omics studies have aggregated information derived from single-omics data, providing a more comprehensive understanding of the phenomena being studied. These approaches are gradually becoming powerful tools for investigating the intricate pathobiology of iCCA, facilitating the correlation between molecular signature and phenotypic manifestation. Consequently, preliminary stratifications of iCCA patients have been proposed according to their "omics" features opening the possibility of identifying potential biomarkers for early diagnosis and developing new therapies based on personalized medicine (PM). The focus of this review is to provide new and advanced insight into the molecular pathobiology of the iCCA, starting from single- to the latest multi-omics approaches, paving the way for translating new basic research into therapeutic practices.
Collapse
Affiliation(s)
- Veronica Porreca
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (E.C.); (M.P.)
| | - Cristina Barbagallo
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.B.); (M.S.); (M.R.)
| | - Eleonora Corbella
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (E.C.); (M.P.)
| | - Marco Peres
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (E.C.); (M.P.)
| | - Michele Stella
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.B.); (M.S.); (M.R.)
| | - Giuseppina Mignogna
- Department of Biochemistry Science, Sapienza University of Rome, 00185 Rome, Italy; (G.M.); (B.M.)
| | - Bruno Maras
- Department of Biochemistry Science, Sapienza University of Rome, 00185 Rome, Italy; (G.M.); (B.M.)
| | - Marco Ragusa
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.B.); (M.S.); (M.R.)
| | - Carmine Mancone
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (E.C.); (M.P.)
| |
Collapse
|
36
|
Wang J, Liu S, Cao Y, Chen Y. Overcoming treatment resistance in cholangiocarcinoma: current strategies, challenges, and prospects. Front Cell Dev Biol 2024; 12:1408852. [PMID: 39156971 PMCID: PMC11327014 DOI: 10.3389/fcell.2024.1408852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/26/2024] [Indexed: 08/20/2024] Open
Abstract
Significant advancements in our understanding and clinical treatment of cholangiocarcinoma (CCA) have been achieved over the past 5 years. Groundbreaking studies have illuminated the immune landscape and pathological characteristics of the tumor microenvironment in CCA. The development of immune- and metabolism-based classification systems has enabled a nuanced exploration of the tumor microenvironment and the origins of CCA, facilitating a detailed understanding of tumor progression modulation. Despite these insights, targeted therapies have not yet yielded satisfactory clinical results, highlighting the urgent need for innovative therapeutic strategies. This review delineates the complexity and heterogeneity of CCA, examines the current landscape of therapeutic strategies and clinical trials, and delves into the resistance mechanisms underlying targeted therapies. Finally, from a single-cell and spatial transcriptomic perspective, we address the challenge of therapy resistance, discussing emerging mechanisms and potential strategies to overcome this barrier and enhance treatment efficacy.
Collapse
Affiliation(s)
- Jiayi Wang
- International Medical College, Chongqing Medical University, Chongqing, China
| | - Siyan Liu
- International Medical College, Chongqing Medical University, Chongqing, China
| | - Yi Cao
- Second Clinical College, Chongqing Medical University, Chongqing, China
| | - Yong Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
37
|
Yue S, Zhang Y, Zhang W. Recent Advances in Immunotherapy for Advanced Biliary Tract Cancer. Curr Treat Options Oncol 2024; 25:1089-1111. [PMID: 39066855 PMCID: PMC11329538 DOI: 10.1007/s11864-024-01243-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2024] [Indexed: 07/30/2024]
Abstract
OPINION STATEMENT Biliary tract cancer (BTC) is a heterogeneous group of aggressive malignancies that arise from the epithelium of the biliary tract. Most patients present with locally advanced or metastatic disease at the time of diagnosis. For patients with unresectable BTC, the survival advantage provided by systemic chemotherapy was limited. Over the last decade, immunotherapy has significantly improved the therapeutic landscape of solid tumors. There is an increasing number of studies evaluating the application of immunotherapy in BTC, including immune checkpoint inhibitors (ICIs), cancer vaccines and adoptive cell therapy. The limited response to ICIs monotherapy in unselected patients prompted investigators to explore different combination therapy strategies. Early clinical trials of therapeutic cancer vaccination and adoptive cell therapy have shown encouraging clinical results. However, there still has been a long way to go via validation of therapeutic efficacy and exploration of strategies to increase the efficacy. Identifying biomarkers that predict the response to immunotherapy will allow a more accurate selection of candidates. This review will provide an up-to-date overview of the current clinical data on the role of immunotherapy, summarize the promising biomarkers predictive of the response to ICIs and discuss the perspective for future research direction of immunotherapy in advanced BTC.
Collapse
Affiliation(s)
- Shiwei Yue
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, China
- Hubei Key Laboratory of Hepato‑Pancreatic‑Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, 1095 Jiefang Avenue, 430030, Wuhan, China
| | - Yunpu Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, China
- Hubei Key Laboratory of Hepato‑Pancreatic‑Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, 1095 Jiefang Avenue, 430030, Wuhan, China
| | - Wei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, China.
- Hubei Key Laboratory of Hepato‑Pancreatic‑Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, 1095 Jiefang Avenue, 430030, Wuhan, China.
| |
Collapse
|
38
|
Burchard PR, Ruffolo LI, Ullman NA, Dale BS, Dave YA, Hilty BK, Ye J, Georger M, Jewell R, Miller C, De Las Casas L, Jarolimek W, Perryman L, Byrne MM, Loria A, Marin C, Chávez Villa M, Yeh JJ, Belt BA, Linehan DC, Hernandez-Alejandro R. Pan-lysyl oxidase inhibition disrupts fibroinflammatory tumor stroma, rendering cholangiocarcinoma susceptible to chemotherapy. Hepatol Commun 2024; 8:e0502. [PMID: 39101793 PMCID: PMC11299993 DOI: 10.1097/hc9.0000000000000502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/11/2024] [Indexed: 08/06/2024] Open
Abstract
BACKGROUND Cholangiocarcinoma (CCA) features highly desmoplastic stroma that promotes structural and functional resistance to therapy. Lysyl oxidases (LOX, LOXL1-4) catalyze collagen cross-linking, thereby increasing stromal rigidity and facilitating therapeutic resistance. Here, we evaluate the role of lysyl oxidases in stromal desmoplasia and the effects of pan-lysyl oxidase (pan-LOX) inhibition in CCA. METHODS Resected CCA and normal liver specimens were analyzed from archival tissues. Spontaneous and orthotopic murine models of intrahepatic CCA (iCCA) were used to assess the impact of the pan-LOX inhibitor PXS-5505 in treatment and correlative studies. The functional role of pan-LOX inhibition was interrogated through in vivo and ex vivo assays. RESULTS All 5 lysyl oxidases are upregulated in CCA and reduced lysyl oxidase expression is correlated with an improved prognosis in resected patients with CCA. Spontaneous and orthotopic murine models of intrahepatic cholangiocarcinoma upregulate all 5 lysyl oxidase isoforms. Pan-LOX inhibition reversed mechanical compression of tumor vasculature, resulting in improved chemotherapeutic penetrance and cytotoxic efficacy. The combination of chemotherapy with pan-LOX inhibition increased damage-associated molecular pattern release, which was associated with improved antitumor T-cell responses. Pan-LOX inhibition downregulated macrophage invasive signatures in vitro, rendering tumor-associated macrophages more susceptible to chemotherapy. Mice bearing orthotopic and spontaneously occurring intrahepatic cholangiocarcinoma tumors exhibited delayed tumor growth and improved survival following a combination of pan-LOX inhibition with chemotherapy. CONCLUSIONS CCA upregulates all 5 lysyl oxidase isoforms, and pan-LOX inhibition reverses tumor-induced mechanical forces associated with chemotherapy resistance to improve chemotherapeutic efficacy and reprogram antitumor immune responses. Thus, combination therapy with pan-LOX inhibition represents an innovative therapeutic strategy in CCA.
Collapse
Affiliation(s)
- Paul R. Burchard
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Luis I. Ruffolo
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Nicholas A. Ullman
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Benjamin S. Dale
- Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York, USA
| | - Yatee A. Dave
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Bailey K. Hilty
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Jian Ye
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Mary Georger
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Rachel Jewell
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Christine Miller
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Luis De Las Casas
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Lara Perryman
- Drug Discovery, Syntara Ltd., Sydney, New South Wales, Australia
| | - Matthew M. Byrne
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Anthony Loria
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Chelsea Marin
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Mariana Chávez Villa
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Jen Jen Yeh
- Departments of Surgery and Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina System, Chapel Hill, North Carolina, USA
| | - Brian A. Belt
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - David C. Linehan
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
- Department of Surgery, Division of Surgical Oncology, University of Rochester Medical Center, Rochester, New York, USA
| | - Roberto Hernandez-Alejandro
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
- Division of Solid Organ Transplant Surgery, Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
39
|
Alaimo L, Boggio S, Catalano G, Calderone G, Poletto E, De Bellis M, Campagnaro T, Pedrazzani C, Conci S, Ruzzenente A. Multi-Omics Classification of Intrahepatic Cholangiocarcinoma: A Systematic Review and Meta-Analysis. Cancers (Basel) 2024; 16:2596. [PMID: 39061233 PMCID: PMC11275091 DOI: 10.3390/cancers16142596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a heterogeneous disease characterized by a dismal prognosis. Various attempts have been made to classify ICC subtypes with varying prognoses, but a consensus has yet to be reached. This systematic review aims to gather relevant data on the multi-omics-based ICC classification. The PubMed, Embase, and Cochrane databases were searched for terms related to ICC and multi-omics analysis. Studies that identified multi-omics-derived ICC subtypes and investigated clinicopathological predictors of long-term outcomes were included. Nine studies, which included 910 patients, were considered eligible. Mean 3- and 5-year overall survival were 25.7% and 19.6%, respectively, for the multi-omics subtypes related to poor prognosis, while they were 70.2% and 63.3%, respectively, for the subtypes linked to a better prognosis. Several negative prognostic factors were identified, such as genes' expression profile promoting inflammation, mutations in the KRAS gene, advanced tumor stage, and elevated levels of oncological markers. The subtype with worse clinicopathological characteristics was associated with worse survival (Ref.: good prognosis subtype; pooled hazard ratio 2.06, 95%CI 1.67-2.53). Several attempts have been made to classify molecular ICC subtypes, but they have yielded heterogeneous results and need a clear clinical definition. More efforts are required to build a comprehensive classification system that includes both molecular and clinical characteristics before implementation in clinical practice to facilitate decision-making and select patients who may benefit the most from comprehensive molecular profiling in the disease's earlier stages.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Andrea Ruzzenente
- Department of Surgery, Dentistry, Gynecology, and Pediatrics, Division of General and Hepato-Biliary Surgery, University of Verona, University Hospital G.B. Rossi, 37134 Verona, Italy; (L.A.)
| |
Collapse
|
40
|
Demir T, Moloney C, Mahalingam D. Emerging targeted therapies and strategies to overcome resistance in biliary tract cancers. Crit Rev Oncol Hematol 2024; 199:104388. [PMID: 38754771 DOI: 10.1016/j.critrevonc.2024.104388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/14/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024] Open
Abstract
In the last decade, targeted therapies have shown rapid advancement in biliary tract cancer (BTC). Today, many targeted agents are available and under investigation for patients with BTC. More recently, immune checkpoint inhibitors (ICI) such as durvalumab and pembrolizumab in combination with gemcitabine plus cisplatin (gem/cis) have resulted in improved overall survival and progression-free survival in the first-line setting. However, the efficacy benefit of these novel therapeutics is often short-lived, with literature outlining concerns about both primary and secondary resistance to these agents. Investigators also need to consider toxicity profiles that can emerge using this strategy. There have been efforts to reduce evolving resistance through combinatory approaches, both pre-clinically and in early clinical settings. This review summarizes the emerging targeted therapies in BTC, evolving biomarkers of resistance, strategies to overcome them, and an analysis of ongoing clinical trials of patients with advanced BTC.
Collapse
Affiliation(s)
- Tarik Demir
- Developmental Therapeutics, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine1, Chicago, IL 60611, USA.
| | - Carolyn Moloney
- Developmental Therapeutics, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine1, Chicago, IL 60611, USA
| | - Devalingam Mahalingam
- Developmental Therapeutics, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine1, Chicago, IL 60611, USA
| |
Collapse
|
41
|
Plum PS, Hess T, Bertrand D, Morgenstern I, Velazquez Camacho O, Jonas C, Alidousty C, Wagner B, Roessler S, Albrecht T, Becker J, Richartz V, Holz B, Hoppe S, Poh HM, Chia BKH, Chan CX, Pathiraja T, Teo ASM, Marquardt JU, Khng A, Heise M, Fei Y, Thieme R, Klein S, Hong JH, Dima SO, Popescu I, Hoppe‐Lotichius M, Buettner R, Lautem A, Otto G, Quaas A, Nagarajan N, Rozen S, Teh BT, Goeppert B, Drebber U, Lang H, Tan P, Gockel I, Schumacher J, Hillmer AM. Integrative genomic analyses of European intrahepatic cholangiocarcinoma: Novel ROS1 fusion gene and PBX1 as prognostic marker. Clin Transl Med 2024; 14:e1723. [PMID: 38877653 PMCID: PMC11178519 DOI: 10.1002/ctm2.1723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/20/2024] [Accepted: 05/13/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a fatal cancer of the bile duct with a poor prognosis owing to limited therapeutic options. The incidence of intrahepatic CCA (iCCA) is increasing worldwide, and its molecular basis is emerging. Environmental factors may contribute to regional differences in the mutation spectrum of European patients with iCCA, which are underrepresented in systematic genomic and transcriptomic studies of the disease. METHODS We describe an integrated whole-exome sequencing and transcriptomic study of 37 iCCAs patients in Germany. RESULTS We observed as most frequently mutated genes ARID1A (14%), IDH1, BAP1, TP53, KRAS, and ATM in 8% of patients. We identified FGFR2::BICC1 fusions in two tumours, and FGFR2::KCTD1 and TMEM106B::ROS1 as novel fusions with potential therapeutic implications in iCCA and confirmed oncogenic properties of TMEM106B::ROS1 in vitro. Using a data integration framework, we identified PBX1 as a novel central regulatory gene in iCCA. We performed extended screening by targeted sequencing of an additional 40 CCAs. In the joint analysis, IDH1 (13%), BAP1 (10%), TP53 (9%), KRAS (7%), ARID1A (7%), NF1 (5%), and ATM (5%) were the most frequently mutated genes, and we found PBX1 to show copy gain in 20% of the tumours. According to other studies, amplifications of PBX1 tend to occur in European iCCAs in contrast to liver fluke-associated Asian iCCAs. CONCLUSIONS By analyzing an additional European cohort of iCCA patients, we found that PBX1 protein expression was a marker of poor prognosis. Overall, our findings provide insight into key molecular alterations in iCCA, reveal new targetable fusion genes, and suggest that PBX1 is a novel modulator of this disease.
Collapse
|
42
|
Evans M, Kendall T. Practical considerations for pathological diagnosis and molecular profiling of cholangiocarcinoma: an expert review for best practices. Expert Rev Mol Diagn 2024; 24:393-408. [PMID: 38752560 DOI: 10.1080/14737159.2024.2353696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
INTRODUCTION Advances in precision medicine have expanded access to targeted therapies and demand for molecular profiling of cholangiocarcinoma (CCA) patients in routine clinical practice. However, pathologists face challenges in establishing a definitive intrahepatic CCA (iCCA) diagnosis while preserving sufficient tissue for molecular profiling. Additionally, they frequently face challenges in optimal tissue handling to preserve nucleic acid integrity. AREAS COVERED This article first identifies the challenges in establishing a definitive diagnosis of iCCA in a lesional liver biopsy while preserving sufficient tissue for molecular profiling. Then, the authors explore the clinical value of molecular profiling, the basic principles of single gene and next-generation sequencing (NGS) techniques, and the challenges in tissue sampling for genomic testing. They also propose an algorithm for best practice in tissue management for molecular profiling of CCA. EXPERT OPINION Several practical challenges face pathologists during tissue sampling and processing for molecular profiling. Optimized tissue processing, careful tissue handling, and selection of appropriate approaches to molecular testing are essential to ensure that the highest possible quality of diagnostic information is provided in the greatest proportion of cases.
Collapse
Affiliation(s)
- Matt Evans
- Cellular Pathologist, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | | |
Collapse
|
43
|
Lewinska M, Zhuravleva E, Satriano L, Martinez MB, Bhatt DK, Oliveira DVNP, Antoku Y, Keggenhoff FL, Castven D, Marquardt JU, Matter MS, Erler JT, Oliveira RC, Aldana BI, Al-Abdulla R, Perugorria MJ, Calvisi DF, Perez LA, Rodrigues PM, Labiano I, Banales JM, Andersen JB. Fibroblast-Derived Lysyl Oxidase Increases Oxidative Phosphorylation and Stemness in Cholangiocarcinoma. Gastroenterology 2024; 166:886-901.e7. [PMID: 38096955 DOI: 10.1053/j.gastro.2023.11.302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 10/24/2023] [Accepted: 11/20/2023] [Indexed: 12/31/2023]
Abstract
BACKGROUND & AIMS Metabolic and transcriptional programs respond to extracellular matrix-derived cues in complex environments, such as the tumor microenvironment. Here, we demonstrate how lysyl oxidase (LOX), a known factor in collagen crosslinking, contributes to the development and progression of cholangiocarcinoma (CCA). METHODS Transcriptomes of 209 human CCA tumors, 143 surrounding tissues, and single-cell data from 30 patients were analyzed. The recombinant protein and a small molecule inhibitor of the LOX activity were used on primary patient-derived CCA cultures to establish the role of LOX in migration, proliferation, colony formation, metabolic fitness, and the LOX interactome. The oncogenic role of LOX was further investigated by RNAscope and in vivo using the AKT/NICD genetically engineered murine CCA model. RESULTS We traced LOX expression to hepatic stellate cells and specifically hepatic stellate cell-derived inflammatory cancer-associated fibroblasts and found that cancer-associated fibroblast-driven LOX increases oxidative phosphorylation and metabolic fitness of CCA, and regulates mitochondrial function through transcription factor A, mitochondrial. Inhibiting LOX activity in vivo impedes CCA development and progression. Our work highlights that LOX alters tumor microenvironment-directed transcriptional reprogramming of CCA cells by facilitating the expression of the oxidative phosphorylation pathway and by increasing stemness and mobility. CONCLUSIONS Increased LOX is driven by stromal inflammatory cancer-associated fibroblasts and correlates with diminished survival of patients with CCA. Modulating the LOX activity can serve as a novel tumor microenvironment-directed therapeutic strategy in bile duct pathologies.
Collapse
Affiliation(s)
- Monika Lewinska
- Department of Health and Medical Sciences, Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Ekaterina Zhuravleva
- Department of Health and Medical Sciences, Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Letizia Satriano
- Department of Health and Medical Sciences, Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Marta B Martinez
- Department of Health and Medical Sciences, Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Deepak K Bhatt
- Department of Health and Medical Sciences, Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Douglas V N P Oliveira
- Department of Health and Medical Sciences, Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Yasuko Antoku
- Department of Health and Medical Sciences, Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Friederike L Keggenhoff
- Universitatsklinikum Schleswig-Holstein, Medizinische Klinik I, Campus Lubeck, Lubeck, Germany
| | - Darko Castven
- Universitatsklinikum Schleswig-Holstein, Medizinische Klinik I, Campus Lubeck, Lubeck, Germany
| | - Jens U Marquardt
- Universitatsklinikum Schleswig-Holstein, Medizinische Klinik I, Campus Lubeck, Lubeck, Germany
| | - Matthias S Matter
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Janine T Erler
- Department of Health and Medical Sciences, Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Rui C Oliveira
- Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Blanca I Aldana
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ruba Al-Abdulla
- Experimental Hepatology and Drug Targeting, Instituto de Investigación Biomédica de Salamanca, University of Salamanca, Salamanca, Spain
| | - Maria J Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country, San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases, Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas, Instituto de Salud Carlos III, Madrid, Spain; Department of Medicine, Faculty of Medicine and Nursing, University of the Basque Country (Universidad del País Vasco/Euskal Herriko Unibertsitatea), Leioa, Spain
| | - Diego F Calvisi
- University of Regensburg, Institute of Pathology, Regensburg, Germany
| | - Luis Arnes Perez
- Department of Health and Medical Sciences, Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Pedro M Rodrigues
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country, San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases, Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas, Instituto de Salud Carlos III, Madrid, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Ibone Labiano
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country, San Sebastian, Spain
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country, San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases, Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas, Instituto de Salud Carlos III, Madrid, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain; Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Jesper B Andersen
- Department of Health and Medical Sciences, Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
44
|
Ward JD, Fowler M, Robledo-Gomez A, Goodyear SM, Kardosh A, Sasatomi E. PD-L1 expression in pancreaticobiliary adenosquamous carcinoma: a single-institution case series. J Gastrointest Oncol 2024; 15:768-779. [PMID: 38756636 PMCID: PMC11094501 DOI: 10.21037/jgo-24-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/31/2024] [Indexed: 05/18/2024] Open
Abstract
Background The programmed cell death protein 1 (PD-1)/programmed cell death ligand 1 (PD-L1) pathway is a potent negative regulator of T-cell-mediated immune response that is upregulated in many neoplasms. Pancreaticobiliary adenosquamous carcinoma (PB-ASC) is an aggressive cancer that carries a poorer prognosis compared with pure pancreaticobiliary adenocarcinoma (PB-AC). To date, there is little published information regarding PD-L1 expression in PB-ASC. The aim of the study was to examine the relationship between PD-L1 expression and tumor-infiltrating lymphocytes in PB-ASC and PB-AC. Methods We evaluated 15 PB-ASCs (10 pancreatic, 5 gallbladder) and 34 control PB-ACs (22 pancreatic ductal, and 12 gallbladder) for tumor expression of PD-L1 using anti-PD-L1 (E1L3N) antibody. All tumors were classified into three immune phenotypes: immune inflamed (II), immune excluded (IE), and immune desert (ID) according to the distribution of tumor-infiltrating lymphocytes in tumor tissues. Results The frequency of PD-L1 expression was significantly higher in PB-ASC (10/15; 66.7%) than in PB-AC (3/34; 8.8%). In PB-ASC, PD-L1 expression occurred exclusively in the squamous component in six cases, exclusively in the glandular component in one case, and in both the squamous and the glandular components in three cases. PD-L1 expression in PB-ASC was irrespective of the tumor immune status, whereas its expression in PB-AC was observed only in tumors with the II or IE phenotype. The ID phenotype was relatively rare (4/15; 26.7%) in PB-ASC compared with PB-AC (22/34; 65%; P=0.02). Conclusions PB-ASCs are notably enriched in inflammatory response and showed significantly higher PD-L1 expression than PB-AC (P<0.001), suggesting a potential therapeutic role for immune checkpoint inhibitors in managing patients with PB-ASC.
Collapse
Affiliation(s)
- Jeremy D. Ward
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Mark Fowler
- Department of Pathology, Community Memorial Hospital, Ventura, CA, USA
| | - Ariannette Robledo-Gomez
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Shaun M. Goodyear
- Knight Cancer Institute, OHSU, Portland, OR, USA
- Division of Hematology and Oncology, School of Medicine, OHSU, Portland, OR, USA
| | - Adel Kardosh
- Knight Cancer Institute, OHSU, Portland, OR, USA
- Division of Hematology and Oncology, School of Medicine, OHSU, Portland, OR, USA
| | - Eizaburo Sasatomi
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University (OHSU), Portland, OR, USA
| |
Collapse
|
45
|
Zhao L, Liu J, Li K, Zhang C, Chen T, Liu Z, Tang Y, Hu X, Shi A, Shu L, Huang S, Lian S, Zhang M, Li H, Sun J, Yu X, Zhang Z, Zhang Z, Xu Y. PTPN9 dephosphorylates FGFR2 pY656/657 through interaction with ACAP1 and ameliorates pemigatinib effect in cholangiocarcinoma. Hepatology 2024; 79:798-812. [PMID: 37505213 DOI: 10.1097/hep.0000000000000552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023]
Abstract
ABSTRACT AND AIM Cholangiocarcinoma (CCA) is a highly aggressive and lethal cancer that originates from the biliary epithelium. Systemic treatment options for CCA are currently limited, and the first targeted drug of CCA, pemigatinib, emerged in 2020 for CCA treatment by inhibiting FGFR2 phosphorylation. However, the regulatory mechanism of FGFR2 phosphorylation is not fully elucidated. APPROACH AND RESULTS Here we screened the FGFR2-interacting proteins and showed that protein tyrosine phosphatase (PTP) N9 interacts with FGFR2 and negatively regulates FGFR2 pY656/657 . Using phosphatase activity assays and modeling the FGFR2-PTPN9 complex structure, we identified FGFR2 pY656/657 as a substrate of PTPN9, and found that sec. 14p domain of PTPN9 interacts with FGFR2 through ACAP1 mediation. Coexpression of PTPN9 and ACAP1 indicates a favorable prognosis for CCA. In addition, we identified key amino acids and motifs involved in the sec. 14p-APCP1-FGFR2 interaction, including the "YRETRRKE" motif of sec. 14p, Y471 of PTPN9, as well as the PH and Arf-GAP domain of ACAP1. Moreover, we discovered that the FGFR2 I654V substitution can decrease PTPN9-FGFR2 interaction and thereby reduce the effectiveness of pemigatinib treatment. Using a series of in vitro and in vivo experiments including patient-derived xenografts (PDX), we showed that PTPN9 synergistically enhances pemigatinib effectiveness and suppresses CCA proliferation, migration, and invasion by inhibiting FGFR2 pY656/657 . CONCLUSIONS Our study identifies PTPN9 as a negative regulator of FGFR2 phosphorylation and a synergistic factor for pemigatinib treatment. The molecular mechanism, oncogenic function, and clinical significance of the PTPN9-ACAP1-FGFR2 complex are revealed, providing more evidence for CCA precision treatment.
Collapse
Affiliation(s)
- Liming Zhao
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jialiang Liu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Kangshuai Li
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Chao Zhang
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Tianli Chen
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zengli Liu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yongchang Tang
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaoqiang Hu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Anda Shi
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lizhuang Shu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Shaohui Huang
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Shuo Lian
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Minghui Zhang
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Hui Li
- Department of Pathology, The Second Hospital Affiliated to Shandong University, Jinan, China
| | - Jinpeng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Physiology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Zhongyin Zhang
- Departments of Medicinal Chemistry and Molecular Pharmacology and Chemistry, Center for Cancer Research, Institute for Drug Discovery, Purdue University, West Lafayette, Indiana, USA
| | - Zongli Zhang
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yunfei Xu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
46
|
Nishida N, Kudo M. Genetic/Epigenetic Alteration and Tumor Immune Microenvironment in Intrahepatic Cholangiocarcinoma: Transforming the Immune Microenvironment with Molecular-Targeted Agents. Liver Cancer 2024; 13:136-149. [PMID: 38751556 PMCID: PMC11095601 DOI: 10.1159/000534443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/29/2023] [Indexed: 05/18/2024] Open
Abstract
Background Intrahepatic cholangiocarcinoma (iCCA) is often diagnosed at an advanced stage, leading to limited treatment options and a poor prognosis. So far, standard systemic therapy for advanced iCCA has been a combination of gemcitabine and cisplatin. However, recent advancements in the understanding of the molecular characteristics of iCCA have opened new possibilities for molecular-targeted therapies and immunotherapy. Summary Reportedly, 9-36% of iCCA cases have an inflamed tumor immune microenvironment (TME) based on the immune gene expression signature, which is characterized by the presence of immune cells involved in anti-tumor immune responses. The majority of iCCA cases have a non-inflamed TME with a lack of effector T cells, rendering immune checkpoint inhibitors (ICIs) ineffective in these cases. Interestingly, alterations in the fibroblast growth factor receptor (FGFR2) gene and IDH1/2 gene mutations are often observed in the non-inflamed TME in iCCA. Several mechanisms have been reported for the role of driver mutations on the establishment of TME unique for iCCA. For example, IDH1/2 mutations, which cause an increase in DNA methylation, are associated with the downregulation and hypermethylation of antigen processing and presentation machinery, which may contribute to the establishment of a non-inflamed TME. Therefore, inhibitors targeting IDH1/2 may restore the DNA methylation and expression status of molecules involved in antigen presentation, potentially improving the efficacy of ICIs. FGFR inhibitors may also have the potential to modulate immunosuppressive TME by inhibitingthe suppressor of cytokine signaling 1 and activating the interferon-γ signaling as a consequence of inhibition of the FGFR signal. From this perspective, understanding the molecular characteristics of iCCA, including the TME and driver mutations, is essential for the effective application of ICIs and molecular-targeted therapies. Key Messages Combination approaches that target both the tumor and immune system hold promise for improving the outcomes of patients with iCCA. Further research and clinical trials are needed to validate these approaches and optimize the treatment strategies for iCCA.
Collapse
Affiliation(s)
- Naoshi Nishida
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osakasayama, Japan
| |
Collapse
|
47
|
Gopal P, Robert ME, Zhang X. Cholangiocarcinoma: Pathologic and Molecular Classification in the Era of Precision Medicine. Arch Pathol Lab Med 2024; 148:359-370. [PMID: 37327187 DOI: 10.5858/arpa.2022-0537-ra] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
CONTEXT.— Cholangiocarcinoma (CCA) is a heterogeneous cancer of the bile duct, and its diagnosis is often challenging. OBJECTIVE.— To provide insights into state-of-the-art approaches for the diagnosis of CCA. DATA SOURCES.— Literature review via PubMed search and authors' experiences. CONCLUSIONS.— CCA can be categorized as intrahepatic or extrahepatic. Intrahepatic CCA is further classified into small-duct-type and large-duct-type, whereas extrahepatic CCA is classified into distal and perihilar according to site of origin within the extrahepatic biliary tree. Tumor growth patterns include mass forming, periductal infiltrating, and intraductal tumors. The clinical diagnosis of CCA is challenging and usually occurs at an advanced tumor stage. Pathologic diagnosis is made difficult by tumor inaccessibility and challenges in distinguishing CCA from metastatic adenocarcinoma to the liver. Immunohistochemical stains can assist in differentiating CCA from other malignancies, such as hepatocellular carcinoma, but no distinctive CCA-specific immunohistochemical profile has been identified. Recent advances in next-generation sequencing-based high-throughput assays have identified distinct genomic profiles of CCA subtypes, including genomic alterations that are susceptible to targeted therapies or immune checkpoint inhibitors. Detailed histopathologic and molecular evaluations of CCA by pathologists are critical for correct diagnosis, subclassification, therapeutic decision-making, and prognostication. The first step toward achieving these goals is to acquire a detailed understanding of the histologic and genetic subtypes of this heterogeneous tumor group. Here, we review state-of-the-art approaches that should be applied to establish a diagnosis of CCA, including clinical presentation, histopathology, staging, and the practical use of genetic testing methodologies.
Collapse
Affiliation(s)
- Purva Gopal
- From the Department of Pathology, UT Southwestern Medical Center, Dallas, Texas (Gopal)
| | - Marie E Robert
- the Department of Pathology, Yale University School of Medicine, New Haven, Connecticut (Robert, Zhang)
| | - Xuchen Zhang
- the Department of Pathology, Yale University School of Medicine, New Haven, Connecticut (Robert, Zhang)
| |
Collapse
|
48
|
Lu Z, Wang X, Feng J, Chai W, Wang W, Wang Q, Yang S, Yang W, Su Y, Mou W, Peng Y, Wang H, Gui J. Intratumoral CXCR4 hi neutrophils display ferroptotic and immunosuppressive signatures in hepatoblastoma. Front Immunol 2024; 15:1363454. [PMID: 38487536 PMCID: PMC10937446 DOI: 10.3389/fimmu.2024.1363454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/07/2024] [Indexed: 03/17/2024] Open
Abstract
Pediatric hepatoblastoma (HB) is the most common primary liver malignancy in infants and children. With great diversity and plasticity, tumor-infiltrating neutrophils were one of the most determining factors for poor prognosis in many malignant tumors. In this study, through bulk RNA sequencing for sorted blood and tumor-infiltrated neutrophils and comparison of neutrophils in tumor and para-tumor tissue by single-cell sequencing, we found that intratumoral neutrophils were composed of heterogenous functional populations at different development stages. Our study showed that terminally differentiated neutrophils with active ferroptosis prevailed in tumor tissue, whereas, in para-tumor, pre-fate naïve neutrophils were dominant and ferroptotic neutrophils dispersed in a broad spectrum of cell maturation. Gene profiling and in vitro T-cell coculture experiment confirmed that one of main functional intratumoral neutrophils was mainly immunosuppressive, which relied on the activation of ferroptosis. Combining the bulk RNA-seq, scRNA-seq data, and immunochemistry staining of tumor samples, CXCL12/CXCR4 chemotaxis pathway was suggested to mediate the migration of neutrophils in tumors as CXCR4 highly expressed by intratumoral neutrophils and its ligand CXCL12 expressed much higher level in tumor than that in para-tumor. Moreover, our study pinpointed that infiltrated CXCR4hi neutrophils, regardless of their differential distribution of cell maturation status in HB tumor and para-tumor regions, were the genuine perpetrators for immune suppression. Our data characterized the ferroptosis-dependent immunosuppression energized by intratumoral CXCR4 expression neutrophils and suggest a potential cell target for cancer immunotherapies.
Collapse
Affiliation(s)
- Zhengjing Lu
- Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Xiaolin Wang
- Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Jun Feng
- Department of Surgical Oncology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Wenjia Chai
- Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Wei Wang
- Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Qixin Wang
- Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Shen Yang
- Department of Surgical Oncology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Wei Yang
- Department of Surgical Oncology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Yan Su
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, Key Laboratory of Major Diseases in Children, Hematology Oncology Center, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Wenjun Mou
- Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Yun Peng
- Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Huanmin Wang
- Department of Surgical Oncology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Jingang Gui
- Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| |
Collapse
|
49
|
O'Rourke CJ, Salati M, Rae C, Carpino G, Leslie H, Pea A, Prete MG, Bonetti LR, Amato F, Montal R, Upstill-Goddard R, Nixon C, Sanchon-Sanchez P, Kunderfranco P, Sia D, Gaudio E, Overi D, Cascinu S, Hogdall D, Pugh S, Domingo E, Primrose JN, Bridgewater J, Spallanzani A, Gelsomino F, Llovet JM, Calvisi DF, Boulter L, Caputo F, Lleo A, Jamieson NB, Luppi G, Dominici M, Andersen JB, Braconi C. Molecular portraits of patients with intrahepatic cholangiocarcinoma who diverge as rapid progressors or long survivors on chemotherapy. Gut 2024; 73:496-508. [PMID: 37758326 PMCID: PMC10894814 DOI: 10.1136/gutjnl-2023-330748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/11/2023] [Indexed: 10/03/2023]
Abstract
OBJECTIVE Cytotoxic agents are the cornerstone of treatment for patients with advanced intrahepatic cholangiocarcinoma (iCCA), despite heterogeneous benefit. We hypothesised that the pretreatment molecular profiles of diagnostic biopsies can predict patient benefit from chemotherapy and define molecular bases of innate chemoresistance. DESIGN We identified a cohort of advanced iCCA patients with comparable baseline characteristics who diverged as extreme outliers on chemotherapy (survival <6 m in rapid progressors, RP; survival >23 m in long survivors, LS). Diagnostic biopsies were characterised by digital pathology, then subjected to whole-transcriptome profiling of bulk and geospatially macrodissected tissue regions. Spatial transcriptomics of tumour-infiltrating myeloid cells was performed using targeted digital spatial profiling (GeoMx). Transcriptome signatures were evaluated in multiple cohorts of resected cancers. Signatures were also characterised using in vitro cell lines, in vivo mouse models and single cell RNA-sequencing data. RESULTS Pretreatment transcriptome profiles differentiated patients who would become RPs or LSs on chemotherapy. Biologically, this signature originated from altered tumour-myeloid dynamics, implicating tumour-induced immune tolerogenicity with poor response to chemotherapy. The central role of the liver microenviroment was confrmed by the association of the RPLS transcriptome signature with clinical outcome in iCCA but not extrahepatic CCA, and in liver metastasis from colorectal cancer, but not in the matched primary bowel tumours. CONCLUSIONS The RPLS signature could be a novel metric of chemotherapy outcome in iCCA. Further development and validation of this transcriptomic signature is warranted to develop precision chemotherapy strategies in these settings.
Collapse
Affiliation(s)
- Colm J O'Rourke
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Department of Health and Medical Sciences, Copenhagen, Denmark
| | - Massimiliano Salati
- Division of Oncology, Department of Oncology and Hematology, University Hospital Modena, Modena, Italy
- Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Colin Rae
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Guido Carpino
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedic Sciences, Sapienza University of Rome, Roma, Italy
| | - Holly Leslie
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Antonio Pea
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Maria G Prete
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Luca R Bonetti
- Division of Pathology, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesco Amato
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Robert Montal
- Cancer Biomarkers Research Group, Department of Medical Oncology, Hospital Universitari Arnau de Vilanova, Lleida, Spain
| | | | - Colin Nixon
- Cancer Research UK Beatson Cancer Research Institute, Glasgow, UK
| | | | | | - Daniela Sia
- Liver Cancer Translational Research Laboratory, BCLC Group, Liver Unit and Pathology Department, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedic Sciences, Sapienza University of Rome, Roma, Italy
| | - Diletta Overi
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedic Sciences, Sapienza University of Rome, Roma, Italy
| | - Stefano Cascinu
- Medical Oncology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Dan Hogdall
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Department of Health and Medical Sciences, Copenhagen, Denmark
- Department of Oncology, Herlev Hospital, Herlev, Denmark
| | - Sian Pugh
- Addenbrooke's Hospital, Cambridge, UK
| | - Enric Domingo
- Department of Oncology, University of Oxford, Oxford, UK
| | | | | | - Andrea Spallanzani
- Division of Oncology, Department of Oncology and Hematology, University Hospital Modena, Modena, Italy
| | - Fabio Gelsomino
- Division of Oncology, Department of Oncology and Hematology, University Hospital Modena, Modena, Italy
| | - Josep M Llovet
- Translational Research in Hepatic Oncology, Liver Unit, IDIBAPS, Hospital Clínic, University of Barcelona, Barcelona, Spain
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Diego F Calvisi
- Institute of Pathology, University of Regensburg Faculty of Medicine, Regensburg, Germany
- Medical, Surgical, and Clinical Sciences, University of Sassari, Sassari, Italy
| | - Luke Boulter
- MRC HGU, The University of Edinburgh MRC Institute of Genetics and Molecular Medicine, Edinburgh, UK
- CRUK Scotland Cancer Centre, Glasgow-Edinburgh, UK
| | - Francesco Caputo
- Division of Oncology, Department of Oncology and Hematology, University Hospital Modena, Modena, Italy
| | - Ana Lleo
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Internal Medicine and Hepatology Unit, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Nigel B Jamieson
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- CRUK Scotland Cancer Centre, Glasgow-Edinburgh, UK
| | - Gabriele Luppi
- Division of Oncology, Department of Oncology and Hematology, University Hospital Modena, Modena, Italy
| | - Massimo Dominici
- Division of Oncology, Department of Oncology and Hematology, University Hospital Modena, Modena, Italy
| | - Jesper B Andersen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Department of Health and Medical Sciences, Copenhagen, Denmark
| | - Chiara Braconi
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- CRUK Scotland Cancer Centre, Glasgow-Edinburgh, UK
- Beatson West of Scotland Cancer Centre, Glasgow, UK
| |
Collapse
|
50
|
de Franchis V, Petrungaro S, Pizzichini E, Camerini S, Casella M, Somma F, Mandolini E, Carpino G, Overi D, Cardinale V, Facchiano A, Filippini A, Gaudio E, Fabrizi C, Giampietri C. Cholangiocarcinoma Malignant Traits Are Promoted by Schwann Cells through TGFβ Signaling in a Model of Perineural Invasion. Cells 2024; 13:366. [PMID: 38474330 PMCID: PMC10930666 DOI: 10.3390/cells13050366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/06/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
The term cholangiocarcinoma (CCA) defines a class of epithelial malignancies originating from bile ducts. Although it has been demonstrated that CCA patients with perineural invasion (PNI) have a worse prognosis, the biological features of this phenomenon are yet unclear. Our data show that in human intrahepatic CCA specimens with documented PNI, nerve-infiltrating CCA cells display positivity of the epithelial marker cytokeratin 7, lower with respect to the rest of the tumor mass. In an in vitro 3D model, CCA cells move towards a peripheral nerve explant allowing contact with Schwann cells (SCs) emerging from the nerve. Here, we show that SCs produce soluble factors that favor the migration, invasion, survival and proliferation of CCA cells in vitro. This effect is accompanied by a cadherin switch, suggestive of an epithelial-mesenchymal transition. The influence of SCs in promoting the ability of CCA cells to migrate and invade the extracellular matrix is hampered by a specific TGFβ receptor 1 (TGFBR1) antagonist. Differential proteomic data indicate that the exposure of CCA cells to SC secreted factors induces the upregulation of key oncogenes and the concomitant downregulation of some tumor suppressors. Taken together, these data concur in identifying SCs as possible promoters of a more aggressive CCA phenotype, ascribing a central role to TGFβ signaling in regulating this process.
Collapse
Affiliation(s)
- Valerio de Franchis
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Rome, Italy; (V.d.F.); (S.P.); (E.P.); (F.S.); (E.M.); (G.C.); (D.O.); (E.G.); (C.F.)
| | - Simonetta Petrungaro
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Rome, Italy; (V.d.F.); (S.P.); (E.P.); (F.S.); (E.M.); (G.C.); (D.O.); (E.G.); (C.F.)
| | - Elisa Pizzichini
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Rome, Italy; (V.d.F.); (S.P.); (E.P.); (F.S.); (E.M.); (G.C.); (D.O.); (E.G.); (C.F.)
| | - Serena Camerini
- Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy; (S.C.); (M.C.)
| | - Marialuisa Casella
- Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy; (S.C.); (M.C.)
| | - Francesca Somma
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Rome, Italy; (V.d.F.); (S.P.); (E.P.); (F.S.); (E.M.); (G.C.); (D.O.); (E.G.); (C.F.)
| | - Enrico Mandolini
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Rome, Italy; (V.d.F.); (S.P.); (E.P.); (F.S.); (E.M.); (G.C.); (D.O.); (E.G.); (C.F.)
| | - Guido Carpino
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Rome, Italy; (V.d.F.); (S.P.); (E.P.); (F.S.); (E.M.); (G.C.); (D.O.); (E.G.); (C.F.)
| | - Diletta Overi
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Rome, Italy; (V.d.F.); (S.P.); (E.P.); (F.S.); (E.M.); (G.C.); (D.O.); (E.G.); (C.F.)
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnology, Sapienza University of Rome, 04100 Latina, Italy;
| | - Antonio Facchiano
- Laboratory of Molecular Oncology, Istituto Dermopatico dell’Immacolata, IDI-IRCCS, 00167 Rome, Italy;
| | - Antonio Filippini
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Rome, Italy; (V.d.F.); (S.P.); (E.P.); (F.S.); (E.M.); (G.C.); (D.O.); (E.G.); (C.F.)
| | - Eugenio Gaudio
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Rome, Italy; (V.d.F.); (S.P.); (E.P.); (F.S.); (E.M.); (G.C.); (D.O.); (E.G.); (C.F.)
| | - Cinzia Fabrizi
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Rome, Italy; (V.d.F.); (S.P.); (E.P.); (F.S.); (E.M.); (G.C.); (D.O.); (E.G.); (C.F.)
| | - Claudia Giampietri
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Rome, Italy; (V.d.F.); (S.P.); (E.P.); (F.S.); (E.M.); (G.C.); (D.O.); (E.G.); (C.F.)
| |
Collapse
|