1
|
Karsten REH, Gier K, de Meijer VE, Huibers WHC, Permentier HP, Verpoorte E, Olinga P. Studying the intracellular bile acid concentration and toxicity in drug-induced cholestasis: Comprehensive LC-MS/MS analysis with human liver slices. Toxicol In Vitro 2025; 104:106011. [PMID: 39855581 DOI: 10.1016/j.tiv.2025.106011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 01/14/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
Drug-induced cholestasis (DIC) is a leading cause of drug-induced liver injury post-drug marketing, characterized by bile flow obstruction and toxic bile constituent accumulation within hepatocytes. This study investigates the toxicity associated with intracellular bile acid (BA) accumulation during DIC development. Using liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis, we examined intracellular BA concentrations in human precision-cut liver slices (PCLS) following the administration of cyclosporin A and chlorpromazine, both with and without an established BA mixture. Our findings indicate toxicity of cyclosporin A upon BA addition, while chlorpromazine's toxicity remained unaffected. Although neither drug led to the accumulation of all BAs intracellularly, BA mixture addition resulted in the accumulation of unconjugated BAs associated with DIC, such as deoxycholic acid (DCA) and cholic acid (CA). Additionally, cyclosporin A increased taurolithocholic acid (TLCA) concentrations. In the absence of the BA mixture, a decrease in conjugated BAs was observed, suggesting inhibition of BA metabolism by cholestatic drugs and warranting further investigation. The evident increase in CA and DCA for both drugs (and TLCA for cyclosporin A), despite not exacerbating toxicity with chlorpromazine, suggests these increases may be related to DIC development and possible toxicity. In conclusion, the current human PCLS model is appropriate for investigating and detecting essential contributors to DIC and can be used in future studies elucidating DIC ex vivo.
Collapse
Affiliation(s)
- R E H Karsten
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Pharmaceutical Analysis, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - K Gier
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Pharmaceutical Analysis, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - V E de Meijer
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - W H C Huibers
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Analytical Biochemistry and Interfaculty Mass Spectrometry Center, A. Deusinglaan 16, 9713 AV Groningen, the Netherlands
| | - H P Permentier
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Analytical Biochemistry and Interfaculty Mass Spectrometry Center, A. Deusinglaan 16, 9713 AV Groningen, the Netherlands
| | - E Verpoorte
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Pharmaceutical Analysis, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - P Olinga
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands.
| |
Collapse
|
2
|
Eden J, Thorne AM, Bodewes SB, Patrono D, Roggio D, Breuer E, Lonati C, Dondossola D, Panayotova G, Boteon APCS, Walsh D, Carvalho MF, Schurink IJ, Ansari F, Kollmann D, Germinario G, Rivas Garrido EA, Benitez J, Rebolledo R, Cescon M, Ravaioli M, Berlakovich GA, De Jonge J, Uluk D, Lurje I, Lurje G, Boteon YL, Guarrera JV, Romagnoli R, Galkin A, Meierhofer D, Porte RJ, Clavien PA, Schlegel A, de Meijer VE, Dutkowski P. Assessment of liver graft quality during hypothermic oxygenated perfusion: The first international validation study. J Hepatol 2025; 82:523-534. [PMID: 39251091 PMCID: PMC11830552 DOI: 10.1016/j.jhep.2024.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND & AIMS While it is currently assumed that liver assessment is only possible during normothermic machine perfusion, there is uncertainty regarding a reliable and quick prediction of graft injury during ex situ hypothermic oxygenated perfusion (HOPE). We therefore intended to test, in an international liver transplant cohort, recently described mitochondrial injury biomarkers measured during HOPE before liver transplantation. METHODS Perfusate samples of human livers from ten centers in seven countries with HOPE experience were analyzed for released mitochondrial compounds, i.e. flavin mononucleotide (FMN), NADH, purine derivatives and inflammatory markers. Livers deemed unsuitable for transplantation served as negative controls. RESULTS We collected 473 perfusate samples of human donation after cardiac death (n = 315) and donation after brain death (n = 158) livers. Fluorometric assessment of FMN in perfusate was validated by mass spectrometry (R = 0.7011, p <0.0001). Graft loss due to primary non-function or cholangiopathy was predicted by perfusate FMN values (c-statistic mass spectrometry 0.8418, 95% CI 0.7466-0.9370, p <0.0001; c-statistic fluorometry 0.7733, 95% CI 0.7006-0.8461, p <0.0001). Perfusate FMN values were also significantly correlated with symptomatic non-anastomotic strictures and kidney failure, and superior for the prediction of graft loss than conventional scores derived from donor and recipient parameters, such as the donor risk index and the balance of risk score. Mitochondrial FMN values in liver tissues of non-utilized livers were low, and inversely correlated to high perfusate FMN values and purine metabolite release. CONCLUSIONS This first international study validates the predictive value of the mitochondrial cofactor FMN, released from complex I during HOPE, and may therefore contribute to a better risk stratification of injured livers before implantation. IMPACT AND IMPLICATIONS Analysis of 473 perfusates, collected from ten international centers during HOPE (hypothermic oxygenated perfusion), revealed that mitochondria-derived flavin mononucleotide values in perfusate are predictive of graft loss, cholangiopathy, and kidney failure after liver transplantation. This result is of high clinical relevance, as recognition of graft quality is urgently needed to improve the safe utilization of marginal livers. Ex situ machine perfusion approaches, such as HOPE, are therefore likely to increase the number of useable liver grafts.
Collapse
Affiliation(s)
- Jahnina Eden
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Switzerland; Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Adam M Thorne
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Silke B Bodewes
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Damiano Patrono
- General Surgery 2U-Liver Transplant Unit, Department of Surgery, A.O.U. Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Dorotea Roggio
- General Surgery 2U-Liver Transplant Unit, Department of Surgery, A.O.U. Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Eva Breuer
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Switzerland
| | - Caterina Lonati
- General and Liver Transplant Surgery Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Centre of Preclinical Research, Milan, Italy, Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, 20100, Milan, Italy
| | - Daniele Dondossola
- General and Liver Transplant Surgery Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Centre of Preclinical Research, Milan, Italy, Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, 20100, Milan, Italy
| | - Guergana Panayotova
- Department of Surgery, Division of Transplant and HPB Surgery, Rutgers NJMS/University Hospital, Newark, NJ, USA
| | | | | | | | - Ivo J Schurink
- Department of Surgery, Division of HPB and Transplant Surgery, Erasmus MC Transplant Insititute, University Medical Center, Rotterdam, the Netherlands
| | - Fariha Ansari
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, USA
| | - Dagmar Kollmann
- Division of Transplantation, Department of Surgery, Medical University of Vienna, Wien, Austria
| | - Giuliana Germinario
- Hepatobiliary and Transplant Surgery Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Elisabeth Alexis Rivas Garrido
- Hepato-Pancreato-Biliary Surgery Unit, Surgery Service, Complejo Asistencial Dr. Sótero Del Río and Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Julio Benitez
- Hepato-Pancreato-Biliary Surgery Unit, Surgery Service, Complejo Asistencial Dr. Sótero Del Río and Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rolando Rebolledo
- Hepato-Pancreato-Biliary Surgery Unit, Surgery Service, Complejo Asistencial Dr. Sótero Del Río and Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Matteo Cescon
- Hepatobiliary and Transplant Surgery Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Sant'Orsola-Malpighi Hospital, Bologna, Italy; Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Matteo Ravaioli
- Hepatobiliary and Transplant Surgery Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Sant'Orsola-Malpighi Hospital, Bologna, Italy; Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Gabriela A Berlakovich
- Division of Transplantation, Department of Surgery, Medical University of Vienna, Wien, Austria
| | - Jeroen De Jonge
- Department of Surgery, Division of HPB and Transplant Surgery, Erasmus MC Transplant Insititute, University Medical Center, Rotterdam, the Netherlands
| | - Deniz Uluk
- Department of Surgery, Campus Charité Mitte, Campus Virchow-Klinikum-Charité-Universitätsmedizin Berlin, Berlin, Germany; Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Isabella Lurje
- Department of Surgery, Campus Charité Mitte, Campus Virchow-Klinikum-Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Georg Lurje
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, Aachen, Germany; Department of Surgery, Campus Charité Mitte, Campus Virchow-Klinikum-Charité-Universitätsmedizin Berlin, Berlin, Germany; Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Yuri L Boteon
- Liver Unit, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - James V Guarrera
- Department of Surgery, Division of Transplant and HPB Surgery, Rutgers NJMS/University Hospital, Newark, NJ, USA
| | - Renato Romagnoli
- General Surgery 2U-Liver Transplant Unit, Department of Surgery, A.O.U. Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Alexander Galkin
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, USA
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Mass Spectrometry Facility, Berlin, Germany
| | - Robert J Porte
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Pierre Alain Clavien
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Switzerland
| | - Andrea Schlegel
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Switzerland; General and Liver Transplant Surgery Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Centre of Preclinical Research, Milan, Italy, Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, 20100, Milan, Italy; Transplantation Center, Digestive Disease and Surgery Institute and Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Vincent E de Meijer
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Philipp Dutkowski
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Switzerland; Division of Visceral Surgery, University Digestive Health Care Centre Clarunis, University Hospital Basel, Switzerland.
| |
Collapse
|
3
|
Klindt C, Truong JK, Bennett AL, Pachura KJ, Herebian D, Mayatepek E, Luedde T, Ebert M, Karpen SJ, Dawson PA. Hepatic bile acid accretion correlates with cholestatic liver injury and therapeutic response in Cyp2c70 knockout mice with a humanized bile acid composition. Am J Physiol Gastrointest Liver Physiol 2024; 327:G789-G809. [PMID: 39350733 PMCID: PMC11684888 DOI: 10.1152/ajpgi.00129.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 11/12/2024]
Abstract
Cyp2c70 knockout (KO) mice lack the liver enzyme responsible for synthesis of 6-hydroxylated muricholate bile acid species and possess a more hydrophobic human-like bile acid composition. Cyp2c70 KO mice develop cholestatic liver injury that can be prevented by the administration of an ileal bile acid transporter (IBAT) inhibitor. In this study, we investigated the potential of an ileal bile acid transporter (IBAT) inhibitor (SC-435) and steroidal farnesoid X receptor (FXR) agonist (cilofexor) to modulate established hepatobiliary injury and the consequent relationship of intrahepatic bile acid content and hydrophobicity to the cholestatic liver injury phenotype. Oral administration of SC-435, cilofexor, or combined treatment for 2 wk markedly reduced serum markers of liver injury and improved histological and gene expression markers of fibrosis, liver inflammation, and ductular reaction in male and female Cyp2c70 KO mice, with the greatest benefit in the combination treatment group. The IBAT inhibitor and FXR agonist significantly reduced intrahepatic bile acid content but not hepatic bile acid pool hydrophobicity, and markers of liver injury were strongly correlated with intrahepatic total bile acid and taurochenodeoxycholic acid accretion. Biomarkers of liver injury increased linearly with similar hepatic thresholds for pathological accretion of hydrophobic bile acids in male and female Cyp2c70 KO mice. These findings further support targeting intrahepatic bile acid retention as a component of treatments for cholestatic liver disease.NEW & NOTEWORTHY Bile acids are implicated as a common contributor to the pathogenesis and progression of cholestatic liver disease. Using a mouse model with a humanized bile acid composition, we demonstrated that mono and combination therapy using an IBAT inhibitor and FXR nonsteroidal agonist were effective at reducing hepatic bile acid accretion and reversing liver injury, without reducing hepatic bile acid hydrophobicity. The findings support the concept of a therapeutically tractable threshold for bile acid-induced liver injury.
Collapse
Affiliation(s)
- Caroline Klindt
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia, United States
- Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine University, Duesseldorf, Germany
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jennifer K Truong
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia, United States
- Rectify Pharma, Cambridge, Massachusetts, United States
| | - Ashley L Bennett
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia, United States
| | - Kimberly J Pachura
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia, United States
| | - Diran Herebian
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine University, Duesseldorf, Germany
| | - Matthias Ebert
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Saul J Karpen
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia, United States
- Stravitz-Sanyal Liver Institute for Liver Disease and Metabolic Health, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Paul A Dawson
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia, United States
| |
Collapse
|
4
|
Gao J, Liu J, Lu J, Zhang X, Zhang W, Li Q, Cai J, Li M, Gan Y, Tang Y, Wu S. SKAP1 Expression in Cancer Cells Enhances Colon Tumor Growth and Impairs Cytotoxic Immunity by Promoting Neutrophil Extracellular Trap Formation via the NFATc1/CXCL8 Axis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403430. [PMID: 39269257 PMCID: PMC11538704 DOI: 10.1002/advs.202403430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/15/2024] [Indexed: 09/15/2024]
Abstract
The mechanisms underlying the development and progression of colon cancer are not fully understood. Herein, Src kinase associated phosphoprotein 1 (SKAP1), an immune cell adaptor, is identified as a novel colon cancer-related gene. SKAP1 expression is significantly increased in colon cancer cells. High SKAP1 levels are independently predictive of poor survival in patients with colon cancer. Notably, SKAP1 expression in colon cancer cells exerted a significant tumor-promoting effect in vivo rather than in vitro. Screening of tumor-infiltrating immune cells revealed the involvement of neutrophils in SKAP1-induced colon tumor promotion. Enhanced formation of neutrophil extracellular traps (NETs) is found to be a key downstream event that contributed to the pro-tumor role of SKAP1. In colon cancer cells, SKAP1 increased the expression of C-X-C motif chemokine ligand 8 (CXCL8) via nuclear factor of activated T cells c1 (NFATc1). The blockade of CXCL8 or NFATc1 largely attenuated neutrophil infiltration, NET formation, and tumor promotion induced by SKAP1. Furthermore, inhibiting SKAP1-induced NET significantly enhanced the antitumor efficiency of adoptive natural killer cell therapy in colon tumor models. In conclusion, SKAP1 significantly promotes colon cancer growth via the cancer cell/neutrophil NFATc1/CXCL8/NET axis, suggesting that SKAP1 is a potential target for colon cancer therapy.
Collapse
Affiliation(s)
- Jian Gao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer InstituteRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200032China
| | - Jun Liu
- Department of General SurgeryHuashan Hospital (Hongqiao Campus)Fudan UniversityShanghai201107China
| | - Jilin Lu
- Department of General SurgeryHuashan Hospital (Hongqiao Campus)Fudan UniversityShanghai201107China
| | - Xiaofei Zhang
- Department of General SurgeryHuashan Hospital (Hongqiao Campus)Fudan UniversityShanghai201107China
| | - Wei Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer InstituteRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200032China
| | - Qian Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer InstituteRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200032China
| | - Jiayi Cai
- Clinical Research UnitRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Mengjun Li
- Department of General SurgeryHuashan Hospital (Hongqiao Campus)Fudan UniversityShanghai201107China
| | - Yu Gan
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer InstituteRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200032China
| | - Yifan Tang
- Department of General SurgeryHuashan Hospital (Hongqiao Campus)Fudan UniversityShanghai201107China
| | - Shuangjie Wu
- Department of General SurgeryHuashan Hospital (Hongqiao Campus)Fudan UniversityShanghai201107China
| |
Collapse
|
5
|
Sun L, Yang N, Liu Z, Ye X, Cheng M, Deng L, Zhang J, Wu J, Shi M, Liao W. Cholestasis-induced phenotypic transformation of neutrophils contributes to immune escape of colorectal cancer liver metastasis. J Biomed Sci 2024; 31:66. [PMID: 38951890 PMCID: PMC11218316 DOI: 10.1186/s12929-024-01052-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 06/13/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Cholestasis is a common yet severe complication that occurs during the advancement of liver metastasis. However, how cholestasis impacts the development, treatment, and tumor microenvironment (TME) of liver metastasis remains to be elucidated. METHODS Extrahepatic and intrahepatic cholestatic mouse models with liver metastasis were established to detect the differential expression levels of genes, infiltration of immune cells and change in bile acid-associated metabolites by using RNA-Sequencing, flowcytometry, and liquid chromatography and mass spectrometry. Western blot was applied to neutrophils under the stimulation of primary bile acids (BAs) in vitro to study the mechanism of phenotypic alteration. In vitro coculture of BA-treated neutrophils with CD8+ T cells were performed to study the immune-suppressive effect of phenotypic-altered neutrophils. Clinical samples collected from colorectal cancer patients with liver metastasis and cholestasis were applied to RNA-Seq. RESULTS Compared to non-cholestatic mice, the progression of liver metastasis of cholestatic mice was significantly accelerated, which was associated with increased neutrophil infiltration and T-cell exclusion. Both neutrophils and T cells expressed higher immunosuppressive markers in the cholestatic mouse model, further indicating that an immunosuppressive tumor microenvironment was induced during cholestasis. Although neutrophils deletion via anti-Ly6G antibody partially hindered liver metastasis progression, it reduced the overall survival of mice. Tauro-β-muricholic acid (Tβ-MCA) and Glycocholic acid (GCA), the two most abundant cholestasis-associated primary BAs, remarkably promoted the expression of Arg1 and iNOS on neutrophils via p38 MAPK signaling pathway. In addition, BAs-pretreated neutrophils significantly suppressed the activation and cytotoxic effects of CD8+ T cells, indicating that the immunosuppressive phenotype of neutrophils was directly induced by BAs. Importantly, targeting BA anabolism with Obeticholic acid (OCA) under cholestasis effectively suppressed liver metastasis progression, enhanced the efficacy of immune checkpoint blockade, and prolonged survival of mice. CONCLUSIONS Our study reveals the TME of cholestasis-associated liver metastasis and proposes a new strategy for such patients by targeting bile acid anabolism.
Collapse
Affiliation(s)
- Li Sun
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Department of Oncology, Air Force Medical Center of PLA, Air Force Medical University, Beijing, China
| | - Nanyan Yang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Zhihong Liu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xiandong Ye
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Mengting Cheng
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Lingjun Deng
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Junhao Zhang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Jingjing Wu
- Department of Thoracic Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Min Shi
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- Foshan Key Laboratory of Translational Medicine in Oncology, Cancer Center, the Sixth Affiliated Hospital, South China University of Technology, Foshan, Guangdong, China.
| |
Collapse
|
6
|
Dai A, Zhang X, Wang X, Liu G, Wang Q, Yu F. Transcription factors in chimeric antigen receptor T-cell development. Hum Cell 2024; 37:571-581. [PMID: 38436882 DOI: 10.1007/s13577-024-01040-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is a new and innovative approach to treating cancers that has shown promising results in the treatment of lymphoma. However, it has been found to be less effective in the treatment of solid tumors. To overcome the limitation, researchers have explored the use of combined CAR-T therapy with other complementary regimens that target specific genes or biomarkers, which would enhance the synergistic therapeutic effects. Transcription factors (TFs) have been identified as potential markers that can regulate gene expression in CAR-T cells to enhance their cytotoxicity and safety. TFs are known to bind DNA specifically and recruit cofactor proteins to regulate the expression of target genes. By targeting TFs, it is possible to improve the anti-tumor response of CAR-T cells by altering their phenotype and transcriptional map, thereby increasing their effector function, such as reducing the exhaustion, enhancing the survival, and cytotoxicity of CAR-T cells. This review summarizes the application of transcription factors in CART therapy to enhance the synergistic therapeutic effect of CAR-T cells in the treatment of solid tumors and improve their anti-tumor responses.
Collapse
Affiliation(s)
- Anran Dai
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Xiangzhi Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Xiaoyan Wang
- Department of Gastroenterology, Suqian First People's Hospital, Suqian, 223800, Jiangsu, China
| | - Guodong Liu
- Department of General Surgery, Suqian First People's Hospital, Suqian, 223800, Jiangsu, China
| | - Qiang Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Feng Yu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
7
|
Li J, Wang F, Meng C, Zhu D. Role of TRPV1 and TRPA1 in TSLP production in nasal epithelial cells. Int Immunopharmacol 2024; 131:111916. [PMID: 38522138 DOI: 10.1016/j.intimp.2024.111916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/06/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND TRP protein is sensitive to external temperature changes, but its pathogenic mechanism in the upper airway mucosa is still unclear. OBJECTIVE To investigate the mechanism of TRPV1and TRPA1 in regulating the secretion of inflammatory factors in nasal epithelial cells. METHODS The expression of TRPV1 and TRPA1 in nasal mucosal epithelial cells was investigated using immunofluorescence assays. Epithelial cells were stimulated with TRPV1 and TRPA1 agonists and antagonists, and changes in Ca2+ release and inflammatory factor secretion in epithelial cells were detected. TSLP secretion stimulated with the calcium chelating agent EGTA was evaluated. The transcription factor NFAT was observed by immunofluorescence staining. RESULTS TRPV1 and TRPA1 expression was detected in nasal epithelial cells, and Ca2+ influx was increased after stimulation with agonists. After the activation of TRPV1 and TRPA1, the gene expression of TSLP, IL-25, and IL-33 and the protein expression levels of TSLP and IL-33 were increased, and only TSLP could be inhibited by antagonists and siRNAs. After administration of EGTA, the secretion of TSLP was inhibited significantly, and the expression of the transcription factor NFAT in the nucleus was observed after activation of the TRPV1 and TRPA1 proteins in epithelial cells. CONCLUSION Activation of TRPV1 and TRPA1 on nasal epithelial cells stimulates the generation of TSLP through the Ca2+/NFAT pathway. It also induces upregulation of IL-25 and IL-33 gene expression levels and increased levels of IL-33 protein, leading to the development of airway inflammation.
Collapse
Affiliation(s)
- Jiani Li
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Fang Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Cuida Meng
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Precise Diagnosis and Treatment of Upper Airway Allergic Diseases, China
| | - Dongdong Zhu
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Precise Diagnosis and Treatment of Upper Airway Allergic Diseases, China.
| |
Collapse
|
8
|
Nie Y, Zhai X, Li J, Sun A, Che H, Christman JW, Chai G, Zhao P, Karpurapu M. NFATc3 Promotes Pulmonary Inflammation and Fibrosis by Regulating Production of CCL2 and CXCL2 in Macrophages. Aging Dis 2023; 14:1441-1457. [PMID: 37523510 PMCID: PMC10389814 DOI: 10.14336/ad.2022.1202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/02/2022] [Indexed: 08/02/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and highly lethal inflammatory interstitial lung disease characterized by aberrant extracellular matrix deposition. Macrophage activation by cytokines released from repetitively injured alveolar epithelial cells regulates the inflammatory response, tissue remodeling, and fibrosis throughout various phases of IPF. Our previous studies demonstrate that nuclear factor of activated T cells cytoplasmic member 3 (NFATc3) regulates a wide array of macrophage genes during acute lung injury pathogenesis. However, the role of NFATc3 in IPF pathophysiology has not been previously reported. In the current study, we demonstrate that expression of NFATc3 is elevated in lung tissues and pulmonary macrophages in mice subjected to bleomycin (BLM)-induced pulmonary fibrosis and IPF patients. Remarkably, NFATc3 deficiency (NFATc3+/-) was protective in bleomycin (BLM)-induced lung injury and fibrosis. Adoptive transfer of NFATc3+/+ macrophages to NFATc3+/- mice restored susceptibility to BLM-induced pulmonary fibrosis. Furthermore, in vitro treatment with IL-33 or conditioned medium from BLM-treated epithelial cells increased production of CCL2 and CXCL2 in macrophages from NFATc3+/+ but not NFATc3+/- mice. CXCL2 promoter-pGL3 Luciferase reporter vector showed accentuated reporter activity when co-transfected with the NFATc3 expression vector. More importantly, exogenous administration of recombinant CXCL2 into NFATc3+/- mice increased fibrotic markers and exacerbated IPF phenotype in BLM treated mice. Collectively, our data demonstrate, for the first time, that NFATc3 regulates pulmonary fibrosis by regulating CCL2 and CXCL2 gene expression in macrophages.
Collapse
Affiliation(s)
- Yunjuan Nie
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China.
| | - Xiaorun Zhai
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China.
| | - Jiao Li
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China.
| | - Aijuan Sun
- Department of Pathology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi 214023, China.
| | - Huilian Che
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China.
| | - John W Christman
- Pulmonary, Critical Care and Sleep Medicine, Davis Heart and Lung Research Institute, Ohio State University Wexner Medical Center, Columbus, Ohio, USA.
| | - Gaoshang Chai
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China.
| | - Peng Zhao
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China.
| | - Manjula Karpurapu
- Pulmonary, Critical Care and Sleep Medicine, Davis Heart and Lung Research Institute, Ohio State University Wexner Medical Center, Columbus, Ohio, USA.
| |
Collapse
|
9
|
Zhang L, Pan Q, Zhang L, Xia H, Liao J, Zhang X, Zhao N, Xie Q, Liao M, Tan Y, Li Q, Zhu J, Li L, Fan S, Li J, Zhang C, Cai SY, Boyer JL, Chai J. Runt-related transcription factor-1 ameliorates bile acid-induced hepatic inflammation in cholestasis through JAK/STAT3 signaling. Hepatology 2023; 77:1866-1881. [PMID: 36647589 PMCID: PMC10921919 DOI: 10.1097/hep.0000000000000041] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/16/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND AIMS Bile acids trigger a hepatic inflammatory response, causing cholestatic liver injury. Runt-related transcription factor-1 (RUNX1), primarily known as a master modulator in hematopoiesis, plays a pivotal role in mediating inflammatory responses. However, RUNX1 in hepatocytes is poorly characterized, and its role in cholestasis is unclear. Herein, we aimed to investigate the role of hepatic RUNX1 and its underlying mechanisms in cholestasis. APPROACH AND RESULTS Hepatic expression of RUNX1 was examined in cholestatic patients and mouse models. Mice with liver-specific ablation of Runx1 were generated. Bile duct ligation and 1% cholic acid diet were used to induce cholestasis in mice. Primary mouse hepatocytes and the human hepatoma PLC/RPF/5- ASBT cell line were used for mechanistic studies. Hepatic RUNX1 mRNA and protein levels were markedly increased in cholestatic patients and mice. Liver-specific deletion of Runx1 aggravated inflammation and liver injury in cholestatic mice induced by bile duct ligation or 1% cholic acid feeding. Mechanistic studies indicated that elevated bile acids stimulated RUNX1 expression by activating the RUNX1 -P2 promoter through JAK/STAT3 signaling. Increased RUNX1 is directly bound to the promotor region of inflammatory chemokines, including CCL2 and CXCL2 , and transcriptionally repressed their expression in hepatocytes, leading to attenuation of liver inflammatory response. Blocking the JAK signaling or STAT3 phosphorylation completely abolished RUNX1 repression of bile acid-induced CCL2 and CXCL2 in hepatocytes. CONCLUSIONS This study has gained initial evidence establishing the functional role of hepatocyte RUNX1 in alleviating liver inflammation during cholestasis through JAK/STAT3 signaling. Modulating hepatic RUNX1 activity could be a new therapeutic target for cholestasis.
Collapse
Affiliation(s)
- Liangjun Zhang
- Department of Gastroenterology, Institute of Digestive Disease of PLA, Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qiong Pan
- Department of Gastroenterology, Institute of Digestive Disease of PLA, Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lu Zhang
- Department of Gastroenterology, Institute of Digestive Disease of PLA, Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Haihan Xia
- Department of Gastroenterology, Institute of Digestive Disease of PLA, Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Junwei Liao
- Department of Gastroenterology, Institute of Digestive Disease of PLA, Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Central South University School of Life Sciences, Changsha, Hunan Province, China
| | - Xiaoxun Zhang
- Department of Gastroenterology, Institute of Digestive Disease of PLA, Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Nan Zhao
- Department of Gastroenterology, Institute of Digestive Disease of PLA, Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qiaoling Xie
- Department of Gastroenterology, Institute of Digestive Disease of PLA, Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Min Liao
- Department of Gastroenterology, Institute of Digestive Disease of PLA, Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ya Tan
- Department of Gastroenterology, Institute of Digestive Disease of PLA, Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qiao Li
- Department of Gastroenterology, Institute of Digestive Disease of PLA, Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jinfei Zhu
- Department of Gastroenterology, Institute of Digestive Disease of PLA, Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Queen Mary School, Nanchang University, Nanchang, Jiangxi Province, China
| | - Ling Li
- Department of Gastroenterology, Institute of Digestive Disease of PLA, Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shijun Fan
- Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jianwei Li
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chengcheng Zhang
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shi-Ying Cai
- Department of Internal Medicine and Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - James L Boyer
- Department of Internal Medicine and Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jin Chai
- Department of Gastroenterology, Institute of Digestive Disease of PLA, Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
10
|
Wang L, Donahue G, Zhang C, Havas A, Lei X, Xu C, Wang W, Vahedi G, Adams PD, Berger SL. Dynamic enhancer interactome promotes senescence and aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541769. [PMID: 37292952 PMCID: PMC10245931 DOI: 10.1101/2023.05.22.541769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Gene expression programs are regulated by enhancers which act in a context-specific manner, and can reside at great distances from their target genes. Extensive three-dimensional (3D) genome reorganization occurs in senescence, but how enhancer interactomes are reconfigured during this process is just beginning to be understood. Here we generated high-resolution contact maps of active enhancers and their target genes, assessed chromatin accessibility, and established one-dimensional maps of various histone modifications and transcription factors to comprehensively understand the regulation of enhancer configuration during senescence. Hyper-connected enhancer communities/cliques formed around genes that are highly expressed and within essential gene pathways in each cell state. In addition, motif analysis indicates the involvement of specific transcription factors in hyper-connected regulatory elements in each condition; importantly, MafK, a bZIP family transcription factor, was upregulated in senescence, and reduced expression of MafK ameliorated the senescence phenotypes. Because the accumulation of senescent cells is a key feature of aging, we further investigated enhancer connectomes in the liver of young and aged mice. Hyper-connected enhancer communities were identified during aging, which regulate essential genes that maintain cell differentiation and homeostasis. These findings reveal that hyper-connected enhancer communities correlate with high gene expression in senescence and aging and provide potential hotspots for therapeutic intervention in aging and age-associated diseases.
Collapse
|
11
|
Nepal C, Andersen JB. Alternative promoters in CpG depleted regions are prevalently associated with epigenetic misregulation of liver cancer transcriptomes. Nat Commun 2023; 14:2712. [PMID: 37169774 PMCID: PMC10175279 DOI: 10.1038/s41467-023-38272-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 04/24/2023] [Indexed: 05/13/2023] Open
Abstract
Transcriptional regulation is commonly governed by alternative promoters. However, the regulatory architecture in alternative and reference promoters, and how they differ, remains elusive. In 100 CAGE-seq libraries from hepatocellular carcinoma patients, here we annotate 4083 alternative promoters in 2926 multi-promoter genes, which are largely undetected in normal livers. These genes are enriched in oncogenic processes and predominantly show association with overall survival. Alternative promoters are narrow nucleosome depleted regions, CpG island depleted, and enriched for tissue-specific transcription factors. Globally tumors lose DNA methylation. We show hierarchical retention of intragenic DNA methylation with CG-poor regions rapidly losing methylation, while CG-rich regions retain it, a process mediated by differential SETD2, H3K36me3, DNMT3B, and TET1 binding. This mechanism is validated in SETD2 knockdown cells and SETD2-mutated patients. Selective DNA methylation loss in CG-poor regions makes the chromatin accessible for alternative transcription. We show alternative promoters can control tumor transcriptomes and their regulatory architecture.
Collapse
Affiliation(s)
- Chirag Nepal
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen N, DK-2200, Denmark.
- Center for Genomics, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA.
| | - Jesper B Andersen
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen N, DK-2200, Denmark.
| |
Collapse
|
12
|
Liao M, Liao J, Qu J, Shi P, Cheng Y, Pan Q, Zhao N, Zhang X, Zhang L, Tan Y, Li Q, Zhu JF, Li J, Zhang C, Cai SY, Chai J. Hepatic TNFRSF12A promotes bile acid-induced hepatocyte pyroptosis through NFκB/Caspase-1/GSDMD signaling in cholestasis. Cell Death Discov 2023; 9:26. [PMID: 36690641 PMCID: PMC9871041 DOI: 10.1038/s41420-023-01326-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/25/2023] Open
Abstract
Tumor necrosis factor receptor superfamily member-12A (TNFRSF12A) plays a critical role in inflammation and cell death. It is expressed in multiple tissues yet extremely low in normal liver. To date, little is known about its role in cholestasis. Therefore, we sought to delineate the role of TNFRSF12A in cholestasis and its underlying mechanisms. Human liver tissues were collected from patients with obstructive cholestasis (OC) or primary biliary cholangitis (PBC). Tnfrsf12a knockout (KO) mice were generated. Cholestasis was induced by bile-duct ligation (BDL) or 0.1% 5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-feeding. Human hepatoma PLC/PRF/5-ASBT and THP1 cell lines or primary mouse hepatocytes were used for mechanistic studies. Hepatic TNFRSF12A expression was markedly increased in OC or PBC patients. Genetic ablation of Tnfrsf12a in BDL- and 0.1%DDC-induced cholestatic mice significantly attenuated cholestatic liver injury with remarkable reduction of hepatocyte pyroptosis but without changing scores of necroptosis and apoptosis. Morphological features of hepatocyte pyroptosis and increased levels of pyroptosis-related proteins, NLRP3, cleaved-Caspase-1, and cleaved-GSDMD in OC patients and BDL-mice confirmed this observation. Further mechanistic studies revealed that bile acids (BAs) induced TNFRSF12A expression by enhancing the transcription factor c-JUN binding to the TNFRSF12A promoter and subsequently initiated hepatocyte pyroptosis by the NFκB/Caspase-1/GSDMD signaling. Interestingly, TWEAK, a typical ligand of TNFRSF12A, secreted by infiltrated macrophages in cholestatic livers, enhanced TNFRSF12A-induced hepatocyte pyroptosis. Taken together, we report, for the first time, that hepatic TNFRSF12A is dramatically increased in human cholestasis. Deletion of TNFRSF12A inhibits BAs-induced hepatocyte pyroptosis through the NFκB/Caspase-1/GSDMD signaling and thereby ameliorates cholestatic liver injury. As such, targeting TNFRSF12A could be a promising approach to treating cholestasis.
Collapse
Affiliation(s)
- Min Liao
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Institute of Digestive Diseases of PLA, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Cholestatic Liver Diseases Center and Center for Metabolic-Associated Fatty Liver Diseases, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Junwei Liao
- Cholestatic Liver Diseases Center and Center for Metabolic-Associated Fatty Liver Diseases, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Central South University School of Sciences, Changsha, Hunan, 410083, China
| | - Jiaquan Qu
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Institute of Digestive Diseases of PLA, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Cholestatic Liver Diseases Center and Center for Metabolic-Associated Fatty Liver Diseases, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Department of Medical Imaging Technology, Medical College of Jishou University, Jishou, Hunan, 416000, China
| | - Pan Shi
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Institute of Digestive Diseases of PLA, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Cholestatic Liver Diseases Center and Center for Metabolic-Associated Fatty Liver Diseases, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ying Cheng
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Institute of Digestive Diseases of PLA, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Cholestatic Liver Diseases Center and Center for Metabolic-Associated Fatty Liver Diseases, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Qiong Pan
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Institute of Digestive Diseases of PLA, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Cholestatic Liver Diseases Center and Center for Metabolic-Associated Fatty Liver Diseases, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Nan Zhao
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Institute of Digestive Diseases of PLA, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Cholestatic Liver Diseases Center and Center for Metabolic-Associated Fatty Liver Diseases, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xiaoxun Zhang
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Institute of Digestive Diseases of PLA, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Cholestatic Liver Diseases Center and Center for Metabolic-Associated Fatty Liver Diseases, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Liangjun Zhang
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Institute of Digestive Diseases of PLA, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Cholestatic Liver Diseases Center and Center for Metabolic-Associated Fatty Liver Diseases, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ya Tan
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Institute of Digestive Diseases of PLA, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Cholestatic Liver Diseases Center and Center for Metabolic-Associated Fatty Liver Diseases, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Qiao Li
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Institute of Digestive Diseases of PLA, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Cholestatic Liver Diseases Center and Center for Metabolic-Associated Fatty Liver Diseases, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jin-Fei Zhu
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Queen Mary School, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Jianwei Li
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Chengcheng Zhang
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Shi-Ying Cai
- Department of Internal Medicine and Liver Center, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Jin Chai
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Institute of Digestive Diseases of PLA, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Cholestatic Liver Diseases Center and Center for Metabolic-Associated Fatty Liver Diseases, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
13
|
Huang G, Xie S, Wang M, Mao D, Huang G, Huang J, Liu X, Zhang R, Xie J, Huang LJ, Cheng C, Yao F, Zhong Y, Lin L, Yao C. Metabolite profiling analysis of hepatitis B virus-induced liver cirrhosis patients with minimal hepatic encephalopathy using gas chromatography-time-of-flight mass spectrometry and ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry. Biomed Chromatogr 2023; 37:e5529. [PMID: 36250932 DOI: 10.1002/bmc.5529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 12/15/2022]
Abstract
This study used gas chromatography-time-of-flight mass spectrometry (GC-TOFMS) and ultra-performance liquid chromatography-quadrupole TOFMS (UPLC-QTOFMS) metabonomic analytical techniques in combination with bioinformatics and pattern recognition analysis methods to analyze the serum metabolite profiling of hepatitis B virus (HBV)-induced liver cirrhosis patients with minimal hepatic encephalopathy (MHE), to find the specific biomarkers of MHE, to reveal the pathogenesis of MHE, and to determine a promising approach for early diagnosis of MHE. Serum samples of 100 normal controls (NC group), 29 HBV-induced liver cirrhosis patients with MHE (MHE group), and 24 HBV-induced liver cirrhosis patients without MHE [comprising 12 cases of compensated cirrhosis (CS group) and 12 cases of decompensated cirrhosis (DS group)] were collected and employed into GC-TOFMS and UPLC-QTOFMS platforms for serum metabolite detection; the outcome data were then analyzed using principal component analysis and orthogonal partial least squares-discriminant analysis (OPLS-DA). There were no significant differential metabolites between the NC group and the CS group. A series of key differential metabolites were detected. According to the variable influence in projection values and P-values, 60 small-molecule metabolites were considered to be dysregulated in the MHE group (compared to the NC group); 27 of these 60 dysregulated differential metabolites were considered to be the potential biomarkers (see Table 4, marked in bold); 66 small-molecule metabolites were considered to be dysregulated in the DS group (compared to the NC group); 34 of these 66 dysregulated differential metabolites were considered to be the potential biomarkers (see Table 5, marked in bold). According to the fold-change values, 9 of these 27 metabolites, namely valine, oxalic acid, erythro-sphingosine, 4,7,10,13,16,19-docosahexaenoic acid, isoleucine, allo-isoleucine, thyroxine, rac-octanoyl carnitine, and tocopherol (vitamin E), were downregulated in the MHE group (compared to the NC group); the other 18, namely adenine, glycochenodeoxycholic acid, fucose, allothreonine, glycohyocholic acid, glycoursodeoxycholic acid, tyrosine, taurocheno-deoxycholate, phenylalanine, 2-hydroxy-3-methyl-butanoic acid, hydroxyacetic acid, taurocholate, sorbitol, rhamnose, tauroursodeoxycholate, tolbutamide, pyroglutamic acid, and malic acid, were upregulated; 6 of these 34 metabolites were downregulated in the DS group (compared to the NC group), and the other 28 were upregulated, as shown in Table 5. (a) GC-TOFMS and UPLC-QTOFMS metabonomic analytical platforms can detect a range of metabolites in the serum; this might be of great help to study the pathogenesis of MHE and may provide a new approach for the early diagnosis of MHE. (b) Metabonomics analysis in combination with pattern recognition analysis might have great potential to distinguish the HBV-induced liver cirrhosis patients who have MHE from the normal healthy population and HBV-induced liver cirrhosis patients without MHE.
Collapse
Affiliation(s)
- Guochu Huang
- First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Sheng Xie
- First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Meng Wang
- First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Dewen Mao
- First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Guye Huang
- First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Jingjing Huang
- First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Xirong Liu
- First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Rongzhen Zhang
- First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Jiacheng Xie
- Guangxi University of Chinese Medicine, Nanning, China
| | | | - Chen Cheng
- First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Fan Yao
- First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Yu Zhong
- First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Long Lin
- Guangxi University of Chinese Medicine, Nanning, China
| | - Chun Yao
- Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
14
|
Tian X, Xu F, Zhu Q, Feng Z, Dai W, Zhou Y, You QD, Xu X. Medicinal chemistry perspective on cGAS-STING signaling pathway with small molecule inhibitors. Eur J Med Chem 2022; 244:114791. [DOI: 10.1016/j.ejmech.2022.114791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 11/04/2022]
|
15
|
Cai J, Rimal B, Jiang C, Chiang JYL, Patterson AD. Bile acid metabolism and signaling, the microbiota, and metabolic disease. Pharmacol Ther 2022; 237:108238. [PMID: 35792223 DOI: 10.1016/j.pharmthera.2022.108238] [Citation(s) in RCA: 169] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/13/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022]
Abstract
The diversity, composition, and function of the bacterial community inhabiting the human gastrointestinal tract contributes to host health through its role in producing energy or signaling molecules that regulate metabolic and immunologic functions. Bile acids are potent metabolic and immune signaling molecules synthesized from cholesterol in the liver and then transported to the intestine where they can undergo metabolism by gut bacteria. The combination of host- and microbiota-derived enzymatic activities contribute to the composition of the bile acid pool and thus there can be great diversity in bile acid composition that depends in part on the differences in the gut bacteria species. Bile acids can profoundly impact host metabolic and immunological functions by activating different bile acid receptors to regulate signaling pathways that control a broad range of complex symbiotic metabolic networks, including glucose, lipid, steroid and xenobiotic metabolism, and modulation of energy homeostasis. Disruption of bile acid signaling due to perturbation of the gut microbiota or dysregulation of the gut microbiota-host interaction is associated with the pathogenesis and progression of metabolic disorders. The metabolic and immunological roles of bile acids in human health have led to novel therapeutic approaches to manipulate the bile acid pool size, composition, and function by targeting one or multiple components of the microbiota-bile acid-bile acid receptor axis.
Collapse
Affiliation(s)
- Jingwei Cai
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Bipin Rimal
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, PR China
| | - John Y L Chiang
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
16
|
PIAS1 Alleviates Hepatic Ischemia-Reperfusion Injury in Mice through a Mechanism Involving NFATc1 SUMOylation. DISEASE MARKERS 2022; 2022:4988539. [PMID: 36092961 PMCID: PMC9452975 DOI: 10.1155/2022/4988539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 06/14/2022] [Indexed: 11/18/2022]
Abstract
Recently, attentions have come to the alleviatory effect of protein inhibitor of activated STAT1 (PIAS1) in hepatic ischemia-reperfusion injury (HIRI), but the underlying molecular mechanistic actions remain largely unknown, which were illustrated in the present study. Microarray-based analysis predicted a possible regulatory mechanism involving the PIAS1/NFATc1/HDAC1/IRF-1/p38 MAPK signaling axis in HIRI. Then, growth dynamics of hypoxia/reoxygenation- (H/R-) exposed hepatocytes and liver injury of HIRI-like mice were delineated after the alteration of the PIAS1 expression. We validated that PIAS1 downregulation occurred in H/R-exposed hepatocytes and HIRI-like mice, while the expression of NFATc1, HDAC1, and IRF-1 and phosphorylation levels of p38 were increased. PIAS1 inactivated p38 MAPK signaling by inhibiting HDAC1-mediated IRF-1 through NFATc1 SUMOylation, thereby repressing the inflammatory response and apoptosis of hepatocytes in vitro, and alleviated liver injury in vivo. Collectively, the NFATc1/HDAC1/IRF-1/p38 MAPK signaling axis is highlighted as a promising therapeutic target for potentiating hepatoprotective effects of PIAS1 against HIRI.
Collapse
|
17
|
Zhao N, Zhang X, Ding J, Pan Q, Zheng MH, Liu WY, Luo G, Qu J, Li M, Li L, Cheng Y, Peng Y, Xie Q, Wei Q, Li Q, Zou L, Ouyang X, Cai SY, Boyer JL, Chai J. SEMA7AR148W mutation promotes lipid accumulation and NAFLD progression via increased localization on the hepatocyte surface. JCI Insight 2022; 7:e154113. [PMID: 35938531 PMCID: PMC9462498 DOI: 10.1172/jci.insight.154113] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 06/27/2022] [Indexed: 12/30/2022] Open
Abstract
Genetic polymorphisms are associated with the development of nonalcoholic fatty liver disease (NAFLD). Semaphorin7a (Sema7a) deficiency in mouse peritoneal macrophages reduces fatty acid (FA) oxidation. Here, we identified 17 individuals with SEMA7A heterozygous mutations in 470 patients with biopsy-proven NAFLD. SEMA7A heterozygous mutations increased susceptibility to NAFLD, steatosis severity, and NAFLD activity scores in humans and mice. The Sema7aR145W mutation (equivalent to human SEMA7AR148W) significantly induced small lipid droplet accumulation in mouse livers compared with WT mouse livers. Mechanistically, the Sema7aR145W mutation increased N-glycosylated Sema7a and its receptor integrin β1 proteins in the cell membranes of hepatocytes. Furthermore, Sema7aR145W mutation enhanced its protein interaction with integrin β1 and PKC-α and increased PKC-α phosphorylation, which were both abrogated by integrin β1 silencing. Induction of PKCα_WT, but not PKCα_dominant negative, overexpression induced transcriptional factors Srebp1, Chrebp, and Lxr expression and their downstream Acc1, Fasn, and Cd36 expression in primary mouse hepatocytes. Collectively, our findings demonstrate that the SEMA7AR148W mutation is a potentially new strong genetic determinant of NAFLD and promotes intrahepatic lipid accumulation and NAFLD in mice by enhancing PKC-α-stimulated FA and triglyceride synthesis and FA uptake. The inhibition of hepatic PKC-α signaling may lead to novel NAFLD therapies.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Gastroenterology, Institute of Digestive Diseases of PLA, Cholestatic Liver Diseases Center, and Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) of Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaoxun Zhang
- Department of Gastroenterology, Institute of Digestive Diseases of PLA, Cholestatic Liver Diseases Center, and Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) of Third Military Medical University (Army Medical University), Chongqing, China
| | - Jingjing Ding
- Department of Gastroenterology, Institute of Digestive Diseases of PLA, Cholestatic Liver Diseases Center, and Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) of Third Military Medical University (Army Medical University), Chongqing, China
| | - Qiong Pan
- Department of Gastroenterology, Institute of Digestive Diseases of PLA, Cholestatic Liver Diseases Center, and Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) of Third Military Medical University (Army Medical University), Chongqing, China
| | | | - Wen-Yue Liu
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Gang Luo
- Department of Gastroenterology, Institute of Digestive Diseases of PLA, Cholestatic Liver Diseases Center, and Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) of Third Military Medical University (Army Medical University), Chongqing, China
| | - Jiaquan Qu
- Department of Gastroenterology, Institute of Digestive Diseases of PLA, Cholestatic Liver Diseases Center, and Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) of Third Military Medical University (Army Medical University), Chongqing, China
| | - Mingqiao Li
- Department of Gastroenterology, Institute of Digestive Diseases of PLA, Cholestatic Liver Diseases Center, and Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) of Third Military Medical University (Army Medical University), Chongqing, China
| | - Ling Li
- Department of Gastroenterology, Institute of Digestive Diseases of PLA, Cholestatic Liver Diseases Center, and Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) of Third Military Medical University (Army Medical University), Chongqing, China
| | - Ying Cheng
- Department of Gastroenterology, Institute of Digestive Diseases of PLA, Cholestatic Liver Diseases Center, and Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) of Third Military Medical University (Army Medical University), Chongqing, China
| | - Ying Peng
- Department of Gastroenterology, Institute of Digestive Diseases of PLA, Cholestatic Liver Diseases Center, and Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) of Third Military Medical University (Army Medical University), Chongqing, China
| | - Qiaoling Xie
- Department of Gastroenterology, Institute of Digestive Diseases of PLA, Cholestatic Liver Diseases Center, and Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) of Third Military Medical University (Army Medical University), Chongqing, China
| | - Qinglin Wei
- Department of Gastroenterology, Institute of Digestive Diseases of PLA, Cholestatic Liver Diseases Center, and Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) of Third Military Medical University (Army Medical University), Chongqing, China
| | - Qiao Li
- Department of Gastroenterology, Institute of Digestive Diseases of PLA, Cholestatic Liver Diseases Center, and Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) of Third Military Medical University (Army Medical University), Chongqing, China
| | - Lingyun Zou
- Bioinformatics Center, Department of Microbiology of Third Military Medical University, Chongqing, China
- Bao’an Maternal and Child Health Hospital of Jinan University, Shenzhen, China
| | - Xinshou Ouyang
- Department of Internal Medicine, Section of Digestive Diseases, and
| | - Shi-Ying Cai
- Department of Internal Medicine and Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - James L. Boyer
- Department of Internal Medicine and Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jin Chai
- Department of Gastroenterology, Institute of Digestive Diseases of PLA, Cholestatic Liver Diseases Center, and Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) of Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
18
|
Bertolini A, Fiorotto R, Strazzabosco M. Bile acids and their receptors: modulators and therapeutic targets in liver inflammation. Semin Immunopathol 2022; 44:547-564. [PMID: 35415765 PMCID: PMC9256560 DOI: 10.1007/s00281-022-00935-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/25/2022] [Indexed: 12/11/2022]
Abstract
Bile acids participate in the intestinal emulsion, digestion, and absorption of lipids and fat-soluble vitamins. When present in high concentrations, as in cholestatic liver diseases, bile acids can damage cells and cause inflammation. After the discovery of bile acids receptors about two decades ago, bile acids are considered signaling molecules. Besides regulating bile acid, xenobiotic, and nutrient metabolism, bile acids and their receptors have shown immunomodulatory properties and have been proposed as therapeutic targets for inflammatory diseases of the liver. This review focuses on bile acid-related signaling pathways that affect inflammation in the liver and provides an overview of the preclinical and clinical applications of modulators of these pathways for the treatment of cholestatic and autoimmune liver diseases.
Collapse
Affiliation(s)
- Anna Bertolini
- Section of Digestive Diseases, Yale Liver Center, Yale School of Medicine, PO Box 208019, New Haven, CT, 06520-8019, USA
- Department of Pediatrics, Section of Molecular Metabolism and Nutrition, University Medical Center Groningen, Groningen, The Netherlands
| | - Romina Fiorotto
- Section of Digestive Diseases, Yale Liver Center, Yale School of Medicine, PO Box 208019, New Haven, CT, 06520-8019, USA
| | - Mario Strazzabosco
- Section of Digestive Diseases, Yale Liver Center, Yale School of Medicine, PO Box 208019, New Haven, CT, 06520-8019, USA.
| |
Collapse
|
19
|
Substance P Hinders Bile Acid-Induced Hepatocellular Injury by Modulating Oxidative Stress and Inflammation. Antioxidants (Basel) 2022; 11:antiox11050920. [PMID: 35624784 PMCID: PMC9137937 DOI: 10.3390/antiox11050920] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/17/2022] Open
Abstract
Liver failure is an outcome of chronic liver disease caused by steatohepatitis and cholestatic injury. This study examined substance P (SP) effect on liver injury due to cholestatic stress caused by excessive bile acid (BA) accumulation. Chenodeoxycholic acid (CDCA) was added to HepG2 cells to induce hepatic injury, and cellular alterations were observed within 8 h. After confirming BA-mediated cellular injury, SP was added, and its restorative effect was evaluated through cell viability, reactive oxygen species (ROS)/inflammatory cytokines/endothelial cell media expression, and adjacent liver sinusoidal endothelial cell (LSEC) function. CDCA treatment provoked ROS production, followed by IL-8 and ICAM-1 expression in hepatocytes within 8 h, which accelerated 24 h post-treatment. Caspase-3 signaling was activated, reducing cell viability and promoting alanine aminotransferase release. Interestingly, hepatocyte alteration by CDCA stress could affect LSEC activity by decreasing cell viability and disturbing tube-forming ability. In contrast, SP treatment reduced ROS production and blocked IL-8/ICAM-1 in CDCA-injured hepatocytes. SP treatment ameliorated the effect of CDCA on LSECs, preserving cell viability and function. Collectively, SP could protect hepatocytes and LSECs from BA-induced cellular stress, possibly by modulating oxidative stress and inflammation. These results suggest that SP can be used to treat BA-induced liver injury.
Collapse
|
20
|
Fu K, Zhou H, Wang C, Gong L, Ma C, Zhang Y, Li Y. A review: Pharmacology and pharmacokinetics of Schisandrin A. Phytother Res 2022; 36:2375-2393. [DOI: 10.1002/ptr.7456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/20/2022] [Accepted: 03/18/2022] [Indexed: 12/12/2022]
Affiliation(s)
- Ke Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Honglin Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Lihong Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Cheng Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Yafang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| |
Collapse
|
21
|
Wang R, Wu Y, Zhu Y, Yao S, Zhu Y. ANKRD22 is a novel therapeutic target for gastric mucosal injury. Pharmacotherapy 2022; 147:112649. [PMID: 35051858 DOI: 10.1016/j.biopha.2022.112649] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 11/28/2022]
|
22
|
Thibaut MM, Bindels LB. Crosstalk between bile acid-activated receptors and microbiome in entero-hepatic inflammation. Trends Mol Med 2022; 28:223-236. [DOI: 10.1016/j.molmed.2021.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023]
|
23
|
Pan Q, Luo G, Qu J, Chen S, Zhang X, Zhao N, Ding J, Yang H, Li M, Li L, Cheng Y, Li X, Xie Q, Li Q, Zhou X, Zou H, Fan S, Zou L, Liu W, Deng G, Cai S, Boyer JL, Chai J. A homozygous R148W mutation in Semaphorin 7A causes progressive familial intrahepatic cholestasis. EMBO Mol Med 2021; 13:e14563. [PMID: 34585848 PMCID: PMC8573601 DOI: 10.15252/emmm.202114563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 12/15/2022] Open
Abstract
Semaphorin 7A (SEMA7A) is a membrane-bound protein that involves axon growth and other biological processes. SEMA7A mutations are associated with vertebral fracture and Kallmann syndrome. Here, we report a case with a mutation in SEMA7A that displays familial cholestasis. WGS reveals a SEMA7AR148W homozygous mutation in a female child with elevated levels of serum ALT, AST, and total bile acid (TBA) of unknown etiology. This patient also carried a SLC10A1S267F allele, but Slc10a1S267F homozygous mice exhibited normal liver function. Similar to the child, Sema7aR145W homozygous mice displayed elevated levels of serum ALT, AST, and TBA. Remarkably, liver histology and LC-MS/MS analyses exhibited hepatocyte hydropic degeneration and increased liver bile acid (BA) levels in Sema7aR145W homozygous mice. Further mechanistic studies demonstrated that Sema7aR145W mutation reduced the expression of canalicular membrane BA transporters, bile salt export pump (Bsep), and multidrug resistance-associated protein-2 (Mrp2), causing intrahepatic cholestasis in mice. Administration with ursodeoxycholic acid and a dietary supplement glutathione improved liver function in the child. Therefore, Sema7aR145W homozygous mutation causes intrahepatic cholestasis by reducing hepatic Bsep and Mrp2 expression.
Collapse
Affiliation(s)
- Qiong Pan
- Cholestatic Liver Diseases CenterDepartment of GastroenterologySouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Gang Luo
- Cholestatic Liver Diseases CenterDepartment of GastroenterologySouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Jiaquan Qu
- Cholestatic Liver Diseases CenterDepartment of GastroenterologySouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Sheng Chen
- Department of PediatricsSouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Xiaoxun Zhang
- Cholestatic Liver Diseases CenterDepartment of GastroenterologySouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Nan Zhao
- Cholestatic Liver Diseases CenterDepartment of GastroenterologySouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Jingjing Ding
- Cholestatic Liver Diseases CenterDepartment of GastroenterologySouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Hong Yang
- Cholestatic Liver Diseases CenterDepartment of GastroenterologySouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Mingqiao Li
- Cholestatic Liver Diseases CenterDepartment of GastroenterologySouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Ling Li
- Cholestatic Liver Diseases CenterDepartment of GastroenterologySouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Ying Cheng
- Cholestatic Liver Diseases CenterDepartment of GastroenterologySouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Xuan Li
- Cholestatic Liver Diseases CenterDepartment of GastroenterologySouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Qiaoling Xie
- Cholestatic Liver Diseases CenterDepartment of GastroenterologySouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Qiao Li
- Cholestatic Liver Diseases CenterDepartment of GastroenterologySouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Xueqian Zhou
- Cholestatic Liver Diseases CenterDepartment of GastroenterologySouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Huiling Zou
- Department of PediatricsChangsha Hospital for Maternal & Child Health CareChangshaChina
| | - Shijun Fan
- Medical Research CenterSouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Lingyun Zou
- Bao'an Maternal and Child Health HospitalJinan UniversityShenzhenChina
| | - Wei Liu
- Institute of ImmunologyThird Military Medical University (Army Medical University)ChongqingChina
| | - Guohong Deng
- Department of Infectious DiseasesSouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Shi‐Ying Cai
- Department of Internal Medicine and Liver CenterYale University School of MedicineNew HavenCTUSA
| | - James L Boyer
- Department of Internal Medicine and Liver CenterYale University School of MedicineNew HavenCTUSA
| | - Jin Chai
- Cholestatic Liver Diseases CenterDepartment of GastroenterologySouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| |
Collapse
|
24
|
Remes A, Wagner AH, Schmiedel N, Heckmann M, Ruf T, Ding L, Jungmann A, Senger F, Katus HA, Ullrich ND, Frey N, Hecker M, Müller OJ. AAV-mediated expression of NFAT decoy oligonucleotides protects from cardiac hypertrophy and heart failure. Basic Res Cardiol 2021; 116:38. [PMID: 34089101 PMCID: PMC8178147 DOI: 10.1007/s00395-021-00880-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 05/18/2021] [Indexed: 01/08/2023]
Abstract
Previous studies have underlined the substantial role of nuclear factor of activated T cells (NFAT) in hypertension-induced myocardial hypertrophy ultimately leading to heart failure. Here, we aimed at neutralizing four members of the NFAT family of transcription factors as a therapeutic strategy for myocardial hypertrophy transiting to heart failure through AAV-mediated cardiac expression of a RNA-based decoy oligonucleotide (dON) targeting NFATc1-c4. AAV-mediated dON expression markedly decreased endothelin-1 induced cardiomyocyte hypertrophy in vitro and resulted in efficient expression of these dONs in the heart of adult mice as evidenced by fluorescent in situ hybridization. Cardiomyocyte-specific dON expression both before and after induction of transverse aortic constriction protected mice from development of cardiac hypertrophy, cardiac remodeling, and heart failure. Singular systemic administration of AAVs enabling a cell-specific expression of dONs for selective neutralization of a given transcription factor may thus represent a novel and powerful therapeutic approach.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Dependovirus/genetics
- Disease Models, Animal
- Endothelin-1/toxicity
- Genetic Therapy
- Genetic Vectors
- Heart Failure/genetics
- Heart Failure/metabolism
- Heart Failure/physiopathology
- Heart Failure/prevention & control
- Hypertrophy, Left Ventricular/genetics
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/physiopathology
- Hypertrophy, Left Ventricular/prevention & control
- Mice, Inbred C57BL
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- NFATC Transcription Factors/genetics
- NFATC Transcription Factors/metabolism
- Oligonucleotides/genetics
- Oligonucleotides/metabolism
- Rats, Wistar
- Ventricular Function, Left
- Ventricular Remodeling
- Mice
- Rats
Collapse
Affiliation(s)
- Anca Remes
- Department of Internal Medicine III, University Hospital Schleswig-Holstein and University of Kiel , Arnold-Heller-Str. 3 , Kiel, Germany
- Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
- German Centre for Cardiovascular Research , Partner Site Hamburg/Kiel/Lübeck , Kiel, Germany
| | - Andreas H Wagner
- Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Nesrin Schmiedel
- Department of Internal Medicine III, University Hospital Schleswig-Holstein and University of Kiel , Arnold-Heller-Str. 3 , Kiel, Germany
- German Centre for Cardiovascular Research , Partner Site Hamburg/Kiel/Lübeck , Kiel, Germany
| | - Markus Heckmann
- Internal Medicine III, University Hospital Heidelberg, Heidelberg, Germany
| | - Theresa Ruf
- Department of Internal Medicine III, University Hospital Schleswig-Holstein and University of Kiel , Arnold-Heller-Str. 3 , Kiel, Germany
- Internal Medicine III, University Hospital Heidelberg, Heidelberg, Germany
| | - Lin Ding
- Department of Internal Medicine III, University Hospital Schleswig-Holstein and University of Kiel , Arnold-Heller-Str. 3 , Kiel, Germany
- German Centre for Cardiovascular Research , Partner Site Hamburg/Kiel/Lübeck , Kiel, Germany
| | - Andreas Jungmann
- Internal Medicine III, University Hospital Heidelberg, Heidelberg, Germany
| | - Frauke Senger
- Department of Internal Medicine III, University Hospital Schleswig-Holstein and University of Kiel , Arnold-Heller-Str. 3 , Kiel, Germany
- German Centre for Cardiovascular Research , Partner Site Hamburg/Kiel/Lübeck , Kiel, Germany
| | - Hugo A Katus
- Internal Medicine III, University Hospital Heidelberg, Heidelberg, Germany
| | - Nina D Ullrich
- Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Norbert Frey
- Department of Internal Medicine III, University Hospital Schleswig-Holstein and University of Kiel , Arnold-Heller-Str. 3 , Kiel, Germany
- Internal Medicine III, University Hospital Heidelberg, Heidelberg, Germany
- German Centre for Cardiovascular Research , Partner Site Hamburg/Kiel/Lübeck , Kiel, Germany
| | - Markus Hecker
- Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Oliver J Müller
- Department of Internal Medicine III, University Hospital Schleswig-Holstein and University of Kiel , Arnold-Heller-Str. 3 , Kiel, Germany.
- German Centre for Cardiovascular Research , Partner Site Hamburg/Kiel/Lübeck , Kiel, Germany.
| |
Collapse
|
25
|
Abstract
Clinical disorders that impair bile flow result in retention of bile acids and cholestatic liver injury, characterized by parenchymal cell death, bile duct proliferation, liver inflammation and fibrosis. However, the pathogenic role of bile acids in the development of cholestatic liver injury remains incompletely understood. In this review, we summarize the current understanding of this process focusing on the experimental and clinical evidence for direct effects of bile acids on each major cellular component of the liver: hepatocytes, cholangiocytes, stellate cells and immune cells. During cholestasis bile acids accumulated in the liver, causing oxidative stress and mitochondrial injury in hepatocytes. The stressed hepatocytes respond by releasing inflammatory cytokines through activation of specific signaling pathways and transcription factors. The recruited neutrophils and other immune cells then cause parenchymal cell death. In addition, bile acids also stimulate the proliferation of cholangiocytes and stellate cells that are responsible for bile duct proliferation and liver fibrosis. This review explores the evidence for bile acid involvement in these phenomena. The role of bile acid receptors, TGR5, FXR and the sphingosine-1-phosphate receptor 2 and the inflammasome are also examined. We hope that better understanding of these pathologic effects will facilitate new strategies for treating cholestatic liver injury.
Collapse
Affiliation(s)
- Shi-Ying Cai
- Department of Internal Medicine and Liver Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - James L Boyer
- Department of Internal Medicine and Liver Center, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
26
|
Sarin SK, Choudhury A, Lau GK, Zheng MH, Ji D, Abd-Elsalam S, Hwang J, Qi X, Cua IH, Suh JI, Park JG, Putcharoen O, Kaewdech A, Piratvisuth T, Treeprasertsuk S, Park S, Wejnaruemarn S, Payawal DA, Baatarkhuu O, Ahn SH, Yeo CD, Alonzo UR, Chinbayar T, Loho IM, Yokosuka O, Jafri W, Tan S, Soo LI, Tanwandee T, Gani R, Anand L, Esmail ES, Khalaf M, Alam S, Lin CY, Chuang WL, Soin AS, Garg HK, Kalista K, Batsukh B, Purnomo HD, Dara VP, Rathi P, Al Mahtab M, Shukla A, Sharma MK, Omata M. Pre-existing liver disease is associated with poor outcome in patients with SARS CoV2 infection; The APCOLIS Study (APASL COVID-19 Liver Injury Spectrum Study). Hepatol Int 2020; 14:690-700. [PMID: 32623632 DOI: 10.1007/s12072‐020‐10072‐8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 06/27/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS COVID-19 is a dominant pulmonary disease, with multisystem involvement, depending upon comorbidities. Its profile in patients with pre-existing chronic liver disease (CLD) is largely unknown. We studied the liver injury patterns of SARS-Cov-2 in CLD patients, with or without cirrhosis. METHODS Data was collected from 13 Asian countries on patients with CLD, known or newly diagnosed, with confirmed COVID-19. RESULTS Altogether, 228 patients [185 CLD without cirrhosis and 43 with cirrhosis] were enrolled, with comorbidities in nearly 80%. Metabolism associated fatty liver disease (113, 61%) and viral etiology (26, 60%) were common. In CLD without cirrhosis, diabetes [57.7% vs 39.7%, OR = 2.1 (1.1-3.7), p = 0.01] and in cirrhotics, obesity, [64.3% vs. 17.2%, OR = 8.1 (1.9-38.8), p = 0.002] predisposed more to liver injury than those without these. Forty three percent of CLD without cirrhosis presented as acute liver injury and 20% cirrhotics presented with either acute-on-chronic liver failure [5 (11.6%)] or acute decompensation [4 (9%)]. Liver related complications increased (p < 0.05) with stage of liver disease; a Child-Turcotte Pugh score of 9 or more at presentation predicted high mortality [AUROC 0.94, HR = 19.2 (95 CI 2.3-163.3), p < 0.001, sensitivity 85.7% and specificity 94.4%). In decompensated cirrhotics, the liver injury was progressive in 57% patients, with 43% mortality. Rising bilirubin and AST/ALT ratio predicted mortality among cirrhosis patients. CONCLUSIONS SARS-Cov-2 infection causes significant liver injury in CLD patients, decompensating one fifth of cirrhosis, and worsening the clinical status of the already decompensated. The CLD patients with diabetes and obesity are more vulnerable and should be closely monitored.
Collapse
Affiliation(s)
- Shiv Kumar Sarin
- Department of Hepatology and Liver Transplant, Institute of Liver and Biliary Sciences, New Delhi, 110070, India.
| | - Ashok Choudhury
- Department of Hepatology and Liver Transplant, Institute of Liver and Biliary Sciences, New Delhi, 110070, India
| | - George K Lau
- Humanity and Health Clinical Trial Center, Hong Kong SAR, China
| | - Ming-Hua Zheng
- Department of Hepatology, NAFLD Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dong Ji
- Humanity and Health Clinical Trial Center, Hong Kong SAR, China
- Fuyang Second People's Hospital, Fuyang, China
| | - Sherief Abd-Elsalam
- Tropical Medicine and Infectious Diseases Department, Tanta University, Tanta, Egypt
| | - Jaeseok Hwang
- Keimyung University Dongsan Hospital, Daegu, South Korea
| | - Xiaolong Qi
- CHESS Center, Institute of Portal Hypertension, The First Hospital of Lanzhou University, Lanzhou, China
| | - Ian Homer Cua
- Institute of Digestive and Liver Diseases, St. Luke's Medical Center, Global City, Philippines
| | - Jeong Ill Suh
- Department of Internal Medicine, Dongguk University Gyeongju Hospital, Gyeongju, South Korea
| | - Jun Gi Park
- Department of Internal Medicine, Dongguk University Gyeongju Hospital, Gyeongju, South Korea
| | - Opass Putcharoen
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and Thai Red Cross, Bangkok, Thailand
| | - Apichat Kaewdech
- Gastroenterology and Hepatology Unit, Department of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Teerha Piratvisuth
- Gastroenterology and Hepatology Unit, Department of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Sombat Treeprasertsuk
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and Thai Red Cross, Bangkok, Thailand
| | - Sooyoung Park
- Kyungpook National University Hospital, Daegu, South Korea
| | - Salisa Wejnaruemarn
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and Thai Red Cross, Bangkok, Thailand
| | - Diana A Payawal
- Department of Internal Medicine, Fatima University Medical Center, Valenzuela, Philippines
| | - Oidov Baatarkhuu
- Department of Infectious Diseases, School of Medicine, Mongolian National University of Medical Sciences, Ulan Bator, Mongolia
| | - Sang Hoon Ahn
- Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Chang Dong Yeo
- Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Uzziel Romar Alonzo
- Department of Internal Medicine, Fatima University Medical Center, Valenzuela, Philippines
| | | | - Imelda M Loho
- Department of Gastroenterology and Hepatology "Dharmais", National Cancer Hospital, Jakarta, Indonesia
| | | | - Wasim Jafri
- Department of Medicine, WGO Training Center, Aga Khan University, Karachi, Pakistan
| | - Soeksiam Tan
- Department of Hepatology, Selayang Hospital, Batu Caves, Malaysia
| | - Lau Ing Soo
- Department of Hepatology, Selayang Hospital, Batu Caves, Malaysia
| | - Tawesak Tanwandee
- Division of Gastroenterology, Department of Medicine, Faculty of Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Rino Gani
- Division of Hepatobiliary, Cipto Mangunkusuamo Hospital, University of Indonesia, Jakarta, Indonesia
| | | | - Eslam Saber Esmail
- Tropical Medicine and Infectious Diseases Department, Tanta University, Tanta, Egypt
| | - Mai Khalaf
- Tropical Medicine and Infectious Diseases Department, Tanta University, Tanta, Egypt
| | - Shahinul Alam
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Chun-Yu Lin
- Division of Infectious Diseases, School of Medicine, Kaohsiung Medical University, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Wan-Long Chuang
- Division of Infectious Diseases, School of Medicine, Kaohsiung Medical University, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - A S Soin
- Liver Transplant Surgery, Medanta, The Medicity, Gurugram, Haryana, India
| | - Hitendra K Garg
- Hepatologist and Gastroenterologist, Indraprastha Apollo Hospital, New Delhi, India
| | - Kemal Kalista
- Faculty of Medicine, Cipto Mangunkusumo Hospitall, Universitas, Jakarta, Indonesia
| | - Badamnachin Batsukh
- Department of Infectious Diseases, School of Medicine, Mongolian National University of Medical Sciences, Ulan Bator, Mongolia
| | | | | | - Pravin Rathi
- Department of Gastroenterology, T.N. Medical College, B.Y.L. Nair. Ch. Hospital, Mumbai, India
| | - Mamun Al Mahtab
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Akash Shukla
- Department of Gastroenterology, Seth GSMC and KEM Hospital, Mumbai, India
| | - Manoj K Sharma
- Department of Hepatology and Liver Transplant, Institute of Liver and Biliary Sciences, New Delhi, 110070, India
| | - Masao Omata
- Department of Gastroenterology, Yamanashi Prefectural Central Hospital, Kofu, Yamanashi, Japan
- The University of Tokyo, Tokyo, Japan
| |
Collapse
|