1
|
Liu L, Li Y, Li B. Interactions between cancer cells and tumor-associated macrophages in tumor microenvironment. Biochim Biophys Acta Rev Cancer 2025; 1880:189344. [PMID: 40345263 DOI: 10.1016/j.bbcan.2025.189344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 05/02/2025] [Accepted: 05/05/2025] [Indexed: 05/11/2025]
Abstract
Tumor microenvironment (TME) refers to the local environment in which various cancer cells grow, encompassing tumor cells, adjacent non-tumor cells, and associated non-cellular elements, all of which collectively promote cancer occurrence and progression. As a principal immune component in the TME, tumor-associated macrophages (TAMs) exert a considerable influence on cancer behaviors via their interactions with cancer cells. The interactive loops between cancer cells and TAMs, including secretory factors derived from both cancer cells and TAMs, are crucial for the proliferation, stemness, drug resistance, invasion, migration, metastasis, and immune escape of various cancers. Cancer cells release paracrine proteins (HMGB1, AREG etc.), cytokines (IL-6, CCL2 etc.), RNAs (miR-21-5p, circPLEKHM1, LINC01812 etc.), and metabolites (lactic acid, succinate etc.) to regulate the polarization phenotype, mediator secretion and function of TAMs. In turn, mediators (TGF-β, IL-10, IL-6 etc.) from TAMs promote cancer progression. This review summarizes recent advancements in the interactive loops between cancer cells and TAMs in TME. Inhibiting the recruitment and M2 polarization of TAMs, reprogramming TAMs from M2 to M1 phenotype, blocking TAMs-mediated immunosuppression and immune escape, and combining with existing immunotherapy can target TAMs to overcome immunotherapy resistance in various cancers. The new breakthroughs lie in identifying effective targets for drug development, improving the drug delivery system to enhance the drug delivery efficiency, and adopting combined therapy. Interventions targeting secretory factors, cell surface receptors, intracellular signaling pathways, and metabolic modulation in the interactive loops between cancer cells and TAMs are expected to suppress cancer progression and improve therapeutic effects.
Collapse
Affiliation(s)
- Lu Liu
- Department of Oral Anatomy and Physiology, Jilin Provincial Key Laboratory of Oral Biomedical Engineering, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Yafei Li
- Department of Oral Anatomy and Physiology, Jilin Provincial Key Laboratory of Oral Biomedical Engineering, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Bo Li
- Department of Oral Anatomy and Physiology, Jilin Provincial Key Laboratory of Oral Biomedical Engineering, Hospital of Stomatology, Jilin University, Changchun 130021, China.
| |
Collapse
|
2
|
Gao X, Hao Z, Du J, Zhang X, Yang S, Hu T, Xu H, Wang F, Hou X. Compromised adenosine-A2AR axis contributes to recurrent spontaneous abortion by promoting proinflammatory macrophage polarization. Int Immunopharmacol 2025; 158:114838. [PMID: 40373597 DOI: 10.1016/j.intimp.2025.114838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/27/2025] [Accepted: 05/07/2025] [Indexed: 05/17/2025]
Abstract
This study investigates the association between recurrent spontaneous abortion (RSA) and macrophage polarization, exploring adenosine (Ado) as a potential biomarker and therapeutic target. By analyzing decidual tissues from RSA patients and normal pregnancies, we found reduced CD39 expression and lower adenosine levels in RSA, accompanied by increased M1 macrophage polarization and decreased M2 macrophage expression. In vitro experiments demonstrated that adenosine inhibited M1 polarization while promoting M2 polarization, an effect reversed by adenosine deaminase (ADA). Single-cell RNA sequencing revealed decreased adenosine receptor A2aR expression in M1 macrophages of RSA patients, while glycolysis-related enzyme hexokinase 2 (HK2) was overexpressed. These findings suggest that adenosine plays a key role in macrophage polarization and immune homeostasis at the maternal-fetal interface, with glycolysis potentially contributing to this process, highlighting its potential as a target for RSA diagnosis and treatment.
Collapse
Affiliation(s)
- Xianxian Gao
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Zhimin Hao
- Gynecology department, the First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
| | - Junhui Du
- Gynecology department, the First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
| | - Xinwen Zhang
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Shanru Yang
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Tao Hu
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Huijun Xu
- Department of Gynecology, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, Shandong, China
| | - Fuyan Wang
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; Clinical Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, Shandong, China.
| | - Xin Hou
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
3
|
Shan L, Gong M, Zhai D, Meng X, Liu J, Lv X. Research progress of CD73-adenosine signaling regulating hepatocellular carcinoma through tumor microenvironment. J Exp Clin Cancer Res 2025; 44:161. [PMID: 40420185 PMCID: PMC12105175 DOI: 10.1186/s13046-025-03416-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 05/10/2025] [Indexed: 05/28/2025] Open
Abstract
Adenosine signaling pathway is a kind of signal regulation hub widely existing in human body, which is involved in a series of physiological processes such as energy supply of body cells. CD73 is a highly concerned signaling protein in purine adenosine pathway, and its role in tumor development and prognosis has been paid more and more attention in recent years, especially in hepatocellular carcinoma (HCC). In this paper, the specific mechanism by which CD73-adenosine signaling regulates tumor microenvironment (TME) of liver cancer tumors was analyzed in detail, highlighting the importance of this pathway as a therapeutic target to combat tumor immunosuppression and enhance the anti-tumor immune response to prevent and treat hepatocellular carcinoma (HCC). In addition, a variety of current targeted therapeutic strategies for adenosine metabolic pathways are summarized, including the development of new drugs in the stage of preclinical research and clinical trials, and the mechanism of action, implementation possibility, and clinical effects of these therapies are discussed. By summarizing the latest scientific research results, in this review, we attempt to paint a panorama of the mechanism of adenosine action in tumor immunotherapy, with the aim to provide a solid theoretical basis and practical guidance for subsequent research and clinical application, ultimately promoting the development of more accurate and efficient tumor immunotherapy.
Collapse
Affiliation(s)
- Liang Shan
- Department of Pharmacy, The Second People's Hospital of Hefei (Hefei Hospital Affiliated to Anhui Medical University), Hefei, Anhui, 230000, China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, Anhui, 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, 230032, China
- The Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui Province, 230032, China
| | - Mingxu Gong
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, Anhui, 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, 230032, China
- The Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui Province, 230032, China
| | - Dandan Zhai
- Department of Pharmacy, The Second People's Hospital of Hefei (Hefei Hospital Affiliated to Anhui Medical University), Hefei, Anhui, 230000, China
| | - Xiangyun Meng
- Department of Pharmacy, The Second People's Hospital of Hefei (Hefei Hospital Affiliated to Anhui Medical University), Hefei, Anhui, 230000, China
| | - Jianjun Liu
- Department of Pharmacy, The Second People's Hospital of Hefei (Hefei Hospital Affiliated to Anhui Medical University), Hefei, Anhui, 230000, China.
| | - Xiongwen Lv
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, Anhui, 230032, China.
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, 230032, China.
- The Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui Province, 230032, China.
| |
Collapse
|
4
|
Zhong CR, Wu ZF, Zheng ZQ, Lin Z, Liang YL, Lin ZJ, Wan YL, Li GL. Radiotherapy-induced TACC3 confers resistance of HCC to radiotherapy and enhances IL4-dependent immunosuppression to exacerbate hepatocarcinogenesis. Cancer Lett 2025:217819. [PMID: 40412795 DOI: 10.1016/j.canlet.2025.217819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 05/21/2025] [Accepted: 05/22/2025] [Indexed: 05/27/2025]
Abstract
Radiotherapy plays an increasingly crucial role in the treatment of hepatocellular carcinoma (HCC). However, resistance to radiotherapy remains a significant obstacle to achieving optimal treatment outcomes. Our objective is to elucidate the mechanisms underlying radiotherapy resistance. Through proteomic sequencing of radiotherapy-resistant cell lines and patient-derived xenograft tissues from HCC patients, we identified that Transforming Acidic Coiled-Coil Containing Protein 3 (TACC3) is upregulated in both radiotherapy-resistant cell lines and tissues. After radiotherapy treatment, DNAPK phosphorylates TACC3 at 315 threonine, leading to enhanced protein stability of TACC3. TACC3 facilitated the proliferative capacity and radiotherapy resistance of HCC cells by promoting the interaction between XRCC5 and XRCC6 through specific residues within its coiled-coil domain, namely ILE736, ASN742 and GLU773. This interaction facilitates DNA damage repair via the non-homologous end joining pathway in response to radiation, thereby contributing to the radiotherapy resistance in HCC cells. Furthermore, TACC3 increases the production of IL-4 and IL-10 within HCC cells, inducing the differentiation of M0 macrophages to M2 macrophages within the immune microenvironment, leading to the suppression of CD8+T cell cytotoxic functions and creating an immunosuppressive microenvironment in HCC. Targeting TACC3 with inhibitor KHS101 significantly inhibit the proliferation of HCC and improve the immune microenvironment of HCC.
Collapse
Affiliation(s)
- Cheng-Rui Zhong
- Department of General Surgery (Hepatobiliary Pancreatic and Splenic Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Zong-Feng Wu
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China; State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Zi-Qi Zheng
- Department of Gastric Surgery, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Zhu Lin
- Department of General Surgery (Hepatobiliary Pancreatic and Splenic Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Yong-Ling Liang
- Department of General Surgery (Hepatobiliary Pancreatic and Splenic Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Ze-Jin Lin
- Department of General Surgery (Hepatobiliary Pancreatic and Splenic Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Yun-Le Wan
- Department of General Surgery (Hepatobiliary Pancreatic and Splenic Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China.
| | - Guo-Lin Li
- Department of General Surgery (Hepatobiliary Pancreatic and Splenic Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China.
| |
Collapse
|
5
|
Wei S, Zhao S, Yang W, Zhou J, Xu G, Zhang C, Wang M, Xiao H, Feng Y, Shang L, Pan C, Yu C, Chen M, Ma Y. EHF promotes liver cancer progression by meditating IL-6 secretion through transcription regulation of KDM2B in TAMs. Cell Signal 2025; 129:111670. [PMID: 39971220 DOI: 10.1016/j.cellsig.2025.111670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/29/2025] [Accepted: 02/14/2025] [Indexed: 02/21/2025]
Abstract
BACKGROUND Macrophages are key immune cell types in liver, which are thought to be involved in tumor development. Recent studies indicated that TAMs exhibit M2 phenotypes. However, the mechanism of macrophages related to tumor progression in liver cancer is largely unknown. We aim to investigate the mechanism of EHF in TAMs associated with liver cancer progression. METHODS The differently expressed genes of M0, M1, and M2 macrophages were analyzed by RNA sequencing. Cytokine array was used to detect the differently expressed cytokines in M2 macrophages. We performed CUT-Tag analysis for the identification of promoter regions that interacting with EHF protein. ChIP and luciferase analysis were used to verify the interaction between EHF and KDM2B. RESULTS EHF was overexpressed in M2 macrophages. Knockdown of EHF in M2 macrophages could inhibit migration and invasion of MHCC97-L cells co-cultured with M2 macrophages in vitro and in vivo. The level of IL-6 was decreased in M2 macrophages with lower expression of EHF. EHF could bind the promoter region of KDM2B. The transcription level of KDM2B was down-regulated by knockdown of EHF in M2 macrophages. The results of this study indicated that EHF could promote liver cancer cell metastasis by IL-6 through regulating the transcription level of KDM2B in M2 macrophages. CONCLUSION Our study revealed a novel aspect of macrophages in liver cancer and showed EHF could be a promising therapeutic target of liver cancer.
Collapse
Affiliation(s)
- Song Wei
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Siqi Zhao
- Department of Surgery, the Second Afliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Weijun Yang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jin Zhou
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Gaoxin Xu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Chenwei Zhang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Min Wang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Hua Xiao
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yongheng Feng
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Longcheng Shang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Chao Pan
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Chao Yu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - MinJie Chen
- Department of Surgery, the Second Afliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Yong Ma
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
6
|
Hua Q, Li Z, Weng Y, Wu Y, Zheng L. Myeloid cells: key players in tumor microenvironments. Front Med 2025; 19:265-296. [PMID: 40048137 DOI: 10.1007/s11684-025-1124-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/16/2024] [Indexed: 05/04/2025]
Abstract
Cancer is the result of evolving crosstalk between neoplastic cell and its immune microenvironment. In recent years, immune therapeutics targeting T lymphocytes, such as immune checkpoint blockade (ICB) and CAR-T, have made significant progress in cancer treatment and validated targeting immune cells as a promising approach to fight human cancers. However, responsiveness to the current immune therapeutic agents is limited to only a small proportion of solid cancer patients. As major components of most solid tumors, myeloid cells played critical roles in regulating the initiation and sustentation of adaptive immunity, thus determining tumor progression as well as therapeutic responses. In this review, we discuss emerging data on the diverse functions of myeloid cells in tumor progression through their direct effects or interactions with other immune cells. We explain how different metabolic reprogramming impacts the characteristics and functions of tumor myeloid cells, and discuss recent progress in revealing different mechanisms-chemotaxis, proliferation, survival, and alternative sources-involved in the infiltration and accumulation of myeloid cells within tumors. Further understanding of the function and regulation of myeloid cells is important for the development of novel strategies for therapeutic exploitation in cancer.
Collapse
Affiliation(s)
- Qiaomin Hua
- Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zhixiong Li
- Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yulan Weng
- Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yan Wu
- Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Limin Zheng
- Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
7
|
Lai G, Zhao X, Chen Y, Xie T, Su Z, Lin J, Chen Y, Chen K. The origin and polarization of Macrophages and their role in the formation of the Pre-Metastatic niche in osteosarcoma. Int Immunopharmacol 2025; 150:114260. [PMID: 39938167 DOI: 10.1016/j.intimp.2025.114260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/21/2025] [Accepted: 02/06/2025] [Indexed: 02/14/2025]
Abstract
Osteosarcoma, a primary malignant bone tumor commonly found in adolescents, is highly aggressive, with a high rate of disability and mortality. It has a profound negative impact on both the physical and psychological well-being of patients. The standard treatment approach, comprising surgery and chemotherapy, has seen little improvement in patient outcomes over the past several decades. Once relapse or metastasis occurs, prognosis worsens significantly. Therefore, there is an urgent need to explore new therapeutic approaches. In recent years, the successful application of immunotherapy in certain cancers has demonstrated its potential in the field of cancer treatment. Macrophages are the predominant components of the immune microenvironment in osteosarcoma and represent critical targets for immunotherapy. Macrophages exhibit dual characteristics; while they play a key role in maintaining tumor-promoting properties within the microenvironment, such as inflammation, angiogenesis, and immune suppression, they also possess antitumor potential as part of the innate immune system. A deeper understanding of macrophages and their relationship with osteosarcoma is essential for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Guisen Lai
- Department of Orthopaedic The Eighth Affiliated Hospital Sun Yat-sen University PR China
| | - Xinyi Zhao
- Department of Orthopaedic The Eighth Affiliated Hospital Sun Yat-sen University PR China
| | - Yuanquan Chen
- Department of Orthopaedic Sun Yat-sen Memorial Hospital Sun Yat-sen University PR China
| | - Tianwei Xie
- The People's Hospital of Hezhou, No.150 Xiyue Street, Hezhou 542800 PR China
| | - Zepeng Su
- Department of Orthopaedic The Eighth Affiliated Hospital Sun Yat-sen University PR China
| | - Jiajie Lin
- Department of Orthopaedic The Eighth Affiliated Hospital Sun Yat-sen University PR China
| | - Yuanhai Chen
- Department of Orthopaedic The Eighth Affiliated Hospital Sun Yat-sen University PR China
| | - Keng Chen
- Department of Orthopaedic The Eighth Affiliated Hospital Sun Yat-sen University PR China.
| |
Collapse
|
8
|
Chen YH, Chu CC, Liu JF, Lai HS, Chen YT. C-X-C Motif Ligand 1 Induces Cell Migration by Upregulating ICAM-1 Expression by Activating PI3K/Akt and NF-κB Signaling Pathway in Liver Cancer. Adv Biol (Weinh) 2025; 9:e2400295. [PMID: 40016871 DOI: 10.1002/adbi.202400295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 02/03/2025] [Indexed: 03/01/2025]
Abstract
Human hepatocellular carcinoma (HCC) is the most common liver cancer and the third leading cause of cancer-related deaths worldwide. HCC is a malignant tumor that can lead to intrahepatic and extrahepatic metastases. Intercellular adhesion molecule 1 (ICAM-1) is involved in cancer metastasis. ICAM-1 enhances cell-cell interactions by promoting adhesion and facilitating cell movement within the extracellular matrix. Moreover, ICAM-1 is more abundant in cancerous hepatocytes than in non-cancerous ones. Chemokine (C-X-C motif) ligand 1 (CXCL1) is found in diverse cancers, including melanoma, breast, lung, pancreatic, colorectal, and prostate. Several studies show a correlation between CXCL1 overexpression and poor prognosis in cancer. CXCL1 has been identified as a candidate gene that could function as a clinically relevant biomarker in HCC. However, the role of CXCL1 in cancer metastasis in HCC is poorly delineated. In this study, Gene Expression Omnibus (GEO) database analysis revealed a positive correlation between CXCL1 level and the progression and metastasis of hepatocellular carcinoma patients. CXCL1 treatment facilitates cell movement through inducing ICAM-1 expression. The Phosphoinositide 3-kinase (PI3K)/Akt/Nuclear Factor kappa B (NF-kB) signaling pathway plays a crucial role in CXCL1-regulated ICAM-1 production and cell motility. Thus, CXCL1 represents a promising therapeutic target for treating metastatic hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yi-Hsin Chen
- Division of Pediatric Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114201, Taiwan
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114201, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan
| | - Chih-Chun Chu
- Division of Pediatric Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114201, Taiwan
| | - Ju-Fang Liu
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, 110301, Taiwan
- Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, 111045, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 404328, Taiwan
| | - Hong-Shiee Lai
- Department of Surgery, College of Medicine, National Taiwan University Hospital and National Taiwan University, Taipei, 100233, Taiwan
- Department of Surgery, Buddhist Tzu Chi Medical Foundation, Hualien Tzu Chi Hospital, Hualien, 970473, Taiwan
| | - You-Tzung Chen
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan
| |
Collapse
|
9
|
Sun Y, Zhou P, Qian J, Zeng Q, Wei G, Li Y, Liu Y, Lai Y, Zhan Y, Wu D, Fang Y. Spermine synthase engages in macrophages M2 polarization to sabotage antitumor immunity in hepatocellular carcinoma. Cell Death Differ 2025; 32:573-586. [PMID: 39658701 PMCID: PMC11894157 DOI: 10.1038/s41418-024-01409-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 12/12/2024] Open
Abstract
Disturbances in tumor cell metabolism reshape the tumor microenvironment (TME) and impair antitumor immunity, but the implicit mechanisms remain elusive. Here, we found that spermine synthase (SMS) was significantly upregulated in tumor cells, which correlated positively with the immunosuppressive microenvironment and predicted poor survival in hepatocellular carcinoma (HCC) patients. Via "subcutaneous" and "orthotopic" HCC syngeneic mouse models and a series of in vitro coculture experiments, we identified elevated SMS levels in HCC cells played a role in immune escape mainly through its metabolic product spermine, which induced M2 polarization of tumor-associated macrophages (TAMs) and subsequently corresponded with a decreased antitumor functionality of CD8+ T cells. Mechanistically, we discovered that spermine reprogrammed TAMs mainly by activating the PI3K-Akt-mTOR-S6K signaling pathway. Spermine inhibition in combination with immune checkpoint blockade effectively diminished tumor burden in vivo. Our results expand the understanding of the critical role of metabolites in regulating cancer progression and antitumor immunity and open new avenues for developing novel therapeutic strategies against HCC.
Collapse
Affiliation(s)
- Yining Sun
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases, Guangzhou, Guangdong Province, China
| | - Peitao Zhou
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases, Guangzhou, Guangdong Province, China
| | - Junying Qian
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Qin Zeng
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Guangyan Wei
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yongsheng Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yuechen Liu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yingjie Lai
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yizhi Zhan
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.
| | - Dehua Wu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.
- Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases, Guangzhou, Guangdong Province, China.
| | - Yuan Fang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.
- Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases, Guangzhou, Guangdong Province, China.
| |
Collapse
|
10
|
Yang H, Li J, Niu Y, Zhou T, Zhang P, Liu Y, Li Y. Interactions between the metabolic reprogramming of liver cancer and tumor microenvironment. Front Immunol 2025; 16:1494788. [PMID: 40028341 PMCID: PMC11868052 DOI: 10.3389/fimmu.2025.1494788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/29/2025] [Indexed: 03/05/2025] Open
Abstract
Metabolic reprogramming is one of the major biological features of malignant tumors, playing a crucial role in the initiation and progression of cancer. The tumor microenvironment consists of various non-cancer cells, such as hepatic stellate cells, cancer-associated fibroblasts (CAFs), immune cells, as well as extracellular matrix and soluble substances. In liver cancer, metabolic reprogramming not only affects its own growth and survival but also interacts with other non-cancer cells by influencing the expression and release of metabolites and cytokines (such as lactate, PGE2, arginine). This interaction leads to acidification of the microenvironment and restricts the uptake of nutrients by other non-cancer cells, resulting in metabolic competition and symbiosis. At the same time, metabolic reprogramming in neighboring cells during proliferation and differentiation processes also impacts tumor immunity. This article provides a comprehensive overview of the metabolic crosstalk between liver cancer cells and their tumor microenvironment, deepening our understanding of relevant findings and pathways. This contributes to further understanding the regulation of cancer development and immune evasion mechanisms while providing assistance in advancing personalized therapies targeting metabolic pathways for anti-cancer treatment.
Collapse
Affiliation(s)
- Haoqiang Yang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Jinghui Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yiting Niu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Tao Zhou
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Pengyu Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yang Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yanjun Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, TongjiShanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
11
|
Pu L, Zhang X, Pu C, Zhou J, Li J, Wang X, Xi C, Zhang C. Genetic association of tertiary lymphoid structure-related gene signatures with HCC based on Mendelian randomization and machine learning and construction of prognosis model. Int Immunopharmacol 2025; 144:113594. [PMID: 39566392 DOI: 10.1016/j.intimp.2024.113594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/06/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Tertiary lymphoid structures (TLS) are formed in numerous cancer types. However, their value and significance in hepatocellular carcinoma (HCC) is unclear. METHODS We performed differential genes expression analysis of TLS-related Genes (TLSG) based on The Cancer Genome Atlas (TCGA) database, and performed Mendelian randomization (MR) analysis using expression quantitative trait loci, and then took their intersecting genes. A TLSG prognostic signature (TLSGPS)-based risk score was constructed using Least Absolute Shrinkage and Selection Operator (LASSO), univariate and multivariate COX regression analysis, and survival analysis was then performed. We used the International Cancer Genome Consortium for outside validation. We also performed biological function, tumor mutational burden, immune infiltration, single-cell analysis, CeRNA and drug sensitivity analysis based on TLSGPS. RESULTS Three TLSGs (HM13, CSTB, CDCA7L) were identified to construct the TLSGPS, which showed good predictive ability and outperformed most prognostic signatures. MR suggested that HM13 (OR = 0.9997, 95 %CI: 0.9994-0.9999, P = 0.014) and CSTB (OR = 0.9997, 95 %CI: 0.9995-0.9999, P = 0.048) were negatively correlated with the risk of HCC onset, while CDCA7L (OR = 1.0004, 1.0001-1.0007, P = 0.0161) was the opposite. The differences in biological functions between the TLSGPS-based high-risk group (HRG) and low-risk group (LRG) involved cell proliferation, differentiation, and drug metabolism. HRG plus high mutations exhibited extremely poor survival. HRG had higher abundance of immune cell-oncogenic phenotypes, higher immune escape ability, and greater sensitivity to Afatinib, Dasatinib, and Gefitinib. CONCLUSION 3 TLSGs identified by machine learning and MR can predict the onset, prognosis and clinical treatment of HCC patients, and had significant genetic association with HCC.
Collapse
Affiliation(s)
- Lei Pu
- The key Laboratory of Adolescent Health Assessment and Exercise Intervention of the Ministry of Education, East China Normal University, Shanghai 200241, PR China.
| | - Xiaoyan Zhang
- The key Laboratory of Adolescent Health Assessment and Exercise Intervention of the Ministry of Education, East China Normal University, Shanghai 200241, PR China
| | - Cheng Pu
- School of Martial Arts, Shanghai University of Sport, Shanghai 200438, PR China
| | - Jiacheng Zhou
- Department of Interventional Medicine, Liyang Hospital of Chinese Medicine, Jiangsu 213300, PR China
| | - Jianyue Li
- Department of Oncology, Jiangsu Provincial Hospital of Integrated Chinese and Western Medicine, Jiangsu 210046, PR China
| | - Xiaorong Wang
- Department of Traditional Chinese medicine, Taixing People's Hospital, Jiangsu 225400, PR China
| | - Chenpeng Xi
- School of The First Clinical Medical, Shandong University, Shandong 250100, PR China
| | - Chunyuan Zhang
- The key Laboratory of Adolescent Health Assessment and Exercise Intervention of the Ministry of Education, East China Normal University, Shanghai 200241, PR China
| |
Collapse
|
12
|
Wu Y, Jiang X, Yu Z, Xing Z, Ma Y, Qing H. Mechanisms of Anti-PD Therapy Resistance in Digestive System Neoplasms. Recent Pat Anticancer Drug Discov 2025; 20:1-25. [PMID: 38305306 PMCID: PMC11865675 DOI: 10.2174/0115748928269276231120103256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 02/03/2024]
Abstract
Digestive system neoplasms are highly heterogeneous and exhibit complex resistance mechanisms that render anti-programmed cell death protein (PD) therapies poorly effective. The tumor microenvironment (TME) plays a pivotal role in tumor development, apart from supplying energy for tumor proliferation and impeding the body's anti-tumor immune response, the TME actively facilitates tumor progression and immune escape via diverse pathways, which include the modulation of heritable gene expression alterations and the intricate interplay with the gut microbiota. In this review, we aim to elucidate the mechanisms underlying drug resistance in digestive tumors, focusing on immune-mediated resistance, microbial crosstalk, metabolism, and epigenetics. We will highlight the unique characteristics of each digestive tumor and emphasize the significance of the tumor immune microenvironment (TIME). Furthermore, we will discuss the current therapeutic strategies that hold promise for combination with cancer immune normalization therapies. This review aims to provide a thorough understanding of the resistance mechanisms in digestive tumors and offer insights into potential therapeutic interventions.
Collapse
Affiliation(s)
- Yuxia Wu
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Xiangyan Jiang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Zeyuan Yu
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Zongrui Xing
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Yong Ma
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Huiguo Qing
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
13
|
Liu J, Lu J, Wu L, Zhang T, Wu J, Li L, Tai Z, Chen Z, Zhu Q. Targeting tumor-associated macrophages: Novel insights into immunotherapy of skin cancer. J Adv Res 2025; 67:231-252. [PMID: 38242529 PMCID: PMC11725115 DOI: 10.1016/j.jare.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/19/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND The incidence of skin cancer is currently increasing, and conventional treatment options inadequately address the demands of disease management. Fortunately, the recent rapid advancement of immunotherapy, particularly immune checkpoint inhibitors (ICIs), has ushered in a new era for numerous cancer patients. However, the efficacy of immunotherapy remains suboptimal due to the impact of the tumor microenvironment (TME). Tumor-associated macrophages (TAMs), a major component of the TME, play crucial roles in tumor invasion, metastasis, angiogenesis, and immune evasion, significantly impacting tumor development. Consequently, TAMs have gained considerable attention in recent years, and their roles have been extensively studied in various tumors. However, the specific roles of TAMs and their regulatory mechanisms in skin cancer remain unclear. AIM OF REVIEW This paper aims to elucidate the origin and classification of TAMs, investigate the interactions between TAMs and various immune cells, comprehensively understand the precise mechanisms by which TAMs contribute to the pathogenesis of different types of skin cancer, and finally discuss current strategies for targeting TAMs in the treatment of skin cancer. KEY SCIENTIFIC CONCEPTS OF OVERVIEW With a specific emphasis on the interrelationship between TAMs and skin cancer, this paper posits that therapeutic modalities centered on TAMs hold promise in augmenting and harmonizing with prevailing clinical interventions for skin cancer, thereby charting a novel trajectory for advancing the landscape of immunotherapeutic approaches for skin cancer.
Collapse
Affiliation(s)
- Jun Liu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Jiaye Lu
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Ling Wu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Tingrui Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Junchao Wu
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Lisha Li
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China.
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China.
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China.
| |
Collapse
|
14
|
He Y, Wang J, Deng Z, Feng H, Du M, Zhang D, Zhang G, Shi T, Chen W. FOLR2 + macrophage depletion from intestinal metaplasia to early gastric cancer: single-cell sequencing insight into gastric cancer progression. J Exp Clin Cancer Res 2024; 43:326. [PMID: 39702278 DOI: 10.1186/s13046-024-03245-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 11/30/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND The immune landscape associated with different subtypes of intestinal metaplasia (IM) and early gastric cancer (EGC) remains unclear. This study aimed to investigate the immune landscape of complete intestinal metaplasia (CIM), incomplete intestinal metaplasia (IIM), and EGC, as well as the underlying mechanisms of EGC progression. METHODS Gastric biopsy samples were collected from five patients with CIM, six patients with IIM, and four patients with EGC, followed by single-cell RNA sequencing. Multiplex immunohistochemical staining was employed to validate the samples from the aforementioned patients. To elucidate the potential mechanisms involved, in vitro coculture experiments were conducted using FOLR2+/FOLR2- macrophages and CD8+ T cells. Flow cytometry was utilized to investigate the biological functions of FOLR2+ macrophages in the progression of EGC. RESULTS Five subpopulations of macrophages were identified in CIM, IIM and EGC samples. FOLR2+ macrophages possess antitumor immune potential, and the proportion of FOLR2+ macrophage gradually decreased from the CIM stage to the IIM and EGC stages. FOLR2+ macrophages were significantly positively correlated with CD8+ T cells and activated the cytotoxicity of CD8+ T cells via antigen cross-presentation. Additionally, during the progression of EGC, epithelial cells progressively upregulated APP expression, thus inducing necroptosis of FOLR2+ macrophages via the APP‒TNFRSF21 axis. CONCLUSIONS Our work provides an understanding of the potential mechanisms underlying the malignant transformation of IM mediated by FOLR2+ macrophages.
Collapse
Affiliation(s)
- Yuxin He
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, 215000, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
| | - Jiayu Wang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, 215000, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
| | - Zilin Deng
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, 215000, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
| | - Huang Feng
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Mingzhan Du
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Deqing Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Guangbo Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, 215000, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
| | - Tongguo Shi
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, 215000, China.
| | - Weichang Chen
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China.
| |
Collapse
|
15
|
Bannister ME, Chatterjee DA, Shetty S, Patten DA. The Role of Macrophages in Hepatocellular Carcinoma and Their Therapeutic Potential. Int J Mol Sci 2024; 25:13167. [PMID: 39684877 DOI: 10.3390/ijms252313167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
Hepatocellular carcinoma (HCC) represents a significant clinical burden globally and is predicted to continue to increase in incidence for the foreseeable future. The treatment of HCC is complicated by the fact that, in the majority of cases, it develops on a background of advanced chronic inflammatory liver disease. Chronic inflammation can foster an immunosuppressive microenvironment that promotes tumour progression and metastasis. In this setting, macrophages make up a major immune component of the HCC tumour microenvironment, and in this review, we focus on their contribution to HCC development and progression. Tumour-associated macrophages (TAMs) are largely derived from infiltrating monocytes and their potent anti-inflammatory phenotype can be induced by factors that are found within the tumour microenvironment, such as growth factors, cytokines, hypoxia, and extracellular matrix (ECM) proteins. In general, experimental evidence suggest that TAMs can exhibit a variety of functions that aid HCC tumour progression, including the promotion of angiogenesis, resistance to drug therapy, and releasing factors that support tumour cell proliferation and metastasis. Despite their tumour-promoting profile, there is evidence that the underlying plasticity of these cells can be targeted to help reprogramme TAMs to drive tumour-specific immune responses. We discuss the potential for targeting TAMs therapeutically either by altering their phenotype within the HCC microenvironment or by cell therapy approaches by taking advantage of their infiltrative properties from the circulation into tumour tissue.
Collapse
Affiliation(s)
- Megan E Bannister
- Centre for Liver and Gastrointestinal Research, School of Infection, Inflammation and Immunology, University of Birmingham, Birmingham B15 2TT, UK
| | - Devnandan A Chatterjee
- Centre for Liver and Gastrointestinal Research, School of Infection, Inflammation and Immunology, University of Birmingham, Birmingham B15 2TT, UK
- National Institute for Health Research, Birmingham Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK
| | - Shishir Shetty
- Centre for Liver and Gastrointestinal Research, School of Infection, Inflammation and Immunology, University of Birmingham, Birmingham B15 2TT, UK
- National Institute for Health Research, Birmingham Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK
| | - Daniel A Patten
- Centre for Liver and Gastrointestinal Research, School of Infection, Inflammation and Immunology, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
16
|
Long Y, Wang W, Liu S, Wang X, Tao Y. The survival prediction analysis and preliminary study of the biological function of YEATS2 in hepatocellular carcinoma. Cell Oncol (Dordr) 2024; 47:2297-2316. [PMID: 39718737 DOI: 10.1007/s13402-024-01019-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2024] [Indexed: 12/25/2024] Open
Abstract
PURPOSE Our study aims to develop and validate a novel molecular marker for the prognosis and diagnosis of hepatocellular carcinoma (HCC) MATERIALS & METHODS: We retrospectively analyzed mRNA expression profile and clinicopathological data of HCC patients fetched from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) and The International Cancer Genome Consortium (ICGC) datasets. Univariate Cox regression analysis was performed to collect differentially expressed mRNA (DEmRNAs) from HCC and non-tumor tissues, and YEATS2, a prognostic marker, was identified by further analysis. ROC curve, survival analysis and multivariate Cox regression analysis as well as nomograms were used to evaluate the prognosis of this gene. Finally, the biological function of this gene was preliminarily discussed by using single gene Gene Set Enrichment Analysis (GSEA), and the YEATS2 overexpression and knockdown hepatoma cell line was used to verify the results in vitro and in vivo. RESULTS Based on the clinical information of HCC in TCGA, GEO and ICGC databases, the gene YEATS2 with significant differences from HCC was identified. There was a statistical difference in the survival prognosis between the two databases and the ROC curve showed that the survival of HCC in both TCGA, GSE14520 and ICGC groups had a satisfactory predictive effect. Univariate and multivariate Cox regression analysis showed that YEATS2 was an independent prognostic factor for HCC, and Nomograms, which combined this prognostic feature with significant clinical features, provided an important reference for the clinical prognostic diagnosis of HCC. Next, we constructed overexpression and knockdown YEATS2 cell line in Hep3B and LM3 cells, and further proved that overexpression YEATS2 promote the proliferation and migration of HCC cells by CCK8, colony formation experiment, and transwell assays, and knockdown YEATS2 inhibited the proliferation and migration of HCC cells by CCK8, colony formation experiment, and transwell assays. Finally, the biological function of YEATS2 was preliminarily explored through GSEA analysis of a single gene, and it was found that it was significantly correlated with cell cycle and DNA repair, which provided us with ideas for further analysis. Furthermore, the knockdown of YEATS2 promoted radiation-induced DNA damage, enhanced radiosensitivity, and ultimately inhibited the proliferation of hepatocellular carcinoma cells in vitro and in vivo. CONCLUSIONS Our study identified a promising prognostic marker for hepatocellular carcinoma that is useful for clinical decision-making and individualized treatment.
Collapse
Affiliation(s)
- Yao Long
- Cancer Research Institute; School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Wei Wang
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Shouping Liu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiang Wang
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| | - Yongguang Tao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China.
- Cancer Research Institute; School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China.
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
17
|
Lu M, Wu Y, Xia M, Zhang Y. The role of metabolic reprogramming in liver cancer and its clinical perspectives. Front Oncol 2024; 14:1454161. [PMID: 39610917 PMCID: PMC11602425 DOI: 10.3389/fonc.2024.1454161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/25/2024] [Indexed: 11/30/2024] Open
Abstract
Primary liver cancer (PLC), which includes hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA), remains a leading cause of cancer-related death worldwide. Chronic liver diseases, such as hepatitis B and C infections and metabolic dysfunction-associated steatotic liver disease (MASLD), are key risk factors for PLC. Metabolic reprogramming, a defining feature of cancer, enables liver cancer cells to adapt to the demands of rapid proliferation and the challenging tumor microenvironment (TME). This manuscript examines the pivotal role of metabolic reprogramming in PLC, with an emphasis on the alterations in glucose, lipid, and amino acid metabolism that drive tumor progression. The Warburg effect, marked by increased glycolysis, facilitates rapid energy production and biosynthesis of cellular components in HCC. Changes in lipid metabolism, including elevated de novo fatty acid synthesis and lipid oxidation, support membrane formation and energy storage essential for cancer cell survival. Amino acid metabolism, particularly glutamine utilization, supplies critical carbon and nitrogen for nucleotide synthesis and maintains redox homeostasis. These metabolic adaptations not only enhance tumor growth and invasion but also reshape the TME, promoting immune escape. Targeting these metabolic pathways presents promising therapeutic opportunities for PLC. This review underscores the interaction between metabolic reprogramming and tumor immunity, suggesting potential metabolic targets for innovative therapeutic strategies. A comprehensive understanding of PLC's intricate metabolic landscape may lead to more effective treatments and better patient outcomes. Integrating metabolomics, genomics, and proteomics in future research will be vital for identifying precise therapeutic targets and advancing personalized therapies for liver cancer.
Collapse
Affiliation(s)
- Mengxiao Lu
- Department of Gastrointestinal Minimally Invasive Surgery, The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| | | | | | | |
Collapse
|
18
|
Wang J, He Y, Hu F, Hu C, Sun Y, Yang K, Yang S. Metabolic Reprogramming of Immune Cells in the Tumor Microenvironment. Int J Mol Sci 2024; 25:12223. [PMID: 39596288 PMCID: PMC11594648 DOI: 10.3390/ijms252212223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Metabolic reprogramming of immune cells within the tumor microenvironment (TME) plays a pivotal role in shaping tumor progression and responses to therapy. The intricate interplay between tumor cells and immune cells within this ecosystem influences their metabolic landscapes, thereby modulating the immune evasion tactics employed by tumors and the efficacy of immunotherapeutic interventions. This review delves into the metabolic reprogramming that occurs in tumor cells and a spectrum of immune cells, including T cells, macrophages, dendritic cells, and myeloid-derived suppressor cells (MDSCs), within the TME. The metabolic shifts in these cell types span alterations in glucose, lipid, and amino acid metabolism. Such metabolic reconfigurations can profoundly influence immune cell function and the mechanisms by which tumors evade immune surveillance. Gaining a comprehensive understanding of the metabolic reprogramming of immune cells in the TME is essential for devising novel cancer therapeutic strategies. By targeting the metabolic states of immune cells, it is possible to augment their anti-tumor activities, presenting new opportunities for immunotherapeutic approaches. These strategies hold promise for enhancing treatment outcomes and circumventing the emergence of drug resistance.
Collapse
Affiliation(s)
| | | | | | | | | | - Kun Yang
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China; (J.W.); (Y.H.); (F.H.); (C.H.); (Y.S.)
| | - Shuya Yang
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China; (J.W.); (Y.H.); (F.H.); (C.H.); (Y.S.)
| |
Collapse
|
19
|
Yang Y, Wang Y, Zou H, Li Z, Chen W, Huang Z, Weng Y, Yu X, Xu J, Zheng L. GPER1 signaling restricts macrophage proliferation and accumulation in human hepatocellular carcinoma. Front Immunol 2024; 15:1481972. [PMID: 39582864 PMCID: PMC11582010 DOI: 10.3389/fimmu.2024.1481972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/22/2024] [Indexed: 11/26/2024] Open
Abstract
Background Sex hormones and their related receptors have been reported to impact the development and progression of tumors. However, their influence on the composition and function of the tumor microenvironment is not well understood. We aimed to investigate the influence of sex disparities on the proliferation and accumulation of macrophages, one of the major components of the tumor microenvironment, in hepatocellular carcinoma (HCC). Methods Immunohistochemistry was applied to assess the density of immune cells in HCC tissues. The role of sex hormone related signaling in macrophage proliferation was determined by immunofluorescence and flow cytometry. The underlying regulatory mechanisms were examined with both in vitro experiments and murine HCC models. Results We found higher levels of macrophage proliferation and density in tumor tissues from male patients compared to females. The expression of G protein-coupled estrogen receptor 1 (GPER1), a non-classical estrogen receptor, was significantly decreased in proliferating macrophages, and was inversely correlated with macrophage proliferation in HCC tumors. Activation of GPER1 signaling with a selective agonist G-1 suppressed macrophage proliferation by downregulating the MEK/ERK pathway. Additionally, G-1 treatment reduced PD-L1 expression on macrophages and delayed tumor growth in mice. Moreover, patients with a higher percentage of GPER1+ macrophages exhibited longer overall survival and recurrence-free survival compared to those with a lower level. Conclusions These findings reveal a novel role of GPER1 signaling in regulating macrophage proliferation and function in HCC tumors and may offer a potential strategy for designing therapies based on understanding sex-related disparities of patients.
Collapse
Affiliation(s)
- Yanyan Yang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yongchun Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hao Zou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhixiong Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Weibai Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhijie Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yulan Weng
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xingjuan Yu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jing Xu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Limin Zheng
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
20
|
Chi J, Gao Q, Liu D. Tissue-Resident Macrophages in Cancer: Friend or Foe? Cancer Med 2024; 13:e70387. [PMID: 39494816 PMCID: PMC11533131 DOI: 10.1002/cam4.70387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/15/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024] Open
Abstract
INTRODUCTION Macrophages are essential in maintaining homeostasis, combating infections, and influencing the process of various diseases, including cancer. Macrophages originate from diverse lineages: Notably, tissue-resident macrophages (TRMs) differ from hematopoietic stem cells and circulating monocyte-derived macrophages based on genetics, development, and function. Therefore, understanding the recruited and TRM populations is crucial for investigating disease processes. METHODS By searching literature databses, we summarized recent relevant studies. Research has shown that tumor-associated macrophages (TAMs) of distinct origins accumulate in tumor microenvironment (TME), with TRM-derived TAMs closely resembling gene signatures of normal TRMs. RESULTS Recent studies have revealed that TRMs play a crucial role in cancer progression. However, organ-specific effects complicate TRM investigations. Nonetheless, the precise involvement of TRMs in tumors is unclear. This review explores the multifaceted roles of TRMs in cancer, presenting insights into their origins, proliferation, the latest research methodologies, their impact across various tumor sites, their potential and strategies as therapeutic targets, interactions with other cells within the TME, and the internal heterogeneity of TRMs. CONCLUSIONS We believe that a comprehensive understanding of the multifaceted roles of TRMs will pave the way for targeted TRM therapies in the treatment of cancer.
Collapse
Affiliation(s)
- Jianhua Chi
- Department of Obstetrics and GynecologyNational Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and MetastasisTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Qinglei Gao
- Department of Obstetrics and GynecologyNational Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and MetastasisTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Dan Liu
- Department of Obstetrics and GynecologyNational Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and MetastasisTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
21
|
Duo Y, Han L, Yang Y, Wang Z, Wang L, Chen J, Xiang Z, Yoon J, Luo G, Tang BZ. Aggregation-Induced Emission Luminogen: Role in Biopsy for Precision Medicine. Chem Rev 2024; 124:11242-11347. [PMID: 39380213 PMCID: PMC11503637 DOI: 10.1021/acs.chemrev.4c00244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
Biopsy, including tissue and liquid biopsy, offers comprehensive and real-time physiological and pathological information for disease detection, diagnosis, and monitoring. Fluorescent probes are frequently selected to obtain adequate information on pathological processes in a rapid and minimally invasive manner based on their advantages for biopsy. However, conventional fluorescent probes have been found to show aggregation-caused quenching (ACQ) properties, impeding greater progresses in this area. Since the discovery of aggregation-induced emission luminogen (AIEgen) have promoted rapid advancements in molecular bionanomaterials owing to their unique properties, including high quantum yield (QY) and signal-to-noise ratio (SNR), etc. This review seeks to present the latest advances in AIEgen-based biofluorescent probes for biopsy in real or artificial samples, and also the key properties of these AIE probes. This review is divided into: (i) tissue biopsy based on smart AIEgens, (ii) blood sample biopsy based on smart AIEgens, (iii) urine sample biopsy based on smart AIEgens, (iv) saliva sample biopsy based on smart AIEgens, (v) biopsy of other liquid samples based on smart AIEgens, and (vi) perspectives and conclusion. This review could provide additional guidance to motivate interest and bolster more innovative ideas for further exploring the applications of various smart AIEgens in precision medicine.
Collapse
Affiliation(s)
- Yanhong Duo
- Department
of Radiation Oncology, Shenzhen People’s Hospital, The Second
Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong China
- Wyss
Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02138, United States
| | - Lei Han
- College of
Chemistry and Pharmaceutical Sciences, Qingdao
Agricultural University, 700 Changcheng Road, Qingdao 266109, Shandong China
| | - Yaoqiang Yang
- Department
of Radiation Oncology, Shenzhen People’s Hospital, The Second
Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong China
| | - Zhifeng Wang
- Department
of Urology, Henan Provincial People’s Hospital, Zhengzhou University
People’s Hospital, Henan University
People’s Hospital, Zhengzhou, 450003, China
| | - Lirong Wang
- State
Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Jingyi Chen
- Wyss
Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02138, United States
| | - Zhongyuan Xiang
- Department
of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China
| | - Juyoung Yoon
- Department
of Chemistry and Nanoscience, Ewha Womans
University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Guanghong Luo
- Department
of Radiation Oncology, Shenzhen People’s Hospital, The Second
Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong China
| | - Ben Zhong Tang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen 518172, Guangdong China
| |
Collapse
|
22
|
Qin H, Xiao A, Lu Q, Li Y, Luo X, Zheng E, Tian C, Liu H, Zheng X, Wei L, Ruan XZ, Yang P, Chen Y. The fatty acid receptor CD36 promotes macrophage infiltration via p110γ signaling to stimulate metastasis. J Adv Res 2024:S2090-1232(24)00460-0. [PMID: 39419288 DOI: 10.1016/j.jare.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/28/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024] Open
Abstract
INTRODUCTION Metabolic regulators are key in controlling immune cell fate in the tumor microenvironment. The accumulation of tumor-associated macrophages (TAMs) in cancer greatly contributes to metastasis and poor outcome. However, the metabolic pathways responsible for TAM accumulation are largely unknown. OBJECTIVE This study aims to elucidate the role of the fatty acid translocase CD36 in the regulation of TAM accumulation. METHODS The immune profile was analyzed in patients with liver metastasis by CIBERSORT. Immunohistostaining of CD68 and CD36 was conducted in clinical specimens from patients with liver metastasis. Myeloid-specific CD36 knockout mice and their littermates were used to establish preclinical liver metastasis models. Subsequently, a series of experiments were used to explore the underlying mechanisms of how CD36 regulates TAM population. RESULTS We found that massive TAM accumulation in patients with liver metastasis is associated with an upregulation of CD36 on TAMs. Liver metastasis is abundantly infiltrated by TAMs that are derived from circulating monocytes, but not tissue-resident macrophages. Myeloid-specific CD36 knockout specifically reduced and inactivated monocyte-differentiated macrophages, resulting in diminished immune suppression and attenuated liver metastasis. The protect effects of CD36 knockout can be abrogated by blockade of macrophage recruitment through CCR2 or the p110γ isoform of PI3K downstream of it. Mechanically, CD36 reprogrammed the lipid metabolism of macrophages, in which sphingolipids were significantly downregulated, that contributed to weakened lipid raft-dependent activation of p110γ. CONCLUSION CD36 expands TAM population by promoting the recruitment of circulating monocytes through CCL2/CCR2/p110γ signaling. Our findings provide evidence for targeting CD36 as a therapeutic strategy against liver metastasis.
Collapse
Affiliation(s)
- Hong Qin
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China; Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Anhua Xiao
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Qiannan Lu
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Yiyu Li
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Xiaoqing Luo
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Enze Zheng
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Chuan Tian
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Huan Liu
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Xiaoya Zheng
- Department of Endocrinology, the First Affiliated Hospital, Chongqing Medical University,Chongqing 400016, China
| | - Li Wei
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Xiong Z Ruan
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China; John Moorhead Research Laboratory, Centre for Nephrology, University College London Medical School, Royal Free Campus, University College London, London NW3 2PF, United Kingdom.
| | - Ping Yang
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China.
| | - Yaxi Chen
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
23
|
Di Virgilio F, Vultaggio-Poma V, Tarantini M, Giuliani AL. Overview of the role of purinergic signaling and insights into its role in cancer therapy. Pharmacol Ther 2024; 262:108700. [PMID: 39111410 DOI: 10.1016/j.pharmthera.2024.108700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 07/05/2024] [Accepted: 07/31/2024] [Indexed: 08/30/2024]
Abstract
Innovation of cancer therapy has received a dramatic acceleration over the last fifteen years thanks to the introduction of the novel immune checkpoint inhibitors (ICI). On the other hand, the conspicuous scientific knowledge accumulated in purinergic signaling since the early seventies is finally being transferred to the clinic. Several Phase I/II clinical trials are currently underway to investigate the effect of drugs interfering with purinergic signaling as stand-alone or combination therapy in cancer. This is supporting the novel concept of "purinergic immune checkpoint" (PIC) in cancer therapy. In the present review we will address a) the basic pharmacology and cell biology of the purinergic system; b) principles of its pathophysiology in human diseases; c) implications for cell death, cell proliferation and cancer; d) novel molecular tools to investigate nucleotide homeostasis in the extracellular environment; e) recent developments in the pharmacology of P1, P2 receptors and related ecto-enzymes; f) P1 and P2 ligands as novel diagnostic tools; g) current issues in PIC-based anti-cancer therapy. This review will provide an appraisal of the current status of purinergic signaling in cancer and will help identify future avenues of development.
Collapse
Affiliation(s)
| | | | - Mario Tarantini
- Department of Medical Sciences, University of Ferrara, Italy
| | | |
Collapse
|
24
|
Alzahrani MS, Almutairy B, Althobaiti YS, Alsaab HO. Recent Advances in RNA Interference-Based Therapy for Hepatocellular Carcinoma: Emphasis on siRNA. Cell Biochem Biophys 2024; 82:1947-1964. [PMID: 38987439 DOI: 10.1007/s12013-024-01395-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2024] [Indexed: 07/12/2024]
Abstract
Even though RNA treatments were first proposed as a way to change aberrant signaling in cancer, research in this field is currently ongoing. The term "RNAi" refers to the use of several RNAi technologies, including ribozymes, riboswitches, Aptamers, small interfering RNA (siRNA), antisense oligonucleotides (ASOs), and CRISPR/Cas9 technology. The siRNA therapy has already achieved a remarkable feat by revolutionizing the treatment arena of cancers. Unlike small molecules and antibodies, which need administration every three months or even every two years, RNAi may be given every quarter to attain therapeutic results. In order to overcome complex challenges, delivering siRNAs to the targeted tissues and cells effectively and safely and improving the effectiveness of siRNAs in terms of their action, stability, specificity, and potential adverse consequences are required. In this context, the three primary techniques of siRNA therapies for hepatocellular carcinoma (HCC) are accomplished for inhibiting angiogenesis, decreasing cell proliferation, and promoting apoptosis, are discussed in this review. We also deliberate targeting issues, immunogenic reactions to siRNA therapy, and the difficulties with their intrinsic chemistry and transportation.
Collapse
Affiliation(s)
- Mohammad S Alzahrani
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia
| | - Bandar Almutairy
- Department of Pharmacology, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Yusuf S Althobaiti
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia
- Addiction and Neuroscience Research Unit, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia.
| |
Collapse
|
25
|
Zhang W, Wang M, Ji C, Liu X, Gu B, Dong T. Macrophage polarization in the tumor microenvironment: Emerging roles and therapeutic potentials. Biomed Pharmacother 2024; 177:116930. [PMID: 38878638 DOI: 10.1016/j.biopha.2024.116930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/31/2024] [Accepted: 06/09/2024] [Indexed: 07/28/2024] Open
Abstract
The tumor microenvironment (TME) is a combination of tumor cells and indigenous host stroma, which consists of tumor-infiltrating immune cells, endothelial cells, fibroblasts, pericytes, and non-cellular elements. Tumor-associated macrophages (TAMs) represent the major tumor-infiltrating immune cell type and are generally polarized into two functionally contradictory subtypes, namely classical activated M1 macrophages and alternatively activated M2 macrophages. Macrophage polarization refers to how macrophages are activated at a given time and space. The interplay between the TME and macrophage polarization can influence tumor initiation and progression, making TAM a potential target for cancer therapy. Here, we review the latest investigations on factors orchestrating macrophage polarization in the TME, how macrophage polarization affects tumor progression, and the perspectives in modulating macrophage polarization for cancer immunotherapy.
Collapse
Affiliation(s)
- Wenru Zhang
- Department of Natural Products Chemistry, Key Laboratory of Natural Products & Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Mengmeng Wang
- Department of Natural Products Chemistry, Key Laboratory of Natural Products & Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Chonghao Ji
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xiaohui Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 2A Nanwei Road, Xicheng District, Beijing 100050, China
| | - Bowen Gu
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, United States.
| | - Ting Dong
- Department of Natural Products Chemistry, Key Laboratory of Natural Products & Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| |
Collapse
|
26
|
Yin Y, Feng W, Chen J, Chen X, Wang G, Wang S, Xu X, Nie Y, Fan D, Wu K, Xia L. Immunosuppressive tumor microenvironment in the progression, metastasis, and therapy of hepatocellular carcinoma: from bench to bedside. Exp Hematol Oncol 2024; 13:72. [PMID: 39085965 PMCID: PMC11292955 DOI: 10.1186/s40164-024-00539-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly heterogeneous malignancy with high incidence, recurrence, and metastasis rates. The emergence of immunotherapy has improved the treatment of advanced HCC, but problems such as drug resistance and immune-related adverse events still exist in clinical practice. The immunosuppressive tumor microenvironment (TME) of HCC restricts the efficacy of immunotherapy and is essential for HCC progression and metastasis. Therefore, it is necessary to elucidate the mechanisms behind immunosuppressive TME to develop and apply immunotherapy. This review systematically summarizes the pathogenesis of HCC, the formation of the highly heterogeneous TME, and the mechanisms by which the immunosuppressive TME accelerates HCC progression and metastasis. We also review the status of HCC immunotherapy and further discuss the existing challenges and potential therapeutic strategies targeting immunosuppressive TME. We hope to inspire optimizing and innovating immunotherapeutic strategies by comprehensively understanding the structure and function of immunosuppressive TME in HCC.
Collapse
Affiliation(s)
- Yue Yin
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Weibo Feng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Jie Chen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Xilang Chen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Guodong Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Shuai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Xiao Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yongzhan Nie
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Daiming Fan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Kaichun Wu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Limin Xia
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
| |
Collapse
|
27
|
Liu J, Li H, Wang L, Wang S, Tang Q. Spatial transcriptome and single-cell reveal the role of nucleotide metabolism in colorectal cancer progression and tumor microenvironment. J Transl Med 2024; 22:702. [PMID: 39075485 PMCID: PMC11288102 DOI: 10.1186/s12967-024-05495-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/10/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND The intricacies of nucleotide metabolism within tumor cells specific to colorectal cancer (CRC) remain insufficiently characterized. A nuanced examination of particular tumor clusters and their dynamic interplay with the tumor microenvironment (TME) may yield profound insights into these therapeutically auspicious communicative networks. METHODS By integrating ten types of single-cell enrichment scoring methods, we carried out enrichment analysis on CRC cell types, which was validated through four additional single-cell cohorts. Groups of tumor cells were determined using the average values of the scores. Using cellphonedb, monocle, inferCNV, SCENIC, and Cytotrace, functional analyses were performed. Utilizing the RCTD approach, single-cell groupings were mapped onto spatial transcriptomics, analyzing cell dependency and pathway activity to distinguish between tumor cell subtypes. Differential expression analysis identified core genes in nucleotide metabolism, with single-cell and spatial transcriptomics analyses elucidating the function of these genes in tumor cells and the immune microenvironment. Prognostic models were developed from bulk transcriptome cohorts to forecast responses to immune therapy. Laboratory experiments were conducted to verify the biological function of the core gene. RESULTS Nucleotide metabolism is significantly elevated in tumor cells, dividing them into two groups: NUhighepi and NUlowepi. The phenotype NUhighepi was discerned to exhibit pronounced malignant attributes. Utilizing the analytical tool stlearn for cell-to-cell communication assessment, it was ascertained that NUhighepi engages in intimate interactions with fibroblasts. Corroborating this observation, spatial transcriptome cell interaction assessment through MISTy unveiled a particular reliance of NUhighepi on fibroblasts. Subsequently, we pinpointed NME1, a key gene in nucleotide metabolism, affirming its role in thwarting metastasis via in vitro examination. Utilizing multiple machine learning algorithms, a stable prognostic model (NRS) has been developed, capable of predicting survival and responses to immune therapy. In addition, targeted drugs have been identified for both high and low scoring groups. Laboratory experiments have revealed that NME1 can inhibit the proliferation and invasion of CRC tumor cells. CONCLUSION Our study elucidates the potential pro-tumor mechanism of NUhighepi and the role of NME1 in inhibiting metastasis, further deepening the understanding of the role of nucleotide metabolism in colorectal cancer, and providing valuable targets for disrupting its properties.
Collapse
Affiliation(s)
- Junzhi Liu
- The Second Affiliated Hospital of Zhejiang University School Medicine, Hang Zhou, 310000, China
| | - Huimin Li
- The Second Affiliated Hospital of Zhejiang University School Medicine, Hang Zhou, 310000, China
| | - Lantian Wang
- The Second Affiliated Hospital of Zhejiang University School Medicine, Hang Zhou, 310000, China.
| | - Shurui Wang
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| | - Qiang Tang
- The Second Affiliated Hospital of Zhejiang University School Medicine, Hang Zhou, 310000, China.
| |
Collapse
|
28
|
Li D, Zhang T, Guo Y, Bi C, Liu M, Wang G. Biological impact and therapeutic implication of tumor-associated macrophages in hepatocellular carcinoma. Cell Death Dis 2024; 15:498. [PMID: 38997297 PMCID: PMC11245522 DOI: 10.1038/s41419-024-06888-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
The tumor microenvironment is a complex space comprised of normal, cancer and immune cells. The macrophages are considered as the most abundant immune cells in tumor microenvironment and their function in tumorigenesis is interesting. Macrophages can be present as M1 and M2 polarization that show anti-cancer and oncogenic activities, respectively. Tumor-associated macrophages (TAMs) mainly have M2 polarization and they increase tumorigenesis due to secretion of factors, cytokines and affecting molecular pathways. Hepatocellular carcinoma (HCC) is among predominant tumors of liver that in spite of understanding its pathogenesis, the role of tumor microenvironment in its progression still requires more attention. The presence of TAMs in HCC causes an increase in growth and invasion of HCC cells and one of the reasons is induction of glycolysis that such metabolic reprogramming makes HCC distinct from normal cells and promotes its malignancy. Since M2 polarization of TAMs stimulates tumorigenesis in HCC, molecular networks regulating M2 to M1 conversion have been highlighted and moreover, drugs and compounds with the ability of targeting TAMs and suppressing their M2 phenotypes or at least their tumorigenesis activity have been utilized. TAMs increase aggressive behavior and biological functions of HCC cells that can result in development of therapy resistance. Macrophages can provide cell-cell communication in HCC by secreting exosomes having various types of biomolecules that transfer among cells and change their activity. Finally, non-coding RNA transcripts can mainly affect polarization of TAMs in HCC.
Collapse
Affiliation(s)
- Deming Li
- Department of Anesthesiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, PR China
| | - Ting Zhang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, 110001, PR China
| | - Ye Guo
- Department of Intervention, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, PR China
| | - Cong Bi
- Department of Radiology, The First Hospital of China Medical University, Shenyang, 110001, PR China.
| | - Ming Liu
- Department of Oral Radiology, School of Stomatology, China Medical University, Shenyang, Liaoning, 110002, PR China.
| | - Gang Wang
- Department of Intervention, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, PR China.
| |
Collapse
|
29
|
Ke C, Huang B, Xiang J, Liang J, Wu G, Qiu M, Cheng K, Mao L, Lei W, Hu Y, Tang X, Tian Y, Chen G, Luo OJ, Zhang H. Secreted clusterin inhibits tumorigenesis by modulating tumor cells and macrophages in human meningioma. Neuro Oncol 2024; 26:1262-1279. [PMID: 38416702 PMCID: PMC11226886 DOI: 10.1093/neuonc/noae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Indexed: 03/01/2024] Open
Abstract
BACKGROUND Meningioma is the most common primary intracranial tumor with a high frequency of postoperative recurrence, yet the biology of the meningioma malignancy process is still obscure. METHODS To identify potential therapeutic targets and tumor suppressors, we performed single-cell transcriptome analysis through meningioma malignancy, which included 18 samples spanning normal meninges, benign and high-grade in situ tumors, and lung metastases, for extensive transcriptome characterization. Tumor suppressor candidate gene and molecular mechanism were functionally validated at the animal model and cellular levels. RESULTS Comprehensive analysis and validation in mice and clinical cohorts indicated clusterin (CLU) had suppressive function for meningioma tumorigenesis and malignancy by inducing mitochondria damage and triggering type 1 interferon pathway dependent on its secreted isoform, and the inhibition effect was enhanced by TNFα as TNFα also induced type 1 interferon pathway. Meanwhile, both intra- and extracellular CLU overexpression enhanced macrophage polarization towards M1 phenotype and TNFα production, thus promoting tumor killing and phagocytosis. CONCLUSIONS CLU might be a key brake of meningioma malignance by synchronously modulating tumor cells and their microenvironment. Our work provides comprehensive insights into meningioma malignancy and a potential therapeutic strategy.
Collapse
Affiliation(s)
- Chao Ke
- Department of Neurosurgery, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Boya Huang
- Department of Systems Biomedical Sciences, Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Jian Xiang
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Jinlian Liang
- Department of Biophysics and Biochemistry, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong, China
| | - Guangjie Wu
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Minghui Qiu
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Kai Cheng
- Department of Pathology, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Lipeng Mao
- Department of Systems Biomedical Sciences, Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Wen Lei
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Yang Hu
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute, Guangdong Provincial Fertility Hospital, Guangzhou, China
| | - Xiaogen Tang
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Yizhen Tian
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Guobing Chen
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Hongyi Zhang
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
30
|
Jiang K, Wu J, Wang Q, Chen X, Zhang Y, Gu X, Tang K. Nanoparticles targeting the adenosine pathway for cancer immunotherapy. J Mater Chem B 2024; 12:5787-5811. [PMID: 38845588 DOI: 10.1039/d4tb00292j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Cancer immunotherapy, as an emerging approach to cancer treatment, has tremendous potential for application. Compared to traditional methods such as surgery, chemotherapy, and radiation therapy, it has the ability to restore the patient's immune system, leading to long-term immune memory with less damage to normal tissues. However, immunotherapy has its limitations, including limited therapeutic efficacy, restricted patient populations, and inconsistent treatment responses. Finding effective immunotherapeutic approaches has become a key focus of its clinical application. The adenosine pathway is a recently discovered tumor immune regulatory signaling pathway. It can influence the metabolism and growth of tumor cells by acting through key enzymes in the adenosine pathway, thereby affecting the development of tumors. Therefore, inhibiting the adenosine pathway is an effective cancer immunotherapy. Common adenosine pathway inhibitors include small molecules and antibody proteins, and extensive preclinical trials have demonstrated their effectiveness in inhibiting tumor growth. The short half-life, low bioavailability, and single administration route of adenosine pathway inhibitors limit their clinical application. With the advent of nanotechnology, nano-delivery of adenosine pathway inhibitors has addressed these issues. Compared to traditional drugs, nano-drugs extend the drug's circulation time and improve its distribution within the body. They also offer targeting capabilities and have low toxic side effects, making them very promising for future applications. In this review, we discuss the mechanism of the adenosine pathway in tumor immune suppression, the clinical applications of adenosine pathway inhibitors, and nano-delivery based on adenosine pathway inhibitors. In the final part of this article, we also briefly discuss the technical issues and challenges currently present in nano-delivery of adenosine pathway inhibitors, with the hope of advancing the progress of adenosine inhibitor nano-drugs in clinical treatment.
Collapse
Affiliation(s)
- Kehua Jiang
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China.
| | - Jian Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Qiaokou District, Wuhan, Hubei, 430030, China.
| | - Qing Wang
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China.
| | - Xiaolong Chen
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China.
| | - Yanlong Zhang
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China.
| | - Xiaoya Gu
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China.
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Kun Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Qiaokou District, Wuhan, Hubei, 430030, China.
| |
Collapse
|
31
|
Yang H, Zhang Z, Zhao K, Zhang Y, Yin X, Zhu G, Wang Z, Yan X, Li X, He T, Wang K. Targeting the adenosine signaling pathway in macrophages for cancer immunotherapy. Hum Immunol 2024; 85:110774. [PMID: 38521664 DOI: 10.1016/j.humimm.2024.110774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/14/2024] [Accepted: 03/04/2024] [Indexed: 03/25/2024]
Abstract
One of the ways in which macrophages support tumorigenic growth is by producing adenosine, which acts to dampen antitumor immune responses and is generated by both tumor and immune cells in the tumor microenvironment (TME). Two cell surface expressed molecules, CD73 and CD39, boost catalytic adenosine triphosphate, leading to further increased adenosine synthesis, under hypoxic circumstances in the TME. There are four receptors (A1, A2A, A2B, and A3) expressed on macrophages that allow adenosine to perform its immunomodulatory effect. Researchers have shown that adenosine signaling is a key factor in tumor progression and an attractive therapeutic target for treating cancer. Several antagonistic adenosine-targeting biological therapies that decrease the suppressive action of tumor-associated macrophages have been produced and explored to transform this result from basic research into a therapeutic advantage. Here, we'll review the newest findings from studies of pharmacological compounds that target adenosine receptors, and their potential therapeutic value based on blocking the suppressive action of macrophages in tumors.
Collapse
Affiliation(s)
- Han Yang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong, China
| | - Zongliang Zhang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong, China
| | - Kai Zhao
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong, China
| | - Yulian Zhang
- Department of Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong, China
| | - Xinbao Yin
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong, China
| | - Guanqun Zhu
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong, China
| | - Zhenlin Wang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong, China
| | - Xuechuan Yan
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong, China
| | - Xueyu Li
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong, China
| | - Tianzhen He
- Nantong University, Institute of Special Environmental Medicine, Nantong, China.
| | - Ke Wang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong, China.
| |
Collapse
|
32
|
Lei Q, Zhen S, Zhang L, Zhao Q, Yang L, Zhang Y. A2AR-mediated CXCL5 upregulation on macrophages promotes NSCLC progression via NETosis. Cancer Immunol Immunother 2024; 73:108. [PMID: 38642131 PMCID: PMC11032303 DOI: 10.1007/s00262-024-03689-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/24/2024] [Indexed: 04/22/2024]
Abstract
Tumor-associated macrophages (TAMs) are abundant in tumors and interact with tumor cells, leading to the formation of an immunosuppressive microenvironment and tumor progression. Although many studies have explored the mechanisms underlying TAM polarization and its immunosuppressive functions, understanding of its progression remains limited. TAMs promote tumor progression by secreting cytokines, which subsequently recruit immunosuppressive cells to suppress the antitumor immunity. In this study, we established an in vitro model of macrophage and non-small cell lung cancer (NSCLC) cell co-culture to explore the mechanisms of cell-cell crosstalk. We observed that in NSCLC, the C-X-C motif chemokine ligand 5 (CXCL5) was upregulated in macrophages because of the stimulation of A2AR by adenosine. Adenosine was catalyzed by CD39 and CD73 in macrophages and tumor cells, respectively. Nuclear factor kappa B (NFκB) mediated the A2AR stimulation of CXCL5 upregulation in macrophages. Additionally, CXCL5 stimulated NETosis in neutrophils. Neutrophil extracellular traps (NETs)-treated CD8+ T cells exhibited upregulation of exhaustion-related and cytosolic DNA sensing pathways and downregulation of effector-related genes. However, A2AR inhibition significantly downregulated CXCL5 expression and reduced neutrophil infiltration, consequently alleviating CD8+ T cell dysfunction. Our findings suggest a complex interaction between tumor and immune cells and its potential as therapeutic target.
Collapse
Affiliation(s)
- Qingyang Lei
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, China
| | - Shanshan Zhen
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, China
| | - Lei Zhang
- Thoracic Surgery Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qitai Zhao
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, China
| | - Li Yang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China.
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, China.
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China.
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, China.
| |
Collapse
|
33
|
Yi L, Gai Y, Chen Z, Tian K, Liu P, Liang H, Xu X, Peng Q, Luo X. Macrophage colony-stimulating factor and its role in the tumor microenvironment: novel therapeutic avenues and mechanistic insights. Front Oncol 2024; 14:1358750. [PMID: 38646440 PMCID: PMC11027505 DOI: 10.3389/fonc.2024.1358750] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/12/2024] [Indexed: 04/23/2024] Open
Abstract
The tumor microenvironment is a complex ecosystem where various cellular and molecular interactions shape the course of cancer progression. Macrophage colony-stimulating factor (M-CSF) plays a pivotal role in this context. This study delves into the biological properties and functions of M-CSF in regulating tumor-associated macrophages (TAMs) and its role in modulating host immune responses. Through the specific binding to its receptor colony-stimulating factor 1 receptor (CSF-1R), M-CSF orchestrates a cascade of downstream signaling pathways to modulate macrophage activation, polarization, and proliferation. Furthermore, M-CSF extends its influence to other immune cell populations, including dendritic cells. Notably, the heightened expression of M-CSF within the tumor microenvironment is often associated with dismal patient prognoses. Therefore, a comprehensive investigation into the roles of M-CSF in tumor growth advances our comprehension of tumor development mechanisms and unveils promising novel strategies and approaches for cancer treatment.
Collapse
Affiliation(s)
- Li Yi
- Medical Technology College of Qiqihar Medical College, Qiqihar, Heilongjiang, China
| | - Yihan Gai
- School of Stomatology, Qiqihar Medical College, Qiqihar, Heilongjiang, China
| | - Zhuo Chen
- Medical Technology College of Qiqihar Medical College, Qiqihar, Heilongjiang, China
| | - Kecan Tian
- Medical Technology College of Qiqihar Medical College, Qiqihar, Heilongjiang, China
| | - Pengfei Liu
- School of Basic Medical Sciences, Qiqihar Medical College, Qiqihar, Heilongjiang, China
| | - Hongrui Liang
- School of Basic Medical Sciences, Qiqihar Medical College, Qiqihar, Heilongjiang, China
| | - Xinyu Xu
- Medical Technology College of Qiqihar Medical College, Qiqihar, Heilongjiang, China
| | - Qiuyi Peng
- School of Basic Medical Sciences, Qiqihar Medical College, Qiqihar, Heilongjiang, China
| | - Xiaoqing Luo
- Medical Technology College of Qiqihar Medical College, Qiqihar, Heilongjiang, China
| |
Collapse
|
34
|
Kim SW, Kim CW, Moon YA, Kim HS. Reprogramming of tumor-associated macrophages by metabolites generated from tumor microenvironment. Anim Cells Syst (Seoul) 2024; 28:123-136. [PMID: 38577621 PMCID: PMC10993762 DOI: 10.1080/19768354.2024.2336249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/17/2024] [Indexed: 04/06/2024] Open
Abstract
The tumor microenvironment comprises both tumor and non-tumor stromal cells, including tumor-associated macrophages (TAMs), endothelial cells, and carcinoma-associated fibroblasts. TAMs, major components of non-tumor stromal cells, play a crucial role in creating an immunosuppressive environment by releasing cytokines, chemokines, growth factors, and immune checkpoint proteins that inhibit T cell activity. During tumors develop, cancer cells release various mediators, including chemokines and metabolites, that recruit monocytes to infiltrate tumor tissues and subsequently induce an M2-like phenotype and tumor-promoting properties. Metabolites are often overlooked as metabolic waste or detoxification products but may contribute to TAM polarization. Furthermore, macrophages display a high degree of plasticity among immune cells in the tumor microenvironment, enabling them to either inhibit or facilitate cancer progression. Therefore, TAM-targeting has emerged as a promising strategy in tumor immunotherapy. This review provides an overview of multiple representative metabolites involved in TAM phenotypes, focusing on their role in pro-tumoral polarization of M2.
Collapse
Affiliation(s)
- Seung Woo Kim
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Chan Woo Kim
- Cancer Immunotherapy Evaluation Team, Non-Clinical Evaluation Center, Osong Medical Innovation Foundation (KBIO Health), Cheongju, Republic of Korea
| | - Young-Ah Moon
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Hong Seok Kim
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon, Republic of Korea
| |
Collapse
|
35
|
Wang Y, Li Z, Chen W, Wang J, Huang Z, Yu XJ, Zhang YJ, Zheng L, Xu J. C/EBPα mediates the maturation and antitumor functions of macrophages in human hepatocellular carcinoma. Cancer Lett 2024; 585:216638. [PMID: 38266805 DOI: 10.1016/j.canlet.2024.216638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/29/2023] [Accepted: 01/09/2024] [Indexed: 01/26/2024]
Abstract
Recent studies have suggested that therapeutic upregulation of CCAAT/enhancer binding protein α (C/EBPα) prevents hepatocellular carcinoma (HCC) progression. However, the mechanisms underlying this outcome are not fully understood. In this study, we investigated the expression and functional roles of C/EBPα in human HCC, with a focus on monocytes/macrophages (Mφs). Paraffin-embedded tissues were used to visualize C/EBPα expression and analyze the prognostic value of C/EBPα+ monocytes/Mφs in HCC patients. The underlying regulatory mechanisms were examined using human monocyte-derived Mφs. The results showed that the expression of C/EBPα on monocytes/Mφs was significantly decreased in intra-tumor tissues compared to the corresponding peri-tumor tissues. C/EBPα+ monocytes/Mφs displayed well-differentiation and antitumor capacities, and the accumulation of these cells in tissue was associated with antitumor immune responses and predicted longer overall survival (OS) of HCC patients. Mechanistic studies demonstrated that C/EBPα was required for Mφ maturation and HLA-DR, CD169 and CD86 expression, which initiates antitumor cytotoxic T-cell responses; however, these effects were inhibited by monocyte autocrine IL-6- and IL-1β-induced suppression of mTOR1 signaling. Reprogramming Mφs via the upregulation of C/EBPα may provide a novel strategy for cancer immunotherapy in patients with HCC.
Collapse
Affiliation(s)
- Yongchun Wang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Key Laboratory of Gene Function and Regulation of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhixiong Li
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Weibai Chen
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Key Laboratory of Gene Function and Regulation of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Junfeng Wang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zhijie Huang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xing-Juan Yu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yao-Jun Zhang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Limin Zheng
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Key Laboratory of Gene Function and Regulation of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Jing Xu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
36
|
Shan L, Zhao N, Wang F, Zhai D, Liu J, Lv X. Caffeine in Hepatocellular Carcinoma: Cellular Assays, Animal Experiments, and Epidemiological Investigation. J Inflamm Res 2024; 17:1589-1605. [PMID: 38495344 PMCID: PMC10941793 DOI: 10.2147/jir.s424384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 02/29/2024] [Indexed: 03/19/2024] Open
Abstract
The use of caffeine in treating various liver diseases has made substantial progress in the past decade owing to advances in science, technology, and medicine. However, whether caffeine has a preventive effect on hepatocellular carcinoma (HCC) and its mechanism are still worth further investigation. In this review, we summarize and analyze the efficacy and safety of caffeine in the prevention of HCC. We conducted a review of articles published in PubMed and Web of Science in the past 2 decades until December 6, 2023, which were searched for using the terms "Caffeine" and "Hepatocellular Carcinoma." Studies have found that coffee intake is negatively correlated with HCC risk, especially caffeinated coffee. Recent studies have found that caffeine has beneficial effects on liver health, decreasing levels of enzymes responsible for liver damaging and slowing the progression of hepatic fibrosis and cirrhosis. Caffeine also acts against liver fibrosis through adenosine receptors (ARs), which promote tissue remodeling by inducing fibrin and collagen production. Additionally, new studies have found that moderate consumption of caffeinated beverages can decrease various the levels of various collagens in patients with chronic hepatitis C. Furthermore, polyphenolic compounds in coffee can improve fat homeostasis, reduce oxidative stress, and prevent liver steatosis and fibrosis. Moreover, many in vitro studies have shown that caffeine can protect liver cells and inhibit the activation and proliferation of hepatic stellate cells. Taken together, we describe the benefits of caffeine for liver health and highlight its potential values as a drug to prevent various hepatic diseases. As a protective agent of liver inflammation, non-selective AR inhibitor caffeine can inhibit the growth of HCC cells by inhibiting adenosine and AR binding to initiate immune response, providing a basis for the future development of caffeine as an adjuvant drug against HCC.
Collapse
Affiliation(s)
- Liang Shan
- Department of Pharmacy, the Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, 230011, People’s Republic of China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, 230032, People’s Republic of China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, 230032, People’s Republic of China
- The Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui Province, 230032, People’s Republic of China
| | - Ning Zhao
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, 230032, People’s Republic of China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, 230032, People’s Republic of China
- The Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui Province, 230032, People’s Republic of China
| | - Fengling Wang
- Department of Pharmacy, the Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, 230011, People’s Republic of China
| | - Dandan Zhai
- Department of Pharmacy, the Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, 230011, People’s Republic of China
| | - Jianjun Liu
- Department of Pharmacy, the Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, 230011, People’s Republic of China
| | - Xiongwen Lv
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, 230032, People’s Republic of China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, 230032, People’s Republic of China
- The Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui Province, 230032, People’s Republic of China
| |
Collapse
|
37
|
Liu Z, Huang Y, Zhang P, Yang C, Wang Y, Yu Y, Xiang H. Establishment of an immunogenic cell death-related model for prognostic prediction and identification of therapeutic targets in endometrial carcinoma. Aging (Albany NY) 2024; 16:4920-4942. [PMID: 38461430 PMCID: PMC10968672 DOI: 10.18632/aging.205647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 02/02/2024] [Indexed: 03/12/2024]
Abstract
OBJECTIVE Studies have firmly established the pivotal role of the immunogenic cell death (ICD) in the development of tumors. This study seeks to develop a risk model related to ICD to predict the prognosis of patients with endometrial carcinoma (EC). MATERIALS AND METHODS RNA-seq data of EC retrieved from TCGA database were analyzed using R software. We determined clusters based on ICD-related genes (ICDRGs) expression levels. Cox and LASSO analyses were further used to build the prediction model, and its accuracy was evaluated in the train and validation sets. Finally, in vitro and in vivo experiments were conducted to confirm the impact of the high-risk gene IFNA2 on EC. RESULTS Patients were sorted into two ICD clusters, with survival analysis revealing divergent prognoses between the clusters. The Cox regression analysis identified prognostic risk genes, and the LASSO analysis constructed a model based on 9 of these genes. Notably, this model displayed excellent predictive accuracy when validated. Finally, increased IFNA2 levels led to decreased vitality, proliferation, and invasiveness in vitro. IFNA2 also has significant tumor inhibiting effect in vivo. CONCLUSIONS The ICD-related model can accurately predict the prognosis of patients with EC, and IFNA2 may be a potential treatment target.
Collapse
Affiliation(s)
- Zhenran Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, Hefei 230032, Anhui, China
| | - Yue Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, Hefei 230032, Anhui, China
| | - Pin Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, Hefei 230032, Anhui, China
| | - Chen Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, Hefei 230032, Anhui, China
| | - Yujie Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, Hefei 230032, Anhui, China
| | - Yaru Yu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, Hefei 230032, Anhui, China
| | - Huifen Xiang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, Hefei 230032, Anhui, China
| |
Collapse
|
38
|
Zhang F, Huang B, Utturkar SM, Luo W, Cresswell G, Herr SA, Zheng S, Napoleon JV, Jiang R, Zhang B, Liu M, Lanman N, Srinivasarao M, Ratliff TL, Low PS. Tumor-specific activation of folate receptor beta enables reprogramming of immune cells in the tumor microenvironment. Front Immunol 2024; 15:1354735. [PMID: 38384467 PMCID: PMC10879311 DOI: 10.3389/fimmu.2024.1354735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
Folate receptors can perform folate transport, cell adhesion, and/or transcription factor functions. The beta isoform of the folate receptor (FRβ) has attracted considerable attention as a biomarker for immunosuppressive macrophages and myeloid-derived suppressor cells, however, its role in immunosuppression remains uncharacterized. We demonstrate here that FRβ cannot bind folate on healthy tissue macrophages, but does bind folate after macrophage incubation in anti-inflammatory cytokines or cancer cell-conditioned media. We further show that FRβ becomes functionally active following macrophage infiltration into solid tumors, and we exploit this tumor-induced activation to target a toll-like receptor 7 agonist specifically to immunosuppressive myeloid cells in solid tumors without altering myeloid cells in healthy tissues. We then use single-cell RNA-seq to characterize the changes in gene expression induced by the targeted repolarization of tumor-associated macrophages and finally show that their repolarization not only changes their own phenotype, but also induces a proinflammatory shift in all other immune cells of the same tumor mass, leading to potent suppression of tumor growth. Because this selective reprogramming of tumor myeloid cells is accompanied by no systemic toxicity, we propose that it should constitute a safe method to reprogram the tumor microenvironment.
Collapse
Affiliation(s)
- Fenghua Zhang
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| | - Bo Huang
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| | - Sagar M. Utturkar
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN, United States
| | - Weichuan Luo
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| | - Gregory Cresswell
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
| | - Seth A. Herr
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| | - Suilan Zheng
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| | - John V. Napoleon
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| | - Rina Jiang
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| | - Boning Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Muyi Liu
- University of North Texas Health Science Center at Fort Worth, Fort Worth, TX, United States
- Department of Computer Sciences, Purdue University, West Lafayette, IN, United States
| | - Nadia Lanman
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN, United States
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
| | - Madduri Srinivasarao
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| | - Timothy L. Ratliff
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
| | - Philip S. Low
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
39
|
Jiang G, Hong J, Sun L, Wei H, Gong W, Wang S, Zhu J. Glycolysis regulation in tumor-associated macrophages: Its role in tumor development and cancer treatment. Int J Cancer 2024; 154:412-424. [PMID: 37688376 DOI: 10.1002/ijc.34711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/27/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023]
Abstract
Tumor-associated macrophages constitute the main cell population in the tumor microenvironment and play a crucial role in regulating the microenvironment composition. Emerging evidence has revealed that the metabolic profile determines the tumor-associated macrophage phenotype. Tumor-associated macrophage function is highly dependent on glucose metabolism, with glycolysis being the major metabolic pathway. Recent reports have demonstrated diversity in glucose flux of tumor-associated macrophages and complex substance communication with cancer cells. However, how the glucose flux in tumor-associated macrophages connects with glycolysis to influence tumor progression and the tumor microenvironment is still obscure. Moreover, while the development of single-cell sequencing technology allows a clearer and more accurate classification of tumor-associated macrophages, the metabolic profiles of tumor-associated macrophages from the perspective of single-cell omics has not been well summarized. Here, we review the current state of knowledge on glucose metabolism in tumor-associated macrophages and summarize the metabolic profiles of different tumor-associated macrophage subtypes from the perspective of single-cell omics. Additionally, we describe the current strategies targeting glycolysis in tumor-associated macrophages for cancer therapy.
Collapse
Affiliation(s)
- Guangyi Jiang
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang, Hangzhou, China
| | - Junjie Hong
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang, Hangzhou, China
| | - Lu Sun
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang, Hangzhou, China
| | - Haibin Wei
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang, Hangzhou, China
| | - Wangang Gong
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang, Hangzhou, China
| | - Shu Wang
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang, Hangzhou, China
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Jianqing Zhu
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang, Hangzhou, China
| |
Collapse
|
40
|
Lin J, Rao D, Zhang M, Gao Q. Metabolic reprogramming in the tumor microenvironment of liver cancer. J Hematol Oncol 2024; 17:6. [PMID: 38297372 PMCID: PMC10832230 DOI: 10.1186/s13045-024-01527-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/21/2024] [Indexed: 02/02/2024] Open
Abstract
The liver is essential for metabolic homeostasis. The onset of liver cancer is often accompanied by dysregulated liver function, leading to metabolic rearrangements. Overwhelming evidence has illustrated that dysregulated cellular metabolism can, in turn, promote anabolic growth and tumor propagation in a hostile microenvironment. In addition to supporting continuous tumor growth and survival, disrupted metabolic process also creates obstacles for the anticancer immune response and restrains durable clinical remission following immunotherapy. In this review, we elucidate the metabolic communication between liver cancer cells and their surrounding immune cells and discuss how metabolic reprogramming of liver cancer impacts the immune microenvironment and the efficacy of anticancer immunotherapy. We also describe the crucial role of the gut-liver axis in remodeling the metabolic crosstalk of immune surveillance and escape, highlighting novel therapeutic opportunities.
Collapse
Affiliation(s)
- Jian Lin
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongning Rao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Mao Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Qiang Gao
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China.
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, 200032, China.
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
41
|
Wang J, Zhu N, Su X, Gao Y, Yang R. Novel tumor-associated macrophage populations and subpopulations by single cell RNA sequencing. Front Immunol 2024; 14:1264774. [PMID: 38347955 PMCID: PMC10859433 DOI: 10.3389/fimmu.2023.1264774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/30/2023] [Indexed: 02/15/2024] Open
Abstract
Tumor-associated macrophages (TAMs) are present in almost all solid tumor tissues. 16They play critical roles in immune regulation, tumor angiogenesis, tumor stem cell activation, tumor invasion and metastasis, and resistance to therapy. However, it is unclear how TAMs perform these functions. With the application of single-cell RNA sequencing (scRNA-seq), it has become possible to identify TAM subpopulations associated with distinct functions. In this review, we discuss four novel TAM subpopulations in distinct solid tumors based on core gene signatures by scRNA-seq, including FCN1 +, SPP1 +, C1Q + and CCL18 + TAMs. Functional enrichment and gene expression in scRNA-seq data from different solid tumor tissues found that FCN1 + TAMs may induce inflammation; SPP1 + TAMs are potentially involved in metastasis, angiogenesis, and cancer cell stem cell activation, whereas C1Q + TAMs participate in immune regulation and suppression; And CCL18 + cells are terminal immunosuppressive macrophages that not only have a stronger immunosuppressive function but also enhance tumor metastasis. SPP1 + and C1Q + TAM subpopulations can be further divided into distinct populations with different functions. Meanwhile, we will also present emerging evidence highlighting the separating macrophage subpopulations associated with distinct functions. However, there exist the potential disconnects between cell types and subpopulations identified by scRNA-seq and their actual function.
Collapse
Affiliation(s)
- Juanjuan Wang
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Ningning Zhu
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Xiaomin Su
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Yunhuan Gao
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Rongcun Yang
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| |
Collapse
|
42
|
Lei Y, Guo X, Luo Y, Niu X, Xi Y, Xiao L, He D, Bian Y, Zhang Y, Wang L, Peng X, Wang Z, Chen G. Synovial microenvironment-influenced mast cells promote the progression of rheumatoid arthritis. Nat Commun 2024; 15:113. [PMID: 38168103 PMCID: PMC10761862 DOI: 10.1038/s41467-023-44304-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
Mast cells are phenotypically and functionally heterogeneous, and their state is possibly controlled by local microenvironment. Therefore, specific analyses are needed to understand whether mast cells function as powerful participants or dispensable bystanders in specific diseases. Here, we show that degranulation of mast cells in inflammatory synovial tissues of patients with rheumatoid arthritis (RA) is induced via MAS-related G protein-coupled receptor X2 (MRGPRX2), and the expression of MHC class II and costimulatory molecules on mast cells are upregulated. Collagen-induced arthritis mice treated with a combination of anti-IL-17A and cromolyn sodium, a mast cell membrane stabilizer, show significantly reduced clinical severity and decreased bone erosion. The findings of the present study suggest that synovial microenvironment-influenced mast cells contribute to disease progression and may provide a further mast cell-targeting therapy for RA.
Collapse
Affiliation(s)
- Yunxuan Lei
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, China
| | - Xin Guo
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, China
| | - Yanping Luo
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, China
| | - Xiaoyin Niu
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, China
| | - Yebin Xi
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, China
| | - Lianbo Xiao
- Department of Joint Surgery, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Dongyi He
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanqin Bian
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yong Zhang
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, China
| | - Li Wang
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, China
| | - Xiaochun Peng
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhaojun Wang
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, China.
| | - Guangjie Chen
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, China.
| |
Collapse
|
43
|
Wang B, Zhou A, Pan Q, Li Y, Xi Z, He K, Li D, Li B, Liu Y, Liu Y, Xia Q. Adenosinergic metabolism pathway: an emerging target for improving outcomes of solid organ transplantation. Transl Res 2024; 263:93-101. [PMID: 37678756 DOI: 10.1016/j.trsl.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/25/2023] [Accepted: 09/01/2023] [Indexed: 09/09/2023]
Abstract
Extracellular nucleotides are widely recognized as crucial modulators of immune responses in peripheral tissues. Adenosine triphosphate (ATP) and adenosine are key components of extracellular nucleotides, the balance of which contributes to immune homeostasis. Under tissue injury, ATP exerts its pro-inflammatory function, while the adenosinergic pathway rapidly degrades ATP to immunosuppressive adenosine, thus inhibiting excessive and uncontrolled inflammatory responses. Previous reviews have explored the immunoregulatory role of extracellular adenosine in various pathological conditions, especially inflammation and malignancy. However, current knowledge regarding adenosine and adenosinergic metabolism in the context of solid organ transplantation remains fragmented. In this review, we summarize the latest information on adenosine metabolism and the mechanisms by which it suppresses the effector function of immune cells, as well as highlight the protective role of adenosine in all stages of solid organ transplantation, including reducing ischemia reperfusion injury during organ procurement, alleviating rejection, and promoting graft regeneration after transplantation. Finally, we discuss the potential for future clinical translation of adenosinergic pathway in solid organ transplantation.
Collapse
Affiliation(s)
- Bingran Wang
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China
| | - Aiwei Zhou
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China
| | - Qi Pan
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China
| | - Yanran Li
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China
| | - Zhifeng Xi
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China
| | - Kang He
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China
| | - Dan Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongbo Liu
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China
| | - Yuan Liu
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China.
| | - Qiang Xia
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China
| |
Collapse
|
44
|
Wen D, Wang S, Yu J, Yu T, Liu Z, Li Y. Analysis of clinical significance and molecular characteristics of methionine metabolism and macrophage-related patterns in hepatocellular carcinoma based on machine learning. Cancer Biomark 2024; 39:37-48. [PMID: 37522195 PMCID: PMC10977431 DOI: 10.3233/cbm-220421] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 06/07/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND Increasing evidence has indicated that abnormal methionine metabolic activity and tumour-associated macrophage infiltration are correlated with hepatocarcinogenesis. However, the relationship between methionine metabolic activity and tumour-associated macrophage infiltration is unclear in hepatocellular carcinoma, and it contributes to the occurrence and clinical outcome of hepatocellular carcinoma (HCC). Thus, we systematically analysed the expression patterns of methionine metabolism and macrophage infiltration in hepatocellular carcinoma using bioinformatics and machine learning methods and constructed novel diagnostic and prognostic models of HCC. METHODS In this study, we first mined the four largest HCC mRNA microarray datasets with patient clinical data in the GEO database, including 880 tissue mRNA expression datasets. Using GSVA analysis and the CIBERSORT and EPIC algorithms, we quantified the methionine metabolic activity and macrophage infiltration degree of each sample. WGCNA was used to identify the gene modules most related to methionine metabolism and tumour-associated macrophage infiltration in HCC. The KNN algorithm was used to cluster gene expression patterns in HCC. Random forest, logistic regression, Cox regression analysis and other algorithms were used to construct the diagnosis and prognosis model of HCC. The above bioinformatics analysis results were also verified by independent datasets (TCGA-LIHC, ICGC-JP and CPTAC datasets) and immunohistochemical fluorescence based on our external HCC panel. Furthermore, we carried out pancancer analysis to verify the specificity of the above model and screened a wide range of drug candidates. RESULTS We identified two methionine metabolism and macrophage infiltration expression patterns, and their prognoses were different in hepatocellular carcinoma. We constructed novel diagnostic and prognostic models of hepatocellular carcinoma with good diagnostic efficacy and differentiation ability. CONCLUSIONS Methionine metabolism is closely related to tumour-associated macrophage infiltration in hepatocellular carcinoma and can help in the clinical diagnosis and prognosis of HCC.
Collapse
Affiliation(s)
- Diguang Wen
- Hepatobiliary Surgery Department, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Gastroenterology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shuling Wang
- Hepatobiliary Surgery Department, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Gastroenterology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiajian Yu
- Department of Hepatology, Chongqing University Filing hospital, Chongqing, China
| | - Ting Yu
- Department of Hepatology, Chongqing University Filing hospital, Chongqing, China
| | - Zuojin Liu
- Hepatobiliary Surgery Department, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yue Li
- Hepatobiliary Surgery Department, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
45
|
Zhang X, Yu C, Zhao S, Wang M, Shang L, Zhou J, Ma Y. The role of tumor-associated macrophages in hepatocellular carcinoma progression: A narrative review. Cancer Med 2023; 12:22109-22129. [PMID: 38098217 PMCID: PMC10757104 DOI: 10.1002/cam4.6717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 12/31/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in the world, with complex etiology and mechanism, and a high mortality rate. Tumor-associated macrophages (TAMs) are an important part of the HCC tumor microenvironment. Studies in recent years have shown that TAMs are involved in multiple stages of HCC and are related to treatment and prognosis in HCC. The specific mechanisms between TAMs and HCC are gradually being revealed. This paper reviews recent advances in the mechanisms associated with TAMs in HCC, concentrating on an overview of effects of TAMs on drug resistance in HCC and the signaling pathways linked with HCC, providing clues for the treatment and prognosis determination of HCC.
Collapse
Affiliation(s)
- Xinyi Zhang
- Department of General Surgery, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Chao Yu
- Department of General Surgery, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Siqi Zhao
- Department of General Surgery, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Min Wang
- Department of General Surgery, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Longcheng Shang
- Department of General Surgery, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Jin Zhou
- Department of General Surgery, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Yong Ma
- Department of General Surgery, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| |
Collapse
|
46
|
Liu S, Xu W, Shu H, Dai Y, Du Y, Liu Y, Huang L, Sun G. Associations of circulating immunomarkers with the efficacy of immunotherapy for primary hepatic carcinoma. Cancer Med 2023; 12:21830-21848. [PMID: 38054365 PMCID: PMC10757102 DOI: 10.1002/cam4.6754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/29/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND Peripheral blood immunomarkers are associated with prognosis in patients with solid tumors receiving chemotherapy or immunotherapy. In this study, the associations of circulating neutrophil-to-lymphocyte ratio (NLR), monocyte-to-lymphocyte ratio (MLR), and platelet-to-lymphocyte ratio (PLR), as well as their dynamic changes were investigated in relation to the efficacy of immunotherapy in patients with primary liver cancer. METHODS Comparisons were made between NLR, MLR, and PLR among individuals exhibiting disease control (defined as the best response of partial response [PR] or stable disease [SD]) and those with progressive disease (PD). Additionally, disease control rate (DCR), overall survival (OS), and progression-free survival (PFS) were compared between individuals with different NLR, MLR, and PLR levels before initiating palliative immunotherapy. Furthermore, comparisons were made between patients with different alterations in the ratios at the second cycle of immunotherapy compared to baseline. These analyses were performed using univariate and multivariate approaches. A total of 119 Chinese patients with liver cancer who underwent immunotherapy were included in this study, which focused on hepatocellular carcinoma (HCC). RESULTS In cases with HCC (n = 104), the cutoffs of NLR, MLR, and PLR to differentiate treatment responders from nonresponders were 3.38, 0.28, and 227.18, respectively. Patients with the best response of PR or SD had significantly lower NLR and MLR. Patients with NLR <3.38 and those with MLR <0.28 significantly had longer OS and PFS than their counterparts, and those with PLR <227.18 had significantly longer PFS, both in overall patients and in various patient subgroups. Lower NLR, MLR, or PLR was associated with earlier BCLC stage, fewer metastatic sites, less frequent extrahepatic metastasis, or better performance status. For individuals who had an unfavorable baseline NLR ≥3.38, MLR ≥0.28, or a favorable baseline PLR <227.18 prior to first immunotherapy, a decrease in NLR, MLR, or PLR at Cycle 2 of immunotherapy was significantly associated with a higher DCR. CONCLUSIONS Among patients with HCC who received immunotherapy, lower NLR, and MLR at baseline in overall patients were significantly associated with better disease control and more favorable survival outcomes (both OS and PFS), and lower PLR was significantly associated with longer PFS. The findings of this research may offer useful hints foranoptimized selection of patients with liver cancer who may benefit more from immunotherapy.
Collapse
Affiliation(s)
- Sha Liu
- Department of OncologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Wentao Xu
- School of Clinical MedicineAnhui Medical UniversityHefeiAnhuiChina
| | - Hang Shu
- Department of OncologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Ying Dai
- Department of OncologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Yingying Du
- Department of OncologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Yunmei Liu
- School of Cultural Heritage and Information ManagementShanghai UniversityShanghaiChina
| | - Lei Huang
- Department of Oncology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Medical Center on Aging of Ruijin Hospital, MCARJHShanghai Jiaotong University School of MedicineShanghaiChina
| | - Guoping Sun
- Department of OncologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| |
Collapse
|
47
|
Pang J, Koh TJ. Proliferation of monocytes and macrophages in homeostasis, infection, injury, and disease. J Leukoc Biol 2023; 114:532-546. [PMID: 37555460 PMCID: PMC10673715 DOI: 10.1093/jleuko/qiad093] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/30/2023] [Accepted: 07/31/2023] [Indexed: 08/10/2023] Open
Abstract
Monocytes (Mo) and macrophages (Mφ) play important roles in the function of tissues, organs, and systems of all animals during homeostasis, infection, injury, and disease. For decades, conventional wisdom has dictated that Mo and Mφ are end-stage cells that do not proliferate and that Mφ accumulation in tissues is the result of infiltration of Mo from the blood and subsequent differentiation to Mφ. However, reports from the early 1900s to the present describe evidence of Mo and Mφ proliferation in different tissues and contexts. The purpose of this review is to summarize both historical and current evidence for the contribution of Mφ proliferation to their accumulation in different tissues during homeostasis, infection, injury, and disease. Mφ proliferate in different organs and tissues, including skin, peritoneum, lung, heart, aorta, kidney, liver, pancreas, brain, spinal cord, eye, adipose tissue, and uterus, and in different species including mouse, rat, rabbit, and human. Mφ can proliferate at different stages of differentiation with infiltrating Mo-like cells proliferating in certain inflammatory contexts (e.g. skin wounding, kidney injury, bladder and liver infection) and mature resident Mφ proliferating in other inflammatory contexts (e.g. nematode infection, acetaminophen liver injury) and during homeostasis. The pathways involved in stimulating Mφ proliferation also may be context dependent, with different cytokines and transcription factors implicated in different studies. Although Mφ are known to proliferate in health, injury, and disease, much remains to be learned about the regulation of Mφ proliferation in different contexts and its impact on the homeostasis, injury, and repair of different organs and tissues.
Collapse
Affiliation(s)
- Jingbo Pang
- Center for Wound Healing and Tissue Regeneration, Department of Kinesiology and Nutrition, University of Illinois at Chicago, 1919 West Taylor Street, Chicago, IL 60612-7246, United States
| | - Timothy J Koh
- Center for Wound Healing and Tissue Regeneration, Department of Kinesiology and Nutrition, University of Illinois at Chicago, 1919 West Taylor Street, Chicago, IL 60612-7246, United States
| |
Collapse
|
48
|
Xing J, Zhang J, Wang J. The Immune Regulatory Role of Adenosine in the Tumor Microenvironment. Int J Mol Sci 2023; 24:14928. [PMID: 37834375 PMCID: PMC10573203 DOI: 10.3390/ijms241914928] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Adenosine, an immunosuppressive metabolite, is produced by adenosine triphosphate (ATP) released from dying or stressed cells and is found at high levels in the tumor microenvironment of most solid tumors. It mediates pro-tumor activities by inducing tumor cell proliferation, migration or invasion, tumor tissue angiogenesis, and chemoresistance. In addition, adenosine plays an important role in regulating anti-tumor immune responses and facilitating tumor immune escape. Adenosine receptors are broadly expressed by tumor-infiltrated immune cells, including suppressive tumor-associated macrophages and CD4+ regulatory T cells, as well as effector CD4+ T cells and CD8+ cytotoxic T lymphocytes. Therefore, adenosine is indispensable in down-regulating anti-tumor immune responses in the tumor microenvironment and contributes to tumor progression. This review describes the current progress on the role of adenosine/adenosine receptor pathway in regulating the tumor-infiltrating immune cells that contribute to tumor immune evasion and aims to provide insights into adenosine-targeted tumor immunotherapy.
Collapse
Affiliation(s)
- Jianlei Xing
- Department of Immunology, School of Basic Medicine, China Medical University, Shenyang 100001, China
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Jinhua Zhang
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Jinyan Wang
- Department of Immunology, School of Basic Medicine, China Medical University, Shenyang 100001, China
| |
Collapse
|
49
|
Li Z, Wang Y, Xing R, Zeng H, Yu XJ, Zhang YJ, Xu J, Zheng L. Cholesterol Efflux Drives the Generation of Immunosuppressive Macrophages to Promote the Progression of Human Hepatocellular Carcinoma. Cancer Immunol Res 2023; 11:1400-1413. [PMID: 37467346 DOI: 10.1158/2326-6066.cir-22-0907] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/07/2023] [Accepted: 07/18/2023] [Indexed: 07/21/2023]
Abstract
Cholesterol is often enriched in tumor microenvironment (TME); however, its impact on disease progression varies in different tissues and cells. Monocytes/macrophages (Mφ) are major components and regulators of the TME and play pivotal roles in tumor progression and therapeutic responses. We aimed to investigate the profile, effects, and regulatory mechanisms of Mφ cholesterol metabolism in the context of human hepatocellular carcinoma (HCC). Here, we found that patients with high serum levels of cholesterol had shorter survival times and lower response rates to anti-PD-1 treatment. However, the cholesterol content in tumor-infiltrating monocytes/Mφ was significantly lower than that in their counterparts in paired nontumor tissues. The expression of the cholesterol efflux transporter, ABCA1, was upregulated in tumor monocytes/Mφ, and ABCA1 upregulation positively associated with decreased cellular cholesterol content and increased serum cholesterol levels. Mechanistically, autocrine cytokines from tumor-treated monocytes increased LXRα and ABCA1 expression, which led to the generation of immature and immunosuppressive Mφ. Although exogenous cholesterol alone had little direct effect on Mφ, it did act synergistically with tumor-derived factors to promote ABCA1 expression in Mφ with more immunosuppressive features. Moreover, high numbers of ABCA1+ Mφ in HCC tumors associated with reduced CD8+ T-cell infiltration and predicted poor clinical outcome for patients. Our results revealed that dysregulated cholesterol homeostasis, due to the collaborative effects of tumors and exogenous cholesterol, drives the generation of immunosuppressive Mφ. The selective modulation of cholesterol metabolism in Mφ may represent a novel strategy for cancer treatment.
Collapse
Affiliation(s)
- Zhixiong Li
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Yongchun Wang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Rui Xing
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Huilan Zeng
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Xing-Juan Yu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Yao-Jun Zhang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Jing Xu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Limin Zheng
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| |
Collapse
|
50
|
Vincenzi F, Pasquini S, Contri C, Cappello M, Nigro M, Travagli A, Merighi S, Gessi S, Borea PA, Varani K. Pharmacology of Adenosine Receptors: Recent Advancements. Biomolecules 2023; 13:1387. [PMID: 37759787 PMCID: PMC10527030 DOI: 10.3390/biom13091387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Adenosine receptors (ARs) are widely acknowledged pharmacological targets yet are still underutilized in clinical practice. Their ubiquitous distribution in almost all cells and tissues of the body makes them, on the one hand, excellent candidates for numerous diseases, and on the other hand, intrinsically challenging to exploit selectively and in a site-specific manner. This review endeavors to comprehensively depict the substantial advancements witnessed in recent years concerning the development of drugs that modulate ARs. Through preclinical and clinical research, it has become evident that the modulation of ARs holds promise for the treatment of numerous diseases, including central nervous system disorders, cardiovascular and metabolic conditions, inflammatory and autoimmune diseases, and cancer. The latest studies discussed herein shed light on novel mechanisms through which ARs exert control over pathophysiological states. They also introduce new ligands and innovative strategies for receptor activation, presenting compelling evidence of efficacy along with the implicated signaling pathways. Collectively, these emerging insights underscore a promising trajectory toward harnessing the therapeutic potential of these multifaceted targets.
Collapse
Affiliation(s)
- Fabrizio Vincenzi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| | - Silvia Pasquini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Chiara Contri
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| | - Martina Cappello
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| | - Manuela Nigro
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| | - Alessia Travagli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| | - Stefania Merighi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| | - Stefania Gessi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| | | | - Katia Varani
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| |
Collapse
|