1
|
Li X, Han M, Zhu H, Pan Y, Su C, Liu Y, Liao Z, Zhang B, Chen X. m 6A-Mediated TMCO3 Promotes Hepatocellular Carcinoma Progression by Facilitating the Membrane Translocation and Activation of AKT. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2504187. [PMID: 40285646 DOI: 10.1002/advs.202504187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Indexed: 04/29/2025]
Abstract
The transmembrane and coiled-coil domains 3 (TMCO3) are highly expressed in many tumors. However, the underlying mechanisms governing the way in which TMCO3 affects the progression of hepatocellular carcinoma (HCC) remain unclear. This study screens out the molecule TMCO3 with high N6-methyladenosine (m6A) modification level in tumor samples compared to the adjacent non-cancerous tissues of three pairs of HCC patients through Methylated RNA Immunoprecipitation Sequencing (MeRIP-seq) and RNA sequencing (RNA-seq). Subsequently, the oncogenic effect of TMCO3 in HCC is verified through in vivo and in vitro experiments. AlkB Homolog 5 (ALKBH5), an m6A demethylase of TMCO3 is then screened out. The following experiments demonstrate that TMCO3 can activate AKT directly through the Phosphatidylinositol-3-Kinase (PI3K) pathway, thus promoting the progression of HCC. Meanwhile, the phosphorylation site on TMCO3: the 85th amino acid-serine, and mutation of this site can directly impair the activity and membrane translocation of AKT is found. Finally, the carcinogenic effect of TMCO3 is further elucidated in HCC through the orthotopic treatment model and the hydrodynamic tail vein injection treatment model. The findings can provide a potential target for targeted AKT treatment in patients with HCC and verify a possible prognostic marker in HCC.
Collapse
Affiliation(s)
- Xinxin Li
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China
| | - Mengzhen Han
- Department of General Surgery, Ezhou Central Hospital, Ezhou, Hubei, 436099, China
| | - He Zhu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China
| | - Yonglong Pan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China
| | - Chen Su
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China
| | - Yachong Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China
| | - Zhibin Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, Hubei, 430030, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, Hubei, 430030, China
| |
Collapse
|
2
|
Liao C, Wang P, Zeng Q, Yan G, Gao J, Liu J, Yan J, Zhang G, Liu Y, Wang X. Piezo1-Mediated Calcium Flux Transfers Mechanosignal to YAP to Stimulate Matrix Production in Keloid. J Invest Dermatol 2025:S0022-202X(25)00415-4. [PMID: 40254148 DOI: 10.1016/j.jid.2025.03.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/17/2025] [Accepted: 03/29/2025] [Indexed: 04/22/2025]
Abstract
Keloids are fibroproliferative diseases affecting millions worldwide, but curing keloids remains challenging. Mechanical force is a common initiator and driver of keloids, and blocking the pro-adhesive signaling pathways is expected to cure keloids. This study found higher levels of Piezo1 in human keloid fibroblasts (KFbs) compared with normal skin fibroblasts (Fbs). Single-cell transcriptome analysis revealed a correlation of Piezo1 with YAP in KFbs. Knockdown of Piezo1/YAP in KFbs versus Fbs decreased CCN2 and CCN1 expression and fibrosis-related cell behaviors, identifying Piezo1 and YAP as upstream signals of pro-adhesive signaling loop in keloids. Treatment of patient-derived keloid xenograft model with Piezo1 inhibitor GsMTx4 and YAP inhibitor Verteporfin reduced keloid volume and decreased type I/III collagen ratio. Atomic force microscopy further confirmed the biomechanical improvements of keloids in elasticity, viscoelasticity, and roughness ex vivo. In addition, the Ca2+-sensitive fluorescent indicator Fluo-3/AM and double-labelling immunofluorescence stains showed Piezo1 transferred mechanosignal to increase YAP nuclear translocation via calcium flux. Finally, transcriptomics revealed target genes of the Piezo1/YAP signaling pathway, such as TBX3, SESN2, SMAD7, FOSB, JARID2, and HAS2. Consequently, the Piezo1/calcium flux/YAP signaling axis contributes to the mechanically induced pro-adhesive signaling pathway, and thus, Piezo1 and YAP are promising targets for keloid treatment.
Collapse
Affiliation(s)
- Caihe Liao
- Department of Phototherapy at Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Peiru Wang
- Department of Phototherapy at Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Qingyu Zeng
- Department of Phototherapy at Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Guorong Yan
- Department of Phototherapy at Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Jiawen Gao
- Department of Phototherapy at Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Jia Liu
- Department of Phototherapy at Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Jia Yan
- Department of Phototherapy at Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Guolong Zhang
- Department of Phototherapy at Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Yeqiang Liu
- Department of Pathology at Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Xiuli Wang
- Department of Phototherapy at Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| |
Collapse
|
3
|
Zhong B, Du J, Liu F, Sun S. The Role of Yes-Associated Protein in Inflammatory Diseases and Cancer. MedComm (Beijing) 2025; 6:e70128. [PMID: 40066231 PMCID: PMC11892025 DOI: 10.1002/mco2.70128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 02/02/2025] [Accepted: 02/11/2025] [Indexed: 03/17/2025] Open
Abstract
Yes-associated protein (YAP) plays a central role in the Hippo pathway, primarily governing cell proliferation, differentiation, and apoptosis. Its significance extends to tumorigenesis and inflammatory conditions, impacting disease initiation and progression. Given the increasing relevance of YAP in inflammatory disorders and cancer, this study aims to elucidate its pathological regulatory functions in these contexts. Specifically, we aim to investigate the involvement and molecular mechanisms of YAP in various inflammatory diseases and cancers. We particularly focus on how YAP activation, whether through Hippo-dependent or independent pathways, triggers the release of inflammation and inflammatory mediators in respiratory, cardiovascular, and digestive inflammatory conditions. In cancer, YAP not only promotes tumor cell proliferation and differentiation but also modulates the tumor immune microenvironment, thereby fostering tumor metastasis and progression. Additionally, we provide an overview of current YAP-targeted therapies. By emphasizing YAP's role in inflammatory diseases and cancer, this study aims to enhance our understanding of the protein's pivotal involvement in disease processes, elucidate the intricate pathological mechanisms of related diseases, and contribute to future drug development strategies targeting YAP.
Collapse
Affiliation(s)
- Bing Zhong
- Department of Otolaryngology‐Head and Neck SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
| | - Jintao Du
- Department of Otolaryngology‐Head and Neck SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
| | - Feng Liu
- Department of Otolaryngology‐Head and Neck SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
| | - Silu Sun
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesChinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and ManagementWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| |
Collapse
|
4
|
Shu Q, Zhu J, Mo J, Wei X, Zhu Z, Chen X, He F, Zhong L. Identification and validation of PANoptosis-related LncRNAs prognosis system in hepatocellular carcinoma. Sci Rep 2025; 15:6030. [PMID: 39972122 PMCID: PMC11840146 DOI: 10.1038/s41598-025-90498-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 02/13/2025] [Indexed: 02/21/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common solid malignancies in the world. Due to the limited effectiveness of current drug treatments, further research on HCC is necessary. PANoptosis is defined as an inflammatory RCD whose main features combine pyroptosis, apoptosis and necroptosis which cannot be explained by any of these three RCDs alone. In HCC, risk stratification based on PANoptosis-associated lncRNAs has clinical application potential. In this study, we explored HCC related PANoptosis-related lncRNAs (PRLs) by analyzing significantly differentially expressed genes in HCC. HCC-associated PRL scores were established by WGCNA, LASSO analysis and multivariate Cox assessment. Subsequently, we verified the prognostic analysis ability of PRL score for HCC patients, and on this basis established a prognostic risk assessment model for HCC and verified its reliability. The relationship between PRL score and immune infiltration as well as drug sensitivity was further analyzed to evaluate the clinical reference value of this model. Western blot analysis and PCR further verified the reliability of bioinformatics results. The observed suppression of HCC progression and invasiveness following selected PRL knockdown further validated the reliability of our bioinformatics analysis results. Our results provide new evidence for the role of PANoptosis-associated lncRNAs in HCC.
Collapse
Affiliation(s)
- Qi Shu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| | - Junfeng Zhu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Jiaping Mo
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Xiaoyan Wei
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Zhenjie Zhu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Xiaojuan Chen
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Fugen He
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| | - Like Zhong
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| |
Collapse
|
5
|
Liu Z, Zhang C, Xiao J, He Y, Liang H, Huang J, Cai Z, Yi Z, Chen M, Li Y, Zhang J, liu F, Ren P, Li H, Chen J, Fan B, Hu J, Zu X, Deng D. TBX3 shapes an immunosuppressive microenvironment and induces immunotherapy resistance. Theranostics 2025; 15:1966-1986. [PMID: 39897553 PMCID: PMC11780534 DOI: 10.7150/thno.103175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/28/2024] [Indexed: 02/04/2025] Open
Abstract
Background: Identifying biomarkers that predict immunotherapy efficacy and discovering new targets for combination therapies are critical elements for improving the prognosis of bladder cancer (BLCA) patients. Methods: Firstly, we explored the expression patterns of TBX3 in normal and pan-cancer tissues and the correlation between TBX3 and the immune microenvironment using data from multiple public databases. Then, we combined various techniques, including bulk RNA sequencing, single-cell RNA sequencing, high-throughput cytokine arrays, functional experiments, ProcartaPlex multiplex immunoassays and TissueFAXS panoramic tissue quantification assays, to demonstrate that TBX3 shapes an immunosuppressive tumor microenvironment (TME) in BLCA. Results: We identified TBX3 as a key factor associated with the immunosuppressive microenvironment in BLCA through a systematic multi-omics analysis. We found that TBX3 is primarily expressed in malignant cells, where TBX3high tumor cells increase the secretion of TGFβ1, which promotes the infiltration of cancer-associated fibroblasts (CAFs), thereby forming an immunosuppressive microenvironment. We further demonstrated that TBX3 enhances TGFβ1 expression by binding to the TGFβ1 promoter, and blocking TGFβ1 counteracts the immunosuppressive effects of TBX3. Moreover, TBX3 reduced the cancer-killing efficiency of CD8+ T cells by decreasing the proportion of GZMB+ CD8+ T cells, and knocking down TBX3 combined with anti-PD-1 treatment increased CD8+ T cell infiltration and reduced CAFs in vivo. We also validated the inverse relationship between TBX3+ malignant cells and CD8+ T cells and the positive relationship with CAFs in tissue microarrays. Lastly, we found that TBX3 predicted immunotherapy efficacy in our real-world immunotherapy cohort and multiple public cohorts. Conclusion: In summary, TBX3 promotes BLCA progression and immunotherapy resistance by inducing an immunosuppressive microenvironment, and targeting TBX3 could enhance the efficacy of immunotherapy for BLCA.
Collapse
Affiliation(s)
- Zhi Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- Department of Urology, The Second Affiliated Hospital of Guizhou Medical University, Kaili, China
| | - Chunyu Zhang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiatong Xiao
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders and FuRong Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Yunbo He
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders and FuRong Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Haisu Liang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders and FuRong Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Jinliang Huang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders and FuRong Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Zhiyong Cai
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders and FuRong Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenglin Yi
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders and FuRong Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Mingfeng Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders and FuRong Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Yixiao Li
- Department of Urology, The second people's Hospital of Hunan province, Changsha, China
| | - Jun Zhang
- Department of Imaging, The first people's Hospital of Kaili city, Kaili, China
| | - Fenglian liu
- Department of Urology, The Second Affiliated Hospital of Guizhou Medical University, Kaili, China
| | - Peng Ren
- Department of Urology, The Second Affiliated Hospital of Guizhou Medical University, Kaili, China
| | - Huihuang Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders and FuRong Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Jinbo Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders and FuRong Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Benyi Fan
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders and FuRong Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Jiao Hu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders and FuRong Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Xiongbing Zu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- Department of Urology, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, China
| | - Dingshan Deng
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders and FuRong Laboratory, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
6
|
Lehrich BM, Delgado ER, Yasaka TM, Liu S, Cao C, Liu Y, Taheri M, Guan X, Koeppen H, Singh S, Liu JJ, Singh-Varma A, Krutsenko Y, Poddar M, Hitchens TK, Foley LM, Liang B, Rialdi A, Rai RP, Patel P, Riley M, Bell A, Raeman R, Dadali T, Luke JJ, Guccione E, Ebrahimkhani MR, Lujambio A, Chen X, Maier M, Wang Y, Broom W, Tao J, Monga SP. Precision targeting of β-catenin induces tumor reprogramming and immunity in hepatocellular cancers. RESEARCH SQUARE 2024:rs.3.rs-5494074. [PMID: 39711542 PMCID: PMC11661417 DOI: 10.21203/rs.3.rs-5494074/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
First-line immune checkpoint inhibitor (ICI) combinations show responses in subsets of hepatocellular carcinoma (HCC) patients. Nearly half of HCCs are Wnt-active with mutations in CTNNB1 (encoding for β-catenin), AXIN1/2, or APC, and demonstrate limited benefit to ICI due to an immune excluded tumor microenvironment. We show significant tumor responses in multiple β-catenin-mutated immunocompetent HCC models to a novel siRNA encapsulated in lipid nanoparticle targeting CTNNB1 (LNP-CTNNB1). Both single-cell and spatial transcriptomics revealed cellular and zonal reprogramming of CTNNB1-mutated tumors, along with activation of immune regulatory transcription factors IRF2 and POU2F1, re-engaged type I/II interferon signaling, and alterations in both innate and adaptive immune responses upon β-catenin suppression with LNP-CTNNB1. Moreover, LNP-CTNNB1 synergized with ICI in advanced-stage disease through orchestrating enhanced recruitment of cytotoxic T cell aggregates. Lastly, CTNNB1-mutated patients treated with atezolizumab plus bevacizumab combination had decreased presence of lymphoid aggregates, which were prognostic for response and survival. In conclusion, LNP-CTNNB1 is efficacious as monotherapy and in combination with ICI in CTNNB1-mutated HCCs through impacting tumor cell intrinsic signaling and remodeling global immune surveillance, providing rationale for clinical investigations.
Collapse
Affiliation(s)
- Brandon M. Lehrich
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Evan R. Delgado
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tyler M. Yasaka
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Silvia Liu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Catherine Cao
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yuqing Liu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mohammad Taheri
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Xiangnan Guan
- Translational Medicine, Genentech Inc., San Francisco, CA, USA
| | - Hartmut Koeppen
- Translational Medicine, Genentech Inc., San Francisco, CA, USA
| | - Sucha Singh
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jia-Jun Liu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Anya Singh-Varma
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yekaterina Krutsenko
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Minakshi Poddar
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - T. Kevin Hitchens
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Lesley M. Foley
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Binyong Liang
- Hepatic Surgery Center, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Alex Rialdi
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ravi P. Rai
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Panari Patel
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Madeline Riley
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Aaron Bell
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Reben Raeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Jason J. Luke
- UPMC Hillman Cancer Center and University of Pittsburgh, Pittsburgh, PA
| | - Ernesto Guccione
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Mo R. Ebrahimkhani
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amaia Lujambio
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Xin Chen
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | | | - Yulei Wang
- Translational Medicine, Genentech Inc., San Francisco, CA, USA
| | | | - Junyan Tao
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Satdarshan P. Monga
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
7
|
Dantzer C, Dif L, Vaché J, Basbous S, Billottet C, Moreau V. Specific features of ß-catenin-mutated hepatocellular carcinomas. Br J Cancer 2024; 131:1871-1880. [PMID: 39261716 PMCID: PMC11628615 DOI: 10.1038/s41416-024-02849-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024] Open
Abstract
CTNNB1, encoding the ß-catenin protein, is a key oncogene contributing to liver carcinogenesis. Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer in adult, representing the third leading cause of cancer-related death. Aberrant activation of the Wnt/ß-catenin pathway, mainly due to mutations of the CTNNB1 gene, is observed in a significant subset of HCC. In this review, we first resume the major recent advances in HCC classification with a focus on CTNNB1-mutated HCC subclass. We present the regulatory mechanisms involved in β-catenin stabilisation, transcriptional activity and binding to partner proteins. We then describe specific phenotypic characteristics of CTNNB1-mutated HCC thanks to their unique gene expression patterns. CTNNB1-mutated HCC constitute a full-fledged subclass of HCC with distinct pathological features such as well-differentiated cells with low proliferation rate, association to cholestasis, metabolic alterations, immune exclusion and invasion. Finally, we discuss therapeutic approaches to target ß-catenin-mutated liver tumours and innovative perspectives for future drug developments.
Collapse
Affiliation(s)
| | - Lydia Dif
- University Bordeaux, INSERM, BRIC, U1312, Bordeaux, France
| | - Justine Vaché
- University Bordeaux, INSERM, BRIC, U1312, Bordeaux, France
| | - Sara Basbous
- University Bordeaux, INSERM, BRIC, U1312, Bordeaux, France
| | | | | |
Collapse
|
8
|
Liu Y, Yang H, Li T, Zhang N. Immunotherapy in liver cancer: overcoming the tolerogenic liver microenvironment. Front Immunol 2024; 15:1460282. [PMID: 39295859 PMCID: PMC11409253 DOI: 10.3389/fimmu.2024.1460282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/21/2024] [Indexed: 09/21/2024] Open
Abstract
Liver cancer is a major global health concern, ranking among the top causes of cancer-related deaths worldwide. Despite advances in medical research, the prognosis for liver cancer remains poor, largely due to the inherent limitations of current therapies. Traditional treatments like surgery, radiation, and chemotherapy often fail to provide long-term remission and are associated with significant side effects. Immunotherapy has emerged as a promising avenue for cancer treatment, leveraging the body's immune system to target and destroy cancer cells. However, its application in liver cancer has been limited. One of the primary challenges is the liver's unique immune microenvironment, which can inhibit the effectiveness of immunotherapeutic agents. This immune microenvironment creates a barrier, leading to drug resistance and reducing the overall efficacy of treatment. Recent studies have focused on understanding the immunological landscape of liver cancer to develop strategies that can overcome these obstacles. By identifying the specific factors within the liver that contribute to immune suppression and drug resistance, researchers aim to enhance the effectiveness of immunotherapy. Prospective strategies include combining immunotherapy with other treatments, using targeted therapies to modulate the immune microenvironment, and developing new agents that can bypass or counteract the inhibitory mechanisms in the liver. These advancements hold promise for improving outcomes in liver cancer treatment.
Collapse
Affiliation(s)
- Yanju Liu
- Department of Infectious Diseases, Weifang People’s Hospital, Weifang, Shandong, China
| | - Hongyuan Yang
- Department of Infectious Diseases, Weifang People’s Hospital, Weifang, Shandong, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Na Zhang
- Department of Infectious Diseases, Weifang People’s Hospital, Weifang, Shandong, China
| |
Collapse
|
9
|
Qin Y, Han S, Yu Y, Qi D, Ran M, Yang M, Liu Y, Li Y, Lu L, Liu Y, Li Y. Lenvatinib in hepatocellular carcinoma: Resistance mechanisms and strategies for improved efficacy. Liver Int 2024; 44:1808-1831. [PMID: 38700443 DOI: 10.1111/liv.15953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024]
Abstract
Hepatocellular carcinoma (HCC), one of the most prevalent and destructive causes of cancer-related deaths worldwide, approximately 70% of patients with HCC exhibit advanced disease at diagnosis, limiting the potential for radical treatment. For such patients, lenvatinib, a long-awaited alternative to sorafenib for first-line targeted therapy, has become a key treatment. Unfortunately, despite some progress, the prognosis for advanced HCC remains poor because of drug resistance development. However, the molecular mechanisms underlying lenvatinib resistance and ways to relief drug resistance in HCC are largely unknown and lack of systematic summary; thus, this review not only aims to explore factors contributing to lenvatinib resistance in HCC, but more importantly, summary potential methods to conquer or mitigate the resistance. The results suggest that abnormal activation of pathways, drug transport, epigenetics, tumour microenvironment, cancer stem cells, regulated cell death, epithelial-mesenchymal transition, and other mechanisms are involved in the development of lenvatinib resistance in HCC and subsequent HCC progression. To improve the therapeutic outcomes of lenvatinib, inhibiting acquired resistance, combined therapies, and nano-delivery carriers may be possible approaches.
Collapse
Affiliation(s)
- Yongqing Qin
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong, China
| | - Shisong Han
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong, China
| | - Yahan Yu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong, China
| | - Ding Qi
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong, China
| | - Mengnan Ran
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong, China
- School of Pharmacy, Guangdong Medical University, Zhanjiang, China
| | - Mingqi Yang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong, China
| | - Yanyan Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong, China
| | - Yunyi Li
- Department of Nephrology, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong, China
| | - Yu Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong, China
| | - Yong Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong, China
| |
Collapse
|
10
|
Occean JR, Yang N, Sun Y, Dawkins MS, Munk R, Belair C, Dar S, Anerillas C, Wang L, Shi C, Dunn C, Bernier M, Price NL, Kim JS, Cui CY, Fan J, Bhattacharyya M, De S, Maragkakis M, de Cabo R, Sidoli S, Sen P. Gene body DNA hydroxymethylation restricts the magnitude of transcriptional changes during aging. Nat Commun 2024; 15:6357. [PMID: 39069555 PMCID: PMC11284234 DOI: 10.1038/s41467-024-50725-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/15/2024] [Indexed: 07/30/2024] Open
Abstract
DNA hydroxymethylation (5hmC), the most abundant oxidative derivative of DNA methylation, is typically enriched at enhancers and gene bodies of transcriptionally active and tissue-specific genes. Although aberrant genomic 5hmC has been implicated in age-related diseases, its functional role in aging remains unknown. Here, using mouse liver and cerebellum as model organs, we show that 5hmC accumulates in gene bodies associated with tissue-specific function and restricts the magnitude of gene expression changes with age. Mechanistically, 5hmC decreases the binding of splicing associated factors and correlates with age-related alternative splicing events. We found that various age-related contexts, such as prolonged quiescence and senescence, drive the accumulation of 5hmC with age. We provide evidence that this age-related transcriptionally restrictive function is conserved in mouse and human tissues. Our findings reveal that 5hmC regulates tissue-specific function and may play a role in longevity.
Collapse
Affiliation(s)
- James R Occean
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Na Yang
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Yan Sun
- Department of Biochemistry, Albert Einstein School of Medicine, Bronx, NY, USA
| | - Marshall S Dawkins
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Cedric Belair
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Showkat Dar
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Carlos Anerillas
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Lin Wang
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Changyou Shi
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Christopher Dunn
- Flow Cytometry Unit, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Michel Bernier
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Nathan L Price
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Julie S Kim
- Department of Biochemistry, Albert Einstein School of Medicine, Bronx, NY, USA
| | - Chang-Yi Cui
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Jinshui Fan
- Computational Biology and Genomics Core, Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | | | - Supriyo De
- Computational Biology and Genomics Core, Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Manolis Maragkakis
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein School of Medicine, Bronx, NY, USA
| | - Payel Sen
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA.
| |
Collapse
|
11
|
Li S, Luo X, Sun M, Wang Y, Zhang Z, Jiang J, Hu D, Zhang J, Wu Z, Wang Y, Huang W, Xia L. Context-dependent T-BOX transcription factor family: from biology to targeted therapy. Cell Commun Signal 2024; 22:350. [PMID: 38965548 PMCID: PMC11225425 DOI: 10.1186/s12964-024-01719-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/17/2024] [Indexed: 07/06/2024] Open
Abstract
T-BOX factors belong to an evolutionarily conserved family of transcription factors. T-BOX factors not only play key roles in growth and development but are also involved in immunity, cancer initiation, and progression. Moreover, the same T-BOX molecule exhibits different or even opposite effects in various developmental processes and tumor microenvironments. Understanding the multiple roles of context-dependent T-BOX factors in malignancies is vital for uncovering the potential of T-BOX-targeted cancer therapy. We summarize the physiological roles of T-BOX factors in different developmental processes and their pathological roles observed when their expression is dysregulated. We also discuss their regulatory roles in tumor immune microenvironment (TIME) and the newly arising questions that remain unresolved. This review will help in systematically and comprehensively understanding the vital role of the T-BOX transcription factor family in tumor physiology, pathology, and immunity. The intention is to provide valuable information to support the development of T-BOX-targeted therapy.
Collapse
Affiliation(s)
- Siwen Li
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Xiangyuan Luo
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Mengyu Sun
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Yijun Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Zerui Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Junqing Jiang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Dian Hu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Jiaqian Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Zhangfan Wu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Yufei Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Wenjie Huang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, China.
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China.
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
12
|
Occean JR, Yang N, Sun Y, Dawkins MS, Munk R, Belair C, Dar S, Anerillas C, Wang L, Shi C, Dunn C, Bernier M, Price NL, Kim JS, Cui CY, Fan J, Bhattacharyya M, De S, Maragkakis M, deCabo R, Sidoli S, Sen P. Gene body DNA hydroxymethylation restricts the magnitude of transcriptional changes during aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.15.528714. [PMID: 36824863 PMCID: PMC9949049 DOI: 10.1101/2023.02.15.528714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
DNA hydroxymethylation (5hmC), the most abundant oxidative derivative of DNA methylation, is typically enriched at enhancers and gene bodies of transcriptionally active and tissue-specific genes. Although aberrant genomic 5hmC has been implicated in age-related diseases, its functional role in aging remains unknown. Here, using mouse liver and cerebellum as model organs, we show that 5hmC accumulates in gene bodies associated with tissue-specific function and restricts the magnitude of gene expression changes with age. Mechanistically, 5hmC decreases the binding of splicing associated factors and correlates with age-related alternative splicing events. We found that various age-related contexts, such as prolonged quiescence and senescence, drive the accumulation of 5hmC with age. We provide evidence that this age-related transcriptionally restrictive function is conserved in mouse and human tissues. Our findings reveal that 5hmC regulates tissue-specific function and may play a role in longevity.
Collapse
|
13
|
Yang P, Miao Y, Wang T, Sun J. Identification of diagnostic markers related to inflammatory response and cellular senescence in endometriosis using machine learning and in vitro experiment. Inflamm Res 2024; 73:1107-1122. [PMID: 38704432 DOI: 10.1007/s00011-024-01886-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 05/06/2024] Open
Abstract
OBJECTIVE To understand the association between chronic inflammation, cellular senescence, and immunological infiltration in endometriosis. METHODS Datasets from GEO comprising 108 endometriosis and 97 healthy human samples and the human endometrial stromal cell. Differentially expressed genes were identified using Limma and WGCNA. Inflammatory response-related subtypes were constructed using consensus clustering analysis. The CIBERSORT algorithm and correlation analyses assessed immune cell infiltration. LASSO, SVM-RFE, and RF identified diagnostic genes. Functional enrichment analysis and multifactor regulatory networks established functional effects. Nomograms, internal and external validations, and in vitro experiments validated the diagnostic genes. RESULTS Inflammatory response subtypes were highly correlated with the immune activities of B and NK cells. Sixteen genes were associated with inflammatory response and cellular senescence and six diagnostic genes (NLK, RAD51, TIMELESS, TBX3, MET, and BTG3) were identified. The six diagnostic gene models had an area under the curve of 0.828 and their expression was significantly downregulated in endometriosis samples. Low expression of NLK and BTG3 promoted the proliferation, migration, and invasion of endometriotic cells. CONCLUSIONS Inflammatory response subtypes were successfully constructed for endometriosis. Six diagnostic genes related to inflammatory response and cellular senescence were identified and validated. Our study provides novel insights for inflammatory response in endometriosis and markers for endometriosis diagnosis and treatment.
Collapse
Affiliation(s)
- Pusheng Yang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Tongji University, Shanghai, 200092, China
| | - Yaxin Miao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Tongji University, Shanghai, 200092, China
| | - Tao Wang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Tongji University, Shanghai, 200092, China
| | - Jing Sun
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
14
|
Deng S, Lu X, Wang X, Liang B, Xu H, Yang D, Cui G, Yonemura A, Paine H, Zhou Y, Zhang Y, Simile MM, Urigo F, Evert M, Calvisi DF, Green BL, Chen X. Overexpression of TBX3 suppresses tumorigenesis in experimental and human cholangiocarcinoma. Cell Death Dis 2024; 15:441. [PMID: 38909034 PMCID: PMC11193761 DOI: 10.1038/s41419-024-06839-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
TBX3 behaves as a tumor suppressor or oncoprotein across cancer. However, TBX3 function remains undetermined in intrahepatic cholangiocarcinoma (iCCA), a deadly primary liver malignancy with few systemic treatment options. This study sought to investigate the impact of TBX3 on iCCA. We found that overexpression of TBX3 strongly inhibited human iCCA cell growth. In the Akt/FBXW7ΔF mouse iCCA model, overexpression of Tbx3 reduced cholangiocarcinogenesis in vivo, while inducible genetic knockout of Tbx3 accelerated iCCA growth. RNA-seq identified MAD2L1 as a downregulated gene in TBX3-overexpressing cells, and ChIP confirmed that TBX3 binds to the MAD2L1 promoter. CRISPR-mediated knockdown of Mad2l1 significantly reduced the growth of two iCCA models in vivo. Finally, we found that TBX3 expression is upregulated in ~20% of human iCCA samples, and its high expression is associated with less proliferation and better survival. MAD2L1 expression is upregulated in most human iCCA samples and negatively correlated with TBX3 expression. Altogether, our findings suggest that overexpression of TBX3 suppresses CCA progression via repressing MAD2L1 expression.
Collapse
Affiliation(s)
- Shanshan Deng
- Cancer Biology Program, University of Hawai'i Cancer Center, University of Hawai'i, Honolulu, HI, USA
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA
| | - Xinjun Lu
- Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xue Wang
- Cancer Biology Program, University of Hawai'i Cancer Center, University of Hawai'i, Honolulu, HI, USA
| | - Binyong Liang
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA
| | - Hongwei Xu
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA
| | - Doris Yang
- Cancer Biology Program, University of Hawai'i Cancer Center, University of Hawai'i, Honolulu, HI, USA
| | - Guofei Cui
- Cancer Biology Program, University of Hawai'i Cancer Center, University of Hawai'i, Honolulu, HI, USA
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA
| | - Andrew Yonemura
- Cancer Biology Program, University of Hawai'i Cancer Center, University of Hawai'i, Honolulu, HI, USA
| | - Honor Paine
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA
| | - Yi Zhou
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA
| | - Yi Zhang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 400054, Chongqing, China
| | - Maria Maddalena Simile
- Department of Medicine, Surgery, and Pharmacy, Division of Experimental Pathology and Oncology, University of Sassari, 07100, Sassari, Italy
| | - Francesco Urigo
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Diego F Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Benjamin L Green
- Cancer Biology Program, University of Hawai'i Cancer Center, University of Hawai'i, Honolulu, HI, USA.
| | - Xin Chen
- Cancer Biology Program, University of Hawai'i Cancer Center, University of Hawai'i, Honolulu, HI, USA.
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA.
| |
Collapse
|
15
|
Lehrich MB, Tong CLC, Hsu PKF, Kuan CE. Genomic drivers in craniopharyngiomas: Analysis of the AACR project GENIE database. Childs Nerv Syst 2024; 40:1661-1669. [PMID: 38421446 DOI: 10.1007/s00381-024-06320-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
PURPOSE Craniopharyngiomas are rare tumors originating in the sellar region, with limited information on their somatic mutational landscape. In this study, we utilized a publicly available genomic database to profile the somatic mutational landscape of craniopharyngioma patients and interrogate differences based on histologic subtype. METHODS We utilized the American Association for Cancer Research (AACR) Project Genomics Evidence Neoplasia Information Exchange (GENIE)® database accessed from cBioPortal (v13.1-public) to query all patients with craniopharyngiomas. RESULTS Of the 336 patients with sellar tumors, 51 (15.2%) had craniopharyngiomas. Of these 51 patients, 42 (82.4%) were adamantinomatous subtype and 9 (17.6%) were papillary subtype. In this cohort, 32 (62.7%) patients were pediatric, while 19 (37.3%) were adult. The top mutations in the cohort were: CTNNB1 (n = 37; 73%), BRAF (n = 7; 14%), ARID1B (n = 5; 10%), KMT2D (n = 4; 8%), FANCA (n = 4; 8%), ATM (n = 4; 8%), and TERT (n = 3; 8%). Of the 37 patients with CTNNB1 mutations, 8 (21.6%) had S33X, 9 (24.3%) had S37X, 7 (18.9%) had T41X, and 5 (13.5%) had D32X. In this cohort, CTNNB1 mutations tended to co-occur with ATM (n = 4; 10.8%), KMT2C (n = 4; 10.8%), TERT (n = 3; 8.1%), BLM (n = 3; 8.1%), and ERBB2/3 (n = 3; 8.1%), suggesting CTNNB1 mutations tended to co-occur with mutations in genes important in cell growth and survival, chromatin accessibility, and DNA damage response pathways. CONCLUSIONS CTNNB1 mutations account for a large proportion of somatic mutations in craniopharyngiomas. Identification of specific point mutations and secondary drivers may advance development of novel craniopharyngioma preclinical models for targeted therapy testing.
Collapse
Affiliation(s)
- M Brandon Lehrich
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - C L Charles Tong
- Department of Otolaryngology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New York, NY, USA
| | - P K Frank Hsu
- Department of Neurological Surgery, University of California, Irvine, Orange, CA, USA
| | - C Edward Kuan
- Department of Neurological Surgery, University of California, Irvine, Orange, CA, USA.
- Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, Orange, CA, USA.
| |
Collapse
|
16
|
Man YN, Xu H, Chen PJ, Sun Y, He ML. Comprehensive analysis of the clinical significance and molecular mechanism of T-box transcription factor 3 in osteosarcoma. J Cancer 2024; 15:4007-4019. [PMID: 38911382 PMCID: PMC11190752 DOI: 10.7150/jca.96168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/14/2024] [Indexed: 06/25/2024] Open
Abstract
Background: T-box transcription factor 3 (TBX3) has been implicated in various malignant tumors, while its exact involvement in osteosarcoma (OS) remains unknown. Methods: Utilizing microarray data and bulk and single-cell RNA-seq data and qRT-PCR, we compared TBX3 mRNA expression levels in different stages of OS. Diagnostic ability testing and prognosis analysis were conducted to better understand the clinical importance of TBX3. Enrichment analysis was performed using gene groups with biological functions similar to TBX3 in different stages of OS to investigate the potential role of TBX3 in OS progression. In addition, we predicted medications targeted at TBX3 and identified downstream target genes to gain a comprehensive understanding of its therapeutic direction and regulatory mechanism. Results: TBX3 expression was highly upregulated in OS and was predominantly expressed in osteoblastic OS cells, with higher expression levels in metastatic tissues. TBX3 expression appeared somewhat suitable for discriminating between OS and normal samples, as well as different stages of OS. We found that TBX3 increased the malignant development of OS by altering cell cycle and cell adhesion molecules; exisulind and tacrolimus, which are targeted small-molecule medicines, were anticipated to counteract this dysregulation. The expression of CCNA2 could potentially be regulated by TBX3, contributing to OS advancement. Conclusion: TBX3 emerges as a potential biomarker for OS. In-depth research into its underlying molecular processes may offer new perspectives on treating OS.
Collapse
Affiliation(s)
- Yu-Nan Man
- Division of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Shuang Yong Road 6, Nanning, Guangxi Zhuang Autonomous Region, P.R. China. 530021
| | - Hua Xu
- Center for Education Evaluation & Faculty Development, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China. 530021
| | - Pei-Jun Chen
- Division of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Shuang Yong Road 6, Nanning, Guangxi Zhuang Autonomous Region, P.R. China. 530021
| | - Yu Sun
- Division of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Shuang Yong Road 6, Nanning, Guangxi Zhuang Autonomous Region, P.R. China. 530021
| | - Mao-Lin He
- Division of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Shuang Yong Road 6, Nanning, Guangxi Zhuang Autonomous Region, P.R. China. 530021
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China. 530021 (Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China. 530021)
| |
Collapse
|
17
|
Cai N, Cheng K, Ma Y, Liu S, Tao R, Li Y, Li D, Guo B, Jia W, Liang H, Zhao J, Xia L, Ding ZY, Chen J, Zhang W. Targeting MMP9 in CTNNB1 mutant hepatocellular carcinoma restores CD8 + T cell-mediated antitumour immunity and improves anti-PD-1 efficacy. Gut 2024; 73:985-999. [PMID: 38123979 PMCID: PMC11103337 DOI: 10.1136/gutjnl-2023-331342] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVE The gain of function (GOF) CTNNB1 mutations (CTNNB1 GOF ) in hepatocellular carcinoma (HCC) cause significant immune escape and resistance to anti-PD-1. Here, we aimed to investigate the mechanism of CTNNB1 GOF HCC-mediated immune escape and raise a new therapeutic strategy to enhance anti-PD-1 efficacy in HCC. DESIGN RNA sequencing was performed to identify the key downstream genes of CTNNB1 GOF associated with immune escape. An in vitro coculture system, murine subcutaneous or orthotopic models, spontaneously tumourigenic models in conditional gene-knock-out mice and flow cytometry were used to explore the biological function of matrix metallopeptidase 9 (MMP9) in tumour progression and immune escape. Single-cell RNA sequencing and proteomics were used to gain insight into the underlying mechanisms of MMP9. RESULTS MMP9 was significantly upregulated in CTNNB1 GOF HCC. MMP9 suppressed infiltration and cytotoxicity of CD8+ T cells, which was critical for CTNNB1 GOF to drive the suppressive tumour immune microenvironment (TIME) and anti-PD-1 resistance. Mechanistically, CTNNB1 GOF downregulated sirtuin 2 (SIRT2), resulting in promotion of β-catenin/lysine demethylase 4D (KDM4D) complex formation that fostered the transcriptional activation of MMP9. The secretion of MMP9 from HCC mediated slingshot protein phosphatase 1 (SSH1) shedding from CD8+ T cells, leading to the inhibition of C-X-C motif chemokine receptor 3 (CXCR3)-mediated intracellular of G protein-coupled receptors signalling. Additionally, MMP9 blockade remodelled the TIME and potentiated the sensitivity of anti-PD-1 therapy in HCC. CONCLUSIONS CTNNB1 GOF induces a suppressive TIME by activating secretion of MMP9. Targeting MMP9 reshapes TIME and potentiates anti-PD-1 efficacy in CTNNB1 GOF HCC.
Collapse
Affiliation(s)
- Ning Cai
- Hepatic Surgery Center, Clinical Medicine Research Center of Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Kun Cheng
- Hepatic Surgery Center, Clinical Medicine Research Center of Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yue Ma
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, People's Republic of China
| | - Sha Liu
- Hepatic Surgery Center, Clinical Medicine Research Center of Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Ran Tao
- Hepatic Surgery Center, Clinical Medicine Research Center of Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yani Li
- Hepatic Surgery Center, Clinical Medicine Research Center of Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Danfeng Li
- Hepatic Surgery Center, Clinical Medicine Research Center of Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Bin Guo
- Hepatic Surgery Center, Clinical Medicine Research Center of Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Wenlong Jia
- Hepatic Surgery Center, Clinical Medicine Research Center of Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Huifang Liang
- Hepatic Surgery Center, Clinical Medicine Research Center of Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Jianping Zhao
- Hepatic Surgery Center, Clinical Medicine Research Center of Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Ze-Yang Ding
- Hepatic Surgery Center, Clinical Medicine Research Center of Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Jinhong Chen
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, People's Republic of China
| | - Wanguang Zhang
- Hepatic Surgery Center, Clinical Medicine Research Center of Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
18
|
Zuo A, Li J, Weng S, Xu H, Zhang Y, Wang L, Xing Z, Luo P, Cheng Q, Li J, Han X, Liu Z. Integrated Exploration of Epigenetic Dysregulation Reveals a Stemness/EMT Subtype and MMP12 Linked to the Progression and Prognosis in Hepatocellular Carcinoma. J Proteome Res 2024; 23:1821-1833. [PMID: 38652053 DOI: 10.1021/acs.jproteome.4c00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Epigenetic dysregulation drives aberrant transcriptional programs playing a critical role in hepatocellular carcinoma (HCC), which may provide novel insights into the heterogeneity of HCC. This study performed an integrated exploration on the epigenetic dysregulation of miRNA and methylation. We discovered and validated three patterns endowed with gene-related transcriptional traits and clinical outcomes. Specially, a stemness/epithelial-mesenchymal transition (EMT) subtype was featured by immune exhaustion and the worst prognosis. Besides, MMP12, a characteristic gene, was highly expressed in the stemness/EMT subtype, which was verified as a pivotal regulator linked to the unfavorable prognosis and further proven to promote tumor proliferation, invasion, and metastasis in vitro experiments. Proteomic analysis by mass spectrometry sequencing also indicated that the overexpression of MMP12 was significantly associated with cell proliferation and adhesion. Taken together, this study unveils innovative insights into epigenetic dysregulation and identifies a stemness/EMT subtype-specific gene, MMP12, correlated with the progression and prognosis of HCC.
Collapse
Affiliation(s)
- Anning Zuo
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jinyu Li
- Center of Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Libo Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Zhe Xing
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jing Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
19
|
Yi C, Song H, Liang H, Ran Y, Tang J, Chen E, Li F, Fu L, Wang Y, Chen F, Wang Y, Ding Y, Xie Y. TBX3 reciprocally controls key trophoblast lineage decisions in villi during human placenta development in the first trimester. Int J Biol Macromol 2024; 263:130220. [PMID: 38368983 DOI: 10.1016/j.ijbiomac.2024.130220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 02/20/2024]
Abstract
Human trophoblastic lineage development is intertwined with placental development and pregnancy outcomes, but the regulatory mechanisms underpinning this process remain inadequately understood. In this study, based on single-nuclei RNA sequencing (snRNA-seq) analysis of the human early maternal-fetal interface, we compared the gene expression pattern of trophoblast at different developmental stages. Our findings reveal a predominant upregulation of TBX3 during the transition from villous cytotrophoblast (VCT) to syncytiotrophoblast (SCT), but downregulation of TBX3 as VCT progresses into extravillous trophoblast cells (EVT). Immunofluorescence analysis verified the primary expression of TBX3 in SCT, partial expression in MKi67-positive VCT, and absence in HLA-G-positive EVT, consistent with our snRNA-seq results. Using immortalized trophoblastic cell lines (BeWo and HTR8/SVneo) and human primary trophoblast stem cells (hTSCs), we observed that TBX3 knockdown impedes SCT formation through RAS-MAPK signaling, while TBX3 overexpression disrupts the cytoskeleton structure of EVT and hinders EVT differentiation by suppressing FAK signaling. In conclusion, our study suggests that the spatiotemporal expression of TBX3 plays a critical role in regulating trophoblastic lineage development via distinct signaling pathways. This underscores TBX3 as a key determinant during hemochorial placental development.
Collapse
Affiliation(s)
- Cen Yi
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Honglan Song
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Hongxiu Liang
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Yujie Ran
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Jing Tang
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Enxiang Chen
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Fangfang Li
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Lijuan Fu
- Department of Gynecology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China 400021; Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, School of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China; Department of Basic Medical Sciences, Changsha Medical University, Hunan 410219, China
| | - Yaqi Wang
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Fengming Chen
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, 410129, China
| | - Yingxiong Wang
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Yubin Ding
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Youlong Xie
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
20
|
Wang Y, Pan H, Gong X, Wang Z, Qin X, Zhou S, Zhu C, Hu X, Chen S, Liu H, Jin H, Pang Q, Wu W. CDC123 promotes Hepatocellular Carcinoma malignant progression by regulating CDKAL1. Pathol Res Pract 2024; 254:154987. [PMID: 38237400 DOI: 10.1016/j.prp.2023.154987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/09/2023] [Accepted: 11/27/2023] [Indexed: 02/12/2024]
Abstract
The cell proliferation protein 123 (CDC123) is involved in the synthesis of the eukaryotic initiation factor 2 (eIF2), which regulates eukaryotic translation. Although CDC123 is considered a candidate oncogene in breast cancer, its expression and role in Hepatocellular Carcinoma (HCC) remain unknown. Herein, we obtained the CDC123 RNA-seq and clinical prognostic data from the TCGA database. The mRNA level revealed that CDC123 was highly expressed in HCC patients, and Kaplan-Meier analysis implied better prognoses in HCC patients with low CDC123 expression (P < 0.001). The multivariate Cox analysis revealed that the CDC123 level was an independent prognostic factor (P < 0.001). We further confirmed a high CDC123 expression in HCC cell lines. Additionally, we found that CDC123 knockdown in HCC cell lines significantly inhibited cellular proliferation, invasion, and migration. Moreover, CDC123 was co-expressed with the CDK5 Regulatory Subunit-Associated Protein 1 Like 1 (CDKAL1), whose mRNA level was decreased after silencing CDC123. Therefore, we hypothesized that CDC123 promotes HCC progression by regulating CDKAL1.
Collapse
Affiliation(s)
- Yong Wang
- The Clinical College, Anhui No.2 Provincial People's Hospital, Anhui Medical University, Hefei 230041, Anhui, China
| | - HongTao Pan
- The Clinical College, Anhui No.2 Provincial People's Hospital, Anhui Medical University, Hefei 230041, Anhui, China
| | - XuanKun Gong
- The Clinical College, Anhui No.2 Provincial People's Hospital, Anhui Medical University, Hefei 230041, Anhui, China; Department of Hepatobiliary Surgery, the First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui, China
| | - ZhiCheng Wang
- The Clinical College, Anhui No.2 Provincial People's Hospital, Anhui Medical University, Hefei 230041, Anhui, China; Department of Hepatobiliary Surgery, the First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui, China
| | - XiLiang Qin
- The Clinical College, Anhui No.2 Provincial People's Hospital, Anhui Medical University, Hefei 230041, Anhui, China; Department of Hepatobiliary Surgery, the First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui, China
| | - Shuai Zhou
- The Clinical College, Anhui No.2 Provincial People's Hospital, Anhui Medical University, Hefei 230041, Anhui, China
| | - Chao Zhu
- The Clinical College, Anhui No.2 Provincial People's Hospital, Anhui Medical University, Hefei 230041, Anhui, China
| | - XiaoSi Hu
- The Clinical College, Anhui No.2 Provincial People's Hospital, Anhui Medical University, Hefei 230041, Anhui, China
| | - ShiLei Chen
- The Clinical College, Anhui No.2 Provincial People's Hospital, Anhui Medical University, Hefei 230041, Anhui, China
| | - HuiChun Liu
- The Clinical College, Anhui No.2 Provincial People's Hospital, Anhui Medical University, Hefei 230041, Anhui, China
| | - Hao Jin
- The Clinical College, Anhui No.2 Provincial People's Hospital, Anhui Medical University, Hefei 230041, Anhui, China
| | - Qing Pang
- The Clinical College, Anhui No.2 Provincial People's Hospital, Anhui Medical University, Hefei 230041, Anhui, China; Department of Hepatobiliary Surgery, the First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui, China.
| | - WenYong Wu
- The Clinical College, Anhui No.2 Provincial People's Hospital, Anhui Medical University, Hefei 230041, Anhui, China; Department of Hepatobiliary Surgery, the First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui, China.
| |
Collapse
|
21
|
Andreani C, Bartolacci C, Persico G, Casciaro F, Amatori S, Fanelli M, Giorgio M, Galié M, Tomassoni D, Wang J, Zhang X, Bick G, Coppari R, Marchini C, Amici A. SIRT6 promotes metastasis and relapse in HER2-positive breast cancer. Sci Rep 2023; 13:22000. [PMID: 38081972 PMCID: PMC10713583 DOI: 10.1038/s41598-023-49199-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
The histone deacetylase sirtuin 6 (SIRT6) has been endowed with anti-cancer capabilities in many tumor types. Here, we investigate the impact of SIRT6-overexpression (SIRT6-OE) in Delta16HER2 mice, which are a bona fide model of HER2-positive breast cancer. After an initial delay in the tumor onset, SIRT6-OE induces a more aggressive phenotype of Delta16HER2 tumors promoting the formation of higher number of tumor foci and metastases than controls. This phenotype of SIRT6-OE tumors is associated with cancer stem cell (CSC)-like features and tumor dormancy, and low senescence and oxidative DNA damage. Accordingly, a sub-set of HER2-positive breast cancer patients with concurrent SIRT6-OE has a significant poorer relapse-free survival (RFS) probability than patients with low expression of SIRT6. ChIP-seq, RNA-seq and RT-PCR experiments indicate that SIRT6-OE represses the expression of the T-box transcription factor 3 (Tbx3) by deacetylation of H3K9ac. Accordingly, loss-of-function mutations of TBX3 or low TBX3 expression levels are predictive of poor prognosis in HER2-positive breast cancer patients. Our work indicates that high levels of SIRT6 are indicative of poor prognosis and high risk of metastasis in HER2-positive breast cancer and suggests further investigation of TBX3 as a downstream target of SIRT6 and co-marker of poor-prognosis. Our results point to a breast cancer subtype-specific effect of SIRT6 and warrant future studies dissecting the mechanisms of SIRT6 regulation in different breast cancer subtypes.
Collapse
Affiliation(s)
- Cristina Andreani
- Department of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy.
- Department of Internal Medicine, University of Cincinnati, 45219, Cincinnati, OH, USA.
| | - Caterina Bartolacci
- Department of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy
- Department of Internal Medicine, University of Cincinnati, 45219, Cincinnati, OH, USA
| | - Giuseppe Persico
- Department of Experimental Oncology, IRCCS-European Institute of Oncology, Via Adamello 16, 20139, Milano, Italy
| | - Francesca Casciaro
- Department of Biomedical Sciences, University of Padua, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Stefano Amatori
- Molecular Pathology Laboratory "PaoLa", Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61032, Fano, Italy
| | - Mirco Fanelli
- Molecular Pathology Laboratory "PaoLa", Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61032, Fano, Italy
| | - Marco Giorgio
- Department of Experimental Oncology, IRCCS-European Institute of Oncology, Via Adamello 16, 20139, Milano, Italy
- Department of Biomedical Sciences, University of Padua, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Mirco Galié
- Department of Neuroscience, Biomedicine and Movement, Section of Anatomy and Histology, University of Verona, 37134, Verona, Italy
| | - Daniele Tomassoni
- Department of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy
| | - Junbiao Wang
- Department of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy
| | - Xiaoting Zhang
- Department of Cancer Biology, University of Cincinnati, 45219, Cincinnati, OH, USA
| | - Gregory Bick
- Department of Cancer Biology, University of Cincinnati, 45219, Cincinnati, OH, USA
| | - Roberto Coppari
- Department of Cell Physiology and Metabolism, University of Geneva, 1211, Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland
| | - Cristina Marchini
- Department of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy.
| | - Augusto Amici
- Department of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy
| |
Collapse
|
22
|
Ali W, Xiao W, Jacobs D, Kajdacsy-Balla A. Survival and Enrichment Analysis of Epithelial-Mesenchymal Transition Genes in Bladder Urothelial Carcinoma. Genes (Basel) 2023; 14:1899. [PMID: 37895248 PMCID: PMC10606556 DOI: 10.3390/genes14101899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/16/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
The escalating prevalence of bladder cancer, particularly urothelial carcinoma, necessitates innovative approaches for prognosis and therapy. This study delves into the significance of genes related to epithelial-mesenchymal transition (EMT), a process inherently linked to carcinogenesis and comparatively better studied in other cancers. We examined 1184 EMT-related gene expression levels in bladder urothelial cancer cases through the TCGA dataset. Genes shown to be differentially expressed in relation to survival underwent further network and enrichment analysis to uncover how they might shape disease outcomes. Our in silico analysis revealed a subset of 32 genes, including those significantly represented in biological pathways such as VEGF signaling and bacterium response. In addition, these genes interact with genes involved in the JAK-STAT signaling pathway. Additionally, some of those 32 genes have been linked to immunomodulators such as chemokines CCL15 and CCL18, as well as to various immune cell infiltrates. Our findings highlight the prognostic utility of various EMT-related genes and identify possible modulators of their effect on survival, allowing for further targeted wet lab research and possible therapeutic intervention.
Collapse
Affiliation(s)
- Waleed Ali
- Albert Einstein College of Medicine, New York, NY 10461, USA; (W.X.); (D.J.)
| | - Weirui Xiao
- Albert Einstein College of Medicine, New York, NY 10461, USA; (W.X.); (D.J.)
| | - Daniel Jacobs
- Albert Einstein College of Medicine, New York, NY 10461, USA; (W.X.); (D.J.)
| | - Andre Kajdacsy-Balla
- Professor of Pathology, University of Illinois at Chicago College of Medicine, Chicago, IL 60607, USA;
| |
Collapse
|
23
|
Dubois‐Chevalier J, Gheeraert C, Berthier A, Boulet C, Dubois V, Guille L, Fourcot M, Marot G, Gauthier K, Dubuquoy L, Staels B, Lefebvre P, Eeckhoute J. An extended transcription factor regulatory network controls hepatocyte identity. EMBO Rep 2023; 24:e57020. [PMID: 37424431 PMCID: PMC10481658 DOI: 10.15252/embr.202357020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/11/2023] Open
Abstract
Cell identity is specified by a core transcriptional regulatory circuitry (CoRC), typically limited to a small set of interconnected cell-specific transcription factors (TFs). By mining global hepatic TF regulons, we reveal a more complex organization of the transcriptional regulatory network controlling hepatocyte identity. We show that tight functional interconnections controlling hepatocyte identity extend to non-cell-specific TFs beyond the CoRC, which we call hepatocyte identity (Hep-ID)CONNECT TFs. Besides controlling identity effector genes, Hep-IDCONNECT TFs also engage in reciprocal transcriptional regulation with TFs of the CoRC. In homeostatic basal conditions, this translates into Hep-IDCONNECT TFs being involved in fine tuning CoRC TF expression including their rhythmic expression patterns. Moreover, a role for Hep-IDCONNECT TFs in the control of hepatocyte identity is revealed in dedifferentiated hepatocytes where Hep-IDCONNECT TFs are able to reset CoRC TF expression. This is observed upon activation of NR1H3 or THRB in hepatocarcinoma or in hepatocytes subjected to inflammation-induced loss of identity. Our study establishes that hepatocyte identity is controlled by an extended array of TFs beyond the CoRC.
Collapse
Affiliation(s)
| | - Céline Gheeraert
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐EGIDLilleFrance
| | - Alexandre Berthier
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐EGIDLilleFrance
| | - Clémence Boulet
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐EGIDLilleFrance
| | - Vanessa Dubois
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐EGIDLilleFrance
- Basic and Translational Endocrinology (BaTE), Department of Basic and Applied Medical SciencesGhent UniversityGhentBelgium
| | - Loïc Guille
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐EGIDLilleFrance
| | - Marie Fourcot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 – UAR 2014 – PLBSLilleFrance
| | - Guillemette Marot
- Univ. Lille, Inria, CHU Lille, ULR 2694 – METRICS: Évaluation des technologies de santé et des pratiques médicalesLilleFrance
| | - Karine Gauthier
- Institut de Génomique Fonctionnelle de Lyon (IGFL), CNRS UMR 5242, INRAE USC 1370, École Normale Supérieure de LyonLyonFrance
| | - Laurent Dubuquoy
- Univ. Lille, Inserm, CHU Lille, U1286 – INFINITE – Institute for Translational Research in InflammationLilleFrance
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐EGIDLilleFrance
| | - Philippe Lefebvre
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐EGIDLilleFrance
| | - Jérôme Eeckhoute
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐EGIDLilleFrance
| |
Collapse
|
24
|
Kopystecka A, Patryn R, Leśniewska M, Budzyńska J, Kozioł I. The Use of ctDNA in the Diagnosis and Monitoring of Hepatocellular Carcinoma-Literature Review. Int J Mol Sci 2023; 24:ijms24119342. [PMID: 37298294 DOI: 10.3390/ijms24119342] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer and is one of the leading causes of cancer-related deaths worldwide. Despite advances in medicine, it is still a cancer with a very poor prognosis. Both imaging and liver biopsy still have important limitations, especially in very small nodules and those which show atypical imaging features. In recent years, liquid biopsy and molecular analysis of tumor breakdown products have become an attractive source of new biomarkers. Patients with liver and biliary malignancies, including hepatocellular carcinoma (HCC), may greatly benefit from ctDNA testing. These patients are often diagnosed at an advanced stage of the disease, and relapses are common. Molecular analysis may indicate the best cancer treatment tailored to particular patients with specific tumor DNA mutations. Liquid biopsy is a minimally invasive technique that facilitates the early detection of cancer. This review summarizes the knowledge of ctDNA in liquid biopsy as an indicator for early diagnosis and monitoring of hepatocellular cancer.
Collapse
Affiliation(s)
- Agnieszka Kopystecka
- Students' Scientific Circle on Medical Law, Department of Humanities and Social Medicine, Medical University of Lublin, 20-093 Lublin, Poland
| | - Rafał Patryn
- Department of Humanities and Social Medicine, Medical University of Lublin, 20-093 Lublin, Poland
| | - Magdalena Leśniewska
- Students' Scientific Circle on Medical Law, Department of Humanities and Social Medicine, Medical University of Lublin, 20-093 Lublin, Poland
| | - Julia Budzyńska
- Students' Scientific Circle on Medical Law, Department of Humanities and Social Medicine, Medical University of Lublin, 20-093 Lublin, Poland
| | - Ilona Kozioł
- Students' Scientific Circle on Medical Law, Department of Humanities and Social Medicine, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
25
|
Asano N, Imatani A, Takeuchi A, Saito M, Jin XY, Hatta W, Uno K, Koike T, Masamune A. Role of T-box transcription factor 3 in gastric cancers. World J Gastrointest Pathophysiol 2023; 14:12-20. [PMID: 37035275 PMCID: PMC10074946 DOI: 10.4291/wjgp.v14.i2.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/22/2023] [Accepted: 03/10/2023] [Indexed: 03/21/2023] Open
Abstract
The expression of T-box transcription factor 3 (TBX3) has been identified in various cancers, including gastric cancers. Its role in breast cancers and melanomas has been intensively studied, and its contribution to the progression of cancers through suppressing senescence and promoting epithelial-mesenchymal transition has been reported. Recent reports on the role of TBX3 in gastric cancers have implied its involvement in gastric carcinogenesis. Considering its pivotal role in the initiation and progression of cancers, TBX3 could be a promising therapeutic target for gastric cancers.
Collapse
Affiliation(s)
- Naoki Asano
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Akira Imatani
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Akio Takeuchi
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Masashi Saito
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Xiao-Yi Jin
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Waku Hatta
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Kaname Uno
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Tomoyuki Koike
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| |
Collapse
|
26
|
Tang B, Zhu J, Wang Y, Chen W, Fang S, Mao W, Xu Z, Yang Y, Weng Q, Zhao Z, Chen M, Ji J. Targeted xCT-mediated Ferroptosis and Protumoral Polarization of Macrophages Is Effective against HCC and Enhances the Efficacy of the Anti-PD-1/L1 Response. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203973. [PMID: 36442849 PMCID: PMC9839855 DOI: 10.1002/advs.202203973] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/26/2022] [Indexed: 05/14/2023]
Abstract
Tumor-associated macrophages (TAMs) play an essential role in tumor progression, metastasis, and antitumor immunity. Ferroptosis has attracted extensive attention for its lethal effect on tumor cells, but the role of ferroptosis in TAMs and its impact on tumor progression have not been clearly defined. Using transgenic mouse models, this study determines that xCT-specific knockout in macrophages is sufficient to limit tumorigenicity and metastasis in the mouse HCC models, achieved by reducing TAM recruitment and infiltration, inhibiting M2-type polarization, and activating and enhancing ferroptosis activity within TAMs. The SOCS3-STAT6-PPAR-γ signaling may be a crucial pathway in macrophage phenotypic shifting, and activation of intracellular ferroptosis is associated with GPX4/RRM2 signaling regulation. Furthermore, that xCT-mediated macrophage ferroptosis significantly increases PD-L1 expression in macrophages and improves the antitumor efficacy of anti-PD-L1 therapy is unveiled. The constructed Man@pSiNPs-erastin specifically targets macrophage ferroptosis and protumoral polarization and combining this treatment with anti-PD-L1 exerts substantial antitumor efficacy. xCT expression in tumor tissues, especially in CD68+ macrophages, can serve as a reliable factor to predict the prognosis of HCC patients. These findings provide further insight into targeting ferroptosis activation in TAMs and regulating TAM infiltration and functional expression to achieve precise tumor prevention and improve therapeutic efficacy.
Collapse
Affiliation(s)
- Bufu Tang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention ResearchInstitute of Imaging Diagnosis and Minimally Invasive Intervention ResearchThe Fifth Affiliated Hospital of Wenzhou Medical UniversityLishui Hospital of Zhejiang UniversityLishui323000China
| | - Jinyu Zhu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention ResearchInstitute of Imaging Diagnosis and Minimally Invasive Intervention ResearchThe Fifth Affiliated Hospital of Wenzhou Medical UniversityLishui Hospital of Zhejiang UniversityLishui323000China
| | - Yajie Wang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention ResearchInstitute of Imaging Diagnosis and Minimally Invasive Intervention ResearchThe Fifth Affiliated Hospital of Wenzhou Medical UniversityLishui Hospital of Zhejiang UniversityLishui323000China
| | - Weiqian Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention ResearchInstitute of Imaging Diagnosis and Minimally Invasive Intervention ResearchThe Fifth Affiliated Hospital of Wenzhou Medical UniversityLishui Hospital of Zhejiang UniversityLishui323000China
- Clinical College of The Affiliated Central HospitalSchool of MedicineLishui UniversityLishui323000China
| | - Shiji Fang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention ResearchInstitute of Imaging Diagnosis and Minimally Invasive Intervention ResearchThe Fifth Affiliated Hospital of Wenzhou Medical UniversityLishui Hospital of Zhejiang UniversityLishui323000China
- Clinical College of The Affiliated Central HospitalSchool of MedicineLishui UniversityLishui323000China
| | - Weiyang Mao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention ResearchInstitute of Imaging Diagnosis and Minimally Invasive Intervention ResearchThe Fifth Affiliated Hospital of Wenzhou Medical UniversityLishui Hospital of Zhejiang UniversityLishui323000China
- Clinical College of The Affiliated Central HospitalSchool of MedicineLishui UniversityLishui323000China
| | - Ziwei Xu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention ResearchInstitute of Imaging Diagnosis and Minimally Invasive Intervention ResearchThe Fifth Affiliated Hospital of Wenzhou Medical UniversityLishui Hospital of Zhejiang UniversityLishui323000China
| | - Yang Yang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention ResearchInstitute of Imaging Diagnosis and Minimally Invasive Intervention ResearchThe Fifth Affiliated Hospital of Wenzhou Medical UniversityLishui Hospital of Zhejiang UniversityLishui323000China
- Clinical College of The Affiliated Central HospitalSchool of MedicineLishui UniversityLishui323000China
| | - Qiaoyou Weng
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention ResearchInstitute of Imaging Diagnosis and Minimally Invasive Intervention ResearchThe Fifth Affiliated Hospital of Wenzhou Medical UniversityLishui Hospital of Zhejiang UniversityLishui323000China
- Clinical College of The Affiliated Central HospitalSchool of MedicineLishui UniversityLishui323000China
| | - Zhongwei Zhao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention ResearchInstitute of Imaging Diagnosis and Minimally Invasive Intervention ResearchThe Fifth Affiliated Hospital of Wenzhou Medical UniversityLishui Hospital of Zhejiang UniversityLishui323000China
- Clinical College of The Affiliated Central HospitalSchool of MedicineLishui UniversityLishui323000China
| | - Minjiang Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention ResearchInstitute of Imaging Diagnosis and Minimally Invasive Intervention ResearchThe Fifth Affiliated Hospital of Wenzhou Medical UniversityLishui Hospital of Zhejiang UniversityLishui323000China
- Clinical College of The Affiliated Central HospitalSchool of MedicineLishui UniversityLishui323000China
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention ResearchInstitute of Imaging Diagnosis and Minimally Invasive Intervention ResearchThe Fifth Affiliated Hospital of Wenzhou Medical UniversityLishui Hospital of Zhejiang UniversityLishui323000China
- Clinical College of The Affiliated Central HospitalSchool of MedicineLishui UniversityLishui323000China
| |
Collapse
|
27
|
Li Y, Mo H, Jia S, Wang J, Ma Y, Liu X, Tu K. Comprehensive analysis of the amino acid metabolism-related gene signature for prognosis, tumor immune microenvironment, and candidate drugs in hepatocellular carcinoma. Front Immunol 2022; 13:1066773. [PMID: 36582227 PMCID: PMC9792509 DOI: 10.3389/fimmu.2022.1066773] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
Introduction Metabolic rewiring satisfies increased nutritional demands and modulates many oncogenic processes in tumors. Amino acid metabolism is abnormal in many malignancies. Metabolic reprogramming of amino acids not only plays a crucial role in sustaining tumor cell proliferation but also influences the tumor immune microenvironment. Herein, the aim of our study was to elucidate the metabolic signature of amino acids in hepatocellular carcinoma (HCC). Methods Transcriptome profiles of HCC were obtained from the TCGA and ICGC databases. Based on the expression of amino acid metabolism-related genes (AAMRGs), we clustered the HCC samples into two molecular subtypes using the non-negative matrix factorization algorithm. Then, we constructed the amino acid metabolism-related gene signature (AAMRGS) by Cox regression and LASSO regression. Afterward, the clinical significance of the AAMRGS was evaluated. Additionally, we comprehensively analyzed the differences in mutational profiles, immune cell infiltration, immune checkpoint expression, and drug sensitivity between different risk subgroups. Furthermore, we examined three key gene expressions in liver cancer cells by quantitative real-time PCR and conducted the CCK8 assay to evaluate the influence of two chemotherapy drugs on different liver cancer cells. Results A total of 81 differentially expressed AAMRGs were screened between the two molecular subtypes, and these AAMRGs were involved in regulating amino acid metabolism. The AAMRGS containing GLS, IYD, and NQO1 had a high value for prognosis prediction in HCC patients. Besides this, the two AAMRGS subgroups had different genetic mutation probabilities. More importantly, the immunosuppressive cells were more enriched in the AAMRGS-high group. The expression level of inhibitory immune checkpoints was also higher in patients with high AAMRGS scores. Additionally, the two AAMRGS subgroups showed different susceptibility to chemotherapeutic and targeted drugs. In vitro experiments showed that gemcitabine significantly reduced the proliferative capacity of SNU449 cells, and rapamycin remarkedly inhibited Huh7 proliferation. The five HCC cells displayed different mRNA expression levels of GLS, IYD, and NQO1. Conclusions Our study explored the features of amino acid metabolism in HCC and identified the novel AAMRGS to predict the prognosis, immune microenvironment, and drug sensitivity of HCC patients. These findings might help to guide personalized treatment and improve the clinical outcomes of HCC.
Collapse
Affiliation(s)
- Yue Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Huanye Mo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Siying Jia
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jun Wang
- Department of Emergency and Critical Care Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ying Ma
- Department of Cardiovascular Medicine, Xi’an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi’an, China
| | - Xin Liu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China,*Correspondence: Xin Liu, ; Kangsheng Tu,
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,*Correspondence: Xin Liu, ; Kangsheng Tu,
| |
Collapse
|
28
|
Hao X, Zhang Y, Shi X, Liu H, Zheng Z, Han G, Rong D, Zhang C, Tang W, Wang X. CircPAK1 promotes the progression of hepatocellular carcinoma via modulation of YAP nucleus localization by interacting with 14-3-3ζ. J Exp Clin Cancer Res 2022; 41:281. [PMID: 36131287 PMCID: PMC9494907 DOI: 10.1186/s13046-022-02494-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/23/2022] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
Circular RNA (circRNA), a new class of non-coding RNA, has obvious correlations with the occurrence and development of many diseases, including tumors. This study aimed to investigate the potential roles of circPAK1 in hepatocellular carcinoma (HCC).
Methods
High-throughput sequencing was performed on 3 pairs of HCC and matched normal tissues to determine the upregulated circRNAs. The expression level of circPAK1 was detected by qRT-PCR in HCC and paired with normal liver tissue samples. The effects of circPAK1 on proliferation, invasion, metastasis and apoptosis of HCC cells were evaluated by in vitro and in vivo experiments. We also constructed Chitosan/si-circPAK1 (CS/si-circPAK1) nanocomplexes using Chitosan material to evaluate its in vivo therapeutic effect on HCC. High-throughput sequencing, RNA-sequencing, RNA probe pull-down, RNA immunoprecipitation and Co-Immunoprecipitation assays were performed to explore the relationship between circPAK1, 14–3-3ζ, p-LATS1 and YAP. Exosomes isolated from lenvatinib-resistant HCC cell lines were used to evaluate the relationship between exosomal circPAK1 and lenvatinib resistance.
Results
CircPAK1, a novel circRNA, is highly expressed in HCC tumor tissues and cell lines as well as correlated with poor outcomes in HCC patients. Functionally, circPAK1 knockdown inhibited HCC cell proliferation, migration, invasion and angiogenesis while circPAK1 overexpression promoted HCC progression. The tumor-promoting phenotypes of circPAK1 on HCC were also confirmed by animal experiments. Importantly, the application of CS/si-circPAK1 nanocomplexes showed a better therapeutic effect on tumor growth and metastasis. Mechanistically, circPAK1 enhanced HCC progression by inactivating the Hippo signaling pathway, and this kind of inactivation is based on its competitively binding of 14–3-3 ζ with YAP, which weakens the recruitment and cytoplasmic fixation of 14–3-3 ζ to YAP, thus promoting YAP nucleus localization. Additionally, circPAK1 could be transported by exosomes from lenvatinib-resistant cells to sensitive cells and induce lenvatinib resistance of receipt cells.
Conclusion
CircPAK1 exerts its oncogenic function by competitively binding 14–3-3 ζ with YAP, thus promoting YAP nucleus localization, leading to the inactivation of a Hippo signaling pathway. Exosomal circPAK1 may drive resistance to lenvatinib, providing a potential therapeutic target for HCC patients.
Collapse
|
29
|
Tao Q, Zhu K, Zhan Y, Zhang R, Lang Z, Yu Z, Wang M. Construction of a novel exosomes-related gene signature in hepatocellular carcinoma. Front Cell Dev Biol 2022; 10:997734. [PMID: 36105354 PMCID: PMC9465081 DOI: 10.3389/fcell.2022.997734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Exosomes are extracellular vesicles between 40 and 150 nm in diameter and are cargoes for a wide range of small biological molecules. Recent studies have reported that lncRNAs, miRNAs, circRNAs in serum exosomes may serve as biomarkers to predict hepatocellular carcinoma (HCC) prognosis. However, the prognostic values of exosomes-related mRNAs in HCC are still unclear.Methods: Data of HCC patients were downloaded from The Cancer Genome Atlas (TCGA) database. The serum exosome sequencing data of HCC patients and healthy individuals were obtained from the exobase database. Univariate cox regression analysis was used to identify prognostic exosomes-related genes. LASSO and multivariate cox regression analyses were applied to construct prognostic signature.Results: 22 exosomes-related mRNAs differentially expressed between HCC tissues and normal tissues were identified. Then, 8 prognostic exosomes-related mRNAs were screened. Subsequently, G6PD and ADAMTS5, selected by LASSO and multivariate cox regression analyses, were used to construct a prognostic signature. The patients with high-risk scores had a poor prognosis in TCGA cohort as well as ICGC cohort. Notably, this prognostic signature was also validated in a local cohort collected from the First Affiliated Hospital of Wenzhou Medical University. Receiver Operating Characteristic (ROC) analyses indicated that the signature had a good performance in all the cohorts. The gene set enrichment analysis revealed that this signature was associated with cell cycle and metabolism pathways. Immune infiltration analysis indicated that the patients with high-risk scores had a higher M0 macrophages infiltration. The univariate and multivariate cox regression analyses identified that the risk score is an independent risk factor for HCC. In addition, a nomogram containing age, gender, stage and risk score was constructed to precisely predict HCC prognosis.Conclusion: In conclusion, we develop a novel exosomes-related gene signature that helps to predict HCC prognosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Meng Wang
- *Correspondence: Zhengping Yu, ; Meng Wang,
| |
Collapse
|
30
|
Mranda GM, Xiang ZP, Liu JJ, Wei T, Ding Y. Advances in prognostic and therapeutic targets for hepatocellular carcinoma and intrahepatic cholangiocarcinoma: The hippo signaling pathway. Front Oncol 2022; 12:937957. [PMID: 36033517 PMCID: PMC9411807 DOI: 10.3389/fonc.2022.937957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/13/2022] [Indexed: 01/07/2023] Open
Abstract
Primary liver cancer is the sixth most frequently diagnosed cancer worldwide and the third leading cause of cancer-related death. The majority of the primary liver cancer cases are hepatocellular carcinoma and intrahepatic cholangiocarcinoma. Worldwide, there is an increasing incidence of primary liver cancer cases due to multiple risk factors ranging from parasites and viruses to metabolic diseases and lifestyles. Often, patients are diagnosed at advanced stages, depriving them of surgical curability benefits. Moreover, the efficacy of the available chemotherapeutics is limited in advanced stages. Furthermore, tumor metastases and recurrence make primary liver cancer management exceptionally challenging. Thus, exploring the molecular mechanisms for the development and progression of primary liver cancer is critical in improving diagnostic, treatment, prognostication, and surveillance modalities. These mechanisms facilitate the discovery of specific targets that are critical for novel and more efficient treatments. Consequently, the Hippo signaling pathway executing a pivotal role in organogenesis, hemostasis, and regeneration of tissues, regulates liver cells proliferation, and apoptosis. Cell polarity or adhesion molecules and cellular metabolic status are some of the biological activators of the pathway. Thus, understanding the mechanisms exhibited by the Hippo pathway is critical to the development of novel targeted therapies. This study reviews the advances in identifying therapeutic targets and prognostic markers of the Hippo pathway for primary liver cancer in the past six years.
Collapse
|
31
|
T-box transcription factor 19 promotes hepatocellular carcinoma metastasis through upregulating EGFR and RAC1. Oncogene 2022; 41:2225-2238. [PMID: 35217793 DOI: 10.1038/s41388-022-02249-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/29/2022] [Accepted: 02/14/2022] [Indexed: 12/21/2022]
Abstract
The effect of targeted therapy for metastatic hepatocellular carcinoma (HCC) is still unsatisfactory. Exploring the underlying mechanism of HCC metastasis is favorable to provide new therapeutic strategies. T-box (TBX) transcription factor family genes, which are crucial regulators in embryo and organ development, are vital for regulating tumor initiation, growth and metastasis. Here we explored the role of TBX19 in HCC metastasis, which is one of the most upregulated TBX family genes in human HCC tissues. TBX19 expression was markedly upregulated in HCC tissues and elevated TBX19 expression predicted poor prognosis. Overexpression of TBX19 enhanced HCC metastasis through upregulating epidermal growth factor receptor (EGFR) and Rac family small GTPase 1 (RAC1) expression. Downregulation of EGFR and RAC1 inhibited TBX19-mediated HCC metastasis, while upregulation of EGFR and RAC1 restored inhibition of HCC metastasis mediated by TBX19 knockdown. Furthermore, epidermal growth factor (EGF)/EGFR signaling upregulated TBX19 expression via the extracellular signal-regulated kinase (ERK)/nuclear factor (NF)-kB axis. Besides, the combined application of EGFR inhibitor Erlotinib and RAC1 inhibitor NSC23766 markedly inhibited TBX19-mediated HCC metastasis. In HCC cohorts, TBX19 expression was positively associated with EGFR and RAC1 expression. Patients with positive coexpression of TBX19/EGFR or TBX19/RAC1 displayed the poorest prognosis. In conclusion, EGF/EGFR signaling upregulated TBX19 expression via ERK/NF-kB pathway and TBX19 fostered HCC metastasis by enhancing EGFR and RAC1 expression, which formed an EGF-TBX19-EGFR positive feedback loop. Targeting this signaling pathway may offer a potential therapeutic strategy to efficiently restrain TBX19-mediated HCC metastasis.
Collapse
|
32
|
Abstract
Deregulated Wnt/β-catenin signaling is one of the main genetic alterations in human hepatocellular carcinoma (HCC). Comprehensive genomic analyses have revealed that gain-of-function mutation of CTNNB1, which encodes β-catenin, and loss-of-function mutation of AXIN1 occur in approximately 35% of human HCC samples. Human HCCs with activation of the Wnt/β-catenin pathway demonstrate unique gene expression patterns and pathological features. Activated Wnt/β-catenin synergizes with multiple signaling cascades to drive HCC formation, and it functions through its downstream effectors. Therefore, strategies targeting Wnt/β-catenin have been pursued as possible therapeutics against HCC. Here, we review the genetic alterations and oncogenic roles of aberrant Wnt/β-catenin signaling during hepatocarcinogenesis. In addition, we discuss the implication of this pathway in HCC diagnosis, classification, and personalized treatment.
Collapse
Affiliation(s)
- Chuanrui Xu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhong Xu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Diego F. Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, UCSF, San Francisco, California, USA
| |
Collapse
|
33
|
Gu CY, Lee TKW. Preclinical mouse models of hepatocellular carcinoma: An overview and update. Exp Cell Res 2022; 412:113042. [PMID: 35101391 DOI: 10.1016/j.yexcr.2022.113042] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 11/29/2022]
|
34
|
Niu G, Hao J, Sheng S, Wen F. Role of T-box genes in cancer, epithelial-mesenchymal transition, and cancer stem cells. J Cell Biochem 2021; 123:215-230. [PMID: 34897787 DOI: 10.1002/jcb.30188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 12/13/2022]
Abstract
Sharing a common DNA binding motif called T-box, transcription factor T-box gene family controls embryonic development and is also involved in cancer progression and metastasis. Cancer metastasis shows therapy resistance and involves complex processes. Among them, epithelial-mesenchymal transition (EMT) triggers cancer cell invasiveness and the acquisition of stemness of cancer cells, called cancer stem cells (CSCs). CSCs are a small fraction of tumor bulk and are capable of self-renewal and tumorsphere formation. Recent progress has highlighted the critical roles of T-box genes in cancer progression, EMT, and CSC function, and such regulatory functions of T-box genes have emerged as potential therapeutic candidates for cancer. Herein we summarize the current understanding of the regulatory mechanisms of T-box genes in cancer, EMT, and CSCs, and discuss the implications of targeting T-box genes as anticancer therapeutics.
Collapse
Affiliation(s)
- Gengle Niu
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Jin Hao
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Surui Sheng
- Department of Oral and Maxillofacial-Head Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangyuan Wen
- Department of Outpatient, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|