1
|
Li S, Li Y, Zhou C, Li H, Zhao Y, Yi X, Chen C, Peng C, Wang T, Liu F, Xiao J, Shi L. Muscle fat content correlates with postoperative survival of viral-related cirrhosis patients after the TIPS: a retrospective study. Ann Med 2025; 57:2484460. [PMID: 40146662 PMCID: PMC11951314 DOI: 10.1080/07853890.2025.2484460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 02/09/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025] Open
Abstract
PURPOSE Early prediction of the prognosis of viral-related cirrhosis patients after transjugular intrahepatic portosystemic shunt (TIPS) is beneficial for clinical decision-making. The aim of this study is to explore a comprehensive prognostic assessment model for evaluating the survival outcomes of patients post-TIPS. MATERIALS AND METHODS A total of 155 patients treated with TIPS were included in the study. The data were collected from electronic records. The nutritional status of the patient is evaluated using imaging examinations measuring by the axial CT images from the L3 vertebral level. The primary endpoint was set as death within 1 year after TIPS. Multivariate Cox regression was performed to determine the factors associated with mortality. RESULTS The Cox regression analysis revealed that the lower PMFI was associated with a lower risk of all-cause mortality after TIPS (hazard ratio [HR] 1.159, 95% confidence interval [CI] 1.063-1.263, p = 0.001). Furthermore, subgroup analyses according to gender revealed the PMFI was associated with postoperative death both in male (HR 2.125, 95% CI, 1.147-3.936, p = 0.017) and female patients (HR 1.070, 95% CI, 1.001-1.144, p = 0.047). The area under the curve (AUC) for predicting death within 1 year was 0.807. The clinical impact curve analysis showed that PMFI had higher levels of risk threshold probability and a smaller gap between actual and predicted curves. CONCLUSIONS In viral-related cirrhosis patients with portal hypertension, increased muscle fat content might be a potential prognostic marker and associated with postoperative death after TIPS.
Collapse
Affiliation(s)
- Sai Li
- Interventional Radiology Center, Department of Radiology, The Third Xiangya Hospital of Central South Hospital, Changsha, Hunan, China
- Interventional Radiology Center, Department of Radiology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Yong Li
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chunhui Zhou
- Interventional Radiology Center, Department of Radiology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Haiping Li
- Interventional Radiology Center, Department of Radiology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Yazhuo Zhao
- Interventional Radiology Center, Department of Radiology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Xiaoping Yi
- Interventional Radiology Center, Department of Radiology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Changyong Chen
- Interventional Radiology Center, Department of Radiology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Changli Peng
- Interventional Radiology Center, Department of Radiology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Tianming Wang
- Interventional Radiology Center, Department of Radiology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Fei Liu
- Interventional Radiology Center, Department of Radiology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Juxiong Xiao
- Interventional Radiology Center, Department of Radiology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Liangrong Shi
- Interventional Radiology Center, Department of Radiology, Xiangya Hospital Central South University, Changsha, Hunan, China
- Research Center for Geriatric Disorder, Xiangya Hospital Central South, Changsha, Hunan, China
| |
Collapse
|
2
|
Han E, Kim MK, Lee HW, Ryu S, Kim HS, Jang BK, Suh Y. Myosteatosis Predicts Bariatric Surgery Response: A Longitudinal Study in Patients With Morbid Obesity. J Clin Endocrinol Metab 2025; 110:e1385-e1394. [PMID: 39150979 DOI: 10.1210/clinem/dgae567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/31/2024] [Accepted: 08/15/2024] [Indexed: 08/18/2024]
Abstract
CONTEXT Data on the preoperative factors for bariatric surgery response in patients with morbid obesity are limited, and there are no studies on the relationship between myosteatosis and surgery response. OBJECT We investigated the preoperative factors determining bariatric surgery response and the impact of preoperative muscle fat infiltration on bariatric surgery response. METHODS This retrospective longitudinal cohort study included 125 individuals (37 men, 88 women) with morbid obesity who underwent bariatric surgery. Muscle fat infiltration [skeletal muscle fat index (SMFI)] was evaluated using computed tomography-based psoas muscle mass and density at the fourth lumbar level. A bariatric surgery response was defined as ≥50% excessive weight loss at 1 year postoperatively. RESULTS Before bariatric surgery, the patient's mean body weight and body mass index (BMI) were 107.0 kg and 39.0 kg/m2, respectively. After 1 year, the mean body weight was 79.6 kg. The mean excessive weight loss at 1 year was 75.6%, and 102 (81.6%) patients were categorized as responders. There were no statistically significant differences in initial BMI, age, sex, or proportion of diabetes between responders and nonresponders. Responders were more likely to have lower SMFI and triglyceride and glycated hemoglobin A1c levels than nonresponders at baseline (P < .05). Multiple logistic regression analysis showed that a lower baseline SMFI was associated with bariatric surgery response (odds ratio = 0.31, 95% confidence interval = 0.14-0.69, P = .004). CONCLUSION Preoperative myosteatosis may determine the response to bariatric surgery.
Collapse
Affiliation(s)
- Eugene Han
- Division of Endocrinology & Metabolism, Department of Internal Medicine, Keimyung University School of Medicine, Daegu 42601, Korea
| | - Mi Kyung Kim
- Division of Endocrinology & Metabolism, Department of Internal Medicine, Keimyung University School of Medicine, Daegu 42601, Korea
| | - Hye Won Lee
- Department of Pathology, Keimyung University School of Medicine, Daegu 42601, Korea
| | - Seungwan Ryu
- Division of Gastrointestinal Surgery, Department of Surgery, Keimyung University School of Medicine, Daegu 42601, Korea
| | - Hye Soon Kim
- Division of Endocrinology & Metabolism, Department of Internal Medicine, Keimyung University School of Medicine, Daegu 42601, Korea
| | - Byoung Kuk Jang
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, Keimyung University School of Medicine, Daegu 42601, Korea
| | - Youngsung Suh
- Department of Family Medicine, Keimyung University School of Medicine, Daegu 42601, Korea
| |
Collapse
|
3
|
Jain P, Jain A, Deshmukh R, Samal P, Satapathy T, Ajazuddin. Metabolic dysfunction-associated steatotic liver disease (MASLD): Exploring systemic impacts and innovative therapies. Clin Res Hepatol Gastroenterol 2025; 49:102584. [PMID: 40157567 DOI: 10.1016/j.clinre.2025.102584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/24/2025] [Accepted: 03/27/2025] [Indexed: 04/01/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), which includes the inflammatory subtype metabolic dysfunction-associated steatohepatitis, is a prominent cause of chronic liver disease with systemic effects. Insulin resistance, obesity, and dyslipidaemia produce MASLD in over 30 % of adults. It is a global health issue. From MASLD to MASH, hepatic inflammation and fibrosis grow, leading to cirrhosis, hepatocellular cancer, and extrahepatic complications such CVD, CKD, and sarcopenia. Effects of MASLD to MASH are mediated through mechanisms that include inflammation, oxidative stress, dysbiosis, and predisposition through genetic makeup. Advances in diagnostic nomenclature in the past few years have moved the emphasis away from NAFLD to MASLD, focusing on the metabolic etiology and away from the stigma of an alcoholic-related condition. Epidemiological data show a large geographical variability and increasing prevalence in younger populations, particularly in regions with high carbohydrate-rich diets and central adiposity. Lifestyle modification is considered as the main management of MASLD currently. This may include dietary intervention, exercise, and weight loss management. Pharmaceutical management is primarily aimed at metabolic dysfunction with promising findings for GLP-1 receptor agonists, pioglitazone and SGLT-2 inhibitors, which can correct both hepatic and systemic outcome. However, it still depends on well-integrated multidisciplinary care models by considering complex relationships between MASLD and its effects on extrahepatic organs. Determining complications at an early stage; developing precision medicine strategies; exploring new therapeutic targets will represent crucial factors in improving their outcomes. This review discuss the systemic nature of MASLD and calls for multiple collaborations to reduce its far-reaching health impacts and our quest for understanding its pathological mechanisms. Thus, collective efforts that are required to address MASLD are under the public health, clinical care, and research angles toward effectively containing its rapidly increasing burden.
Collapse
Affiliation(s)
- Parag Jain
- Department of Pharmacology, Rungta College of Pharmaceutical Sciences and Research, Bhilai, C.G., India, 490024.
| | - Akanksha Jain
- Department of Biotechnology, Bharti University, Durg, C.G., India
| | - Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura, India, 281406
| | - Pradeep Samal
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur, C.G., India
| | - Trilochan Satapathy
- Department of Pharmacy, Columbia Institute of Pharmaceutical Sciences, Raipur, C.G., India, 493111
| | - Ajazuddin
- Department of Pharmacology, Rungta College of Pharmaceutical Sciences and Research, Bhilai, C.G., India, 490024
| |
Collapse
|
4
|
Crişan D, Avram L, Morariu-Barb A, Grapa C, Hirişcau I, Crăciun R, Donca V, Nemeş A. Sarcopenia in MASLD-Eat to Beat Steatosis, Move to Prove Strength. Nutrients 2025; 17:178. [PMID: 39796612 PMCID: PMC11722590 DOI: 10.3390/nu17010178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/26/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
The connections between sarcopenia and various chronic conditions, including type 2 diabetes (T2DM), metabolic syndrome (MetS), and liver disease have been highlighted recently. There is also a high occurrence of sarcopenia in metabolic dysfunction-associated steatotic liver disease (MASLD) patients, who are often disregarded. Both experimental and clinical findings suggest a complex, bidirectional relationship between MASLD and sarcopenia. While vitamin D, testosterone, and specific drug therapies show promise in mitigating sarcopenia, consensus on effective treatments is lacking. Recent focus on lifestyle interventions emphasizes dietary therapy and exercise for sarcopenic obesity in MASLD. Challenges arise as weight loss, a primary MASLD treatment, may lead to muscle mass reduction. The therapeutic approach to sarcopenia in morbidly obese MASLD patients also includes bariatric surgery (BS). BS induces weight loss and stabilizes metabolic imbalances, but its impact on sarcopenia is nuanced, underscoring the need for further research. Our aim is to provide a comprehensive review of the interplay between sarcopenia and MASLD and offer insight into the most recent therapeutic challenges and discoveries, as sarcopenia is often overlooked or unrecognized and poses significant challenges for managing these patients.
Collapse
Affiliation(s)
- Dana Crişan
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.C.); (L.A.); (I.H.); (R.C.); (V.D.); (A.N.)
- Clinical Municipal Hospital, 400139 Cluj-Napoca, Romania
| | - Lucreţia Avram
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.C.); (L.A.); (I.H.); (R.C.); (V.D.); (A.N.)
- Clinical Municipal Hospital, 400139 Cluj-Napoca, Romania
| | - Andreea Morariu-Barb
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.C.); (L.A.); (I.H.); (R.C.); (V.D.); (A.N.)
- Regional Institute of Gastroenterology and Hepatology “Prof. Dr. Octavian Fodor”, 400162 Cluj-Napoca, Romania
| | - Cristiana Grapa
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.C.); (L.A.); (I.H.); (R.C.); (V.D.); (A.N.)
- Regional Institute of Gastroenterology and Hepatology “Prof. Dr. Octavian Fodor”, 400162 Cluj-Napoca, Romania
| | - Ioana Hirişcau
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.C.); (L.A.); (I.H.); (R.C.); (V.D.); (A.N.)
| | - Rareş Crăciun
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.C.); (L.A.); (I.H.); (R.C.); (V.D.); (A.N.)
- Regional Institute of Gastroenterology and Hepatology “Prof. Dr. Octavian Fodor”, 400162 Cluj-Napoca, Romania
| | - Valer Donca
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.C.); (L.A.); (I.H.); (R.C.); (V.D.); (A.N.)
- Clinical Municipal Hospital, 400139 Cluj-Napoca, Romania
| | - Andrada Nemeş
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.C.); (L.A.); (I.H.); (R.C.); (V.D.); (A.N.)
- Clinical Municipal Hospital, 400139 Cluj-Napoca, Romania
| |
Collapse
|
5
|
Liu S, He Y, Yu G, Song C, Wang D, Liu L, Liang H, Wan H, Shen J. Association of muscle mass, grip strength and fat-to-muscle ratio and metabolic dysfunction-associated steatotic liver disease in a middle-to-elderly aged population. Ann Med 2024; 56:2390169. [PMID: 39129458 PMCID: PMC11321103 DOI: 10.1080/07853890.2024.2390169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/05/2024] [Accepted: 06/26/2024] [Indexed: 08/13/2024] Open
Abstract
OBJECTIVE The association of appendicular skeletal muscle mass (ASM), grip strength and fat-to-muscle ratio (FMR) and the progression of metabolic dysfunction-associated steatotic liver disease (MASLD) are not well known. MATERIALS AND METHODS This study included participants older than 40 years who underwent bioelectrical impedance assessment in Prevalence of Metabolic Diseases and Risk Factors in Shunde (SPEED-Shunde). We measured grip strength with an electronic grip strength metre. ASM and grip strength were adjusted by dividing body mass index (BMI). FMR was calculated as total fat mass to total muscle mass. Liver steatosis and liver fibrosis were evaluated by vibration-controlled transient elastography. Multifactorial logistic regression was used to analyse the relationship between ASM, grip strength, FMR, and MASLD or MASLD-associated liver fibrosis. We performed subgroup analyses according to sex, age and BMI. Interaction tests and linear trend tests were also conducted. RESULTS This study included a total of 3277 participants. FMR was positively associated with MASLD (OR: 1.89, 95% CI: 1.66-2.15) and MASLD-associated liver fibrosis (OR: 1.70, 95% CI: 1.22-2.37). While ASM/BMI (OR: 0.59, 95% CI: 0.52-0.67) or grip strength/BMI (OR: 0.72, 95% CI: 0.66-0.78) were negatively associated with MASLD. Interactions were observed between ASM/BMI and age, grip strength and sex in MASLD, as well as FMR and MASLD-associated liver fibrosis. CONCLUSION In a middle-to-elderly aged population, FMR was positively associated with the risk of MASLD and MASLD-associated liver fibrosis, and muscle mass and grip strength were negatively associated with MASLD, rather than MASLD-associated liver fibrosis.
Collapse
Affiliation(s)
- Siyang Liu
- Institute and Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan, Guangdong, China
| | - Yajun He
- Institute and Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan, Guangdong, China
- School of Nursing, Southern Medical University, Guangzhou, Guangdong, China
| | - Genfeng Yu
- Institute and Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan, Guangdong, China
| | - Cheng Song
- Institute and Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan, Guangdong, China
| | - Dongmei Wang
- Institute and Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan, Guangdong, China
| | - Lan Liu
- Institute and Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan, Guangdong, China
| | - Hua Liang
- Institute and Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan, Guangdong, China
| | - Heng Wan
- Institute and Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan, Guangdong, China
| | - Jie Shen
- Institute and Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan, Guangdong, China
| |
Collapse
|
6
|
Zambon Azevedo V, Bel Lassen P, Aron-Wisnewsky J, Genser L, Charlotte F, Bedossa P, Ponnaiah M, Pais R, Clément K, Oppert JM, Ratziu V. Metabolic and hepatic phenotypes in sarcopenic obesity and impact of bariatric surgery. Clin Nutr 2024; 43:254-264. [PMID: 39536396 DOI: 10.1016/j.clnu.2024.10.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND & AIMS Sarcopenic obesity (SO) is associated with cardiometabolic disorders and steatotic liver disease and carries major health risks. We assessed the hepatic and metabolic clinical phenotype associated with SO in patients with obesity undergoing bariatric surgery (BS). We also evaluated whether weight-loss and metabolic improvement post-surgery differ between patients with and without SO. METHODS 972 consecutive patients from a single-center BS cohort who underwent whole-body dual-energy X-ray absorptiometry (DXA) and peri-operative liver biopsy were included. SO was diagnosed using the AIM-SO score, an AI-assisted unbiased clustering algorithm based on body composition. One-year post-surgery, 862 patients were reassessed for AIM-SO score changes. RESULTS Pre-operatively, 207 (21.3 %) patients were diagnosed with SO. These patients had significantly higher prevalence of type-2 diabetes (T2D), arterial hypertension and obstructive sleep apnea (OSA) compared to patients without SO (all p ≤ 0.003). Patients with SO had more severe liver damage: higher grades of moderate/advanced steatosis (64.2 % vs. 47.3 %), steatohepatitis (44.4 % vs. 32.3 %) and advanced fibrosis (12.1 % vs. 6.0 %) (all p ≤ 0.01). One-year post-BS, 58.5 % of patients had remission of SO. Patients with persistent SO exhibited less weight-loss than those with SO remission (-23.8 kg vs. -29.1 kg, p < 0.001) and had lower rates of remission for T2D (41.9 % vs. 69.8 %), arterial hypertension (20.8 % vs. 45.3 %), and metabolic syndrome (47.6 % vs. 75.0 %) (all p ≤ 0.009). CONCLUSION The DXA-based AIM-SO score identifies patients with SO who are at greater risk of hepatic and cardiometabolic comorbidities, and predicts less favorable weight-loss and metabolic improvements post-BS.
Collapse
Affiliation(s)
- Vittoria Zambon Azevedo
- Sorbonne Université, Paris, France; Foundation for Innovation in Cardiometabolism and Nutrition, IHU ICAN, Paris, France; Centre de Recherche de Cordeliers, INSERM UMRS 1138, Paris, France
| | - Pierre Bel Lassen
- Sorbonne Université, INSERM, Nutrition and Obesities: Systemic Approaches, NutriOmics, Paris, France; Assistance Publique Hôpitaux de Paris, AP-HP, Service de Nutrition, Hôpital Pitié-Salpêtrière, Paris, France
| | - Judith Aron-Wisnewsky
- Sorbonne Université, Paris, France; Sorbonne Université, INSERM, Nutrition and Obesities: Systemic Approaches, NutriOmics, Paris, France; Assistance Publique Hôpitaux de Paris, AP-HP, Service de Nutrition, Hôpital Pitié-Salpêtrière, Paris, France
| | - Laurent Genser
- Sorbonne Université, Paris, France; Assistance Publique-Hôpitaux de Paris, AP-HP, Department of Hepato-Biliary and Pancreatic Surgery, France
| | - Frederic Charlotte
- Sorbonne Université, Paris, France; Assistance Publique Hôpitaux de Paris, AP-HP, Service d'Anatomie et Cytologie Pathologiques, Hôpital Pitié-Salpêtrière, Paris, France
| | | | - Maharajah Ponnaiah
- Foundation for Innovation in Cardiometabolism and Nutrition, IHU ICAN, Paris, France
| | - Raluca Pais
- Foundation for Innovation in Cardiometabolism and Nutrition, IHU ICAN, Paris, France; Assistance Publique Hôpitaux de Paris, AP-HP, Service d'Hépatologie et Gastro-entérologie, Hôpital Pitié-Salpêtrière, Paris, France
| | - Karine Clément
- Sorbonne Université, Paris, France; Sorbonne Université, INSERM, Nutrition and Obesities: Systemic Approaches, NutriOmics, Paris, France; Assistance Publique Hôpitaux de Paris, AP-HP, Service de Nutrition, Hôpital Pitié-Salpêtrière, Paris, France
| | - Jean-Michel Oppert
- Sorbonne Université, Paris, France; Foundation for Innovation in Cardiometabolism and Nutrition, IHU ICAN, Paris, France; Assistance Publique Hôpitaux de Paris, AP-HP, Service de Nutrition, Hôpital Pitié-Salpêtrière, Paris, France.
| | - Vlad Ratziu
- Sorbonne Université, Paris, France; Foundation for Innovation in Cardiometabolism and Nutrition, IHU ICAN, Paris, France; Centre de Recherche de Cordeliers, INSERM UMRS 1138, Paris, France; Assistance Publique Hôpitaux de Paris, AP-HP, Service d'Hépatologie et Gastro-entérologie, Hôpital Pitié-Salpêtrière, Paris, France
| |
Collapse
|
7
|
Alvarado-Tapias E, Maya-Miles D, Albillos A, Aller R, Ampuero J, Andrade RJ, Arechederra M, Aspichueta P, Banales JM, Blas-García A, Caparros E, Cardoso Delgado T, Carrillo-Vico A, Claria J, Cubero FJ, Díaz-Ruiz A, Fernández-Barrena MG, Fernández-Iglesias A, Fernández-Veledo S, Francés R, Gallego-Durán R, Gracia-Sancho J, Irimia M, Lens S, Martínez-Chantar ML, Mínguez B, Muñoz-Hernández R, Nogueiras R, Ramos-Molina B, Riveiro-Barciela M, Rodríguez-Perálvarez ML, Romero-Gómez M, Sabio G, Sancho-Bru P, Ventura-Cots M, Vidal S, Gahete MD. Proceedings of the 5th Meeting of Translational Hepatology, organized by the Spanish Association for the Study of the Liver (AEEH). GASTROENTEROLOGIA Y HEPATOLOGIA 2024; 47:502207. [PMID: 38723772 DOI: 10.1016/j.gastrohep.2024.502207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/02/2024] [Indexed: 11/30/2024]
Abstract
This is the summary report of the 5th Translational Hepatology Meeting, endorsed by the Spanish Association for the Study of the Liver (AEEH) and held in Seville, Spain, in October 2023. The meeting aimed to provide an update on the latest advances in the field of basic and translational hepatology, covering different molecular, cellular, and pathophysiological aspects of the most relevant clinical challenges in liver pathologies. This includes the identification of novel biomarkers and diagnostic tools, the understanding of the relevance of immune response and inflammation in liver diseases, the characterization of current medical approaches to reverse liver diseases, the incorporation of novel molecular insights through omics techniques, or the characterization of the impact of toxic and metabolic insults, as well as other organ crosstalk, in liver pathophysiology.
Collapse
Affiliation(s)
- Edilmar Alvarado-Tapias
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Gastroenterology, Hospital Santa Creu I Sant Pau, Institut de Recerca Sant Pau, Universidad Autónoma de Barcelona, Barcelona, Spain.
| | - Douglas Maya-Miles
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), CISC, Universidad de Sevilla, Sevilla, Spain.
| | - Agustin Albillos
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Servicio de Gastroenterología y Hepatología, Hospital Universitario Ramón y Cajal/Universidad de Alcalá/Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Rocio Aller
- BioCritic, Group for Biomedical Research in Critical Care Medicine, Spain; Department of Medicine, Dermatology and Toxicology, Universidad de Valladolid, Spain; Gastroenterology Unit, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain
| | - Javier Ampuero
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), CISC, Universidad de Sevilla, Sevilla, Spain
| | - Raul J Andrade
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain
| | - Maria Arechederra
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Patricia Aspichueta
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain; Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Jesus M Banales
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute - Donostia University Hospital - University of the Basque Country (UPV/EHU), Ikerbasque, Donostia-San Sebastian, Spain; Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Ana Blas-García
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Departamento de Fisiología, Universitat de València, Av. Blasco Ibáñez, 15, 46010 Valencia, Spain; FISABIO (Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana), Av. de Catalunya, 21, 46020 Valencia, Spain
| | - Esther Caparros
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Grupo de Inmunobiología Hepática e Intestinal, Departamento Medicina Clínica, Universidad Miguel Hernández, San Juan, Spain; Instituto de Investigación Sanitaria ISABIAL, Hospital General Universitario de Alicante, Alicante, Spain
| | - Teresa Cardoso Delgado
- Biobizkaia Health Research Institute, Barakaldo, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Antonio Carrillo-Vico
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), CISC, Universidad de Sevilla, Sevilla, Spain; Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - Joan Claria
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Biochemistry and Molecular Genetics Service, Hospital Clínic, IDIBAPS, Barcelona, Spain; University of Barcelona, Spain
| | - Francisco Javier Cubero
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain; Health Research Institute Gregorio Marañón (IiSGM), Madrid, Spain
| | - Alberto Díaz-Ruiz
- Laboratory of Cellular and Molecular Gerontology, Precision Nutrition and Aging, Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, Madrid, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Maite G Fernández-Barrena
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain; Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Spain
| | - Anabel Fernández-Iglesias
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Liver Vascular Biology Research Group, IDIBAPS, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
| | - Sonia Fernández-Veledo
- Department of Endocrinology and Nutrition and Research Unit, University Hospital of Tarragona Joan XXIII, Institut d'Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili (URV), Tarragona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Ruben Francés
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Grupo de Inmunobiología Hepática e Intestinal, Departamento Medicina Clínica, Universidad Miguel Hernández, San Juan, Spain; Instituto de Investigación Sanitaria ISABIAL, Hospital General Universitario de Alicante, Alicante, Spain
| | - Rocío Gallego-Durán
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), CISC, Universidad de Sevilla, Sevilla, Spain
| | - Jordi Gracia-Sancho
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Liver Vascular Biology Research Group, IDIBAPS, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
| | - Manuel Irimia
- Universitat Pompeu Fabra (UPF), Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, ICREA, Barcelona, Spain
| | - Sabela Lens
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain; Liver Unit, Hospital Clínic, IDIBAPS, Barcelona, Spain
| | - María Luz Martínez-Chantar
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Beatriz Mínguez
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Liver Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Rocío Muñoz-Hernández
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), CISC, Universidad de Sevilla, Sevilla, Spain; Departamento de fisiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Rubén Nogueiras
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain; Department of Physiology, CIMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, Spain
| | - Bruno Ramos-Molina
- Obesity, Diabetes and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Mar Riveiro-Barciela
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Liver Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Manuel L Rodríguez-Perálvarez
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Hepatology and Liver Transplantation, Reina Sofia University Hospital, Cordoba, Spain; Maimonides Biomedical Research Institute of Córdoba (IMIBIC), University of Córdoba, Cordoba, Spain
| | - Manuel Romero-Gómez
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), CISC, Universidad de Sevilla, Sevilla, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Stress Kinases in Diabetes, Cancer and Biochemistry, Spain; Centro Nacional de Investigaciones Oncologicas (CNIO), Organ Crosstalk in Metabolic Diseases, Madrid, Spain
| | - Pau Sancho-Bru
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Meritxell Ventura-Cots
- Liver Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Center for Liver Diseases, Pittsburgh Liver Research Center, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Silvia Vidal
- Group of Inflammatory Diseases, Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Manuel D Gahete
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Spain; Molecular Hepatology Group, Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Spain; Reina Sofia University Hospital, Cordoba, Spain.
| |
Collapse
|
8
|
Bernal-Contreras KD, Berrospe-Alfaro M, de Cárdenas-Rojo RL, Ramos-Ostos MH, Uribe M, López-Méndez I, Juárez-Hernández E. Body composition differences in patients with Metabolic Dysfunction-Associated Steatotic Liver Disease. Front Nutr 2024; 11:1490277. [PMID: 39564205 PMCID: PMC11575703 DOI: 10.3389/fnut.2024.1490277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/25/2024] [Indexed: 11/21/2024] Open
Abstract
Background Although body composition (BC) has been associated with Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD), there is little evidence of differences in BC in patients with MASLD regarding body mass index (BMI). The aim of this study was to determine differences in BC in terms of BMI and metabolic comorbidities in patients with MASLD. Materials and methods It is a cross-sectional study with patients who attended the check-up unit. Liver steatosis was evaluated by controlled attenuation parameter, and patients were classified into five groups according to BMI, presence of MASLD, and metabolic characteristics: <25 kg/m2 non-MASLD; <25 kg/m2-MASLD; Overweight-MASLD; Metabolically Healthy Obese (MHO)-MASLD; and Metabolically Unhealthy Obese (MUO)-MASLD. BC was assessed by bioelectrical impedance and a Bioimpedance Vectorial Analysis (BIVA) was carried out. Differences in BC were analyzed by a One-Way ANOVA test. Univariate and multivariate analyses were performed for factors associated with abnormal BC. Results A total of 316 patients were included. 59% (n = 189) were male, with a mean age of 49 ± 10 years. Fat% significantly higher according to BMI was not different between BMI <25 kg/m2-MASLD and Overweight-MASLD groups. Skeletal muscle mass (SMM) was significantly lower in obesity groups with respect to overweight and normal weight groups (p < 0.05); however, no differences were observed in the post-hoc analysis. Extracellular Water/Intracellular Water ratio was significantly higher in the MHO-MASLD group and MUO-MASLD group compared with the BMI <25 kg/m2 non-MASLD group and with the BMI <25 kg/m2-MASLD group. Abnormal Waist Circumference (WC) and liver steatosis were independent factors associated with abnormal BC. Conclusion BC in MASLD patients varies according to BMI increase; changes could be explained by loss of SMM and not necessarily by the presence of metabolic abnormalities. High WC and the presence of steatosis are independent factors associated with altered BC.
Collapse
Affiliation(s)
| | | | | | - Martha H Ramos-Ostos
- Integral Diagnosis and Treatment Unit, Medica Sur Clinic and Foundation, Mexico City, Mexico
| | - Misael Uribe
- Gastroenterology and Obesity Unit, Medica Sur Clinic and Foundation, Mexico City, Mexico
| | - Iván López-Méndez
- Hepatology and Transplants Unit, Medica Sur Clinic and Foundation, Mexico City, Mexico
| | - Eva Juárez-Hernández
- Translational Research Unit, Medica Sur Clinic and Foundation, Mexico City, Mexico
| |
Collapse
|
9
|
Gallego-Durán R, Hadjihambi A, Ampuero J, Rose CF, Jalan R, Romero-Gómez M. Ammonia-induced stress response in liver disease progression and hepatic encephalopathy. Nat Rev Gastroenterol Hepatol 2024; 21:774-791. [PMID: 39251708 DOI: 10.1038/s41575-024-00970-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 09/11/2024]
Abstract
Ammonia levels are orchestrated by a series of complex interrelated pathways in which the urea cycle has a central role. Liver dysfunction leads to an accumulation of ammonia, which is toxic and is strongly associated with disruption of potassium homeostasis, mitochondrial dysfunction, oxidative stress, inflammation, hypoxaemia and dysregulation of neurotransmission. Hyperammonaemia is a hallmark of hepatic encephalopathy and has been strongly associated with liver-related outcomes in patients with cirrhosis and liver failure. In addition to the established role of ammonia as a neurotoxin in the pathogenesis of hepatic encephalopathy, an increasing number of studies suggest that it can lead to hepatic fibrosis progression, sarcopenia, immune dysfunction and cancer. However, elevated systemic ammonia levels are uncommon in patients with metabolic dysfunction-associated steatotic liver disease. A clear causal relationship between ammonia-induced immune dysfunction and risk of infection has not yet been definitively proven. In this Review, we discuss the mechanisms by which ammonia produces its diverse deleterious effects and their clinical relevance in liver diseases, the importance of measuring ammonia levels for the diagnosis of hepatic encephalopathy, the prognosis of patients with cirrhosis and liver failure, and how our knowledge of inter-organ ammonia metabolism is leading to the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Rocío Gallego-Durán
- UCM Digestive Diseases, Virgen del Rocío University Hospital. Instituto de Biomedicina de Sevilla (HUVR/CSIC/US), Department of Medicine, University of Seville, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Anna Hadjihambi
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
- Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Javier Ampuero
- UCM Digestive Diseases, Virgen del Rocío University Hospital. Instituto de Biomedicina de Sevilla (HUVR/CSIC/US), Department of Medicine, University of Seville, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Christopher F Rose
- Hepato-Neuro Laboratory, CRCHUM, Université de Montréal, Montreal, Canada
| | - Rajiv Jalan
- Institute for Liver and Digestive Health, Division of Medicine, UCL Medical School, Royal Free Hospital, London, UK
- European Foundation for the Study of Chronic Liver Failure, Barcelona, Spain
| | - Manuel Romero-Gómez
- UCM Digestive Diseases, Virgen del Rocío University Hospital. Instituto de Biomedicina de Sevilla (HUVR/CSIC/US), Department of Medicine, University of Seville, Seville, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain.
| |
Collapse
|
10
|
Sheptulina AF, Lyusina EO, Mamutova EM, Yafarova AA, Kiselev AR, Drapkina OM. Bioelectrical Impedance Analysis Demonstrates Reliable Agreement with Dual-Energy X-ray Absorptiometry in Identifying Reduced Skeletal Muscle Mass in Patients with Metabolic Dysfunction-Associated Steatotic Liver Disease and Hypertension. Diagnostics (Basel) 2024; 14:2301. [PMID: 39451624 PMCID: PMC11507167 DOI: 10.3390/diagnostics14202301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/24/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Background/Objectives: Body composition (BC) affects the risk of developing metabolic dysfunction-associated steatotic liver disease (MASLD) and hypertension (HTN). Currently, dual-energy X-ray absorptiometry (DEXA) is considered the gold standard for assessing BC, even though it has some limitations, including immobility, ionizing radiation, and patient weight restrictions. The aim of the study was to evaluate the correlations of BC parameters measured by bioelectrical impedance analysis (BIA) with those measured by DEXA in patients with MASLD and HTN. Methods: Overall, 78 patients with MASLD and HTN underwent the following study procedures: compilation of an anamnesis, physical examination of a patient, laboratory tests, abdominal ultrasound, BIA, DEXA, and anthropometric measurements. Results: The agreement between BIA and DEXA in diagnosing reduced skeletal muscle mass (SMM) in patients with MASLD and HTN was moderate (kappa values were 0.440 and 0.404 in males and females, respectively). Significant strong direct correlations were found between fat mass (FM) and body fat percentage measured by BIA with corresponding measurements by DEXA (p < 0.001 for both). The area under the receiver operating characteristic curves (AUC) of SMM to body weight ratios calculated using BIA data were 0.834 and 0.929 for reduced appendicular SMM determined by DEXA in males and females with MASLD and HTN, respectively. Conclusions: In conclusion, BIA is an easy-to-use and widely available tool for assessing SMM and FM in patients with MASLD and HTN, demonstrating reliable agreement with DEXA measurement results and completely free of its limitations.
Collapse
Affiliation(s)
- Anna F. Sheptulina
- Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
- Department of Therapy and Preventive Medicine, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Ekaterina O. Lyusina
- Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
| | - Elvira M. Mamutova
- Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
| | - Adel A. Yafarova
- Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
| | - Anton R. Kiselev
- Coordinating Center for Fundamental Research, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
| | - Oxana M. Drapkina
- Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
- Department of Therapy and Preventive Medicine, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| |
Collapse
|
11
|
Li X, He J, Sun Q. The prevalence and effects of sarcopenia in patients with metabolic dysfunction-associated steatotic liver disease (MASLD): A systematic review and meta-analysis. Clin Nutr 2024; 43:2005-2016. [PMID: 39053329 DOI: 10.1016/j.clnu.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND AND AIMS Sarcopenia is a common complication in patients with metabolic dysfunction-associated steatotic liver disease (MASLD). However, the prevalence and its impact on the survival of sarcopenia in patients with MASLD is unknown. In this study, we aimed to assess the prevalence and effects of sarcopenia in patients with MASLD. METHODS Systematic review and meta-analysis of full texts of relevant studies were searched from inception until June 12, 2024 in five databases (PubMed, Cochrane Library, Embase, Web of Science, and the China National Knowledge Infrastructure). Next, we assessed the prevalence of sarcopenia in MASLD, and calculated the ORs and HRs between sarcopenia and MASLD based on the adjusted data from individual studies. Statistical analyses were performed using Stata 11.0. RESULTS Of the 2984 records considered, 29 studies recruiting 63,330 patients were included. The pooled prevalence of sarcopenia in patients with MASLD was 23.5% overall (95% CI; 19.1%-27.9%, I2 = 99.6%), and was higher in Asian patients, male, cross-sectional studies, when BIA were employed to measure muscle mass, one criterion of diagnosis sarcopenia, MASLD was diagnosed employing MRI, and moderate-quality studies. Sarcopenia was associated with MASLD patients (adjusted odds ratio [aOR] 2.08, 95% CI 1.58-2.74, I2 = 93.6%) with similar findings in subgroups stratified by age, study design, methods for measuring muscle mass, assessment method to detect sarcopenia, and study quality. The association between all-cause mortality further supports the association between sarcopenia and poor prognosis with MASLD (aHR 1.59, 95% CI 1.33-1.91, I2 = 0%). CONCLUSIONS Sarcopenia was strongly associated with MASLD progression and was a risk factor not only for MASLD pathogenesis but was also markedly correlated with MASLD-associated mortality.
Collapse
Affiliation(s)
- Xiaoyan Li
- School of Nursing, Zhejiang Chinese Medical University, Hangzhou 310000, Zhejiang, China
| | - Jie He
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan, China; Clinical Medical College of Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Qiuhua Sun
- School of Nursing, Zhejiang Chinese Medical University, Hangzhou 310000, Zhejiang, China.
| |
Collapse
|
12
|
Ibacache-Saavedra P, Martínez-Rosales E, Jerez-Mayorga D, Miranda-Fuentes C, Artero EG, Cano-Cappellacci M. Effects of bariatric surgery on muscle strength and quality: A systematic review and meta-analysis. Obes Rev 2024; 25:e13790. [PMID: 38859617 DOI: 10.1111/obr.13790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 02/06/2024] [Accepted: 05/20/2024] [Indexed: 06/12/2024]
Abstract
Obesity is a major health burden worldwide. Although bariatric surgery (BS) is recognized as an effective strategy for weight loss and comorbidities improvement, its impact on muscle strength and quality is still unclear. We aimed to examine postoperative changes in muscle strength and quality and their relationship with body mass index (BMI) changes among adults undergoing BS. To this end, we systematically searched the WoS, PubMed, EBSCO, and Scopus databases. The meta-analyses, which included 24 articles (666 participants), showed that BS reduces absolute lower-limb isometric strength (ES = -0.599; 95% CI = -0.972, -0.226; p = 0.002). Subjects who experienced a more significant reduction in BMI after BS also suffered a higher loss of absolute muscle strength. Similarly, absolute handgrip strength showed a significant decrease (ES = -0.376; 95% CI = -0.630, -0.121; p = 0.004). We found insufficient studies investigating medium- and long-term changes in muscle strength and/or quality after BS. This study provides moderate-quality evidence that BS-induced weight loss can reduce the strength of appendicular muscles in the short term, which should be addressed in management these subjects. More high-quality studies are needed to evaluate the impact of BS on muscle strength and the different domains of muscle quality in the medium and long term (registered on PROSPERO CRD42022332581).
Collapse
Affiliation(s)
- Paulina Ibacache-Saavedra
- Exercise and Rehabilitation Sciences Institute, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, Santiago, Chile
| | - Elena Martínez-Rosales
- Department of Education & SPORT Research Group (CTS-1024), CIBIS Research Center, University of Almería, Almería, Spain
| | - Daniel Jerez-Mayorga
- Exercise and Rehabilitation Sciences Institute, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, Santiago, Chile
- Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Claudia Miranda-Fuentes
- Exercise and Rehabilitation Sciences Institute, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, Santiago, Chile
| | - Enrique G Artero
- Department of Education & SPORT Research Group (CTS-1024), CIBIS Research Center, University of Almería, Almería, Spain
| | | |
Collapse
|
13
|
Tantai X, Ran Q, Wen Z, Tuo S, Liu N, Dai S, Wang J, Qiao C. Low muscle quality index is associated with increased risk of advanced fibrosis in adult patients with nonalcoholic fatty liver disease: NHANES 2011-2014. Sci Rep 2024; 14:19883. [PMID: 39191842 PMCID: PMC11349751 DOI: 10.1038/s41598-024-71096-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/23/2024] [Indexed: 08/29/2024] Open
Abstract
Muscle quality index (MQI) is a novel indicator reflecting the quality of skeletal muscles. The association between MQI and the development of advanced fibrosis in patients with nonalcoholic fatty liver disease (NAFLD) is unknown. We investigated the association of low MQI with advanced fibrosis among adults with NAFLD using a nationally representative sample of the US population. Adults with NAFLD who participated in the National Health and Nutrition Examination Survey (NHANES) 2011-2014 were included. Sex-specific standard was used to define low and extremely low MQI. Univariate and multivariate logistic regressions were used to assess the association between MQI level and advanced fibrosis. In the study, 3758 participants with NAFLD were included. The prevalence of low and extremely low MQI was 11.7% (95% CI 10.4-13.0%) and 2.2% (95% CI 1.6-2.8%), respectively. Among these participants, 96 were assessed to have advanced fibrosis. Individuals with low [(odds ratio (OR) 2.45, 95% confidence interval (CI) 1.22-4.91)] and extremely low MQI (OR 10.48, 95% CI 3.20-34.27) were associated with advanced fibrosis in multivariable analysis. A linear trend relationship was also observed between MQI level and the risk of advanced fibrosis (Ptrend = 0.001). Subgroup and sensitivity analyses yielded similar results to the main analyses. Decreased MQI is highly prevalent, and is associated with an increased risk of advanced fibrosis in adult US population with NAFLD.
Collapse
Affiliation(s)
- Xinxing Tantai
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157 Xi Wu Road, Xi'an, 710004, Shaanxi Province, People's Republic of China.
- Clinical Research Center for Gastrointestinal Diseases of Shaanxi Province, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China.
| | - Qiuju Ran
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157 Xi Wu Road, Xi'an, 710004, Shaanxi Province, People's Republic of China
- Clinical Research Center for Gastrointestinal Diseases of Shaanxi Province, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Zhang Wen
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157 Xi Wu Road, Xi'an, 710004, Shaanxi Province, People's Republic of China
- Clinical Research Center for Gastrointestinal Diseases of Shaanxi Province, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Shuyue Tuo
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157 Xi Wu Road, Xi'an, 710004, Shaanxi Province, People's Republic of China
- Clinical Research Center for Gastrointestinal Diseases of Shaanxi Province, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Na Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157 Xi Wu Road, Xi'an, 710004, Shaanxi Province, People's Republic of China
- Clinical Research Center for Gastrointestinal Diseases of Shaanxi Province, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Shejiao Dai
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157 Xi Wu Road, Xi'an, 710004, Shaanxi Province, People's Republic of China
- Clinical Research Center for Gastrointestinal Diseases of Shaanxi Province, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Jinhai Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157 Xi Wu Road, Xi'an, 710004, Shaanxi Province, People's Republic of China
- Clinical Research Center for Gastrointestinal Diseases of Shaanxi Province, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Chenyang Qiao
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157 Xi Wu Road, Xi'an, 710004, Shaanxi Province, People's Republic of China.
- Clinical Research Center for Gastrointestinal Diseases of Shaanxi Province, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China.
| |
Collapse
|
14
|
Henin G, Loumaye A, Deldicque L, Leclercq IA, Lanthier N. Unlocking liver health: Can tackling myosteatosis spark remission in metabolic dysfunction-associated steatotic liver disease? Liver Int 2024; 44:1781-1796. [PMID: 38623714 DOI: 10.1111/liv.15938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/12/2024] [Accepted: 04/02/2024] [Indexed: 04/17/2024]
Abstract
Myosteatosis is highly prevalent in metabolic dysfunction-associated steatotic liver disease (MASLD) and could reciprocally impact liver function. Decreasing muscle fat could be indirectly hepatoprotective in MASLD. We conducted a review to identify interventions reducing myosteatosis and their impact on liver function. Non-pharmacological interventions included diet (caloric restriction or lipid enrichment), bariatric surgery and physical activity. Caloric restriction in humans achieving a mean weight loss of 3% only reduces muscle fat. Lipid-enriched diet increases liver fat in human with no impact on muscle fat, except sphingomyelin-enriched diet which reduces both lipid contents exclusively in pre-clinical studies. Bariatric surgery, hybrid training (resistance exercise and electric stimulation) or whole-body vibration in human decrease both liver and muscle fat. Physical activity impacts both phenotypes by reducing local and systemic inflammation, enhancing insulin sensitivity and modulating the expression of key mediators of the muscle-liver-adipose tissue axis. The combination of diet and physical activity acts synergistically in liver, muscle and white adipose tissue, and further decrease muscle and liver fat. Several pharmacological interventions (patchouli alcohol, KBP-089, 2,4-dinitrophenol methyl ether, adipoRon and atglistatin) and food supplementation (vitamin D or resveratrol) improve liver and muscle phenotypes in pre-clinical studies by increasing fatty acid oxidation and anti-inflammatory properties. These interventions are effective in reducing myosteatosis in MASLD while addressing the liver disease itself. This review supports that disturbances in inter-organ crosstalk are key pathophysiological mechanisms involved in MASLD and myosteatosis pathogenesis. Focusing on the skeletal muscle might offer new therapeutic strategies to treat MASLD by modulating the interactions between liver and muscles.
Collapse
Affiliation(s)
- Guillaume Henin
- Service d'Hépato-Gastroentérologie, Cliniques universitaires Saint-Luc, UCLouvain, Brussels, Belgium
- Laboratory of Hepatogastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Audrey Loumaye
- Service d'Endocrinologie, Diabétologie et Nutrition, Cliniques universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | | | - Isabelle A Leclercq
- Laboratory of Hepatogastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Nicolas Lanthier
- Service d'Hépato-Gastroentérologie, Cliniques universitaires Saint-Luc, UCLouvain, Brussels, Belgium
- Laboratory of Hepatogastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
15
|
Seo E, Kwon Y, ALRomi A, Eledreesi M, Park S. A multifaceted and inclusive methodology for the detection of sarcopenia in patients undergoing bariatric surgery: an in-depth analysis of current evidence. Rev Endocr Metab Disord 2024; 25:677-689. [PMID: 38427134 DOI: 10.1007/s11154-023-09864-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/11/2023] [Indexed: 03/02/2024]
Abstract
Bariatric surgery is widely recognized as the most effective intervention for obesity and offers benefits beyond weight loss. However, not all patients achieve satisfactory weight loss, balanced changes in body composition, and resolution of comorbidities. Therefore, thorough pre- and postoperative evaluations are important to predict success and minimize adverse effects. More comprehensive assessments require broadening the focus beyond body weight and fat measurements to consider quantitative and qualitative evaluations of muscles. Introducing the concept of sarcopenia is useful for assessing the degradative and pathological changes in muscles associated with cardiometabolic function, physical performance, and other obesity-related comorbidities in patients undergoing bariatric surgery. However, there is currently no consensus or definition regarding the research and clinical use of sarcopenia in patients undergoing bariatric surgery. Therefore, this review aimed to define the concept of sarcopenia applicable to patients undergoing bariatric surgery, based on the consensus reached for sarcopenia in the general population. We also discuss the methods and significance of measuring muscle mass, quality, and strength, which are key variables requiring a comprehensive assessment.
Collapse
Affiliation(s)
- Eunhye Seo
- Keimyung University College of Nursing, Daegu, Republic of Korea
| | - Yeongkeun Kwon
- Division of Foregut Surgery, Korea University College of Medicine, 73 Goryeodae- ro, Seongbuk-gu, 02841, Seoul, Republic of Korea
- Center for Obesity and Metabolic Diseases, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Ahmad ALRomi
- Ministry of Health Jordan, General surgery affiliationision, prince Hamzah hospital, Amman, Jordan
| | | | - Sungsoo Park
- Division of Foregut Surgery, Korea University College of Medicine, 73 Goryeodae- ro, Seongbuk-gu, 02841, Seoul, Republic of Korea.
- Center for Obesity and Metabolic Diseases, Korea University Anam Hospital, Seoul, Republic of Korea.
| |
Collapse
|
16
|
Sheptulina AF, Yafarova AA, Mamutova EM, Drapkina OM. Sonographic Features of Rectus Femoris Muscle in Patients with Metabolic Dysfunction-Associated Fatty Liver Disease and Their Correlation with Body Composition Parameters and Muscle Strength: Results of a Single-Center Cross-Sectional Study. Biomedicines 2024; 12:1684. [PMID: 39200149 PMCID: PMC11351426 DOI: 10.3390/biomedicines12081684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
This study aimed to describe sonographic features of rectus femoris muscle (RFM) in patients with metabolic dysfunction-associated fatty liver disease (MASLD) and their correlation with body composition parameters and muscle strength. A total of 67 patients with MASLD underwent dual-energy X-ray absorptiometry (DEXA), bioimpedance analysis (BIA), muscle strength measurement (grip strength [GS] and chair stand test [CST]), and ultrasound (US) investigation of the RFM in the dominant thigh using a 4 to 18 MHz linear probe. MASLD patients exhibited increased RFM echogenicity, possibly due to fatty infiltration. We confirmed that the greater the subcutaneous fat thickness, the smaller was the muscle mass (p < 0.001), and the lower was the muscle strength (p < 0.001 for GS and p = 0.002 for CST). On the contrary, the greater the anteroposterior diameter (APD) of RFM, the higher was the muscle mass (p < 0.001), and the greater was the muscle strength (p < 0.001 for GS and p = 0.007 for CST). In addition, APD of the RFM and stiffness of RFM exhibited direct correlation with bone mineral density values of the lumbar spine (p = 0.005 for both GS and CST). We concluded that US investigation of the RFM in the dominant thigh can be helpful in identifying MASLD patients at a high risk of musculoskeletal disorders given repeated point-of-care clinical evaluations.
Collapse
Affiliation(s)
- Anna F. Sheptulina
- Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, Moscow 101990, Russia; (A.A.Y.); (E.M.M.); (O.M.D.)
| | - Adel A. Yafarova
- Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, Moscow 101990, Russia; (A.A.Y.); (E.M.M.); (O.M.D.)
| | - Elvira M. Mamutova
- Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, Moscow 101990, Russia; (A.A.Y.); (E.M.M.); (O.M.D.)
| | - Oxana M. Drapkina
- Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, Moscow 101990, Russia; (A.A.Y.); (E.M.M.); (O.M.D.)
- Department of Therapy and Preventive Medicine, A.I. Evdokimov Moscow State University of Medicine and Dentistry, Moscow 127473, Russia
| |
Collapse
|
17
|
Sandireddy R, Sakthivel S, Gupta P, Behari J, Tripathi M, Singh BK. Systemic impacts of metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH) on heart, muscle, and kidney related diseases. Front Cell Dev Biol 2024; 12:1433857. [PMID: 39086662 PMCID: PMC11289778 DOI: 10.3389/fcell.2024.1433857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as non-alcoholic fatty liver disease (NAFLD), is the most common liver disorder worldwide, with an estimated global prevalence of more than 31%. Metabolic dysfunction-associated steatohepatitis (MASH), formerly known as non-alcoholic steatohepatitis (NASH), is a progressive form of MASLD characterized by hepatic steatosis, inflammation, and fibrosis. This review aims to provide a comprehensive analysis of the extrahepatic manifestations of MASH, focusing on chronic diseases related to the cardiovascular, muscular, and renal systems. A systematic review of published studies and literature was conducted to summarize the findings related to the systemic impacts of MASLD and MASH. The review focused on the association of MASLD and MASH with metabolic comorbidities, cardiovascular mortality, sarcopenia, and chronic kidney disease. Mechanistic insights into the concept of lipotoxic inflammatory "spill over" from the MASH-affected liver were also explored. MASLD and MASH are highly associated (50%-80%) with other metabolic comorbidities such as impaired insulin response, type 2 diabetes, dyslipidemia, hypertriglyceridemia, and hypertension. Furthermore, more than 90% of obese patients with type 2 diabetes have MASH. Data suggest that in middle-aged individuals (especially those aged 45-54), MASLD is an independent risk factor for cardiovascular mortality, sarcopenia, and chronic kidney disease. The concept of lipotoxic inflammatory "spill over" from the MASH-affected liver plays a crucial role in mediating the systemic pathological effects observed. Understanding the multifaceted impact of MASH on the heart, muscle, and kidney is crucial for early detection and risk stratification. This knowledge is also timely for implementing comprehensive disease management strategies addressing multi-organ involvement in MASH pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Madhulika Tripathi
- Cardiovascular and Metabolic Disorders Research Program, Duke-NUS Medical School, Singapore, Singapore
| | - Brijesh Kumar Singh
- Cardiovascular and Metabolic Disorders Research Program, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
18
|
Lin L, Chen M, Huang X, Song J, Ye X, Liu K, Han L, Yan Z, Zheng M, Liu X. Association between paravertebral muscle radiological parameter alterations and non-alcoholic fatty liver disease. Abdom Radiol (NY) 2024; 49:2250-2261. [PMID: 38801559 DOI: 10.1007/s00261-024-04352-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/29/2024]
Abstract
PURPOSE To assess changes in laboratory indices, paravertebral muscle (PVM) fat infiltration and multi b-value DWI parameters and their potential correlation with NAFLD. METHODS This retrospective analysis included 178 patients with histopathologically confirmed NAFLD, incluiding 76 with non-alcoholic steatohepatitis (NASH). Differences in PVM fat infiltration ratio (FIR), DWI parameters, and laboratory indices were compared between two groups. The correlation between FIR and NAFLD activity score (NAS) was also analysed. Binary logistic regression was used to identify the independent risk factors for NASH. The clinical utility of PVM fat infiltration, DWI parameters, and laboratory indices for diagnosing NASH in patients with NAFLD was evaluated using receiver operating characteristic (ROC) curves. RESULTS The FIRs at the L2 and L3 levels were significantly higher in the with NASH group than those in the without NASH group. The heterogeneity index (α) and perfusion fraction (f) values at the L3 level of PVM were lower in the with NASH group. Moreover, the FIR at the L3 level was positively correlated with NAS. FIR at the L3 level was an independent risk factor for NASH along with alanine aminotransferase level. The area under the ROC curve (AUC) using L3 level PVM radiological parameters and laboratory indices for diagnosing NASH in patients with NAFLD was significantly higher than that using the degree of PVM fat infiltration, DWI parameters, or laboratory indices alone. CONCLUSIONS Radiological parameters of the PVM were correlated with NAFLD. An integrated curve combining PVM radiological parameters may help distinguish NASH from NAFLD, thereby offering novel insights into the diagnosis of NASH.
Collapse
Affiliation(s)
- Lulu Lin
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mengjiao Chen
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoyan Huang
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiawen Song
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinjian Ye
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kun Liu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lu Han
- Philips Healthcare, Shanghai, China
| | - Zhihan Yan
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Minghua Zheng
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Xiaozheng Liu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
19
|
Reichelt S, Merle U, Klauss M, Kahlert C, Lurje G, Mehrabi A, Czigany Z. Shining a spotlight on sarcopenia and myosteatosis in liver disease and liver transplantation: Potentially modifiable risk factors with major clinical impact. Liver Int 2024; 44:1483-1512. [PMID: 38554051 DOI: 10.1111/liv.15917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/07/2024] [Accepted: 03/17/2024] [Indexed: 04/01/2024]
Abstract
Muscle-wasting and disease-related malnutrition are highly prevalent in patients with chronic liver diseases (CLD) as well as in liver transplant (LT) candidates. Alterations of body composition (BC) such as sarcopenia, myosteatosis and sarcopenic obesity and associated clinical frailty were tied to inferior clinical outcomes including hospital admissions, length of stay, complications, mortality and healthcare costs in various patient cohorts and clinical scenarios. In contrast to other inherent detrimental individual characteristics often observed in these complex patients, such as comorbidities or genetic risk, alterations of the skeletal muscle and malnutrition are considered as potentially modifiable risk factors with a major clinical impact. Even so, there is only limited high-level evidence to show how these pathologies should be addressed in the clinical setting. This review discusses the current state-of-the-art on the role of BC assessment in clinical outcomes in the setting of CLD and LT focusing mainly on sarcopenia and myosteatosis. We focus on the disease-related pathophysiology of BC alterations. Based on these, we address potential therapeutic interventions including nutritional regimens, physical activity, hormone and targeted therapies. In addition to summarizing existing knowledge, this review highlights novel trends, and future perspectives and identifies persisting challenges in addressing BC pathologies in a holistic way, aiming to improve outcomes and quality of life of patients with CLD awaiting or undergoing LT.
Collapse
Affiliation(s)
- Sophie Reichelt
- Department of General, Visceral, Thoracic and Vascular Surgery, University Hospital of Bonn, Bonn, Germany
| | - Uta Merle
- Department of Gastroenterology and Hepatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Miriam Klauss
- Department of Radiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Christoph Kahlert
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Georg Lurje
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
- Department of Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Arianeb Mehrabi
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Zoltan Czigany
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
20
|
Hatzantonis C, Satkunam L, Rabey KN, Hocking JC, Agur AMR. Fatty infiltration of gastrocnemius-soleus muscle complex: Considerations for myosteatosis rehabilitation. J Anat 2024; 245:50-57. [PMID: 38361481 PMCID: PMC11161819 DOI: 10.1111/joa.14025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/17/2024] Open
Abstract
Although previous studies have reported fatty infiltration of the gastrocnemius-soleus complex, little is known about the volumetric distribution and patterns of fatty infiltration. The purpose of this anatomical study was to document and quantify the frequency, distribution, and pattern of fatty infiltration of the gastrocnemius-soleus complex. One hundred formalin-embalmed specimens (mean age 78.1 ± 12.3 years; 48F/52M) were serially dissected to document the frequency, distribution, and pattern of fatty infiltration in the medial and lateral heads of gastrocnemius and soleus muscles. Fatty infiltration was found in 23% of specimens, 13 unilaterally (8F/5M) and 10 (5M/5F) bilaterally. The fatty infiltration process was observed to begin medially from the medial aspect of the medial head of gastrocnemius and medial margin of soleus and then progressed laterally throughout the medial head of gastrocnemius and the marginal, anterior, and posterior soleus. The lateral head of gastrocnemius remained primarily muscular in all specimens. Microscopically, the pattern of infiltration was demonstrated as intramuscular with intact aponeuroses, and septa. The remaining endo-, peri-, and epimysium preserved the overall contour of the gastrocnemius-soleus complex, even in cases of significant fatty replacement. Since the external contour of the calf is preserved, the presence of fatty infiltration may be underdiagnosed in the clinic without imaging. Myosteatosis is associated with gait and balance challenges in the elderly, which can impact quality of life and result in increased risk of falling. The findings of the study have implications in the rehabilitation management of elderly patients with sarcopenia and myosteatosis.
Collapse
Affiliation(s)
| | - Lalith Satkunam
- Division of Physical Medicine and Rehabilitation, Department of MedicineGlenrose Rehabilitation Hospital, University of AlbertaEdmontonAlbertaCanada
| | - Karyne N. Rabey
- Division of Anatomy, Department of SurgeryUniversity of AlbertaEdmontonAlbertaCanada
| | - Jennifer C. Hocking
- Division of Anatomy, Department of SurgeryUniversity of AlbertaEdmontonAlbertaCanada
| | - Anne M. R. Agur
- Division of Anatomy, Department of SurgeryUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
21
|
Oshida N, Oh S, Kim B, Miura I, Hasegawa N, Komine S, Isobe T, Shoda J. Muscle Quality as a Potential Diagnostic Marker of Advanced Liver Fibrosis in Patients with Non-alcoholic Fatty Liver Disease. J Obes Metab Syndr 2024; 33:143-154. [PMID: 38735655 PMCID: PMC11224921 DOI: 10.7570/jomes23072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/22/2023] [Accepted: 02/23/2024] [Indexed: 05/14/2024] Open
Abstract
Background Muscle-liver crosstalk plays an important role in the development and progression of non-alcoholic fatty liver disease (NAFLD). The measurement of muscle echo-intensity during ultrasonography is a real-time, non-invasive method of assessing muscle quality. In this retrospective study, we investigated the significance of poor muscle quality (namely, a greater mass of non-contractile tissue, including intramuscular fat) as a risk factor for advanced liver fibrosis and considered whether it may represent a useful tool for the diagnosis of advanced liver fibrosis. Methods We analyzed data from 307 patients with NAFLD (143 men and 164 women) who visited the University of Tsukuba Hospital between 2017 and 2022. The patients were stratified into the following tertiles of muscle quality according to their muscle echo-intensity on ultrasonography: modest (84.1 arbitrary units [A.U.]), intermediate (97.4 A.U.), and poor (113.6 A.U.). We then investigated the relationships between muscle quality and risk factors for advanced liver fibrosis and calculated appropriate cutoff values. Results Patients with poor muscle quality showed a significant, 7.6-fold greater risk of liver fibrosis compared to those with modest muscle quality. Receiver operating characteristic curve analysis showed that muscle quality assessment was as accurate as the fibrosis-4 index and NAFLD fibrosis score in screening for liver fibrosis and superior to the assessment of muscle quantity and strength, respectively. Importantly, a muscle echo-intensity of ≥92.4 A.U. may represent a useful marker of advanced liver fibrosis. Conclusion Muscle quality may represent a useful means of identifying advanced liver fibrosis, and its assessment may become a useful screening tool in daily practice.
Collapse
Affiliation(s)
- Natsumi Oshida
- Division of Laboratory Medicine, Tsukuba University Hospital, Tsukuba, Japan
| | - Sechang Oh
- Faculty of Rehabilitation, R Professional University of Rehabilitation, Tsuchiura, Japan
| | - Bokun Kim
- Future Convergence Research Institute, Changwon National University, Changwon, Korea
| | - Ikuru Miura
- Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan
| | - Naoyuki Hasegawa
- Department of Medical Sciences, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Shoichi Komine
- Faculty of Human Care, Teikyo Heisei University, Tokyo, Japan
| | - Tomonori Isobe
- Department of Medical Sciences, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Junichi Shoda
- Department of Medical Sciences, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
22
|
Kokkorakis M, Muzurović E, Volčanšek Š, Chakhtoura M, Hill MA, Mikhailidis DP, Mantzoros CS. Steatotic Liver Disease: Pathophysiology and Emerging Pharmacotherapies. Pharmacol Rev 2024; 76:454-499. [PMID: 38697855 DOI: 10.1124/pharmrev.123.001087] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/22/2023] [Accepted: 01/25/2024] [Indexed: 05/05/2024] Open
Abstract
Steatotic liver disease (SLD) displays a dynamic and complex disease phenotype. Consequently, the metabolic dysfunction-associated steatotic liver disease (MASLD)/metabolic dysfunction-associated steatohepatitis (MASH) therapeutic pipeline is expanding rapidly and in multiple directions. In parallel, noninvasive tools for diagnosing and monitoring responses to therapeutic interventions are being studied, and clinically feasible findings are being explored as primary outcomes in interventional trials. The realization that distinct subgroups exist under the umbrella of SLD should guide more precise and personalized treatment recommendations and facilitate advancements in pharmacotherapeutics. This review summarizes recent updates of pathophysiology-based nomenclature and outlines both effective pharmacotherapeutics and those in the pipeline for MASLD/MASH, detailing their mode of action and the current status of phase 2 and 3 clinical trials. Of the extensive arsenal of pharmacotherapeutics in the MASLD/MASH pipeline, several have been rejected, whereas other, mainly monotherapy options, have shown only marginal benefits and are now being tested as part of combination therapies, yet others are still in development as monotherapies. Although the Food and Drug Administration (FDA) has recently approved resmetirom, additional therapeutic approaches in development will ideally target MASH and fibrosis while improving cardiometabolic risk factors. Due to the urgent need for the development of novel therapeutic strategies and the potential availability of safety and tolerability data, repurposing existing and approved drugs is an appealing option. Finally, it is essential to highlight that SLD and, by extension, MASLD should be recognized and approached as a systemic disease affecting multiple organs, with the vigorous implementation of interdisciplinary and coordinated action plans. SIGNIFICANCE STATEMENT: Steatotic liver disease (SLD), including metabolic dysfunction-associated steatotic liver disease and metabolic dysfunction-associated steatohepatitis, is the most prevalent chronic liver condition, affecting more than one-fourth of the global population. This review aims to provide the most recent information regarding SLD pathophysiology, diagnosis, and management according to the latest advancements in the guidelines and clinical trials. Collectively, it is hoped that the information provided furthers the understanding of the current state of SLD with direct clinical implications and stimulates research initiatives.
Collapse
Affiliation(s)
- Michail Kokkorakis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Emir Muzurović
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Špela Volčanšek
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Marlene Chakhtoura
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Michael A Hill
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Dimitri P Mikhailidis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| |
Collapse
|
23
|
Osonoi S, Takebe T. Organoid-guided precision hepatology for metabolic liver disease. J Hepatol 2024; 80:805-821. [PMID: 38237864 PMCID: PMC11828489 DOI: 10.1016/j.jhep.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 03/09/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease affects millions of people worldwide. Progress towards a definitive cure has been incremental and treatment is currently limited to lifestyle modification. Hepatocyte-specific lipid accumulation is the main trigger of lipotoxic events, driving inflammation and fibrosis. The underlying pathology is extraordinarily heterogenous, and the manifestations of steatohepatitis are markedly influenced by metabolic communications across non-hepatic organs. Synthetic human tissue models have emerged as powerful platforms to better capture the mechanistic diversity in disease progression, while preserving person-specific genetic traits. In this review, we will outline current research efforts focused on integrating multiple synthetic tissue models of key metabolic organs, with an emphasis on organoid-based systems. By combining functional genomics and population-scale en masse profiling methodologies, human tissues derived from patients can provide insights into personalised genetic, transcriptional, biochemical, and metabolic states. These collective efforts will advance our understanding of steatohepatitis and guide the development of rational solutions for mechanism-directed diagnostic and therapeutic investigation.
Collapse
Affiliation(s)
- Sho Osonoi
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Gastroenterology, Hepatology and Nutrition, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, Hirosaki, 036-8562, Japan
| | - Takanori Takebe
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Gastroenterology, Hepatology and Nutrition, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; WPI Premium Institute for Human Metaverse Medicine (WPI-PRIMe) and Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan; Institute of Research, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; Communication Design Center, Advanced Medical Research Center, Yokohama City University, Yokohama 236-0004, Japan.
| |
Collapse
|
24
|
Kim H, Lee S, Jeong C, Han Y, Lee M. RORα-GABP-TFAM axis alleviates myosteatosis with fatty atrophy through reinforcement of mitochondrial capacity. J Cachexia Sarcopenia Muscle 2024; 15:615-630. [PMID: 38272857 PMCID: PMC10995264 DOI: 10.1002/jcsm.13432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 11/22/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Fat infiltration in muscle, called 'myosteatosis', precedes muscle atrophy, which subsequently results in sarcopenia. Myosteatosis is frequently observed in patients with nonalcoholic fatty liver disease (NAFLD). We have previously reported that retinoic acid receptor-related orphan receptor-α (RORα) regulates mitochondrial dynamics and mitophagy in hepatocytes, resulting in an alleviation of NAFLD. In this study, we aimed to investigate the role of RORα in skeletal muscle and to understand molecular mechanisms by which RORα controls mitochondrial capacity, using an NAFLD-associated myosteatosis mouse model. METHODS To establish a myosteatosis model, 7-week-old C57BL/6N mice were fed with high-fat diet (HFD). After 15 weeks of diet feeding, an adeno-associated virus vector encoding RORα (AAV-RORα) was injected to gastrocnemius (GA) muscles, or after 7 weeks of HFD feeding, JC1-40, an RORα agonistic ligand, was administered daily at a dose of 5 mg/kg/day by oral gavage for 5 weeks. Histological, biochemical and molecular analyses in various in vivo and in vitro experiments were performed. RESULTS First, the number of oxidative MyHC2a fibres with intensive lipid infiltration increased by 3.8-fold in the red region of the GA of mice with myosteatosis (P < 0.001). RORα was expressed around MyHC2a fibres, and its level increased by 2.7-fold after HFD feeding (P < 0.01). Second, treatment of RORα ligands in C2C12 myoblasts, such as cholesterol sulfate and JC1-40, enhanced the number of oxidative fibres stained for MyHC1 and MyHC2a by two-fold to four-fold (P < 0.01), while it reduced the lipid levels in MyHC2a fibres by 20-50% (P < 0.001) in the presence of palmitic acids. Third, mitochondrial membrane potential (P < 0.01) and total area of mitochondria (P < 0.01) were enhanced by treatment of these ligands. Chromatin immunoprecipitation analysis showed that RORα bound the promoter of GA-binding protein α subunit gene that led to activation of mitochondrial transcription factor A (TFAM) in C2C12 myoblasts (P < 0.05). Finally, intramuscular transduction of AAV-RORα alleviated the HFD-induced myosteatosis with fatty atrophy; lipid contents in MyHC2a fibres decreased by 48% (P < 0.001), whereas the number of MyHC2b fibre increased by 22% (P < 0.001). Also, administration of JC1-40 improved the signs of myosteatosis in that it decreased the level of adipose differentiation-related protein (P < 0.01) but increased mitochondrial proteins such as cytochrome c oxidase 4 and TFAM in GA muscle (P < 0.01). CONCLUSIONS RORα plays a versatile role in regulating the quantity of mitochondria and the oxidative capacity, ultimately leading to an improvement in myosteatosis symptoms.
Collapse
Affiliation(s)
- Hyeon‐Ji Kim
- College of PharmacySeoul National UniversitySeoulSouth Korea
- Research Institute of Pharmaceutical SciencesSeoulSouth Korea
| | - Sang‐Heon Lee
- College of PharmacySeoul National UniversitySeoulSouth Korea
| | - Cheolhee Jeong
- College of PharmacySeoul National UniversitySeoulSouth Korea
| | - Yong‐Hyun Han
- College of PharmacyKangwon National UniversityChuncheonSouth Korea
| | - Mi‐Ock Lee
- College of PharmacySeoul National UniversitySeoulSouth Korea
- Research Institute of Pharmaceutical SciencesSeoulSouth Korea
- Bio‐MAX InstituteSeoul National UniversitySeoulSouth Korea
| |
Collapse
|
25
|
Feng Z, Zhao F, Wang Z, Tang X, Xie Y, Qiu L. The relationship between sarcopenia and metabolic dysfunction-associated fatty liver disease among the young and middle-aged populations. BMC Gastroenterol 2024; 24:111. [PMID: 38491346 PMCID: PMC10943823 DOI: 10.1186/s12876-024-03192-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 03/01/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Metabolic dysfunction-associated fatty liver disease (MAFLD) has been proposed as a new term for diagnosing fatty liver disease, which is considered to be a multi-systemic disease with multiple extrahepatic manifestations, including sarcopenia. The link between sarcopenia and MAFLD remains uncertain, especially among young and middle-aged adults. Thus, we examined the relationship between MAFLD and sarcopenia in young and middle-aged individuals in this study. METHODS A total of 2214 individuals with laboratory tests, dual-energy X-ray absorptiometry and ultrasound transient elastography from NHANES 2017-2018 were selected for this study. MAFLD was diagnosed as fatty liver disease with any one of the situations: overweight/obesity, diabetes mellitus, presence of metabolic dysregulation. Sarcopenia was defined by appendicular lean mass adjusted for body mass index (BMI). Multivariable logistic regression and restricted cubic spline (RCS) model were applied to explore the relationship between MAFLD and sarcopenia, and the mediation analyses were also conducted. Moreover, subgroup analyses stratified by BMI and lifestyles were done. RESULTS The prevalence of MAFLD was 47.85%, and nearly 8.05% of participants had sarcopenia. The prevalence of sarcopenia was higher in participants with MAFLD (12.75%; 95% CI 10.18-15.31%) than in the non-MAFLD (3.73%; 95% CI 2.16-5.31%). MAFLD was significantly positively associated with sarcopenia after adjustments [OR = 2.87 (95% CI: 1.62-5.09)]. Moreover, significant positive associations were observed between liver fibrosis and sarcopenia prevalence in MAFLD patients (OR = 2.16; 95% CI 1.13-4.15). The RCS curve revealed that MAFLD was linearly associated with sarcopenia. The relationship between the MAFLD and sarcopenia were mediated by C-reactive protein (mediation proportion: 15.9%) and high-density lipoprotein cholesterol (mediation proportion: 18.9%). Subgroup analyses confirmed the association between MAFLD and sarcopenia differed in different lifestyle groups. CONCLUSIONS Both MAFLD prevalence and severity was significantly associated with sarcopenia. Thus, clinicians should advise comorbidity screening and lifestyle changes to young and middle-aged patients.
Collapse
Affiliation(s)
- Ziyan Feng
- Department of Medical Ultrasound and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Wuhou District, Chengdu, Sichuan Province, China
| | - Fanrong Zhao
- Department of gastroenterology, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Wuhou District, Chengdu, Sichuan Province, China
| | - Ziyao Wang
- Department of Medical Ultrasound and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Wuhou District, Chengdu, Sichuan Province, China
| | - Xinyi Tang
- Department of Medical Ultrasound and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Wuhou District, Chengdu, Sichuan Province, China
| | - Yan Xie
- Department of gastroenterology, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Wuhou District, Chengdu, Sichuan Province, China.
| | - Li Qiu
- Department of Medical Ultrasound and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Wuhou District, Chengdu, Sichuan Province, China.
| |
Collapse
|
26
|
Wang L, Valencak TG, Shan T. Fat infiltration in skeletal muscle: Influential triggers and regulatory mechanism. iScience 2024; 27:109221. [PMID: 38433917 PMCID: PMC10907799 DOI: 10.1016/j.isci.2024.109221] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
Fat infiltration in skeletal muscle (also known as myosteatosis) is now recognized as a distinct disease from sarcopenia and is directly related to declining muscle capacity. Hence, understanding the origins and regulatory mechanisms of fat infiltration is vital for maintaining skeletal muscle development and improving human health. In this article, we summarized the triggering factors such as aging, metabolic diseases and metabolic syndromes, nonmetabolic diseases, and muscle injury that all induce fat infiltration in skeletal muscle. We discussed recent advances on the cellular origins of fat infiltration and found several cell types including myogenic cells and non-myogenic cells that contribute to myosteatosis. Furthermore, we reviewed the molecular regulatory mechanism, detection methods, and intervention strategies of fat infiltration in skeletal muscle. Based on the current findings, our review will provide new insight into regulating function and lipid metabolism of skeletal muscle and treating muscle-related diseases.
Collapse
Affiliation(s)
- Liyi Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | | | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| |
Collapse
|
27
|
Nachit M, Dioguardi Burgio M, Abyzov A, Garteiser P, Paradis V, Vilgrain V, Leclercq I, Van Beers BE. Hepatocellular carcinoma in patients with non-alcoholic fatty liver disease is associated with heterogeneous pattern of fat infiltration in skeletal muscles. Eur Radiol 2024; 34:1461-1470. [PMID: 37658893 DOI: 10.1007/s00330-023-10131-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 05/20/2023] [Accepted: 07/04/2023] [Indexed: 09/05/2023]
Abstract
OBJECTIVES To evaluate the association between fat infiltration in skeletal muscles (myosteatosis) and hepatocellular carcinoma (HCC) in patients with non-alcoholic fatty liver disease (NAFLD). METHODS In a cross-sectional cohort of 72 histologically proven NAFLD patients (n = 38 with non-alcoholic steatohepatitis; NASH), among which 20 had HCC diagnosed on biopsy, we used proton density fat fraction (PDFF) at MRI to evaluate myosteatosis in skeletal muscles (mean fat fraction and first order radiomic-based pattern) at the third lumbar level, namely in erector spinae (ES), quadratus lumborum (QL), psoas, oblique, and rectus muscles. RESULTS PDFFES was 70% higher in patients with HCC when compared to those without HCC (9.6 ± 5.5% versus 5.7 ± 3.0%, respectively, p < 0.001). In multivariate logistic regression, PDFFES was a significant predictor of the presence of HCC (AUC = 0.72, 95% CI 0.57-0.86, p = 0.002) independently from age, sex, visceral fat area, and liver fibrosis stage (all p < 0.05). The relationship between PDFFES and HCC was exacerbated in patients with NASH (AUC = 0.79, 95% CI 0.63-0.86, p = 0.006). In patients with NASH, radiomics features of heterogeneity such as energy and entropy in any of the paraspinal muscles (i.e., ES, QL, or psoas) were independent predictors of HCC. EnergyES identified patients with HCC (n = 13) in the NASH population with AUC = 0.92 (95% CI 0.82-1.00, p < 0.001). CONCLUSION In patients with NAFLD, and more specifically in those with NASH, the degree and heterogeneity of myosteatosis is independently associated with HCC irrespective of liver fibrosis stage. CLINICAL RELEVANCE STATEMENT Our data suggest that myosteatosis could be used as a biomarker of HCC in the ever-expanding NAFLD population and pave the way for further investigation in longitudinal studies. KEY POINTS • HCC in patients with non-alcoholic fatty liver disease, and more specifically in those with non-alcoholic steatohepatitis, is independently associated with severe fatty infiltration (myosteatosis) of paravertebral skeletal muscles. • Association between myosteatosis and HCC is independent from liver fibrosis stage. • Histogram-based radiomics features of myosteatosis predicts the risk of HCC in patients with non-alcoholic steatohepatitis.
Collapse
Affiliation(s)
- Maxime Nachit
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium.
- Department of Imaging and Pathology, KU Leuven, Louvain, Belgium.
| | - Marco Dioguardi Burgio
- Laboratory of Imaging Biomarkers, Center of Research On Inflammation, Université Paris Cité, Inserm, Paris, France
- Department of Radiology, Beaujon University Hospital Paris Nord, AP-HP, Clichy, France
| | - Anton Abyzov
- Laboratory of Imaging Biomarkers, Center of Research On Inflammation, Université Paris Cité, Inserm, Paris, France
| | - Philippe Garteiser
- Laboratory of Imaging Biomarkers, Center of Research On Inflammation, Université Paris Cité, Inserm, Paris, France
| | - Valérie Paradis
- Team "From Inflammation to Cancer in Digestive Disease", Center of Research on Inflammation, Université Paris Cité, Inserm, Paris, France
- Department of Pathology, Beaujon University Hospital Paris Nord, AP-HP, Clichy, France
| | - Valérie Vilgrain
- Laboratory of Imaging Biomarkers, Center of Research On Inflammation, Université Paris Cité, Inserm, Paris, France
- Department of Radiology, Beaujon University Hospital Paris Nord, AP-HP, Clichy, France
| | - Isabelle Leclercq
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Bernard E Van Beers
- Laboratory of Imaging Biomarkers, Center of Research On Inflammation, Université Paris Cité, Inserm, Paris, France
- Department of Radiology, Beaujon University Hospital Paris Nord, AP-HP, Clichy, France
| |
Collapse
|
28
|
Viswanath A, Fouda S, Fernandez CJ, Pappachan JM. Metabolic-associated fatty liver disease and sarcopenia: A double whammy. World J Hepatol 2024; 16:152-163. [PMID: 38495287 PMCID: PMC10941748 DOI: 10.4254/wjh.v16.i2.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/26/2023] [Accepted: 01/17/2024] [Indexed: 02/27/2024] Open
Abstract
The prevalence of metabolic-associated fatty liver disease (MAFLD) has increased substantially in recent years because of the global obesity pandemic. MAFLD, now recognized as the number one cause of chronic liver disease in the world, not only increases liver-related morbidity and mortality among sufferers but also worsens the complications associated with other comorbid conditions such as cardiovascular disease, type 2 diabetes mellitus, obstructive sleep apnoea, lipid disorders and sarcopenia. Understanding the interplay between MAFLD and these comorbidities is important to design optimal therapeutic strategies. Sarcopenia can be either part of the disease process that results in MAFLD (e.g., obesity or adiposity) or a consequence of MAFLD, especially in the advanced stages such as fibrosis and cirrhosis. Sarcopenia can also worsen MAFLD by reducing exercise capacity and by the production of various muscle-related chemical factors. Therefore, it is crucial to thoroughly understand how we deal with these diseases, especially when they coexist. We explore the pathobiological interlinks between MAFLD and sarcopenia in this comprehensive clinical update review article and propose evidence-based therapeutic strategies to enhance patient care.
Collapse
Affiliation(s)
- Aditya Viswanath
- School of Medicine, Leicester University, Leicester LE1 7RH, United Kingdom
| | - Sherouk Fouda
- School of Health and Biomedical Sciences, Rmit University, Melbourne VIC, Australia
| | - Cornelius James Fernandez
- Department of Endocrinology and Metabolism, Pilgrim Hospital, United Lincolnshire Hospitals NHS Trust, Boston PE21 9QS, United Kingdom
| | - Joseph M Pappachan
- Department of Endocrinology and Metabolism, Lancashire Teaching Hospitals NHS Trust, Preston PR2 9HT, United Kingdom
- Faculty of Science, Manchester Metropolitan University, Manchester M15 6BH, United Kingdom
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom.
| |
Collapse
|
29
|
Henin G, Loumaye A, Leclercq IA, Lanthier N. Myosteatosis: Diagnosis, pathophysiology and consequences in metabolic dysfunction-associated steatotic liver disease. JHEP Rep 2024; 6:100963. [PMID: 38322420 PMCID: PMC10844870 DOI: 10.1016/j.jhepr.2023.100963] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 02/08/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is associated with an increased risk of multisystemic complications, including muscle changes such as sarcopenia and myosteatosis that can reciprocally affect liver function. We conducted a systematic review to highlight innovative assessment tools, pathophysiological mechanisms and metabolic consequences related to myosteatosis in MASLD, based on original articles screened from PUBMED, EMBASE and COCHRANE databases. Forty-six original manuscripts (14 pre-clinical and 32 clinical studies) were included. Microscopy (8/14) and tissue lipid extraction (8/14) are the two main assessment techniques used to measure muscle lipid content in pre-clinical studies. In clinical studies, imaging is the most used assessment tool and included CT (14/32), MRI (12/32) and ultrasound (4/32). Assessed muscles varied across studies but mainly included paravertebral (4/14 in pre-clinical; 13/32 in clinical studies) and lower limb muscles (10/14 in preclinical; 13/32 in clinical studies). Myosteatosis is already highly prevalent in non-cirrhotic stages of MASLD and correlates with disease activity when using muscle density assessed by CT. Numerous pathophysiological mechanisms were found and included: high-fat and high-fructose diet, dysregulation in fatty acid transport and ketogenesis, endocrine disorders and impaired microRNA122 pathway signalling. In this review we also uncover several potential consequences of myosteatosis in MASLD, such as insulin resistance, MASLD progression from steatosis to metabolic steatohepatitis and loss of muscle strength. In conclusion, data on myosteatosis in MASLD are already available. Screening for myosteatosis could be highly relevant in the context of MASLD, considering its correlation with MASLD activity as well as its related consequences.
Collapse
Affiliation(s)
- Guillaume Henin
- Service d’Hépato-Gastroentérologie, Cliniques universitaires Saint-Luc, UCLouvain, Brussels, Belgium
- Laboratory of Hepatogastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Audrey Loumaye
- Service d’Endocrinologie, Diabétologie et Nutrition, Cliniques universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Isabelle A. Leclercq
- Laboratory of Hepatogastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Nicolas Lanthier
- Service d’Hépato-Gastroentérologie, Cliniques universitaires Saint-Luc, UCLouvain, Brussels, Belgium
- Laboratory of Hepatogastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
30
|
Lonardo A, Ballestri S, Mantovani A, Targher G, Bril F. Endpoints in NASH Clinical Trials: Are We Blind in One Eye? Metabolites 2024; 14:40. [PMID: 38248843 PMCID: PMC10820221 DOI: 10.3390/metabo14010040] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/31/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
This narrative review aims to illustrate the notion that nonalcoholic steatohepatitis (NASH), recently renamed metabolic dysfunction-associated steatohepatitis (MASH), is a systemic metabolic disorder featuring both adverse hepatic and extrahepatic outcomes. In recent years, several NASH trials have failed to identify effective pharmacological treatments and, therefore, lifestyle changes are the cornerstone of therapy for NASH. with this context, we analyze the epidemiological burden of NASH and the possible pathogenetic factors involved. These include genetic factors, insulin resistance, lipotoxicity, immuno-thrombosis, oxidative stress, reprogramming of hepatic metabolism, and hypoxia, all of which eventually culminate in low-grade chronic inflammation and increased risk of fibrosis progression. The possible explanations underlying the failure of NASH trials are also accurately examined. We conclude that the high heterogeneity of NASH, resulting from variable genetic backgrounds, exposure, and responses to different metabolic stresses, susceptibility to hepatocyte lipotoxicity, and differences in repair-response, calls for personalized medicine approaches involving research on noninvasive biomarkers. Future NASH trials should aim at achieving a complete assessment of systemic determinants, modifiers, and correlates of NASH, thus adopting a more holistic and unbiased approach, notably including cardiovascular-kidney-metabolic outcomes, without restricting therapeutic perspectives to histological surrogates of liver-related outcomes alone.
Collapse
Affiliation(s)
- Amedeo Lonardo
- AOU—Modena—Ospedale Civile di Baggiovara, 41126 Modena, Italy;
| | | | - Alessandro Mantovani
- Section of Endocrinology and Diabetes, Department of Medicine, University of Verona, Piazzale Stefani, 37126 Verona, Italy
| | - Giovanni Targher
- Department of Medicine, University of Verona, 37126 Verona, Italy;
- Metabolic Diseases Research Unit, IRCCS Sacro Cuore—Don Calabria Hospital, 37024 Negrar di Valpolicella, Italy
| | - Fernando Bril
- Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL 35233, USA;
| |
Collapse
|
31
|
Yu X, Huang YH, Feng YZ, Cheng ZY, Wang CC, Cai XR. Association of Muscle Fat Content and Muscle Mass With Impaired Lung Function in Young Adults With Obesity: Evaluation With MRI. Acad Radiol 2024; 31:9-18. [PMID: 36966071 DOI: 10.1016/j.acra.2023.02.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/18/2023] [Accepted: 02/26/2023] [Indexed: 03/27/2023]
Abstract
RATIONALE AND OBJECTIVES Although low muscle mass is associated with decreased lung function, studies exploring the relationship between muscle fat content and lung function impairment are scarce. This study aimed to evaluate the association of muscle mass and fatty infiltration with lung function in young adults with obesity. MATERIALS AND METHODS We performed a retrospective cross-sectional study of patients aged 18-45 years with obesity who had impaired pulmonary function (case group, n = 66) and those with normal pulmonary function (control group, n = 198) by matching age, sex, body mass index (BMI), and height to assess whether muscle characteristics differed. Muscle mass and muscle fat content were assessed by MRI using a chemical shift-encoded sequence (IDEAL-IQ). RESULTS A total of 264 patients were enrolled (124 females; mean age 32.0 years). The case group had lower muscle mass than the control group (p = 0.012), and there was an association between low muscle mass and lung function impairment (odds ratio (OR), 3.74; 95% confidence interval (CI), 1.57-8.93). Furthermore, muscle fat content was significantly higher in cases compared to controls (7.4 (2.7) % vs. 6.2 (2.5) %, p = 0.001). Multiple logistic regression analysis showed that muscle fat content was associated with a higher risk of impaired lung function (OR, 2.10; 95% CI, 1.65-2.66), regardless of adiposity and muscle mass. CONCLUSION Both muscle fat content and muscle mass are associated with impaired lung function in young adults with obesity.
Collapse
Affiliation(s)
- Xin Yu
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yan-Hao Huang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - You-Zhen Feng
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhong-Yuan Cheng
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Cun-Chuan Wang
- Department of General Surgery, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiang-Ran Cai
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
32
|
Dote-Montero M, Merchan-Ramirez E, Oses M, Echarte J, Clavero-Jimeno A, Alcantara J, Camacho-Cardenosa A, Cupeiro R, Rodríguez-Miranda MDLN, López-Vázquez A, Amaro-Gahete FJ, González Cejudo MT, Martin-Olmedo JJ, Molina-Fernandez M, García Pérez PV, Contreras-Bolívar V, Muñoz-Garach A, Andreo-López MC, Carneiro-Barrera A, Miranda-Ferrúa E, Zugasti A, Petrina E, Álvarez de Eulate N, Goñi E, Ribelles MJ, Brugos CA, Izquierdo C, Fernández-Puggioni V, Galbete A, Villanueva A, Medrano M, Alfaro-Magallanes VM, Muñoz-Torres M, Martín-Rodríguez JL, Idoate F, Cabeza R, Ruiz JR, Labayen I. Efficacy of different 8 h time-restricted eating schedules on visceral adipose tissue and cardiometabolic health: A study protocol. Nutr Metab Cardiovasc Dis 2024; 34:177-187. [PMID: 37949715 DOI: 10.1016/j.numecd.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND AND AIMS To investigate the efficacy and feasibility of three different 8 h time-restricted eating (TRE) schedules (i.e., early, late, and self-selected) compared to each other and to a usual-care (UC) intervention on visceral adipose tissue (VAT) and cardiometabolic health in men and women. METHODS AND RESULTS Anticipated 208 adults (50% women) aged 30-60 years, with overweight/obesity (25 ≤ BMI<40 kg/m2) and with mild metabolic impairments will be recruited for this parallel-group, multicenter randomized controlled trial. Participants will be randomly allocated (1:1:1:1) to one of four groups for 12 weeks: UC, early TRE, late TRE or self-selected TRE. The UC group will maintain their habitual eating window and receive, as well as the TRE groups, healthy lifestyle education for weight management. The early TRE group will start eating not later than 10:00, and the late TRE group not before 13:00. The self-selected TRE group will select an 8 h eating window before the intervention and maintain it over the intervention. The primary outcome is changes in VAT, whereas secondary outcomes include body composition and cardiometabolic risk factors. CONCLUSION This study will determine whether the timing of the eating window during TRE impacts its efficacy on VAT, body composition and cardiometabolic risk factors and provide insights about its feasibility.
Collapse
Affiliation(s)
- Manuel Dote-Montero
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), Granada, Spain.
| | - Elisa Merchan-Ramirez
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), Granada, Spain
| | - Maddi Oses
- Institute for Sustainability & Food Chain Innovation, Department of Health Sciences, Public University of Navarre, Pamplona, Spain; Navarra Institute for Health Research, Pamplona, Spain
| | - Jon Echarte
- Institute for Sustainability & Food Chain Innovation, Department of Health Sciences, Public University of Navarre, Pamplona, Spain; Navarra Institute for Health Research, Pamplona, Spain
| | - Antonio Clavero-Jimeno
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), Granada, Spain
| | - Jma Alcantara
- Institute for Sustainability & Food Chain Innovation, Department of Health Sciences, Public University of Navarre, Pamplona, Spain; Navarra Institute for Health Research, Pamplona, Spain
| | - Alba Camacho-Cardenosa
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), Granada, Spain
| | - Rocío Cupeiro
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), Granada, Spain; LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Science (INEF), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | | | - Alejandro López-Vázquez
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), Granada, Spain
| | - Francisco J Amaro-Gahete
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | | | - Juan J Martin-Olmedo
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), Granada, Spain
| | - Marcos Molina-Fernandez
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), Granada, Spain
| | | | - Victoria Contreras-Bolívar
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, Granada, Spain
| | - Araceli Muñoz-Garach
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Servicio de Endocrinología y Nutrición, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - María C Andreo-López
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, Granada, Spain
| | | | - Emiliano Miranda-Ferrúa
- Institute for Sustainability & Food Chain Innovation, Department of Health Sciences, Public University of Navarre, Pamplona, Spain; Navarra Institute for Health Research, Pamplona, Spain
| | - Ana Zugasti
- Servicio de Endocrinología y Nutrición, Hospital Universitario de Navarra, Pamplona, Spain
| | - Estrella Petrina
- Servicio de Radiología, Hospital Universitario de Navarra, Pamplona, Spain
| | | | - Elena Goñi
- Servicio de Medicina Nuclear, Hospital Universitario de Navarra, Pamplona, Spain
| | - María Jesús Ribelles
- Servicio de Medicina Nuclear, Hospital Universitario de Navarra, Pamplona, Spain
| | | | - Claudia Izquierdo
- Institute for Sustainability & Food Chain Innovation, Department of Health Sciences, Public University of Navarre, Pamplona, Spain; Navarra Institute for Health Research, Pamplona, Spain
| | - Victoria Fernández-Puggioni
- Institute for Sustainability & Food Chain Innovation, Department of Health Sciences, Public University of Navarre, Pamplona, Spain; Navarra Institute for Health Research, Pamplona, Spain
| | - Arkaitz Galbete
- Universidad Pública de Navarra-Navarrabiomed-Hospital Universitario de Navarra, Redissec, Instituto de Investigacion Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Arantxa Villanueva
- Smart Cities Institute, Public University of Navarre, Pamplona, Spain; Department of Electrical, Electronic and Communications Engineering, Public University of Navarre, Pamplona, Spain
| | - María Medrano
- Institute for Sustainability & Food Chain Innovation, Department of Health Sciences, Public University of Navarre, Pamplona, Spain; Navarra Institute for Health Research, Pamplona, Spain
| | - Víctor Manuel Alfaro-Magallanes
- Institute for Sustainability & Food Chain Innovation, Department of Health Sciences, Public University of Navarre, Pamplona, Spain; Navarra Institute for Health Research, Pamplona, Spain; LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Science (INEF), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Manuel Muñoz-Torres
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, Granada, Spain; Department of Medicine, University of Granada, 18016 Granada, Spain; CIBER on Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | | | | | - Rafael Cabeza
- Department of Electrical, Electronic and Communications Engineering, Public University of Navarre, Pamplona, Spain
| | - Jonatan R Ruiz
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Idoia Labayen
- Institute for Sustainability & Food Chain Innovation, Department of Health Sciences, Public University of Navarre, Pamplona, Spain; Navarra Institute for Health Research, Pamplona, Spain; Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
33
|
Marti-Aguado D, Arnouk J, Liang JX, Lara-Romero C, Behari J, Furlan A, Jimenez-Pastor A, Ten-Esteve A, Alfaro-Cervello C, Bauza M, Gallen-Peris A, Gimeno-Torres M, Merino-Murgui V, Perez-Girbes A, Benlloch S, Pérez-Rojas J, Puglia V, Ferrández-Izquierdo A, Aguilera V, Giesteira B, França M, Monton C, Escudero-García D, Alberich-Bayarri Á, Serra MA, Bataller R, Romero-Gomez M, Marti-Bonmati L. Development and validation of an image biomarker to identify metabolic dysfunction associated steatohepatitis: MR-MASH score. Liver Int 2024; 44:202-213. [PMID: 37904633 DOI: 10.1111/liv.15766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/11/2023] [Accepted: 10/08/2023] [Indexed: 11/01/2023]
Abstract
BACKGROUND AND AIMS Diagnosis of metabolic dysfunction-associated steatohepatitis (MASH) requires histology. In this study, a magnetic resonance imaging (MRI) score was developed and validated to identify MASH in patients with metabolic dysfunction-associated steatotic liver disease (MASLD). Secondarily, a screening strategy for MASH diagnosis was investigated. METHODS This prospective multicentre study included 317 patients with biopsy-proven MASLD and contemporaneous MRI. The discovery cohort (Spain, Portugal) included 194 patients. NAFLD activity score (NAS) and fibrosis were assessed with the NASH-CRN histologic system. MASH was defined by the presence of steatosis, lobular inflammation, and ballooning, with NAS ≥4 with or without fibrosis. An MRI-based composite biomarker of Proton Density Fat Fraction and waist circumference (MR-MASH score) was developed. Findings were afterwards validated in an independent cohort (United States, Spain) with different MRI protocols. RESULTS In the derivation cohort, 51% (n = 99) had MASH. The MR-MASH score identified MASH with an AUC = .88 (95% CI .83-.93) and strongly correlated with NAS (r = .69). The MRI score lower cut-off corresponded to 88% sensitivity with 86% NPV, while the upper cut-off corresponded to 92% specificity with 87% PPV. MR-MASH was validated with an AUC = .86 (95% CI .77-.92), 91% sensitivity (lower cut-off) and 87% specificity (upper cut-off). A two-step screening strategy with sequential MR-MASH examination performed in patients with indeterminate-high FIB-4 or transient elastography showed an 83-84% PPV to identify MASH. The AUC of MR-MASH was significantly higher than that of the FAST score (p < .001). CONCLUSIONS The MR-MASH score has clinical utility in the identification and management of patients with MASH at risk of progression.
Collapse
Affiliation(s)
- David Marti-Aguado
- Digestive Disease Department, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
- Biomedical Imaging Research Group (GIBI230), La Fe Health Research Institute, and Imaging La Fe node at Distributed Network for Biomedical Imaging (ReDIB) Unique Scientific and Technical Infrastructures (ICTS), Valencia, Spain
| | - Joud Arnouk
- Division of Gastroenterology, Hepatology and Nutrition, Center for Liver Diseases, Pittsburgh Liver Research Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Jia-Xu Liang
- Digestive Diseases Department, CIBERehd, Virgen del Rocio University Hospital, Seville, Spain
- Institute of Biomedicine of Seville (HUVR/CSIC/US), Department of Medicine, University of Seville, Seville, Spain
| | - Carmen Lara-Romero
- Digestive Diseases Department, CIBERehd, Virgen del Rocio University Hospital, Seville, Spain
- Institute of Biomedicine of Seville (HUVR/CSIC/US), Department of Medicine, University of Seville, Seville, Spain
| | - Jaideep Behari
- Division of Gastroenterology, Hepatology and Nutrition, Center for Liver Diseases, Pittsburgh Liver Research Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Alessandro Furlan
- Division of Abdominal Imaging, Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ana Jimenez-Pastor
- Biomedical Imaging Research Group (GIBI230), La Fe Health Research Institute, and Imaging La Fe node at Distributed Network for Biomedical Imaging (ReDIB) Unique Scientific and Technical Infrastructures (ICTS), Valencia, Spain
- Quantitative Imaging Biomarkers in Medicine, QUIBIM SL, Valencia, Spain
| | - Amadeo Ten-Esteve
- Biomedical Imaging Research Group (GIBI230), La Fe Health Research Institute, and Imaging La Fe node at Distributed Network for Biomedical Imaging (ReDIB) Unique Scientific and Technical Infrastructures (ICTS), Valencia, Spain
| | - Clara Alfaro-Cervello
- Pathology Department, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
- Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Mónica Bauza
- Pathology Department, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Ana Gallen-Peris
- Digestive Disease Department, Hospital Arnau de Vilanova, Valencia, Spain
| | - Marta Gimeno-Torres
- Digestive Disease Department, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Víctor Merino-Murgui
- Digestive Disease Department, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
| | - Alexandre Perez-Girbes
- Biomedical Imaging Research Group (GIBI230), La Fe Health Research Institute, and Imaging La Fe node at Distributed Network for Biomedical Imaging (ReDIB) Unique Scientific and Technical Infrastructures (ICTS), Valencia, Spain
- Radiology Department, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Salvador Benlloch
- Digestive Disease Department, Hospital Arnau de Vilanova, Valencia, Spain
- CIBERehd, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, Madrid, Spain
| | - Judith Pérez-Rojas
- Pathology Department, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Víctor Puglia
- Pathology Department, Hospital Arnau de Vilanova, Valencia, Spain
| | - Antonio Ferrández-Izquierdo
- Pathology Department, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
- Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Victoria Aguilera
- CIBERehd, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, Madrid, Spain
- Hepatology and Liver Transplantation Unit, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Bruno Giesteira
- Radiology Department, Centro Hospitalar Universitário do Porto, Instituto de Ciências Biomédicas de Abel Salazar, University of Porto, Porto, Portugal
| | - Manuela França
- Radiology Department, Centro Hospitalar Universitário do Porto, Instituto de Ciências Biomédicas de Abel Salazar, University of Porto, Porto, Portugal
| | - Cristina Monton
- Digestive Disease Department, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
| | - Desamparados Escudero-García
- Digestive Disease Department, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
- Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Ángel Alberich-Bayarri
- Biomedical Imaging Research Group (GIBI230), La Fe Health Research Institute, and Imaging La Fe node at Distributed Network for Biomedical Imaging (ReDIB) Unique Scientific and Technical Infrastructures (ICTS), Valencia, Spain
- Quantitative Imaging Biomarkers in Medicine, QUIBIM SL, Valencia, Spain
| | - Miguel A Serra
- Digestive Disease Department, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
- Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Ramon Bataller
- Division of Gastroenterology, Hepatology and Nutrition, Center for Liver Diseases, Pittsburgh Liver Research Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Manuel Romero-Gomez
- Digestive Diseases Department, CIBERehd, Virgen del Rocio University Hospital, Seville, Spain
- Institute of Biomedicine of Seville (HUVR/CSIC/US), Department of Medicine, University of Seville, Seville, Spain
- University of Seville, Seville, Spain
| | - Luis Marti-Bonmati
- Biomedical Imaging Research Group (GIBI230), La Fe Health Research Institute, and Imaging La Fe node at Distributed Network for Biomedical Imaging (ReDIB) Unique Scientific and Technical Infrastructures (ICTS), Valencia, Spain
- Radiology Department, La Fe University and Polytechnic Hospital, Valencia, Spain
| |
Collapse
|
34
|
Staels B, Butruille L, Francque S. Treating NASH by targeting peroxisome proliferator-activated receptors. J Hepatol 2023; 79:1302-1316. [PMID: 37459921 DOI: 10.1016/j.jhep.2023.07.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/18/2023] [Accepted: 07/02/2023] [Indexed: 09/15/2023]
Abstract
The pathophysiology of non-alcoholic steatohepatitis (NASH) encompasses a complex set of intra- and extrahepatic driving mechanisms, involving numerous metabolic, inflammatory, vascular and fibrogenic pathways. The peroxisome proliferator-activated receptors (PPARs) α, β/δ and γ belong to the nuclear receptor family of ligand-activated transcription factors. Activated PPARs modulate target tissue transcriptomic profiles, enabling the body's adaptation to changing nutritional, metabolic and inflammatory environments. PPARs hence regulate several pathways involved in NASH pathogenesis. Whereas single PPAR agonists exert robust anti-NASH activity in several preclinical models, their clinical effects on histological endpoints of NASH resolution and fibrosis regression appear more modest. Simultaneous activation of several PPAR isotypes across different organs and within-organ cell types, resulting in pleiotropic actions, enhances the therapeutic potential of PPAR agonists as pharmacological agents for NASH and NASH-related hepatic and extrahepatic morbidity, with some compounds having already shown clinical efficacy on histological endpoints.
Collapse
Affiliation(s)
- Bart Staels
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France.
| | - Laura Butruille
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Sven Francque
- Department of Gastroenterology Hepatology, Antwerp University Hospital, Drie Eikenstraat 655, B-2650, Edegem, Belgium; InflaMed Centre of Excellence, Laboratory for Experimental Medicine and Paediatrics, Translational Sciences in Inflammation and Immunology, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium.
| |
Collapse
|
35
|
Yan F, Nie G, Zhou N, Zhang M, Peng W. Association of fat-to-muscle ratio with non-alcoholic fatty liver disease: a single-centre retrospective study. BMJ Open 2023; 13:e072489. [PMID: 37903611 PMCID: PMC10618979 DOI: 10.1136/bmjopen-2023-072489] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 09/25/2023] [Indexed: 11/01/2023] Open
Abstract
OBJECTIVES Sarcopenia is a known risk factor for non-alcoholic fatty liver disease (NAFLD). Studies evaluating the association between the fat-to-muscle ratio (FMR) and NAFLD are limited. Therefore, the aim of our study was to investigate the association between FMR and NAFLD. DESIGN A retrospective study was conducted on individuals who underwent health examination at Wuhan Union Hospital between January 2020 and November 2021. Clinical data were collected from electronic medical records. SETTING Wuhan Union Hospital, Wuhan, China. PARTICIPANTS 1592 participants aged ≥40 years who underwent body composition analysis and liver ultrasonography were retrospectively reviewed. OUTCOME MEASURES Liver ultrasonography was used to assess liver steatosis, and the fibrosis-4 index was used to calculate the risk scores for liver fibrosis. The 10-year atherosclerotic cardiovascular disease (ASCVD) risk prediction model was used to calculate ASCVD risk scores. RESULTS The FMR was significantly higher in individuals with NAFLD than in those without NAFLD (p<0.001). The prevalence of NAFLD gradually increased from FMR tertile 1 (reference) to tertile 2 (OR=1.49, 95% CI 1.13 to 1.97) and tertile 3 (OR=2.85, 95% CI 2.08 to 3.90). In addition, patients with NAFLD in FMR tertile 3 had a significantly higher risk of liver fibrosis (OR=4.48, 95% CI 2.12 to 9.50) and ASCVD (OR=4.63, 95% CI 2.62 to 8.19) than those in FMR tertile 1 after adjustment for multiple confounders. CONCLUSION In this study, we found a significant association between FMR and NAFLD. A higher FMR indicates a higher risk of NAFLD in the study population and a higher risk of liver fibrosis and ASCVD in NAFLD patients.
Collapse
Affiliation(s)
- Fengqin Yan
- Department of General Practice, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Guqiao Nie
- Department of General Practice, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Nianli Zhou
- Department of General Practice, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Meng Zhang
- Department of General Practice, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Wen Peng
- Department of General Practice, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
36
|
Igudesman D, Mucinski J, Harrison S, Cawthon PM, Linge J, Goodpaster BH, Cummings SR, Hepple RT, Jurczak MJ, Kritchevsky SB, Marcinek D, Coen PM, Corbin KD. Associations of Skeletal Muscle Mass, Muscle Fat Infiltration, Mitochondrial Energetics, and Cardiorespiratory Fitness with Liver Fat Among Older Adults. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.24.23297480. [PMID: 37961367 PMCID: PMC10635187 DOI: 10.1101/2023.10.24.23297480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Background Muscle mass loss may be associated with liver fat accumulation, yet scientific consensus is lacking and evidence in older adults is scant. It is unclear which muscle characteristics might contribute to this association in older adults. Methods We associated comprehensive muscle-related phenotypes including muscle mass normalized to body weight (D 3 -creatine dilution), muscle fat infiltration (MRI), carbohydrate-supported muscle mitochondrial maximal oxidative phosphorylation (respirometry), and cardiorespiratory fitness (VO 2 peak) with liver fat among older adults. Linear regression models adjusted for age, gender, technician (respirometry only), daily minutes of moderate to vigorous physical activity, and prediabetes/diabetes status tested main effects and interactions of each independent variable with waist circumference (high: women-≥88 cm, men-≥102 cm) and gender. Results Among older adults aged 75 (IQR 73, 79 years; 59.8% women), muscle mass and liver fat were not associated overall but were positively associated among participants with a high waist circumference (β: 25.2; 95%CI 11.7, 40.4; p =.0002; N=362). Muscle fat infiltration and liver fat were positively associated (β: 15.2; 95%CI 6.8, 24.3; p =.0003; N=378). Carbohydrate-supported maximum oxidative phosphorylation and VO 2 peak (adjusted β: -12.9; 95%CI -20.3, -4.8; p =0.003; N=361) were inversely associated with liver fat; adjustment attenuated the estimate for maximum oxidative phosphorylation although the point estimate remained negative (β: -4.0; 95%CI -11.6, 4.2; p =0.32; N=321). Conclusions Skeletal muscle-related characteristics are metabolically relevant factors linked to liver fat in older adults. Future research should confirm our results to determine whether trials targeting mechanisms common to liver and muscle fat accumulation are warranted.
Collapse
|
37
|
Eng PC, Forlano R, Tan T, Manousou P, Dhillo WS, Izzi-Engbeaya C. Non-alcoholic fatty liver disease in women - Current knowledge and emerging concepts. JHEP Rep 2023; 5:100835. [PMID: 37771547 PMCID: PMC10522907 DOI: 10.1016/j.jhepr.2023.100835] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/26/2023] [Accepted: 06/05/2023] [Indexed: 09/30/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major cause of liver disease worldwide, affecting up to 30% of adults. Progression to non-alcoholic steatohepatitis (NASH) is a key risk factor for cirrhosis, hepatocellular carcinoma and cardiovascular events. Alterations in reproductive hormones are linked to the development and/or progression of NAFLD/NASH in women. Women with polycystic ovary syndrome and those with oestrogen deficiency are at increased risk of NAFLD/NASH, with higher mortality rates in older women compared to men of similar ages. NAFLD/NASH is currently the leading indication for liver transplantation in women without hepatocellular carcinoma. Therefore, a better understanding of NAFLD in women is needed to improve outcomes. In this review, we discuss the hormonal and non-hormonal factors that contribute to NAFLD development and progression in women. Furthermore, we highlight areas of focus for clinical practice and for future research.
Collapse
Affiliation(s)
- Pei Chia Eng
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Roberta Forlano
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK
- Department of Hepatology, Imperial College Healthcare NHS Trust, London, UK
| | - Tricia Tan
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Pinelopi Manousou
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK
- Department of Hepatology, Imperial College Healthcare NHS Trust, London, UK
| | - Waljit S. Dhillo
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Chioma Izzi-Engbeaya
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
38
|
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) refers to the accumulation of lipid laden vacuoles in hepatocytes, occurring in the context of visceral adiposity, insulin resistance and other features of the metabolic syndrome. Its more severe form (NASH, Non-Alcoholic Steatohepatitis) is becoming the leading aetiology of end-stage liver disease and hepatocellular carcinoma, and also contributes to cardiovascular disease, diabetes and extrahepatic malignancy. Management is currently limited to lifestyle modification and optimisation of the metabolic co-morbidities, with some of the drugs used for the latter also having shown some benefit for the liver. Licensed treatment modalities are currently lacking. A particular difficulty is the notorious heterogeneity of the patient population, which is poorly understood. A spectrum of disease severity associates in a non-linear way with a spectrum of severity of underlying metabolic factors. Heterogeneity of the liver in terms of mechanisms to cope with the metabolic and inflammatory stress and in terms of repair mechanisms, and a lack of knowledge hereof, further complicate the understanding of inter-individual variability. Genetic factors act as disease modifiers and potentially allow for some risk stratification, but also only explain a minor fraction of disease heterogeneity. Response to treatment shows a large variation in treatment response, again with little understanding of what is driving the absence of response in individual patients. Management can be tailored to patient's preferences in terms of diet modification, but tailoring treatment to knowledge on disease driving mechanisms in an individual patient is still in its infancy. Recent progress in analysing liver tissue as well as non-invasive tests hold, however, promise to rapidly improve our understanding of disease heterogeneity in NAFLD and provide individualised management.
Collapse
Affiliation(s)
- Sven M Francque
- Department of Gastroenterology Hepatology, Antwerp University Hospital, Drie Eikenstraat 655, B-2650, Edegem, Belgium.
- InflaMed Centre of Excellence, Laboratory for Experimental Medicine and Paediatrics, Translational Sciences in Inflammation and Immunology, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium.
| |
Collapse
|
39
|
Kim HK, Bae SJ, Lee MJ, Kim EH, Park H, Kim HS, Cho YK, Jung CH, Lee WJ, Choe J. Association of Visceral Fat Obesity, Sarcopenia, and Myosteatosis with Non-Alcoholic Fatty Liver Disease without Obesity. Clin Mol Hepatol 2023; 29:987-1001. [PMID: 37403320 PMCID: PMC10577332 DOI: 10.3350/cmh.2023.0035] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND/AIMS To investigate whether non-alcoholic fatty liver disease (NAFLD) in individuals without generalized obesity is associated with visceral fat obesity (VFO), sarcopenia, and/or myosteatosis. METHODS This cross-sectional analysis included 14,400 individuals (7,470 men) who underwent abdominal computed tomography scans during routine health examinations. The total abdominal muscle area (TAMA) and skeletal muscle area (SMA) at the 3rd lumbar vertebral level were measured. The SMA was divided into the normal attenuation muscle area (NAMA) and low attenuation muscle area, and the NAMA/TAMA index was calculated. VFO was defined by visceral to subcutaneous fat ratio, sarcopenia by body mass index-adjusted SMA, and myosteatosis by the NAMA/TAMA index. NAFLD was diagnosed with ultrasonography. RESULTS Of the 14,400 individuals, 4,748 (33.0%) had NAFLD, and the prevalence of NAFLD among non-obese individuals was 21.4%. In regression analysis, both sarcopenia (men: odds ratio [OR] 1.41, 95% confidence interval [CI] 1.19-1.67, P<0.001; women: OR=1.59, 95% CI 1.40-1.90, P<0.001) and myosteatosis (men: OR=1.24, 95% CI 1.02-1.50, P=0,028; women: OR=1.23, 95% CI 1.04-1.46, P=0.017) were significantly associated with non-obese NAFLD after considering for VFO and other various risk factors, whereas VFO (men: OR=3.97, 95% CI 3.43-4.59 [adjusted for sarcopenia], OR 3.98, 95% CI 3.44-4.60 [adjusted for myosteatosis]; women: OR=5.42, 95% CI 4.53-6.42 [adjusted for sarcopenia], OR=5.33, 95% CI 4.51-6.31 [adjusted for myosteatosis]; all P<0.001) was strongly associated with non-obese NAFLD after adjustment with various known risk factors. CONCLUSION In addition to VFO, sarcopenia and/or myosteatosis were significantly associated with non-obese NAFLD.
Collapse
Affiliation(s)
- Hong-Kyu Kim
- Subdivision of Endocrinology and Metabolism, Health Screening and Promotion Center, Asan Medical Center, Seoul, Korea
| | - Sung-Jin Bae
- Subdivision of Endocrinology and Metabolism, Health Screening and Promotion Center, Asan Medical Center, Seoul, Korea
| | - Min Jung Lee
- Subdivision of Endocrinology and Metabolism, Health Screening and Promotion Center, Asan Medical Center, Seoul, Korea
| | - Eun Hee Kim
- Subdivision of Endocrinology and Metabolism, Health Screening and Promotion Center, Asan Medical Center, Seoul, Korea
| | - Hana Park
- Subdivision of Gastroenterology and Hepatology, Health Screening and Promotion Center, Asan Medical Center, Seoul, Korea
| | - Hwi Seung Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Asan Diabetes Center, Asan Medical Center, Seoul, Korea
| | - Yun Kyung Cho
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Asan Diabetes Center, Asan Medical Center, Seoul, Korea
| | - Chang Hee Jung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Asan Diabetes Center, Asan Medical Center, Seoul, Korea
| | - Woo Je Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Asan Diabetes Center, Asan Medical Center, Seoul, Korea
| | - Jaewon Choe
- Subdivision of Gastroenterology and Hepatology, Health Screening and Promotion Center, Asan Medical Center, Seoul, Korea
| |
Collapse
|
40
|
De Masi A, Li X, Lee D, Jeon J, Wang Q, Baek S, Park O, Mottis A, Strotjohann K, Rapin A, Jung HY, Auwerx J. Cyclo(His-Pro): A further step in the management of steatohepatitis. JHEP Rep 2023; 5:100815. [PMID: 37600955 PMCID: PMC10432811 DOI: 10.1016/j.jhepr.2023.100815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 05/08/2023] [Accepted: 05/25/2023] [Indexed: 08/22/2023] Open
Abstract
Background & Aims Non-alcoholic fatty liver disease (NAFLD) and steatohepatitis (NASH) have become the world's most common liver diseases, placing a growing strain on healthcare systems worldwide. Nonetheless, no effective pharmacological treatment has been approved. The naturally occurring compound cyclo histidine-proline (His-Pro) (CHP) is an interesting candidate for NAFLD management, given its safety profile and anti-inflammatory effects. Methods Two different mouse models of liver disease were used to evaluate protective effects of CHP on disease progression towards fibrosis: a model of dietary NAFLD/NASH, achieved by thermoneutral housing (TN) in combination with feeding a western diet (WD), and liver fibrosis caused by repeated injections with carbon tetrachloride (CCl4). Results Treatment with CHP limited overall lipid accumulation, lowered systemic inflammation, and prevented hyperglycaemia. Histopathology and liver transcriptomics highlighted reduced steatosis and demonstrated remarkable protection from the development of inflammation and fibrosis, features which herald the progression of NAFLD. We identified the extracellular signal-regulated kinase (ERK) pathway as an early mediator of the cellular response to CHP. Conclusions CHP was active in both the preventive and therapeutic setting, reducing liver steatosis, fibrosis, and inflammation and improving several markers of liver disease. Impact and implications Considering the incidence and the lack of approved treatments, it is urgent to identify new strategies that prevent and manage NAFLD. CHP was effective in attenuating NAFLD progression in two animal models of the disease. Overall, our work points to CHP as a novel and effective strategy for the management of NAFLD, fuelling optimism for potential clinical studies.
Collapse
Affiliation(s)
- Alessia De Masi
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Xiaoxu Li
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Dohyun Lee
- R&D Center, NovMetaPharma Co., Ltd., Pohang, South Korea
| | - Jongsu Jeon
- R&D Center, NovMetaPharma Co., Ltd., Pohang, South Korea
| | - Qi Wang
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Seoyeong Baek
- R&D Center, NovMetaPharma Co., Ltd., Pohang, South Korea
| | - Onyu Park
- R&D Center, NovMetaPharma Co., Ltd., Pohang, South Korea
| | - Adrienne Mottis
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Keno Strotjohann
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Alexis Rapin
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Hoe-Yune Jung
- R&D Center, NovMetaPharma Co., Ltd., Pohang, South Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
41
|
Thomsen KL, Eriksen PL, Kerbert AJC, De Chiara F, Jalan R, Vilstrup H. Role of ammonia in NAFLD: An unusual suspect. JHEP Rep 2023; 5:100780. [PMID: 37425212 PMCID: PMC10326708 DOI: 10.1016/j.jhepr.2023.100780] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 07/11/2023] Open
Abstract
Mechanistically, the symptomatology and disease progression of non-alcoholic fatty liver disease (NAFLD) remain poorly understood, which makes therapeutic progress difficult. In this review, we focus on the potential importance of decreased urea cycle activity as a pathogenic mechanism. Urea synthesis is an exclusive hepatic function and is the body's only on-demand and definitive pathway to remove toxic ammonia. The compromised urea cycle activity in NAFLD is likely caused by epigenetic damage to urea cycle enzyme genes and increased hepatocyte senescence. When the urea cycle is dysfunctional, ammonia accumulates in liver tissue and blood, as has been demonstrated in both animal models and patients with NAFLD. The problem may be augmented by parallel changes in the glutamine/glutamate system. In the liver, the accumulation of ammonia leads to inflammation, stellate cell activation and fibrogenesis, which is partially reversible. This may be an important mechanism for the transition of bland steatosis to steatohepatitis and further to cirrhosis and hepatocellular carcinoma. Systemic hyperammonaemia has widespread negative effects on other organs. Best known are the cerebral consequences that manifest as cognitive disturbances, which are prevalent in patients with NAFLD. Furthermore, high ammonia levels induce a negative muscle protein balance leading to sarcopenia, compromised immune function and increased risk of liver cancer. There is currently no rational way to reverse reduced urea cycle activity but there are promising animal and human reports of ammonia-lowering strategies correcting several of the mentioned untoward aspects of NAFLD. In conclusion, the ability of ammonia-lowering strategies to control the symptoms and prevent the progression of NAFLD should be explored in clinical trials.
Collapse
Affiliation(s)
- Karen Louise Thomsen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Denmark
- UCL Institute of Liver and Digestive Health, University College London, United Kingdom
| | - Peter Lykke Eriksen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Denmark
| | - Annarein JC. Kerbert
- UCL Institute of Liver and Digestive Health, University College London, United Kingdom
| | - Francesco De Chiara
- UCL Institute of Liver and Digestive Health, University College London, United Kingdom
| | - Rajiv Jalan
- UCL Institute of Liver and Digestive Health, University College London, United Kingdom
- European Foundation for the Study of Chronic Liver Failure, Barcelona, Spain
| | - Hendrik Vilstrup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Denmark
| |
Collapse
|
42
|
Nachit M, Horsmans Y, Summers RM, Leclercq IA, Pickhardt PJ. AI-based CT Body Composition Identifies Myosteatosis as Key Mortality Predictor in Asymptomatic Adults. Radiology 2023; 307:e222008. [PMID: 37191484 PMCID: PMC10315523 DOI: 10.1148/radiol.222008] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 03/19/2023] [Accepted: 03/29/2023] [Indexed: 05/17/2023]
Abstract
Background Body composition data have been limited to adults with disease or older age. The prognostic impact in otherwise asymptomatic adults is unclear. Purpose To use artificial intelligence-based body composition metrics from routine abdominal CT scans in asymptomatic adults to clarify the association between obesity, liver steatosis, myopenia, and myosteatosis and the risk of mortality. Materials and Methods In this retrospective single-center study, consecutive adult outpatients undergoing routine colorectal cancer screening from April 2004 to December 2016 were included. Using a U-Net algorithm, the following body composition metrics were extracted from low-dose, noncontrast, supine multidetector abdominal CT scans: total muscle area, muscle density, subcutaneous and visceral fat area, and volumetric liver density. Abnormal body composition was defined by the presence of liver steatosis, obesity, muscle fatty infiltration (myosteatosis), and/or low muscle mass (myopenia). The incidence of death and major adverse cardiovascular events were recorded during a median follow-up of 8.8 years. Multivariable analyses were performed accounting for age, sex, smoking status, myosteatosis, liver steatosis, myopenia, type 2 diabetes, obesity, visceral fat, and history of cardiovascular events. Results Overall, 8982 consecutive outpatients (mean age, 57 years ± 8 [SD]; 5008 female, 3974 male) were included. Abnormal body composition was found in 86% (434 of 507) of patients who died during follow-up. Myosteatosis was found in 278 of 507 patients (55%) who died (15.5% absolute risk at 10 years). Myosteatosis, obesity, liver steatosis, and myopenia were associated with increased mortality risk (hazard ratio [HR]: 4.33 [95% CI: 3.63, 5.16], 1.27 [95% CI: 1.06, 1.53], 1.86 [95% CI: 1.56, 2.21], and 1.75 [95% CI: 1.43, 2.14], respectively). In 8303 patients (excluding 679 patients without complete data), after multivariable adjustment, myosteatosis remained associated with increased mortality risk (HR, 1.89 [95% CI: 1.52, 2.35]; P < .001). Conclusion Artificial intelligence-based profiling of body composition from routine abdominal CT scans identified myosteatosis as a key predictor of mortality risk in asymptomatic adults. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Tong and Magudia in this issue.
Collapse
Affiliation(s)
- Maxime Nachit
- From the Laboratory of Hepato-Gastroenterology, Institut de Recherche
Expérimentale et Clinique, UCLouvain, Brussels, Belgium (M.N., I.A.L.);
Service d'Hépato-Gastro-Entérologie, Cliniques
Universitaires Saint-Luc, Brussels, Belgium (Y.H.); Imaging Biomarkers and
Computer-Aided Diagnosis Laboratory, Radiology and Imaging Sciences, National
Institutes of Health Clinical Center, Bethesda, Md (R.M.S.); and Department of
Radiology, University of Wisconsin School of Medicine & Public Health,
Madison, Wis (P.J.P.)
| | - Yves Horsmans
- From the Laboratory of Hepato-Gastroenterology, Institut de Recherche
Expérimentale et Clinique, UCLouvain, Brussels, Belgium (M.N., I.A.L.);
Service d'Hépato-Gastro-Entérologie, Cliniques
Universitaires Saint-Luc, Brussels, Belgium (Y.H.); Imaging Biomarkers and
Computer-Aided Diagnosis Laboratory, Radiology and Imaging Sciences, National
Institutes of Health Clinical Center, Bethesda, Md (R.M.S.); and Department of
Radiology, University of Wisconsin School of Medicine & Public Health,
Madison, Wis (P.J.P.)
| | - Ronald M. Summers
- From the Laboratory of Hepato-Gastroenterology, Institut de Recherche
Expérimentale et Clinique, UCLouvain, Brussels, Belgium (M.N., I.A.L.);
Service d'Hépato-Gastro-Entérologie, Cliniques
Universitaires Saint-Luc, Brussels, Belgium (Y.H.); Imaging Biomarkers and
Computer-Aided Diagnosis Laboratory, Radiology and Imaging Sciences, National
Institutes of Health Clinical Center, Bethesda, Md (R.M.S.); and Department of
Radiology, University of Wisconsin School of Medicine & Public Health,
Madison, Wis (P.J.P.)
| | - Isabelle A. Leclercq
- From the Laboratory of Hepato-Gastroenterology, Institut de Recherche
Expérimentale et Clinique, UCLouvain, Brussels, Belgium (M.N., I.A.L.);
Service d'Hépato-Gastro-Entérologie, Cliniques
Universitaires Saint-Luc, Brussels, Belgium (Y.H.); Imaging Biomarkers and
Computer-Aided Diagnosis Laboratory, Radiology and Imaging Sciences, National
Institutes of Health Clinical Center, Bethesda, Md (R.M.S.); and Department of
Radiology, University of Wisconsin School of Medicine & Public Health,
Madison, Wis (P.J.P.)
| | - Perry J. Pickhardt
- From the Laboratory of Hepato-Gastroenterology, Institut de Recherche
Expérimentale et Clinique, UCLouvain, Brussels, Belgium (M.N., I.A.L.);
Service d'Hépato-Gastro-Entérologie, Cliniques
Universitaires Saint-Luc, Brussels, Belgium (Y.H.); Imaging Biomarkers and
Computer-Aided Diagnosis Laboratory, Radiology and Imaging Sciences, National
Institutes of Health Clinical Center, Bethesda, Md (R.M.S.); and Department of
Radiology, University of Wisconsin School of Medicine & Public Health,
Madison, Wis (P.J.P.)
| |
Collapse
|
43
|
Geladari E, Alexopoulos T, Kontogianni MD, Vasilieva L, Mani I, Tenta R, Sevastianos V, Vlachogiannakos I, Alexopoulou A. The Presence of Myosteatosis Is Associated with Age, Severity of Liver Disease and Poor Outcome and May Represent a Prodromal Phase of Sarcopenia in Patients with Liver Cirrhosis. J Clin Med 2023; 12:jcm12093332. [PMID: 37176772 PMCID: PMC10179726 DOI: 10.3390/jcm12093332] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND/AIMS Myosteatosis implies impaired muscle quality. The aim of the study was to investigate the association of myosteatosis with other muscle abnormalities and its role in the prognosis of liver cirrhosis (LC). METHOD Skeletal muscle index (SMI) and myosteatosis were measured by computed tomography. Myosteatosis was defined as muscle radiodensity and evaluated according to dry body mass index (BMI). Median values and interquartile range were used for continuous and count (percentage) for categorical variables. RESULTS A total of 197 consecutive patients were included (age 61 (IQR 52-68); 67% male; MELD score 11 (interquartile range 7.5-16)). Myosteatosis was identified in 73.6% and sarcopenia in 44.6% of patients. Myosteatosis was positively associated with age (p = 0.024) and Child-Pugh (p = 0.017) and inversely associated with SMI (p = 0.026). Patients with myosteatosis exhibited lower 360-day survival (log-rank p = 0.001) compared to those without it. MELD (p < 0.001) and myosteatosis (p = 0.048) emerged as negative prognostic factors of survival in multivariate model. Individuals combining low muscle strength and impaired muscle quality and quantity displayed more advanced LC, impaired muscle performance, lower BMI (p < 0.001 each) and a three times higher mortality rate compared to those with low muscle quality alone. CONCLUSIONS The presence of myosteatosis was associated with advanced age, low skeletal mass and more severe LC. Myosteatosis was associated with poor prognosis and may represent a prodromal phase of muscle degeneration before the development of sarcopenia.
Collapse
Affiliation(s)
- Eleni Geladari
- 3rd Department of Internal Medicine & Liver Outpatient Clinic, Evangelismos General Hospital, 106 76 Athens, Greece
| | - Theodoros Alexopoulos
- Gastroenterology Department, Medical School, National & Kapodistrian University of Athens, Laiko General Hospital, 115 27 Athens, Greece
| | - Meropi D Kontogianni
- Department of Nutrition & Dietetics, School of Health Sciences and Education, Harokopio University of Athens, 176 76 Kallithea, Greece
| | - Larisa Vasilieva
- Alexandra General Hospital, Gastroenterology, 115 28 Athens, Greece
| | - Iliana Mani
- 2nd Department of Internal Medicine & Research Laboratory, Medical School, National & Kapodistrian University of Athens, Hippokration General Hospital, 115 28 Athens, Greece
| | - Roxane Tenta
- Department of Nutrition & Dietetics, School of Health Sciences and Education, Harokopio University of Athens, 176 76 Kallithea, Greece
| | - Vasilios Sevastianos
- 3rd Department of Internal Medicine & Liver Outpatient Clinic, Evangelismos General Hospital, 106 76 Athens, Greece
| | - Ioannis Vlachogiannakos
- Gastroenterology Department, Medical School, National & Kapodistrian University of Athens, Laiko General Hospital, 115 27 Athens, Greece
| | - Alexandra Alexopoulou
- 2nd Department of Internal Medicine & Research Laboratory, Medical School, National & Kapodistrian University of Athens, Hippokration General Hospital, 115 28 Athens, Greece
| |
Collapse
|
44
|
Mátis D, Hegyi P, Teutsch B, Tornai T, Erőss B, Pár G, Váncsa S. Improved body composition decreases the fat content in non-alcoholic fatty liver disease, a meta-analysis and systematic review of longitudinal studies. Front Med (Lausanne) 2023; 10:1114836. [PMID: 37215704 PMCID: PMC10194653 DOI: 10.3389/fmed.2023.1114836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/13/2023] [Indexed: 05/24/2023] Open
Abstract
Background Based on cross-sectional studies, there is a link between body composition parameters and steatosis in non-alcoholic fatty liver disease (NAFLD). However, whether long-term changes in different body composition parameters will result in NAFLD resolution is unclear. Therefore, we aimed to summarize the literature on longitudinal studies evaluating the association between NAFLD resolution and body composition change. Methods Based on the recommendations of the Cochrane Handbook, we performed a systematic search on September 26th, 2021, in three databases: Embase, MEDLINE (via PubMed), and Cochrane Central Register of Controlled Trials (CENTRAL). Eligible studies reported on patients with NAFLD (liver fat >5%) and examined the correlation between body composition improvement and decrease in steatosis. We did not have pre-defined body composition or steatosis measurement criteria. Next, we calculated pooled correlation coefficient (r) with a 95% confidence interval (CI). Furthermore, we narratively summarized articles with other statistical methods. Results We included 15 studies in our narrative review and five in our quantitative synthesis. Based on two studies with 85 patients, we found a pooled correlation coefficient of r = 0.49 (CI: 0.22-0.69, Spearman's correlation) between the change of visceral adipose tissue and liver steatosis. Similarly, based on three studies with 175 patients, the correlation was r = 0.33 (CI: 0.19-0.46, Pearson's correlation). On the other hand, based on two studies with 163 patients, the correlation between subcutaneous adipose tissue change and liver steatosis change was r = 0.42 (CI: 0.29-0.54, Pearson's correlation). Furthermore, based on the studies in the narrative synthesis, body composition improvement was associated with steatosis resolution. Conclusions Based on the included studies, body composition improvement may be associated with a decrease in liver fat content in NAFLD. Systematic review registration Identifier: CRD42021278584.
Collapse
Affiliation(s)
- Dóra Mátis
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Péter Hegyi
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
- Institute of Pancreatic Diseases, Semmelweis University, Budapest, Hungary
| | - Brigitta Teutsch
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Tamás Tornai
- Institute of Pancreatic Diseases, Semmelweis University, Budapest, Hungary
| | - Bálint Erőss
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
- Institute of Pancreatic Diseases, Semmelweis University, Budapest, Hungary
| | - Gabriella Pár
- Division of Gastroenterology, First Department of Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Szilárd Váncsa
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
- Institute of Pancreatic Diseases, Semmelweis University, Budapest, Hungary
| |
Collapse
|
45
|
Cho YK, Jung HN, Kim EH, Lee MJ, Park JY, Lee WJ, Kim HK, Jung CH. Association between sarcopenic obesity and poor muscle quality based on muscle quality map and abdominal computed tomography. Obesity (Silver Spring) 2023; 31:1547-1557. [PMID: 37133436 DOI: 10.1002/oby.23733] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/23/2022] [Accepted: 01/05/2023] [Indexed: 05/04/2023]
Abstract
OBJECTIVE This study evaluated whether sarcopenic obesity is closely associated with muscle quality using abdominal computed tomography. METHODS This cross-sectional study included 13,612 participants who underwent abdominal computed tomography. The cross-sectional area of the skeletal muscle was measured at the L3 level (total abdominal muscle area [TAMA]) and segmented into normal attenuation muscle area (NAMA, +30 to +150 Hounsfield units), low attenuation muscle area (-29 to +29 Hounsfield units), and intramuscular adipose tissue (-190 to -30 Hounsfield units). The NAMA/TAMA index was calculated by dividing NAMA by TAMA and multiplying by 100, and the lowest quartile of NAMA/TAMA index was defined as myosteatosis (<73.56 in men and <66.97 in women). Sarcopenia was defined using BMI-adjusted appendicular skeletal muscle mass. RESULTS The prevalence of myosteatosis was found to be significantly higher in participants with sarcopenic obesity (17.9% vs. 54.2%, p < 0.001) than the control group without sarcopenia or obesity. Compared with the control group, the odds ratio (95% CI) for having myosteatosis was 3.70 (2.87-4.76) for participants with sarcopenic obesity after adjusting for age, sex, smoking, drinking, exercise, hypertension, diabetes, low-density lipoprotein cholesterol, and high-sensitivity C-reactive protein. CONCLUSIONS Sarcopenic obesity is significantly associated with myosteatosis, which is representative of poor muscle quality.
Collapse
Affiliation(s)
- Yun Kyung Cho
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Asan Diabetes Center, Asan Medical Center, Seoul, Republic of Korea
| | - Han Na Jung
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Asan Diabetes Center, Asan Medical Center, Seoul, Republic of Korea
| | - Eun Hee Kim
- Health Screening and Promotion Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Min Jung Lee
- Health Screening and Promotion Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Joong-Yeol Park
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Asan Diabetes Center, Asan Medical Center, Seoul, Republic of Korea
| | - Woo Je Lee
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Asan Diabetes Center, Asan Medical Center, Seoul, Republic of Korea
| | - Hong-Kyu Kim
- Health Screening and Promotion Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chang Hee Jung
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Asan Diabetes Center, Asan Medical Center, Seoul, Republic of Korea
| |
Collapse
|
46
|
Abstract
Nonalcoholic fatty liver disease (NAFLD) is strongly associated with obesity but around 10% to 20% of patients with NAFLD have normal body mass index, a condition referred to as lean or nonobese NAFLD. Although lean patients more often have milder liver disease, a proportion may nonetheless develop steatohepatitis and advanced liver fibrosis. Both genetic and environmental factors contribute to the development of NAFLD. Noninvasive tests have similarly good accuracy as initial assessments for lean NAFLD. Future studies should determine the most appropriate treatment in this special population.
Collapse
Affiliation(s)
- Ajay Duseja
- Department of Hepatology, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| | - Arka De
- Department of Hepatology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Vincent Wong
- Department of Medicine and Therapeutics, Medical Data Analytics Center, The Chinese University of Hong Kong, Hong Kong; State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
47
|
Musio A, Perazza F, Leoni L, Stefanini B, Dajti E, Menozzi R, Petroni ML, Colecchia A, Ravaioli F. Osteosarcopenia in NAFLD/MAFLD: An Underappreciated Clinical Problem in Chronic Liver Disease. Int J Mol Sci 2023; 24:7517. [PMID: 37108675 PMCID: PMC10139188 DOI: 10.3390/ijms24087517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Chronic liver disease (CLD), including non-alcoholic fatty liver disease (NAFLD) and its advanced form, non-alcoholic steatohepatitis (NASH), affects a significant portion of the population worldwide. NAFLD is characterised by fat accumulation in the liver, while NASH is associated with inflammation and liver damage. Osteosarcopenia, which combines muscle and bone mass loss, is an emerging clinical problem in chronic liver disease that is often underappreciated. The reductions in muscle and bone mass share several common pathophysiological pathways; insulin resistance and chronic systemic inflammation are the most crucial predisposing factors and are related to the presence and gravity of NAFLD and to the worsening of the outcome of liver disease. This article explores the relationship between osteosarcopenia and NAFLD/MAFLD, focusing on the diagnosis, prevention and treatment of this condition in patients with CLD.
Collapse
Affiliation(s)
- Alessandra Musio
- Department of Medical and Surgical Sciences, IRCCS-Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.M.); (F.P.); (L.L.); (B.S.); (E.D.); (M.L.P.)
| | - Federica Perazza
- Department of Medical and Surgical Sciences, IRCCS-Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.M.); (F.P.); (L.L.); (B.S.); (E.D.); (M.L.P.)
| | - Laura Leoni
- Department of Medical and Surgical Sciences, IRCCS-Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.M.); (F.P.); (L.L.); (B.S.); (E.D.); (M.L.P.)
- Division of Metabolic Diseases and Clinical Nutrition, Department of Specialistic Medicines, University Hospital of Modena and Reggio Emilia, Largo del Pozzo 71, 41125 Modena, Italy;
| | - Bernardo Stefanini
- Department of Medical and Surgical Sciences, IRCCS-Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.M.); (F.P.); (L.L.); (B.S.); (E.D.); (M.L.P.)
| | - Elton Dajti
- Department of Medical and Surgical Sciences, IRCCS-Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.M.); (F.P.); (L.L.); (B.S.); (E.D.); (M.L.P.)
| | - Renata Menozzi
- Division of Metabolic Diseases and Clinical Nutrition, Department of Specialistic Medicines, University Hospital of Modena and Reggio Emilia, Largo del Pozzo 71, 41125 Modena, Italy;
| | - Maria Letizia Petroni
- Department of Medical and Surgical Sciences, IRCCS-Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.M.); (F.P.); (L.L.); (B.S.); (E.D.); (M.L.P.)
| | - Antonio Colecchia
- Gastroenterology Unit, Department of Medical Specialties, University Hospital of Modena, University of Modena & Reggio Emilia, 41121 Modena, Italy;
| | - Federico Ravaioli
- Department of Medical and Surgical Sciences, IRCCS-Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.M.); (F.P.); (L.L.); (B.S.); (E.D.); (M.L.P.)
- Gastroenterology Unit, Department of Medical Specialties, University Hospital of Modena, University of Modena & Reggio Emilia, 41121 Modena, Italy;
| |
Collapse
|
48
|
Tacke F, Puengel T, Loomba R, Friedman SL. An integrated view of anti-inflammatory and antifibrotic targets for the treatment of NASH. J Hepatol 2023:S0168-8278(23)00218-0. [PMID: 37061196 DOI: 10.1016/j.jhep.2023.03.038] [Citation(s) in RCA: 142] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/08/2023] [Accepted: 03/29/2023] [Indexed: 04/17/2023]
Abstract
Successful development of treatments for non-alcoholic fatty liver disease (NAFLD) and its progressive form, non-alcoholic steatohepatitis (NASH) has been challenging. Because NASH and fibrosis lead to NAFLD progression towards cirrhosis and to clinical outcomes, approaches have either sought to attenuate metabolic dysregulation and cell injury, or directly target the inflammation and fibrosis that ensue. Targets for reducing the activation of inflammatory cascades include nuclear receptor agonists (thyroid hormone receptor-beta, e.g. resmetirom, peroxisome proliferator-activated receptor [PPAR], e.g. lanifibranor, farnesoid X receptor [FXR], e.g. obeticholic acid), modulators of lipotoxicity (e.g. aramchol, acetyl-CoA carboxylase inhibitors) or modification of genetic variants (e.g. PNPLA3 gene silencing). Extrahepatic inflammatory signals from circulation, adipose tissue or gut are targets of hormonal agonists (e.g. glucagon-like peptide-1 [GLP-1] like semaglutide, fibroblast growth factor [FGF]-19 or FGF21), microbiota or lifestyle (weight loss, diet, exercise) interventions. Stress signals and hepatocyte death activate immune responses engaging innate (macrophages, lymphocytes) and adaptive (auto-aggressive T-cells) mechanisms. Therapies seek to blunt immune cell activation, recruitment (chemokine receptor inhibitors) and responses (e.g. galectin 3 inhibition, anti-platelet drugs). The disease-driving pathways of NASH converge to elicit fibrosis, which is reversible. The activation of hepatic stellate cells (HSC) into matrix-producing myofibroblasts can be inhibited by antagonizing soluble factors (e.g. integrins, cytokines), cellular crosstalk (e.g. with macrophages), and agonizing nuclear receptor signaling (e.g. FXR or PPAR agonists). In advanced fibrosis, cell therapy with restorative macrophages or reprogrammed T-cells (e.g., CAR T) may accelerate repair through HSC deactivation or killing, or by enhancing matrix degradation. Heterogeneity of disease - either due to genetics or divergent disease drivers - is an obstacle to defining effective drugs for all patients with NASH that will be incrementally overcome.
Collapse
Affiliation(s)
- Frank Tacke
- Department of Hepatology & Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany.
| | - Tobias Puengel
- Department of Hepatology & Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany; Berlin Institute of Health, Berlin, Germany
| | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology and Hepatology, University of California at San Diego, San Diego, CA, United States.
| | - Scott L Friedman
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
49
|
Yip TCF, Vilar-Gomez E, Petta S, Yilmaz Y, Wong GLH, Adams LA, de Lédinghen V, Sookoian S, Wong VWS. Geographical similarity and differences in the burden and genetic predisposition of NAFLD. Hepatology 2023; 77:1404-1427. [PMID: 36062393 DOI: 10.1002/hep.32774] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/28/2022] [Accepted: 09/01/2022] [Indexed: 12/13/2022]
Abstract
NAFLD has become a major public health problem for more than 2 decades with a growing prevalence in parallel with the epidemic of obesity and type 2 diabetes (T2D). The disease burden of NAFLD differs across geographical regions and ethnicities. Variations in prevalence of metabolic diseases, extent of urban-rural divide, dietary habits, lifestyles, and the prevalence of NAFLD risk and protective alleles can contribute to such differences. The rise in NAFLD has led to a remarkable increase in the number of cases of cirrhosis, hepatocellular carcinoma, hepatic decompensation, and liver-related mortality related to NAFLD. Moreover, NAFLD is associated with multiple extrahepatic manifestations. Most of them are risk factors for the progression of liver fibrosis and thus worsen the prognosis of NAFLD. All these comorbidities and complications affect the quality of life in subjects with NAFLD. Given the huge and growing size of the population with NAFLD, it is expected that patients, healthcare systems, and the economy will suffer from the ongoing burden related to NAFLD. In this review, we examine the disease burden of NAFLD across geographical areas and ethnicities, together with the distribution of some well-known genetic variants for NAFLD. We also describe some special populations including patients with T2D, lean patients, the pediatric population, and patients with concomitant liver diseases. We discuss extrahepatic outcomes, patient-reported outcomes, and economic burden related to NAFLD.
Collapse
Affiliation(s)
- Terry Cheuk-Fung Yip
- Medical Data Analytics Center, Department of Medicine and Therapeutics , The Chinese University of Hong Kong , Hong Kong
- State Key Laboratory of Digestive Disease , The Chinese University of Hong Kong , Hong Kong
| | - Eduardo Vilar-Gomez
- Division of Gastroenterology and Hepatology, Department of Medicine , Indiana University School of Medicine , Indianapolis , Indiana , USA
| | - Salvatore Petta
- Section of Gastroenterology and Hepatology, Dipartimento Di Promozione Della Salute, Materno Infantile, Medicina Interna e Specialistica Di Eccellenza (PROMISE) , University of Palermo , Palermo , Italy
| | - Yusuf Yilmaz
- Department of Gastroenterology, School of Medicine , Recep Tayyip Erdogan University , Rize , Turkey
- Liver Research Unit , Institute of Gastroenterology , Marmara University , Istanbul , Turkey
| | - Grace Lai-Hung Wong
- Medical Data Analytics Center, Department of Medicine and Therapeutics , The Chinese University of Hong Kong , Hong Kong
- State Key Laboratory of Digestive Disease , The Chinese University of Hong Kong , Hong Kong
| | - Leon A Adams
- Department of Hepatology , Sir Charles Gairdner Hospital , Perth , Australia
- Medical School , University of Western Australia , Perth , Australia
| | - Victor de Lédinghen
- Hepatology Unit , Hôpital Haut Lévêque, Bordeaux University Hospital , Bordeaux , France
- INSERM U1312 , Bordeaux University , Bordeaux , France
| | - Silvia Sookoian
- School of Medicine, Institute of Medical Research A Lanari , University of Buenos Aires , Ciudad Autónoma de Buenos Aires , Argentina
- Department of Clinical and Molecular Hepatology, Institute of Medical Research (IDIM) , National Scientific and Technical Research Council (CONICET), University of Buenos Aires , Ciudad Autónoma de Buenos Aires , Argentina
| | - Vincent Wai-Sun Wong
- Medical Data Analytics Center, Department of Medicine and Therapeutics , The Chinese University of Hong Kong , Hong Kong
- State Key Laboratory of Digestive Disease , The Chinese University of Hong Kong , Hong Kong
| |
Collapse
|
50
|
Li R, Chen X, Sun H, Hao L, Luo S. Application of 3-Dimensional Technology for Evaluating Muscular Type and Muscle-Fat Pad Mixed-Type Nasolabial Folds With Botulinum Toxin-A Treatment. Aesthet Surg J 2023; 43:NP271-NP282. [PMID: 36536480 DOI: 10.1093/asj/sjac341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Botulinum toxin-A (BTX-A) is used in the treatment of nasolabial folds (NLFs). However, lighting and clinician subjectivity play a major role in evaluating the efficacy of this treatment. OBJECTIVES By applying 3-dimensional (3D) technology, this study aimed to quantitatively evaluate the effects of BTX-A injection on muscular (M) and muscle-fat pad mixed-type (MF) NLFs. METHODS BTX-A was injected into bilateral marked points on the NLFs, where the levator labii alaeque nasi, zygomaticus minor, and zygomaticus major pull the skin to form the NLF (2 U at each injection site). Pretreatment and posttreatment 3D facial images were captured with static and laughing expressions. The curvature, width, depth, and lateral fat volume of the NLFs were measured to compare the therapeutic efficacy for type M and MF NLFs. RESULTS Thirty-nine patients with type M and 37 with type MF NLFs completed the follow-up data. In these patients, the curvature, width, and depth of the NLF showed a significant reduction at 1 month and gradually recovered at 3 and 6 months after treatment, with more significant improvement when laughing than when static. Variations compared to the pretreatment values of type MF were greater than those of type M at each time point. The lateral fat volume of the type MF NLF was significantly reduced (P < .05). CONCLUSIONS 3D technology can quantitatively evaluate the effects BTX-A injection for treating type M and type MF NLFs. BTX-A is more effective on type MF than on type M NLFs. LEVEL OF EVIDENCE: 4
Collapse
|