1
|
Qian S, He Y, Li R, Sun P, Zhang X, Pan L, Xu Z, Feng Z, Lian R, Yu L. Polymeric immunoglobulin receptor (pIgR) in cancer progression: a critical role and potential therapeutic target. Apoptosis 2025:10.1007/s10495-025-02116-x. [PMID: 40415061 DOI: 10.1007/s10495-025-02116-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2025] [Indexed: 05/27/2025]
Abstract
Polymeric immunoglobulin receptor (pIgR) is a crucial receptor that primarily mediates the transcytosis of immunoglobulins A and M across epithelial cells, emerging as an essential participant in modulating both mucosal immunity and innate immunity. Recently, pIgR dysregulation in cancer has garnered widespread attention. It exhibits distinct mechanisms and effects across various cancer types with significant clinical value as a biomarker for malignant tumor diagnosis and prognosis evaluation. Recent therapeutic advances have revealed promising strategies, including dimeric IgA-based approaches targeting intracellular oncogenic drivers through pIgR-mediated transcytosis, small molecule modulators such as bufalin, and targeting EV-pIgR with neutralizing antibodies. Integrating these approaches with conventional therapies presents opportunities for enhanced treatment efficacy. Specifically, blocking EV-pIgR with neutralizing antibodies, when integrated with conventional hepatocellular carcinoma therapies such as sorafenib or other therapeutic agents, or a dIgA-targeting approach combined with immune checkpoint inhibitors, may enhance treatment efficacy. This review also addresses current challenges and future directions in pIgR-targeted cancer therapy, emphasizing the need for a deeper understanding of pIgR's regulatory mechanisms. These insights reveal that pIgR is an emerging therapeutic target with significant potential for the development of novel cancer treatment strategies.
Collapse
Affiliation(s)
- Shaoju Qian
- School of Basic Medical Sciences, Xinxiang Medical University, #601 Jinsui Road, Xinxiang, 453003, Henan, People's Republic of China
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Henan, 453003, China
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, People's Republic of China
| | - Yeqing He
- School of Basic Medical Sciences, Xinxiang Medical University, #601 Jinsui Road, Xinxiang, 453003, Henan, People's Republic of China
| | - Ruixue Li
- Department of Otolaryngology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, People's Republic of China
| | - Panpan Sun
- Department of Pathology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, People's Republic of China
| | - Xingyi Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, #601 Jinsui Road, Xinxiang, 453003, Henan, People's Republic of China
| | - Lin Pan
- School of Basic Medical Sciences, Xinxiang Medical University, #601 Jinsui Road, Xinxiang, 453003, Henan, People's Republic of China
| | - Zhishan Xu
- School of Basic Medical Sciences, Xinxiang Medical University, #601 Jinsui Road, Xinxiang, 453003, Henan, People's Republic of China
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Henan, 453003, China
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, People's Republic of China
| | - Zhiwei Feng
- School of Basic Medical Sciences, Xinxiang Medical University, #601 Jinsui Road, Xinxiang, 453003, Henan, People's Republic of China
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Henan, 453003, China
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, People's Republic of China
| | - Rong Lian
- Department of Otolaryngology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, People's Republic of China.
| | - Lili Yu
- School of Basic Medical Sciences, Xinxiang Medical University, #601 Jinsui Road, Xinxiang, 453003, Henan, People's Republic of China.
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Henan, 453003, China.
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, People's Republic of China.
| |
Collapse
|
2
|
Xu K, Wu Q, Lingyun Z, Nguyen R, Safri F, Yang W, Xu Y, Ye Y, Kwan HY, Wang Q, Liang X, Shiddiky MJA, Warkiani ME, George J, Bao J, Qiao L. Extracellular vesicles as a promising platform of precision medicine in liver cancer. Pharmacol Res 2025:107800. [PMID: 40419123 DOI: 10.1016/j.phrs.2025.107800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 05/19/2025] [Accepted: 05/22/2025] [Indexed: 05/28/2025]
Abstract
Extracellular vesicles (EVs) are natural carriers of biological information and play pivotal roles in intercellular communication. EVs are biocompatible, have low immunogenicity, and are capable of traversing biological barriers, making them ideal tools for disease diagnosis and therapy. Despite their promising prospects, the full realization of EVs potential faces several challenges. This article aims to comprehensively review the biological and molecular features of EVs, their applications in liver cancer and possible underlying mechanisms, and the critical challenges affecting the clinical translation of EVs-based therapies in liver cancer.
Collapse
Affiliation(s)
- Keyang Xu
- Faculty of Chinese Medicine, and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Qibiao Wu
- Faculty of Chinese Medicine, and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Zhao Lingyun
- Faculty of Chinese Medicine, and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Romario Nguyen
- Storr Liver Centre, Westmead Institute for Medical Research, the University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia
| | - Fatema Safri
- Storr Liver Centre, Westmead Institute for Medical Research, the University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia
| | - William Yang
- Storr Liver Centre, Westmead Institute for Medical Research, the University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia
| | - Yikun Xu
- Storr Liver Centre, Westmead Institute for Medical Research, the University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia
| | - Yun Ye
- Centre for Cancer & Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, China
| | - Hiu Yee Kwan
- Centre for Cancer & Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, China
| | - Qiang Wang
- Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden
| | - Xiuming Liang
- Biomolecular Medicine, Clinical Research Center, Department of Laboratory Medicine Karolinska Institute, Stockholm, Sweden
| | - Muhammad J A Shiddiky
- Rural Health Research Institute (RHRI), Charles Sturt University, Orange NSW 2800, Australia
| | - Majid E Warkiani
- School of Biomedical Engineering, the University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, the University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia
| | - Jianfeng Bao
- Hangzhou Xixi Hospital affiliated to Zhejiang Chinese Medical University, Zhejiang, China.
| | - Liang Qiao
- Storr Liver Centre, Westmead Institute for Medical Research, the University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia.
| |
Collapse
|
3
|
Li H, Cao QH, Liu H, Yan LJ, Ding ZN, Wang HC, Dong R, Tian BW, Han CL, Dong ZR, Yang LS, Mao XC, Yan YC, Wang DX, Li T. An umbrella review of the association between dietary factors and hepatocellular carcinoma risk. Food Funct 2025; 16:3879-3890. [PMID: 40261056 DOI: 10.1039/d4fo06165a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Background: Several meta-analyses have summarized the associations between dietary factors and the risk of hepatocellular carcinoma (HCC). However, no research has comprehensively assessed the certainty of this evidence. Methods: PubMed, Embase, and the Cochrane Library were searched from inception to August 2024. The credibility of the evidence was assessed using the pre-specified evidence classification criteria, graded as convincing ("class I"), highly suggestive ("class II"), suggestive ("class III"), weak ("class IV"), or no evidence ("class V"). To evaluate the quality of evidence, the GRADE framework was applied, categorized as "high", "moderate", "low", or "very low" quality. This study was registered at PROSPERO (CRD42023417373). Results: In total, 22 meta-analyses describing 33 non-dose-response and 10 dose-response associations were included. In the non-dose-response associations, convincing evidence (class I) supported an inverse association between coffee intake [risk ratio (RR) 0.50, 95% confidence interval 0.42 to 0.59, GRADE = very low] and risk for HCC. Suggestive evidence (class III) supported the effect of fish (RR 0.81, 0.73 to 0.90; very low), fiber (RR 0.71, 0.61 to 0.84; low), and the Mediterranean diet (RR 0.67, 0.56 to 0.80; very low) in lowering the risk for HCC. Weak evidence (class IV) suggested the protective effects of ginseng, selenium, cruciferous vegetables, whole grains, and vegetables, against HCC, and the negative effect of saturated fat in increasing the risk for HCC. In the dose-response association, convincing evidence (class I) supported that an additional two cups of coffee per day (RR 0.71, 0.60 to 0.77; moderate) lowered HCC risk, and suggestive evidence (class III) indicated that an increase of 10 g day-1 in fiber intake (RR 0.83, 0.76 to 0.91; moderate) lowered HCC risk. Weak evidence (class IV) suggests positive associations between HCC risk and a 1% daily increase in energy from saturated fat and a 100 mg day-1 increase in cholesterol. Conclusions: Dietary factors, especially coffee, fish, fiber, and the Mediterranean diet, are associated with HCC risk. These findings provide a theoretical basis for developing and evaluating dietary interventions to reduce HCC risk.
Collapse
Affiliation(s)
- Han Li
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, China.
| | - Qi-Hang Cao
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, China.
| | - Hui Liu
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, China.
| | - Lun-Jie Yan
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, China.
| | - Zi-Niu Ding
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, China.
| | - Han-Chao Wang
- Institute for Financial Studies, Shandong University, Jinan, China
| | - Rui Dong
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, China.
| | - Bao-Wen Tian
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, China.
| | - Cheng-Long Han
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, China.
| | - Zhao-Ru Dong
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, China.
| | - Long-Shan Yang
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, China.
| | - Xin-Cheng Mao
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, China.
| | - Yu-Chuan Yan
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, China.
| | - Dong-Xu Wang
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, China.
| | - Tao Li
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, China.
| |
Collapse
|
4
|
Eerdekens H, Pirlet E, Willems S, Bronckaers A, Pincela Lins PM. Extracellular vesicles: innovative cell-free solutions for wound repair. Front Bioeng Biotechnol 2025; 13:1571461. [PMID: 40248643 PMCID: PMC12003306 DOI: 10.3389/fbioe.2025.1571461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/17/2025] [Indexed: 04/19/2025] Open
Abstract
Chronic non-healing wounds are often associated with conditions such as diabetes and peripheral vascular disease, pose significant medical and socioeconomic challenges. Cell-based therapies have shown promise in promoting wound healing but have major drawbacks such as immunogenicity and tumor formation. As a result, recent research has shifted to the potential of extracellular vesicles (EVs) derived from these cells. EVs are nanosized lipid bilayer vesicles, naturally produced by all cell types, which facilitate intercellular communication and carry bioactive molecules, offering advantages such as low immunogenicity, negligible toxicity and the potential to be re-engineered. Recent evidence recognizes that during wound healing EVs are released from a wide range of cells including immune cells, skin cells, epithelial cells and platelets and they actively participate in wound repair. This review comprehensively summarizes the latest research on the function of EVs from endogenous cell types during the different phases of wound healing, thereby presenting interesting therapeutic targets. Additionally, it gives a critical overview of the current status of mesenchymal stem cell-derived EVs in wound treatment highlighting their tremendous therapeutic potential as a non-cellular of-the-shelf alternative in wound care.
Collapse
Affiliation(s)
- Hanne Eerdekens
- Hasselt University, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Diepenbeek, Belgium
| | - Elke Pirlet
- Hasselt University, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Diepenbeek, Belgium
| | - Sarah Willems
- Hasselt University, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Diepenbeek, Belgium
| | - Annelies Bronckaers
- Hasselt University, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Diepenbeek, Belgium
| | - Paula M. Pincela Lins
- Hasselt University, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Diepenbeek, Belgium
- Flemish Institute for Technological Research (VITO), Environmental Intelligence Unit, Mol, Belgium
| |
Collapse
|
5
|
Yeung CLS, Ng TH, Lai CJ, Xue T, Mao X, Tey SK, Lo RCL, Sin C, Ng KM, Wong DKH, Mak L, Yuen M, Ng IO, Cao P, Gao Y, Yun JP, Yam JWP. Small Extracellular Vesicle-Derived Nicotinamide Phosphoribosyltransferase (NAMPT) Induces Acyl-Coenzyme A Synthetase SLC27A4-Mediated Glycolysis to Promote Hepatocellular Carcinoma. J Extracell Vesicles 2025; 14:e70071. [PMID: 40237223 PMCID: PMC12000932 DOI: 10.1002/jev2.70071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
Tumour-derived small extracellular vesicles (sEV) are critical mediators within the tumour microenvironment (TME) and are known to regulate various metabolic pathways. In metastatic hepatocellular carcinoma (HCC), mass spectrometry protein analysis of HCC-derived sEV (HCC-sEV) identified an upregulation of nicotinamide phosphoribosyltransferase (NAMPT), a key enzyme in maintaining cellular nicotinamide adenine dinucleotide (NAD+) levels. Our study demonstrates that sEV-NAMPT enhances glycolysis, tumorigenesis, and metastasis in HCC. Specifically, sEV-NAMPT activates the NF-κB transcription factor through toll-like receptor 4 (TLR4), leading to elevated SLC27A4 expression. SLC27A4 functions primarily as a long-chain fatty acid transporter and acyl-CoA synthetase. Lipidomic and metabolomic analyses revealed a positive correlation between SLC27A4 and intracellular levels of triacylglycerol (TG) and dihydroxyacetone phosphate (DHAP). Increased TG levels enhance lipolysis via hepatic lipase and facilitate the conversion of glycerol-3-P to DHAP, an intermediate that bridges lipid metabolism and glycolysis. This study uncovers a novel regulatory axis involving sEV-NAMPT and SLC27A4 in glycolysis, independent of traditional fatty acid metabolism pathways. Clinically, targeting sEV-NAMPT with the inhibitor FK866 significantly inhibited tumour growth in various HCC in vivo models, highlighting the potential of sEV-NAMPT as both a biomarker and therapeutic target in HCC.
Collapse
Affiliation(s)
- Cherlie Lot Sum Yeung
- Department of Pathology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Tung Him Ng
- Department of Pathology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Charlotte Jiaqi Lai
- Department of Pathology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Tingmao Xue
- Department of Pathology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
- Department of Hepatobiliary Surgery IIZhujiang Hospital, Southern Medical UniversityGuangzhouGuangdongChina
| | - Xiaowen Mao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of MacauMacau
| | - Sze Keong Tey
- Department of Surgery, School of Clinical Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Regina Cheuk Lam Lo
- Department of Pathology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Chun‐Fung Sin
- Department of Pathology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Kwan Ming Ng
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Hong Kong Science ParkHong Kong
| | - Danny Ka Ho Wong
- Department of Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Lung‐Yi Mak
- Department of Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
- State Key Laboratory of Liver ResearchThe University of Hong KongHong Kong
| | - Man‐Fung Yuen
- Department of Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
- State Key Laboratory of Liver ResearchThe University of Hong KongHong Kong
| | - Irene Oi‐Lin Ng
- Department of Pathology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
- State Key Laboratory of Liver ResearchThe University of Hong KongHong Kong
| | - Peihua Cao
- Clinical Research Center, Zhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Yi Gao
- Department of Hepatobiliary Surgery IIZhujiang Hospital, Southern Medical UniversityGuangzhouGuangdongChina
| | - Jing Ping Yun
- Department of PathologySun Yat‐sen University Cancer CenterGuangzhouGuangdongChina
| | - Judy Wai Ping Yam
- Department of Pathology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
- State Key Laboratory of Liver ResearchThe University of Hong KongHong Kong
- Materials Innovation Institute for Life Sciences and Energy (MILES), HKU‐SIRIShenzhenChina
| |
Collapse
|
6
|
Li T, Li T, Liang Y, Yuan Y, Liu Y, Yao Y, Lei X. Colorectal cancer cells-derived exosomal miR-188-3p promotes liver metastasis by creating a pre-metastatic niche via activation of hepatic stellate cells. J Transl Med 2025; 23:369. [PMID: 40134019 PMCID: PMC11938777 DOI: 10.1186/s12967-025-06334-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/01/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND/AIM Metastasis is the leading cause of mortality for colorectal cancer (CRC). Cancer-derived exosomes are widely recognized as the primary catalysts behind the development of pre-metastasis niche (PMN) in distal sites. However, the exact mechanism behind this process in CRC remains elusive. This study aimed to investigate the function and mechanisms underlying the role of exosomal miR-188-3p in activating hepatic stellate cells (HSCs) to develop the PMN and promote liver metastasis. METHODS We extracted exosomes from CRC cells using ultracentrifugation. Exosomes were identified using transmission electron microscopy, nanoparticle tracking analysis, and Western blot. Exosome uptake was assessed using fluorescence tracing, exosome PKH67 staining, and real-time quantitative PCR. The effects of CRC cell-derived exosomes on HSCs migration were evaluated using Transwell migration and wound healing assays. Key differentially expressed miRNAs were screened from the GEO database, and bioinformatics prediction along with dual-luciferase reporter assays were used to identify downstream target genes of miR-188-3p. Downstream related proteins of the target genes were detected by Western blot. In vivo, the distribution of exosomes and activation of HSCs in the liver were explored by tail vein injection of exosomes into nude mice. Further, the impact of exosomal miR-188-3p on liver metastasis was investigated using a spleen injection liver metastasis model. Finally, the expression levels of miR-188-3p in exosomes from CRC patient plasma were determined by real-time quantitative PCR, and the relationship between the expression of miR-188-3p in plasma exosomes and CRC prognosis was analyzed. RESULTS The expression level of miR-188-3p within plasma exosomes demonstrated a statistically significant increase in CRC with liver metastasis compared to those without liver metastases. We also demonstrated the transferability of miR-188-3p from CRC cells to HSCs cells via the exosomes. Exosomal miR-188-3p plays a pivotal role in orchestrating the establishment of PMN through targeting PHLPP2 to activate HSCs before tumor metastasis. Exosomal miR-188-3p was found to actively foster in vivo metastasis of CRC. Additionally, plasma exosomal miR-188-3p potentially serves as a viable blood-based biomarker for CRLM. CONCLUSION Exosomal miR-188-3p derived from CRC cells can promote liver metastasis by activating HSCs to form a PMN through targeting PHLPP2 to activate the AKT/mTOR pathway. These results offer a new perspective on the mechanisms driving CRLM.
Collapse
Affiliation(s)
- Tao Li
- Department of General surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Gastrointestinal Surgical Institute, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Taiyuan Li
- Department of General surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Gastrointestinal Surgical Institute, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yahang Liang
- Department of General surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Gastrointestinal Surgical Institute, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yuli Yuan
- Department of General surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Gastrointestinal Surgical Institute, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yang Liu
- Department of General surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Gastrointestinal Surgical Institute, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yao Yao
- Department of General surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Gastrointestinal Surgical Institute, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Xiong Lei
- Department of General surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
- Gastrointestinal Surgical Institute, Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
7
|
Liu L, Zheng Z, Huang Y, Su H, Wu G, Deng Z, Li Y, Xie G, Li J, Zou F, Chen X. HSP90 N-terminal inhibition promotes mitochondria-derived vesicles related metastasis by reducing TFEB transcription via decreased HSP90AA1-HCFC1 interaction in liver cancer. Autophagy 2025; 21:639-663. [PMID: 39461872 PMCID: PMC11849932 DOI: 10.1080/15548627.2024.2421703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024] Open
Abstract
Cancer cells compensate with increasing mitochondria-derived vesicles (MDVs) to maintain mitochondrial homeostasis, when canonical MAP1LC3B/LC3B (microtubule associated protein 1 light chain 3 beta)-mediated mitophagy is lacking. MDVs promote the transport of mitochondrial components into extracellular vesicles (EVs) and induce tumor metastasis. Although HSP90 (heat shock protein 90) chaperones hundreds of client proteins and its inhibitors suppress tumors, HSP90 inhibitors-related chemotherapy is associated with unexpected metastasis. Herein, we find that HSP90 inhibitor causes mitochondrial damage but stimulates the low LC3-induced MDVs and the release of MDVs-derived EVs. However, why LC3 decreases and what is the transcriptional regulatory mechanism of MDVs formation under HSP90 inhibition remain unknown. Because TFEB (transcription factor EB) is the most important mitophagy transcription factor, and the HSP90 client HCFC1 (host cell factor C1) regulates TFEB transcription, there should be a hidden connection between TFEB, HCFC1 and HSP90 in MDVs formation. Our results support the idea that HSP90 N-terminal inhibition reduces TFEB transcription via decreased HSP90AA1-HCFC1 interaction, which prevents HCFC1 from binding to the TFEB proximal promoter region. Decreased TFEB transcription and consequently reduced LC3, ultimately promoted MDVs formation. Blocking MDVs formation with the microtubule inhibitor nocodazole (NOC) activates the HCFC1-TFEB-LC3 axis, weakens HSP90 inhibitors-induced MDVs and the release of MDVs-derived EVs, inhibits the growth of tumor cell spheres and primary liver tumors, and reduces the extravasation of cancer cells to secondary metastatic sites. Taken together, these data suggest that combination therapy should be used to reduce the metastatic risk of low TFEB-triggered-MDVs formation caused by HSP90 inhibitors.Abbreviation: ACIs: ATP-competitive inhibitors; BaFA1: bafilomycin A1; CCCP: carbonyl cyanide 3-chlorophenylhydrazone; ChIP: chromatin immunoprecipitation; CHX: cycloheximide; CTD: C-terminal domain; EVs: extracellular vesicles; HCFC1: host cell factor C1; HSP90: heat shock protein 90; ILVs: intralumenal vesicles; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MD: middle domain; MDVs: mitochondria-derived vesicles; MQC: mitochondrial quality control; ΔΨm: mitochondrial membrane potential; MVBs: multivesicular bodies; NB: novobiocin; TEM: transmission electron microscopy; TFEB: transcription factor EB; TFs: transcription factors. NOC: nocodazole; NTD: N-terminal nucleotide binding domain; OCR: oxygen consumption rate; RFP: red fluorescent protein; ROS: reactive oxygen species; STA9090: Ganetespib; VPS35: VPS35 retromer complex component.
Collapse
Affiliation(s)
- Lixia Liu
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhenming Zheng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yaling Huang
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Hairou Su
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Guibing Wu
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zihao Deng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yan Li
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Guantai Xie
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jieyou Li
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Fei Zou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xuemei Chen
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Wang W, Zhou Y, Lu Y, Wu B, Peng S, Cai W, Xiao Y. PIgR Autoantibody-abundant Circulating Vesicles Contributes to Biliary Injury in Biliary Atresia. J Pediatr Surg 2025; 60:162116. [PMID: 39733605 DOI: 10.1016/j.jpedsurg.2024.162116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 12/31/2024]
Abstract
PURPOSE This study aimed to elucidate the role of polymeric immunoglobulin receptor (pIgR) autoantibodies in the pathogenic progression of biliary atresia (BA). METHODS The presence and levels of plasma pIgR autoantibodies, pIgR antigen expression, and B cell counts were assessed in liver tissues. Serum extracellular vesicles (EVs) were isolated, quantified, and characterized. The functional roles of EVs enriched with pIgR autoantibodies in biliary injury were investigated. RESULTS Infants diagnosed with BA exhibited significantly elevated levels of plasma pIgR autoantibodies, which positively correlated with hepatic inflammation. The expression levels of pIgR autoantibodies demonstrated high accuracy in distinguishing BA from non-BA controls. Notably, the presence of pIgR antigens was specifically observed in cholangiocytes and was associated with an increased number of CD27+ memory B cells within the liver tissue. Furthermore, the concentration of pIgR autoantibodies was found to be higher in EVs derived from BA patients compared to those from control subjects. EVs enriched with pIgR autoantibodies induced biliary injury potentially through activation of the extracellular signal-regulated kinase (ERK) pathway. CONCLUSIONS Our findings suggest that pIgR autoantibody may serve as a potential biomarker for differentiating infants with BA from those without it. Additionally, these results indicate that EVs enriched with pIgR autoantibody could play a significant role in the underlying pathogenesis of BA.
Collapse
Affiliation(s)
- Weipeng Wang
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Ying Zhou
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Ying Lu
- Shanghai Institute for Pediatric Research, Shanghai 200092, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China
| | - Bo Wu
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China; Division of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China
| | - Shicheng Peng
- Shanghai Institute for Pediatric Research, Shanghai 200092, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China
| | - Wei Cai
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China; Division of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China; Shanghai Institute for Pediatric Research, Shanghai 200092, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China.
| | - Yongtao Xiao
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China; Division of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China; Shanghai Institute for Pediatric Research, Shanghai 200092, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China.
| |
Collapse
|
9
|
Li Y, Dai Z, Cheng Z, He J, Yin Y, Liu X, Zhang J, Hu G, Chen Y, Wang X, Shao Y. LINC00870 promotes imatinib resistance in gastrointestinal stromal tumor via inhibiting PIGR glycosylation modifications. Heliyon 2025; 11:e41934. [PMID: 39968132 PMCID: PMC11834037 DOI: 10.1016/j.heliyon.2025.e41934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/09/2025] [Accepted: 01/12/2025] [Indexed: 02/20/2025] Open
Abstract
Imatinib is the first-line targeted therapy for gastrointestinal stromal tumor (GIST), but resistance frequently occurs during treatment, limiting its efficacy and clinical application. We performed high-throughput sequencing of tissue specimens from imatinib-resistant GIST patients, and identified significantly high expression of polymeric immunoglobulin receptor (PIGR) in imatinib-resistant cell lines. Further investigation revealed that PIGR binds specifically to LINC00870. The findings from in vitro cell functional experiments provide evidence of a strong association between LINC00870 and PIGR and the processes of proliferation and metastasis in GIST. Overexpression of LINC00870 in GIST significantly inhibits the glycosylation modification and secretion of the extracellular region of PIGR, leading to immune dysregulation. The inhibition of PIGR or LINC00870 effectively surmounts imatinib resistance. Our study identified PIGR as a critical molecule in regulating GIST imatinib resistance and elucidated the mechanism by which PIGR promotes imatinib resistance through LINC00870 inhibition of PIGR glycosylation modifications. These findings provide a new theoretical basis for blocking drug resistance and improving prognosis in GIST.
Collapse
Affiliation(s)
- Yuan Li
- Central Laboratory, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
| | - Zhiqiang Dai
- Department of General Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zewei Cheng
- Shanghai Key Laboratory of Compound Chinese Medicines, The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Junyi He
- Department of General Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yirui Yin
- Department of General Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen, 361015, China
| | - Xinyou Liu
- Department of General Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen, 361015, China
| | - Jiwei Zhang
- Shanghai Key Laboratory of Compound Chinese Medicines, The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Guohua Hu
- Department of General Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen, 361015, China
| | - Yueda Chen
- Department of General Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen, 361015, China
| | - Xuefei Wang
- Department of General Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen, 361015, China
- Department of Gastrointestinal Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Clinical Research Center for Precision medicine of abdominal tumor of Fujian Province, Xiamen, 361015, China
| | - Yebo Shao
- Department of General Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen, 361015, China
| |
Collapse
|
10
|
Chu S, Chen Y, Wang Y. Enhancing liver fibrosis detection: a novel PIGR-utilizing approach in chronic hepatitis B injury assessment. BMC Gastroenterol 2025; 25:82. [PMID: 39955486 PMCID: PMC11830201 DOI: 10.1186/s12876-025-03672-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/10/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Chronic Hepatitis B (CHB) is a leading cause of liver fibrosis and cirrhosis worldwide. The early detection of liver fibrosis remains challenging due to the lack of specific symptoms and noninvasive biomarkers with high sensitivity. The polymeric immunoglobulin receptor (PIGR) has recently emerged as a potential biomarker for liver fibrosis. This study aims to evaluate the utility of PIGR in CHB patients as a biomarker for liver fibrosis. METHODS This retrospective study analyzed 150 CHB patients from 2018 to 2023. Based on liver biopsy results, 34 patients were classified as having liver fibrosis, while 116 were categorized as non-fibrosis. Clinical data were compared to assess the relationship between PIGR expression levels and serum fibrosis indices. Logistic regression was performed to identify factors influencing liver fibrosis, and the predictive value of PIGR was evaluated using a receiver operating characteristic (ROC) curve. RESULTS Significant differences were observed in collagen type IV (CIV), procollagen type III N-terminal peptide (PCIIINP), and hyaluronic acid (HA) levels between the fibrosis and non-fibrosis groups (P < 0.05). PIGR levels were significantly higher in the fibrosis group (P < 0.05) and positively correlated with HA, laminin (LN), PCIII, and CIV levels (P < 0.05). Logistic regression identified HA, LN, PCIIINP, and CIV as risk factors, with PIGR being an independent predictor (P < 0.05). At a cutoff value of 0.35, PIGR showed an area under the curve (AUC) of 0.839, with 81.90% sensitivity, 79.41% specificity, and a Youden's index of 0.613. PIGR also provided a higher net benefit than APRI. CONCLUSION PIGR levels are significantly elevated in CHB-related liver fibrosis and correlate closely with established fibrosis markers. As an independent predictor, PIGR demonstrates high diagnostic accuracy and holds promise as a non-invasive biomarker for detecting liver fibrosis in CHB patients, with significant potential for clinical application.
Collapse
Affiliation(s)
- Shanshan Chu
- Department of Infectious Diseases, People's Hospital of Tiantai County, No. 1, Kangning Middle Road, Taizhou, Zhejiang, 317200, China
| | - Yingjun Chen
- Department of Infectious Diseases, People's Hospital of Tiantai County, No. 1, Kangning Middle Road, Taizhou, Zhejiang, 317200, China
| | - Yemin Wang
- Department of Infectious Diseases, Traditional Chinese Medical Hospital of Tiantai County, No.355, Labor Road, Tiantai County, Taizhou, Zhejiang, 317200, China.
| |
Collapse
|
11
|
Park J, Lee YT, Agopian VG, Liu JS, Koltsova EK, You S, Zhu Y, Tseng HR, Yang JD. Liquid biopsy in hepatocellular carcinoma: Challenges, advances, and clinical implications. Clin Mol Hepatol 2025; 31:S255-S284. [PMID: 39604328 PMCID: PMC11925447 DOI: 10.3350/cmh.2024.0541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is an aggressive primary liver malignancy often diagnosed at an advanced stage, resulting in a poor prognosis. Accurate risk stratification and early detection of HCC are critical unmet needs for improving outcomes. Several blood-based biomarkers and imaging tests are available for early detection, prediction, and monitoring of HCC. However, serum protein biomarkers such as alpha-fetoprotein have shown relatively low sensitivity, leading to inaccurate performance. Imaging studies also face limitations related to suboptimal accuracy, high cost, and limited implementation. Recently, liquid biopsy techniques have gained attention for addressing these unmet needs. Liquid biopsy is non-invasive and provides more objective readouts, requiring less reliance on healthcare professional's skills compared to imaging. Circulating tumor cells, cell-free DNA, and extracellular vesicles are targeted in liquid biopsies as novel biomarkers for HCC. Despite their potential, there are debates regarding the role of these novel biomarkers in the HCC care continuum. This review article aims to discuss the technical challenges, recent technical advancements, advantages and disadvantages of these liquid biopsies, as well as their current clinical application and future directions of liquid biopsy in HCC.
Collapse
Affiliation(s)
- Jaeho Park
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yi-Te Lee
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Vatche G. Agopian
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA
- Department of Surgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Jessica S Liu
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Ekaterina K. Koltsova
- Smidt Heart Institute, Department of Medicine, Department of Biomedical Sciences, 8700 Beverly Blvd, Los Angeles, CA, USA
| | - Sungyong You
- Department of Urology and Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yazhen Zhu
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, USA
| | - Hsian-Rong Tseng
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
| | - Ju Dong Yang
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
12
|
Lu P, Yang L, Chen W, Li K, Chen X, Qu S. Four-dimensional trapped ion mobility spectrometry proteomics reveals circulating extracellular vesicles encapsulated drivers of nasopharyngeal carcinoma distant dissemination. Talanta 2025; 282:126907. [PMID: 39341061 DOI: 10.1016/j.talanta.2024.126907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024]
Abstract
Nasopharyngeal carcinoma (NPC) is a head and neck cancer with a high propensity for early metastatic spread. Emerging evidence shows that extracellular vesicles (EVs) are key players in cancer metastasis, but their role in NPC metastasis remains poorly understood. We here present the first description of the proteomic and functional profiles of serum-derived circulating small EVs in metastatic NPC patients. To enhance the capture of low-abundance signaling proteins in EVs, timsTOF-based four-dimensional label-free quantitative proteomics was employed. We found that metastatic NPC patients (M-NPC-EVs) exhibited the highest serum EV levels compared to locoregional patients (L-NPC-EVs) and healthy subjects (Normal-EVs). The proteome of M-NPC-EVs differed substantially from L-NPC-EVs and was functionally enriched in pathways regulating cell polarity and motility, glucose metabolism, and angiogenesis. Functional assays testing individual EV samples demonstrated that M-NPC-EVs pronouncedly enhanced NPC cell migration, invasion, and the formation of lamellipodia and filopodia in vitro, and promoted angiogenesis in subcutaneous Matrigel plugs in vivo. In silico analyses suggested that PTPRA, TPI1 and GPI highly enriched in M-NPC-EVs were putative drivers underlying the motogenic and angiogenic activities of M-NPC-EVs, and their high expression levels were associated with a poor prognosis of NPC patients. The increased expression of PTPRA, TPI1 and GPI in M-NPC-EVs was then validated in an independent cohort consisting of 175 NPC patients (locoregional n = 114; metastatic n = 61). Together, utilizing patient-derived EVs, we mimicked the potential pro-metastatic functions of EVs in NPC patients in vitro and in vivo and provided novel insights into their bioactive cargoes.
Collapse
Affiliation(s)
- Pingan Lu
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, Guangxi Autonomous Region, China
| | - Liu Yang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, Guangxi Autonomous Region, China
| | - Weiling Chen
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, Guangxi Autonomous Region, China
| | - Kaiguo Li
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, Guangxi Autonomous Region, China
| | - Xuxia Chen
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, Guangxi Autonomous Region, China
| | - Song Qu
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, Guangxi Autonomous Region, China; Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China; Guangxi Key Laboratory of High-Incidence Tumor Prevention and Treatment, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Nasopharyngeal Carcinoma Clinical Research Center, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
13
|
Zhang L, Lou K, Zhang Y, Leng Y, Huang Y, Liao X, Liu X, Feng S, Feng G. Tools for regulating metabolic diseases: extracellular vesicles from adipose macrophages. Front Endocrinol (Lausanne) 2024; 15:1510712. [PMID: 39735643 PMCID: PMC11674605 DOI: 10.3389/fendo.2024.1510712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/20/2024] [Indexed: 12/31/2024] Open
Abstract
Metabolic diseases have gradually become one of the most significant global medical burdens. Diseases such as obesity, diabetes, and metabolic syndrome, along with their complications, are clinically categorized as metabolic diseases. Long-term oral medication significantly reduces patient compliance and quality of life. Therefore, alternative therapies that intervene at the cellular level or target the root causes of metabolic diseases might help change this predicament. Research has found that extracellular vesicles derived from adipose macrophages can effectively regulate metabolic diseases by influencing the disease's development. This regulation is likely related to the role of these extracellular vesicles as important mediators in modulating adipose tissue function and insulin sensitivity, and their involvement in the crosstalk between adipocytes and macrophages. This review aims to describe the regulation of metabolic diseases mediated by adipose macrophage-derived extracellular vesicles, with a focus on their involvement in adipocyte crosstalk, the regulation of metabolism-related autoimmunity, and their potential as therapeutic agents for metabolic diseases, providing new avenues for diagnosis and treatment.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Urology, Jiujiang University Clinic College/Hospital, Jiujiang, Jiangxi, China
| | - Kecheng Lou
- Department of Urology, Lanxi People’s Hospital, Jinhua, Zhejiang, China
| | - Yunmeng Zhang
- Department of Anesthesiology, Jiujiang College Hospital, Jiujiang, Jiangxi, China
| | - Yuanjing Leng
- Department of Urology, Jiujiang University Clinic College/Hospital, Jiujiang, Jiangxi, China
| | - Yuqing Huang
- Department of Urology, Jiujiang University Clinic College/Hospital, Jiujiang, Jiangxi, China
| | - Xinxin Liao
- Department of Urology, Jiujiang University Clinic College/Hospital, Jiujiang, Jiangxi, China
| | - Xiaoliang Liu
- Department of Urology, Jiujiang University Clinic College/Hospital, Jiujiang, Jiangxi, China
| | - Shangzhi Feng
- Department of Urology, Jiujiang University Clinic College/Hospital, Jiujiang, Jiangxi, China
| | - Guoqiang Feng
- Department of Rehabilitation, Jiujiang College Hospital, Jiujiang, Jiangxi, China
| |
Collapse
|
14
|
Xiao Y, Tao P, Zhang K, Chen L, Lv J, Chen Z, He L, Jia H, Sun J, Cao M, Hong J, Qu C. Myofibroblast-derived extracellular vesicles facilitate cancer stemness of hepatocellular carcinoma via transferring ITGA5 to tumor cells. Mol Cancer 2024; 23:262. [PMID: 39574133 PMCID: PMC11580229 DOI: 10.1186/s12943-024-02170-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 11/05/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND Myofibroblasts constitute a significant component of the tumor microenvironment (TME) and play a pivotal role in the progression of hepatocellular carcinoma (HCC). Integrin α5 (ITGA5) is a crucial regulator in myofibroblasts of malignant tumors. Therefore, the potential of ITGA5 as a novel target for the therapeutic strategy of HCC should be investigated. METHODS Digital scanning and analysis of the HCC tissue microarray were performed to locate the distribution of ITGA5 and conduct the prognosis analysis. CRISPR Cas9-mediated ITGA5 knockout was performed to establish the ITGA5-KO myofibroblast cell line. Extracellular vesicles (EVs) derived from LX2 were extracted for the treatment of HCC cells. Subsequently, the sphere-forming ability and the stemness markers expression of the treated HCC cells were examined. An orthotopic HCC mouse model with fibrotic injury was constructed to test the outcomes of ITGA5-targeting therapy and its efficacy in the programmed death-ligand 1 (PD-L1) treatment. Co-immunoprecipitation/mass spectrometry and transcriptome data were integrated to delve into the mechanism. RESULTS The tissue microarray results revealed that ITGA5 was highly enriched in the stromal myofibroblasts of HCC tissues and contributed to enhanced tumor progression and poor prognosis. Notably, ITGA5 transmission via extracellular vesicles (EVs) from myofibroblasts to HCC cells induced the acquisition of cancer stem cell-like properties. Mechanistically, ITGA5 directly bind to YES1, facilitating the activation of YES1 and its downstream pathways, thereby enhancing the stemness of HCC cells. Furthermore, the blockade of ITGA5 impeded tumor progression driven by ITGA5+ myofibroblasts and enhanced the efficacy of treatment with PD-L1 in a mouse model of HCC. CONCLUSIONS Our findings elucidated a novel mechanism by which the EV-mediated transfer of ITGA5 from myofibroblasts to tumor cells augmented HCC stemness. ITGA5-targeting therapy helped prevent the progression of HCC and improved the efficacy of PD-L1 treatment.
Collapse
Affiliation(s)
- Yang Xiao
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510000, China
- Endoscopy Department, Sichuan Cancer Center, Sichuan Cancer Hospital and Institute, Affiliate Cancer Hospital of University of Electronic Science and Technology of China (UESTC), Chengdu, 610000, China
| | - Ping Tao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510000, China
| | - Keke Zhang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510000, China
| | - Liuyan Chen
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510000, China
| | - Jinyu Lv
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510000, China
| | - Zhiwei Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510000, China
| | - Lu He
- Department of Radiotherapy, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510000, China
| | - Hongling Jia
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, 510000, China
| | - Jian Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510000, China
| | - Mingrong Cao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510000, China
| | - Jian Hong
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510000, China.
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510000, China.
| | - Chen Qu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510000, China.
| |
Collapse
|
15
|
Cheng L, Zhang L, Wang X, Wang Y, Yu J, Li M, Ma Z, Chi-Lui Ho P, Chen X, Wang L, Sethi G, Goh BC. Extracellular vesicles in the HCC microenvironment: Implications for therapy and biomarkers. Pharmacol Res 2024; 209:107419. [PMID: 39284428 DOI: 10.1016/j.phrs.2024.107419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024]
Abstract
Hepatocellular carcinoma (HCC) stands as the sixth most prevalent cancer and the third leading cause of cancer mortality globally. Despite surgical resection being the preferred approach for early-stage HCC, most patients are diagnosed at intermediate to advanced stages, limiting treatment options to chemotherapy and immunotherapy, which often yield poor outcomes. Extracellular vesicles (EVs), minute lipid-bilayered particles released by diverse cells under various physiological and pathological conditions, are crucial for mediating communication between cells. Mounting evidence indicates that EVs sourced from different cells can profoundly influence the HCC tumor microenvironment (TME), thereby affecting the progression of HCC. Given their immunogenicity and liver-targeting properties, these EVs not only hold promise for HCC treatment but also provide avenues for advancing early diagnostic methods and assessing prognosis. This review not only describes the function of EVs within the HCC tumor microenvironment but also analyzes their therapeutic advantages and explores their significance in various therapeutic approaches for HCC, including chemotherapy, immunotherapy, combination therapy, and their role as innovative drug delivery carriers. Furthermore, it highlights the potential of EVs as biomarkers for the diagnosis and prognosis of HCC.
Collapse
Affiliation(s)
- Le Cheng
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Limin Zhang
- Jingzhou Hospital of Traditional Chinese Medicine, Jingzhou 434000, China; The Third Clinical Medical College of Yangtze University, Jingzhou 434000, China
| | - Xiaoxiao Wang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Yufei Wang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Jiahui Yu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Mengnan Li
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Zhaowu Ma
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Paul Chi-Lui Ho
- School of Pharmacy, Monash University Malaysia, Subang Jaya 47500, Malaysia
| | - Xiaoguang Chen
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China.
| | - Lingzhi Wang
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.
| | - Gautam Sethi
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Boon-Cher Goh
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; Department of Haematology-Oncology, National University Cancer Institute, 119228, Singapore
| |
Collapse
|
16
|
Tang Z, Deng L, Zhang J, Jiang T, Xiang H, Chen Y, Liu H, Cai Z, Cui W, Xiong Y. Intelligent Hydrogel-Assisted Hepatocellular Carcinoma Therapy. RESEARCH (WASHINGTON, D.C.) 2024; 7:0477. [PMID: 39691767 PMCID: PMC11651419 DOI: 10.34133/research.0477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 12/19/2024]
Abstract
Given the high malignancy of liver cancer and the liver's unique role in immune and metabolic regulation, current treatments have limited efficacy, resulting in a poor prognosis. Hydrogels, soft 3-dimensional network materials comprising numerous hydrophilic monomers, have considerable potential as intelligent drug delivery systems for liver cancer treatment. The advantages of hydrogels include their versatile delivery modalities, precision targeting, intelligent stimulus response, controlled drug release, high drug loading capacity, excellent slow-release capabilities, and substantial potential as carriers of bioactive molecules. This review presents an in-depth examination of hydrogel-assisted advanced therapies for hepatocellular carcinoma, encompassing small-molecule drug therapy, immunotherapy, gene therapy, and the utilization of other biologics. Furthermore, it examines the integration of hydrogels with conventional liver cancer therapies, including radiation, interventional therapy, and ultrasound. This review provides a comprehensive overview of the numerous advantages of hydrogels and their potential to enhance therapeutic efficacy, targeting, and drug delivery safety. In conclusion, this review addresses the clinical implementation of hydrogels in liver cancer therapy and future challenges and design principles for hydrogel-based systems, and proposes novel research directions and strategies.
Collapse
Affiliation(s)
- Zixiang Tang
- Department of Hepatobiliary Surgery, Academician (Expert) Workstation, Sichuan Digestive System Disease Clinical Medical Research Center,
Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Lin Deng
- Department of Clinical Medicine,
North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Jing Zhang
- Department of Gastroenterology,
Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Tao Jiang
- Department of Hepatobiliary Surgery, Academician (Expert) Workstation, Sichuan Digestive System Disease Clinical Medical Research Center,
Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Honglin Xiang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Yanyang Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Huzhe Liu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Zhengwei Cai
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Yongfu Xiong
- Department of Hepatobiliary Surgery, Academician (Expert) Workstation, Sichuan Digestive System Disease Clinical Medical Research Center,
Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| |
Collapse
|
17
|
Zheng T, Zhang D, Fu Q, Wang M, Cheng Z, Cao Y, Wang L, Liu J, Zhao Y. DNA methylation-driven gene FAM3D promotes colorectal cancer growth via the ATF4-SESN2-mTORC1 pathway. Aging (Albany NY) 2024; 16:12866-12892. [PMID: 39388305 PMCID: PMC11501385 DOI: 10.18632/aging.206115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/07/2024] [Indexed: 10/12/2024]
Abstract
Globally, colorectal cancer (CRC) is the malignant tumor with the highest mortality rate after lung cancer. Abnormal DNA methylation drives dysregulated gene expression, thereby promoting CRC progression and leading to poor prognosis. We identified a 3-CpG methylation signature that is independently associated with CRC prognosis. The model consists of three methylation-driven genes: FAM3 Metabolism Regulating Signaling Molecule D (FAM3D), DAPP1, and PIGR. However, the prognostic significance, biological function, and related mechanisms of the individual methylation-driven gene FAM3D in CRC have not been studied. Here, we discovered that FAM3D expression was reduced in CRC tissues and cells, and that high methylation and low expression of FAM3D were independent prognostic risk factors for CRC. In addition, FAM3D promoted the growth and movement of CRC cells in vitro and the proliferation in nude mice, mainly by inhibiting ATF4 transcription and downregulating SESN2 expression, and ultimately activating mTORC1. Furthermore, FAM3D resulted in reduced sensitivity of CRC cells to oxaliplatin, cisplatin, and 5-fluorouracil. Our study showed that FAM3D activates the mTORC1 pathway through the ATF4-SESN2 axis and promotes the malignant progression of CRC, which contributes to predict CRC prognosis and guide individualized treatment.
Collapse
Affiliation(s)
- Ting Zheng
- Department of Epidemiology, Public Health School of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Ding Zhang
- Department of Epidemiology, Public Health School of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Qingzhen Fu
- Department of Epidemiology, Public Health School of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Mingxue Wang
- Department of Epidemiology, Public Health School of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Zesong Cheng
- Department of Epidemiology, Public Health School of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Yukun Cao
- Department of Epidemiology, Public Health School of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Liwan Wang
- Department of Epidemiology, Public Health School of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Jinyin Liu
- Department of Epidemiology, Public Health School of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Yashuang Zhao
- Department of Epidemiology, Public Health School of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| |
Collapse
|
18
|
Liu YG, Jiang ST, Zhang JW, Zheng H, Zhang L, Zhao HT, Sang XT, Xu YY, Lu X. Role of extracellular vesicle-associated proteins in the progression, diagnosis, and treatment of hepatocellular carcinoma. Cell Biosci 2024; 14:113. [PMID: 39227992 PMCID: PMC11373138 DOI: 10.1186/s13578-024-01294-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, characterized by difficulties in early diagnosis, prone to distant metastasis, and high recurrence rates following surgery. Extracellular vesicles (EVs) are a class of cell-derived particles, including exosomes, characterized by a phospholipid bilayer. They serve as effective carriers for intercellular communication cargo, including proteins and nucleic acids, and are widely involved in tumor progression. They are being explored as potential tumor biomarkers and novel therapeutic avenues. We provide a brief overview of the biogenesis and characteristics of EVs to better understand their classification standards. The focus of this review is on the research progress of EV-associated proteins in the field of HCC. EV-associated proteins are involved in tumor growth and regulation in HCC, participate in intercellular communication within the tumor microenvironment (TME), and are implicated in events including angiogenesis and epithelial-mesenchymal transition (EMT) during tumor metastasis. In addition, EV-associated proteins show promising diagnostic efficacy for HCC. For the treatment of HCC, they also demonstrate significant potential including enhancing the efficacy of tumor vaccines, and as targeting cargo anchors. Facing current challenges, we propose the future directions of research in this field. Above all, research on EV-associated proteins offers the potential to enhance our comprehension of HCC and offer novel insights for developing new treatment strategies.
Collapse
Affiliation(s)
- Yao-Ge Liu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Shi-Tao Jiang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Jun-Wei Zhang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Han Zheng
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Lei Zhang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Hai-Tao Zhao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xin-Ting Sang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Yi-Yao Xu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China.
| | - Xin Lu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China.
| |
Collapse
|
19
|
Mak LY. Disease modifiers and novel markers in hepatitis B virus-related hepatocellular carcinoma. JOURNAL OF LIVER CANCER 2024; 24:145-154. [PMID: 39099070 PMCID: PMC11449577 DOI: 10.17998/jlc.2024.08.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/25/2024] [Accepted: 08/03/2024] [Indexed: 08/06/2024]
Abstract
Chronic hepatitis B (CHB) infection is responsible for 40% of the global burden of hepatocellular carcinoma (HCC) with a high case fatality rate. The risk of HCC differs among CHB subjects owing to differences in host and viral factors. Modifiable risk factors include viral load, use of antiviral therapy, co-infection with other hepatotropic viruses, concomitant metabolic dysfunctionassociated steatotic liver disease or diabetes mellitus, environmental exposure, and medication use. Detecting HCC at early stage improves survival, and current practice recommends HCC surveillance among individuals with cirrhosis, family history of HCC, or above an age cut-off. Ultrasonography with or without serum alpha feto-protein (AFP) every 6 months is widely accepted strategy for HCC surveillance. Novel tumor-specific markers, when combined with AFP, improve diagnostic accuracy than AFP alone to detect HCC at an early stage. To predict the risk of HCC, a number of clinical risk scores have been developed but none of them are clinically implemented nor endorsed by clinical practice guidelines. Biomarkers that reflect viral transcriptional activity and degree of liver fibrosis can potentially stratify the risk of HCC, especially among subjects who are already on antiviral therapy. Ongoing exploration of these novel biomarkers is required to confirm their performance characteristics, replicability and practicability.
Collapse
Affiliation(s)
- Lung-Yi Mak
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Liver Research, The Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
20
|
Zhou J, Song Q, Li H, Han Y, Pu Y, Li L, Rong W, Liu X, Wang Z, Sun J, Song Y, Hu X, Zhu G, Zhu H, Yang L, Ge G, Li H, Ji Q. Targeting circ-0034880-enriched tumor extracellular vesicles to impede SPP1 highCD206 + pro-tumor macrophages mediated pre-metastatic niche formation in colorectal cancer liver metastasis. Mol Cancer 2024; 23:168. [PMID: 39164758 PMCID: PMC11334400 DOI: 10.1186/s12943-024-02086-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/13/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Information transmission between primary tumor cells and immunocytes or stromal cells in distal organs is a critical factor in the formation of pre-metastatic niche (PMN). Understanding this mechanism is essential for developing effective therapeutic strategy against tumor metastasis. Our study aims to prove the hypothesis that circ-0034880-enriched tumor-derived extracellular vesicles (TEVs) mediate the formation of PMN and colorectal cancer liver metastasis (CRLM), and targeting circ-0034880-enriched TEVs might be an effective therapeutic strategy against PMN formation and CRLM. METHODS We utilized qPCR and FISH to measure circRNAs expression levels in human CRC plasma, primary CRC tissues, and liver metastatic tissues. Additionally, we employed immunofluorescence, RNA sequencing, and in vivo experiments to assess the effect mechanism of circ-0034880-enriched TEVs on PMN formation and CRC metastasis. DARTS, CETSA and computational docking modeling were applied to explore the pharmacological effects of Ginsenoside Rb1 in impeding PMN formation. RESULTS We found that circ-0034880 was highly enriched in plasma extracellular vesicles (EVs) derived from CRC patients and closely associated with CRLM. Functionally, circ-0034880-enriched TEVs entered the liver tissues and were absorbed by macrophages in the liver through bloodstream. Mechanically, TEVs-released circ-0034880 enhanced the activation of SPP1highCD206+ pro-tumor macrophages, reshaping the metastasis-supportive host stromal microenvironment and promoting overt metastasis. Importantly, our mechanistic findings led us to discover that the natural product Ginsenoside Rb1 impeded the activation of SPP1highCD206+ pro-tumor macrophages by reducing circ-0034880 biogenesis, thereby suppressing PMN formation and inhibiting CRLM. CONCLUSIONS Circ-0034880-enriched TEVs facilitate strong interaction between primary tumor cells and SPP1highCD206+ pro-tumor macrophages, promoting PMN formation and CRLM. These findings suggest the potential of using Ginsenoside Rb1 as an alternative therapeutic agent to reshape PMN formation and prevent CRLM.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Liver Disease Department of Integrative Medicine, Ningbo No. 2 Hospital, Ningbo, Zhejiang, 315010, China
| | - Qing Song
- Department of Medical Oncology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu, 215007, China
| | - Haoze Li
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yicun Han
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yunzhou Pu
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ling Li
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wenqing Rong
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaodie Liu
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ziyuan Wang
- Department of Pathology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jian Sun
- Department of Peripheral Vascular Disease, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuqing Song
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xueyan Hu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Guanghao Zhu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Huirong Zhu
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Liu Yang
- Department of Oncology, Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Guangbo Ge
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Hongshan Li
- Liver Disease Department of Integrative Medicine, Ningbo No. 2 Hospital, Ningbo, Zhejiang, 315010, China.
| | - Qing Ji
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
21
|
Li D, Gao Y, Wang C, Hu L. Proteomic and phosphoproteomic profiling of urinary small extracellular vesicles in hepatocellular carcinoma. Analyst 2024; 149:4378-4387. [PMID: 38995156 DOI: 10.1039/d4an00660g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent form of primary liver cancer and a major cause of cancer-related mortality worldwide. Small extracellular vesicles (sEVs) are heterogeneous populations of membrane-structured vesicles that can be found in many biological fluids and are currently considered as a potential source of disease-associated biomarkers for diagnosis. The purpose of this study was to define the proteomic and phosphoproteomic landscape of urinary sEVs in patients with HCC. Mass spectrometry-based methods were used to detect the global proteome and phosphoproteome profiles of sEVs isolated by differential ultracentrifugation. Label-free quantitation analysis showed that 348 differentially expressed proteins (DEPs) and 548 differentially expressed phosphoproteins (DEPPs) were identified in the HCC group. Among them, multiple phosphoproteins related to HCC, including HSP90AA1, IQGAP1, MTOR, and PRKCA, were shown to be upregulated in the HCC group. Pathway enrichment analysis indicated that the upregulated DEPPs participate in the regulation of autophagy, proteoglycans in cancer, and the MAPK/mTOR/Rap1 signaling pathway. Furthermore, kinase-substrate enrichment analysis revealed activation of MTOR, AKT1, MAP2Ks, and MAPKs family kinases in HCC-derived sEVs, indicating that dysregulation of the MAPK and mTOR signaling pathways may be the primary sEV-mediated molecular mechanisms involved in the development and progression of HCC. This study demonstrated that urinary sEVs are enriched in proteomic and phosphoproteomic signatures that could be further explored for their potential use in early HCC diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Dejun Li
- Center for Supramolecular Chemical Biology, School of Life Sciences, Jilin University, Changchun 130012, China.
- Prenatal Diagnosis Center, Reproductive Medicine Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Yujun Gao
- Center for Supramolecular Chemical Biology, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Chong Wang
- Department of Hepatology, The First Hospital of Jilin University, Changchun 130021, China.
| | - Lianghai Hu
- Center for Supramolecular Chemical Biology, School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
22
|
Tsui YM, Tian L, Lu J, Ma H, Ng IOL. Interplay among extracellular vesicles, cancer stemness and immune regulation in driving hepatocellular carcinoma progression. Cancer Lett 2024; 597:217084. [PMID: 38925362 DOI: 10.1016/j.canlet.2024.217084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
The intricate interplay among extracellular vesicles, cancer stemness properties, and the immune system significantly impacts hepatocellular carcinoma (HCC) progression, treatment response, and patient prognosis. Extracellular vesicles (EVs), which are membrane-bound structures, play a pivotal role in conveying proteins, lipids, and nucleic acids between cells, thereby serving as essential mediators of intercellular communication. Since a lot of current research focuses on small extracellular vesicles (sEVs), with diameters ranging from 30 nm to 200 nm, this review emphasizes the role of sEVs in the context of interactions between HCC stemness-bearing cells and the immune cells. sEVs offer promising opportunities for the clinical application of innovative diagnostic and prognostic biomarkers in HCC. By specifically targeting sEVs, novel therapeutics aimed at cancer stemness can be developed. Ongoing investigations into the roles of sEVs in cancer stemness and immune regulation in HCC will broaden our understanding and ultimately pave the way for groundbreaking therapeutic interventions.
Collapse
Affiliation(s)
- Yu-Man Tsui
- Department of Pathology, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Lu Tian
- Department of Pathology, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Jingyi Lu
- Department of Pathology, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Huanhuan Ma
- Department of Pathology, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Irene Oi-Lin Ng
- Department of Pathology, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong.
| |
Collapse
|
23
|
Zhang X, Zhao L, Ngo LH, Dillon ST, Gu X, Lai M, Simon TG, Chan AT, Giovannucci EL, Libermann TA, Zhang X. Prediagnostic plasma proteomics profile for hepatocellular carcinoma. J Natl Cancer Inst 2024; 116:1343-1355. [PMID: 38688524 PMCID: PMC11308170 DOI: 10.1093/jnci/djae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/29/2024] [Accepted: 03/18/2024] [Indexed: 05/02/2024] Open
Abstract
OBJECTIVE Proteomics may discover pathophysiological changes related to hepatocellular carcinoma, an aggressive and lethal type of cancer with low sensitivity for early stage diagnosis. DESIGN We measured 1305 prediagnostic (median = 12.7 years) SomaScan proteins from 54 pairs of healthy individuals who subsequently developed hepatocellular carcinoma and matched non-hepatocellular carcinoma control individuals from the Nurses' Health Study (NHS) and the Health Professionals Follow-up Study (HPFS). Candidate proteins were validated in the independent, prospective UK Biobank Pharma Proteomics Project (UKB-PPP). RESULTS In NHS and HPFS, we identified 56 elevated proteins in hepatocellular carcinoma with an absolute fold change of more than 1.2 and a Wald test P value less than .05 in conditional logistic regression analysis. Ingenuity pathway analysis identified enrichment of pathways associated with cell viability, adhesion, proteolysis, apoptosis, and inflammatory response. Four proteins-chitinase-3-like protein 1, growth differentiation factor 15, interleukin-1 receptor antagonist protein, and E-selectin-showed strong positive associations with hepatocellular carcinoma and were thus validated by enzyme-linked immunosorbent assay (odds ratio = 2.48-14.7, all P < .05) in the NHS and HPFS and by Olink platform (hazard ratio = 1.90-3.93, all P < .05) in the UKB-PPP. Adding these 4 proteins to a logistic regression model of traditional hepatocellular carcinoma risk factors increased the area under the curve from 0.67 to 0.87 in the NHS and HPFS. Consistently, model area under the curve was 0.88 for hepatocellular carcinoma risk prediction in the UKB-PPP. CONCLUSION However, the limited number of hepatocellular carcinoma patients in the cohorts necessitates caution in interpreting our findings, emphasizing the need for further validation in high-risk populations.
Collapse
Affiliation(s)
- Xinyuan Zhang
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Longgang Zhao
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Long H Ngo
- Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Simon T Dillon
- Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Xuesong Gu
- Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Michelle Lai
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Tracey G Simon
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrew T Chan
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Edward L Giovannucci
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Towia A Libermann
- Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Xuehong Zhang
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Yale University School of Nursing, Orange, CT, USA
| |
Collapse
|
24
|
Qu N, Wang G, Su Y, Chen B, Zhou D, Wu Y, Yuan L, Yin M, Liu M, Peng Y, Zhou W. INPP4B suppresses HER2-induced mesenchymal transition in HER2+ breast cancer and enhances sensitivity to Lapatinib. Biochem Pharmacol 2024; 226:116347. [PMID: 38852646 DOI: 10.1016/j.bcp.2024.116347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/26/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Human epidermal growth factor receptor 2 positive (HER2+) breast cancer (BC) tends to metastasize and has a bad prognosis due to its high malignancy and rapid progression. Inositol polyphosphate 4-phosphatase isoenzymes type II (INPP4B) plays unequal roles in the development of various cancers. However, the function of INPP4B in HER2+ BC has not been elucidated. Here we found that INPP4B expression was significantly lower in HER2+ BC and positively correlated with the prognosis by bioinformatics and tissue immunofluorescence analyses. Overexpression of INPP4B inhibited cell proliferation, migration, and growth of xenografts in HER2+ BC cells. Conversely, depletion of INPP4B reversed these effects and activated the PDK1/AKT and Wnt/β-catenin signaling pathways to promote epithelial-mesenchymal transition (EMT) progression. Moreover, INPP4B overexpression blocked epidermal growth factor (EGF) -induced cell proliferation, migration and EMT progression, whereas INPP4B depletion antagonized HER2 depletion in reduction of cell proliferation and migration of HER2+ BC cells. Additionally, Lapatinib (LAP) inhibited HER2+ BC cell survival, proliferation and migration, and its effect was further enhanced by overexpression of INPP4B. In summary, our results illustrate that INPP4B suppresses HER2+ BC growth, migration and EMT, and its expression level affects patient outcome, further providing new insights into clinical practice.
Collapse
Affiliation(s)
- Na Qu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing 400016, China; Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
| | - Gang Wang
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing 400016, China; Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
| | - Yue Su
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing 400016, China; Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
| | - Bo Chen
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing 400016, China; Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
| | - Duanfang Zhou
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing 400016, China; Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
| | - Yuanli Wu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing 400016, China; Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
| | - Lie Yuan
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing 400016, China; Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
| | - Manjialan Yin
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing 400016, China; Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
| | - Mingpu Liu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing 400016, China; Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
| | - Yang Peng
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Weiying Zhou
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing 400016, China; Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
25
|
Lin J, Lu W, Huang B, Yang W, Wang X. The role of tissue-derived extracellular vesicles in tumor microenvironment. Tissue Cell 2024; 89:102470. [PMID: 39002287 DOI: 10.1016/j.tice.2024.102470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
The tumor microenvironment (TME) is a highly heterogeneous ecosystem that plays critical roles in the initiation, progression, invasion, and metastasis of cancers. Extracellular vesicles (EVs), as emerging components of the host-tumor communication, are lipid-bilayer membrane structures that are secreted by most cell types into TEM and increasingly recognized as critical elements that regulate the interaction between tumor cells and their surroundings. They contain a variety of bioactive molecules, such as proteins, nucleic acids, and lipids, and participate in various pathophysiological processes while regulating intercellular communication. While many studies have focused on the EVs derived from different body fluids or cell culture supernatants, the direct isolation of tissue-derived EVs (Ti-EVs) has garnered more attention due to the advantages of tissue specificity and accurate reflection of tissue microenvironment. In this review, we summarize the protocol for isolating Ti-EVs from different tissue interstitium, discuss the role of tumor-derived and adipose tissue-derived Ti-EVs in regulating TME. In addition, we sum up the latest application of Ti-EVs as potential biomarkers for cancer diseases.
Collapse
Affiliation(s)
- Jin Lin
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Wan Lu
- Jiangxi Provincial Key Laboratory of Birth Defect for Prevention and Control, Medical Genetics Center, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Bo Huang
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Weiming Yang
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiaozhong Wang
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
26
|
Sobsey CA, Froehlich BC, Mitsa G, Ibrahim S, Popp R, Zahedi RP, de Bruin EC, Borchers CH, Batist G. mTORC1-Driven Protein Translation Correlates with Clinical Benefit of Capivasertib within a Genetically Preselected Cohort of PIK3CA-Altered Tumors. CANCER RESEARCH COMMUNICATIONS 2024; 4:2058-2074. [PMID: 38954770 PMCID: PMC11320025 DOI: 10.1158/2767-9764.crc-24-0113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/12/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
Capivasertib is a potent selective inhibitor of AKT. It was recently FDA approved in combination with fulvestrant to treat HR+, HER2-negative breast cancers with certain genetic alteration(s) activating the PI3K pathway. In phase I trials, heavily pretreated patients with tumors selected for activating PI3K pathway mutations treated with capivasertib monotherapy demonstrated objective response rates of <30%. We investigated the proteomic profile associated with capivasertib response in genetically preselected patients and cancer cell lines. We analyzed samples from 16 PIK3CA-mutated patient tumors collected prior to capivasertib monotherapy in the phase I trial. PI3K pathway proteins were precisely quantified with immuno-Matrix-Assisted Laser Desorption/Ionization-mass spectrometry (iMALDI-MS). Global proteomic profiles were also obtained. Patients were classified according to response to capivasertib monotherapy: "clinical benefit (CB)" (≥12 weeks without progression, n = 7) or "no clinical benefit (NCB)" (progression in <12 weeks, n = 9). Proteins that differed between the patient groups were subsequently quantified in AKT1- or PIK3CA-altered breast cancer cell lines with varying capivasertib sensitivity. The measured concentrations of AKT1 and AKT2 varied among the PIK3CA-mutated tumors but did not differ between the CB and NCB groups. However, analysis of the global proteome data showed that translational activity was higher in tumors of the NCB vs. CB group. When reproducibly quantified by validated LC-MRM-MS assays, the same proteins of interest similarly distinguished between capivasertib-sensitive versus -resistant cell lines. The results provide further evidence that increased mTORC1-driven translation functions as a mechanism of resistance to capivasertib monotherapy. Protein concentrations may offer additional insights for patient selection for capivasertib, even among genetically preselected patients. SIGNIFICANCE Capivasertib's first-in-class FDA approval demonstrates its promise, yet there remains an opportunity to optimize its use. Our results provide new evidence that proteomics can stratify genetically preselected patients on clinical benefit. Characterization of the same profile in cell lines furnishes additional validation. Among PIK3CA-altered tumors, increased mTORC1-driven translation appears to confer intrinsic resistance. Assessing mTORC1 activation could therefore prove a useful complement to the existing genetic selection strategy for capivasertib.
Collapse
Affiliation(s)
- Constance A. Sobsey
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, Canada.
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada.
| | - Bjoern C. Froehlich
- University of Victoria-Genome British Columbia Proteomics Centre, University of Victoria, Victoria, BC, Canada.
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada.
| | - Georgia Mitsa
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, Canada.
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada.
| | - Sahar Ibrahim
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, Canada.
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada.
| | | | - Rene P. Zahedi
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, Canada.
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada.
- Manitoba Centre for Proteomics and Systems Biology, Winnipeg, MB, Canada.
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada.
- CancerCare Manitoba Research Institute, Winnipeg, MB, Canada.
| | | | - Christoph H. Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, Canada.
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada.
- Gerald Bronfman Department of Oncology, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, Canada.
- Department of Pathology, McGill University, Montreal, QC, Canada.
| | - Gerald Batist
- Segal Cancer Centre, Jewish General Hospital, McGill University, Montreal, QC, Canada.
- McGill Centre for Translational Research in Cancer, Lady Davis Institute, Montreal, QC, Canada.
| |
Collapse
|
27
|
He D, Cui B, Lv H, Lu S, Zhu Y, Cheng Y, Dang L, Zhang H. Blood-Derived Extracellular Vesicles as a Promising Liquid Biopsy Diagnostic Tool for Early Cancer Detection. Biomolecules 2024; 14:847. [PMID: 39062561 PMCID: PMC11275243 DOI: 10.3390/biom14070847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Cancer poses a significant public health challenge worldwide, and timely screening has the potential to mitigate cancer progression and reduce mortality rates. Currently, early identification of most tumors relies on imaging techniques and tissue biopsies. However, the use of low-cost, highly sensitive, non-invasive detection methods for early cancer screening has become more attractive. Extracellular Vesicles (EVs) released by all living cells contain distinctive biological components, such as nucleic acids, proteins, and lipids. These vesicles play crucial roles in the tumor microenvironment and intercellular communication during tumor progression, rendering liquid biopsy a particularly suitable method for diagnosis. Nevertheless, challenges related to purification methods and validation of efficacy currently hinder its widespread clinical implementation. These limitations underscore the importance of refining isolation techniques and conducting comprehensive investigations on EVs. This study seeks to evaluate the potential of liquid biopsy utilizing blood-derived EVs as a practical, cost-effective, and secure approach for early cancer detection.
Collapse
Affiliation(s)
- Dan He
- Laboratory of Animal Center, Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang 712046, China; (D.H.); (S.L.); (Y.Z.)
| | - Bozhou Cui
- Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, China;
| | - Hongkai Lv
- Department of Clinical Medicine of Second Clinical Medical School, Shaanxi University of Chinese Medicine, Xianyang 712046, China; (H.L.); (Y.C.)
| | - Shuxian Lu
- Laboratory of Animal Center, Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang 712046, China; (D.H.); (S.L.); (Y.Z.)
| | - Yuan Zhu
- Laboratory of Animal Center, Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang 712046, China; (D.H.); (S.L.); (Y.Z.)
| | - Yuqiang Cheng
- Department of Clinical Medicine of Second Clinical Medical School, Shaanxi University of Chinese Medicine, Xianyang 712046, China; (H.L.); (Y.C.)
| | - Lin Dang
- Basic Medical Academy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Hong Zhang
- Laboratory of Animal Center, Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang 712046, China; (D.H.); (S.L.); (Y.Z.)
| |
Collapse
|
28
|
Wang C, Yang G, Feng G, Deng C, Zhang Q, Chen S. Developing an advanced diagnostic model for hepatocellular carcinoma through multi-omics integration leveraging diverse cell-death patterns. Front Immunol 2024; 15:1410603. [PMID: 39044829 PMCID: PMC11263010 DOI: 10.3389/fimmu.2024.1410603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/25/2024] [Indexed: 07/25/2024] Open
Abstract
Introduction Hepatocellular carcinoma (HCC), representing more than 80% of primary liver cancer cases, lacks satisfactory etiology and diagnostic methods. This study aimed to elucidate the role of programmed cell death-associated genes (CDRGs) in HCC by constructing a diagnostic model using single-cell RNA sequencing (scRNA-seq) and RNA sequencing (RNA-seq) data. Methods Six categories of CDRGs, including apoptosis, necroptosis, autophagy, pyroptosis, ferroptosis, and cuproptosis, were collected. RNA-seq data from blood-derived exosomes were sourced from the exoRBase database, RNA-seq data from cancer tissues from the TCGA database, and scRNA-seq data from the GEO database. Subsequently, we intersected the differentially expressed genes (DEGs) of the HCC cohort from exoRBase and TCGA databases with CDRGs, as well as DEGs obtained from single-cell datasets. Candidate biomarker genes were then screened using clinical indicators and a machine learning approach, resulting in the construction of a seven-gene diagnostic model for HCC. Additionally, scRNA-seq and spatial transcriptome sequencing (stRNA-seq) data of HCC from the Mendeley data portal were used to investigate the underlying mechanisms of these seven key genes and their association with immune checkpoint blockade (ICB) therapy. Finally, we validated the expression of key molecules in tissues and blood-derived exosomes through quantitative Polymerase Chain Reaction (qPCR) and immunohistochemistry experiments. Results Collectively, we obtained a total of 50 samples and 104,288 single cells. Following the meticulous screening, we established a seven-gene diagnostic model for HCC, demonstrating high diagnostic efficacy in both the exoRBase HCC cohort (training set: AUC = 1; testing set: AUC = 0.847) and TCGA HCC cohort (training set: AUC = 1; testing set: AUC = 0.976). Subsequent analysis revealed that HCC cluster 3 exhibited a higher stemness index and could serve as the starting point for the differentiation trajectory of HCC cells, also displaying more abundant interactions with other cell types in the microenvironment. Notably, key genes TRIB3 and NQO1 displayed elevated expression levels in HCC cells. Experimental validation further confirmed their elevated expression in both tumor tissues and blood-derived exosomes of cancer patients. Additionally, stRNA analysis not only substantiated these findings but also suggested that patients with high TRIB3 and NQO1 expression might respond more favorably to ICB therapy. Conclusions The seven-gene diagnostic model demonstrated remarkable accuracy in HCC screening, with TRIB3 emerging as a promising diagnostic tool and therapeutic target for HCC.
Collapse
Affiliation(s)
| | | | | | - Chengen Deng
- Department of Urology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Qingyun Zhang
- Department of Urology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Shaohua Chen
- Department of Urology, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
29
|
Shi M, Jia JS, Gao GS, Hua X. Advances and challenges of exosome-derived noncoding RNAs for hepatocellular carcinoma diagnosis and treatment. Biochem Biophys Rep 2024; 38:101695. [PMID: 38560049 PMCID: PMC10979073 DOI: 10.1016/j.bbrep.2024.101695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/10/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
Exosomes, also termed extracellular vesicles (EVs), are an important component of the tumor microenvironment (TME) and exert versatile effects on the molecular communications in the TME of hepatocellular carcinoma (HCC). Exosome-mediated intercellular communication is closely associated with the tumorigenesis and development of HCC. Exosomes can be extracted through ultracentrifugation and size exclusion, followed by molecular analysis through sequencing. Increasing studies have confirmed the important roles of exosome-derived ncRNAs in HCC, including tumorigenesis, progression, immune escape, and treatment resistance. Due to the protective membrane structure of exosomes, the ncRNAs carried by exosomes can evade degradation by enzymes in body fluids and maintain good expression stability. Thus, exosome-derived ncRNAs are highly suitable as biomarkers for the diagnosis and prognostic prediction of HCC, such as exosomal miR-21-5p, miR-221-3p and lncRNA-ATB. In addition, substantial studies revealed that the up-or down-regulation of exosome-derived ncRNAs had an important impact on HCC progression and response to treatment. Exosomal biomarkers, such as miR-23a, lncRNA DLX6-AS1, miR-21-5p, lncRNA TUC339, lncRNA HMMR-AS1 and hsa_circ_0004658, can reshape immune microenvironment by regulating M2-type macrophage polarization and then promote HCC development. Therefore, by controlling exosome biogenesis and modulating exosomal ncRNA levels, HCC may be inhibited or eliminated. In this current review, we summarized the recent findings on the role of exosomes in HCC progression and analyzed the relationship between exosome-derived ncRNAs and HCC diagnosis and treatment.
Collapse
Affiliation(s)
- Min Shi
- Department of Clinical Laboratory, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| | - Jun-Su Jia
- Department of Clinical Laboratory, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| | - Guo-Sheng Gao
- Department of Clinical Laboratory, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| | - Xin Hua
- Department of Clinical Laboratory, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
30
|
Bian X, Wang W, Abudurexiti M, Zhang X, Ma W, Shi G, Du L, Xu M, Wang X, Tan C, Sun H, He X, Zhang C, Zhu Y, Zhang M, Ye D, Wang J. Integration Analysis of Single-Cell Multi-Omics Reveals Prostate Cancer Heterogeneity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305724. [PMID: 38483933 PMCID: PMC11095148 DOI: 10.1002/advs.202305724] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/25/2024] [Indexed: 05/16/2024]
Abstract
Prostate cancer (PCa) is an extensive heterogeneous disease with a complex cellular ecosystem in the tumor microenvironment (TME). However, the manner in which heterogeneity is shaped by tumors and stromal cells, or vice versa, remains poorly understood. In this study, single-cell RNA sequencing, spatial transcriptomics, and bulk ATAC-sequence are integrated from a series of patients with PCa and healthy controls. A stemness subset of club cells marked with SOX9highARlow expression is identified, which is markedly enriched after neoadjuvant androgen-deprivation therapy (ADT). Furthermore, a subset of CD8+CXCR6+ T cells that function as effector T cells is markedly reduced in patients with malignant PCa. For spatial transcriptome analysis, machine learning and computational intelligence are comprehensively utilized to identify the cellular diversity of prostate cancer cells and cell-cell communication in situ. Macrophage and neutrophil state transitions along the trajectory of cancer progression are also examined. Finally, the immunosuppressive microenvironment in advanced PCa is found to be associated with the infiltration of regulatory T cells (Tregs), potentially induced by an FAP+ fibroblast subset. In summary, the cellular heterogeneity is delineated in the stage-specific PCa microenvironment at single-cell resolution, uncovering their reciprocal crosstalk with disease progression, which can be helpful in promoting PCa diagnosis and therapy.
Collapse
Affiliation(s)
- Xiaojie Bian
- Department of UrologyFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Cancer InstituteShanghai Urological Cancer InstituteFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Wenfeng Wang
- Cancer InstituteShanghai Urological Cancer InstituteFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Mierxiati Abudurexiti
- Cancer InstituteShanghai Urological Cancer InstituteFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Department of UrologyShanghai Pudong New Area Gongli HospitalShanghai200135China
| | - Xingming Zhang
- Cancer InstituteShanghai Urological Cancer InstituteFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Weiwei Ma
- Department of UrologyFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Cancer InstituteShanghai Urological Cancer InstituteFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Guohai Shi
- Department of UrologyFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Leilei Du
- Cancer InstituteShanghai Urological Cancer InstituteFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Midie Xu
- Department of PathologyFudan University Shanghai Cancer CenterShanghai200032China
| | - Xin Wang
- Department of PathologyFudan University Shanghai Cancer CenterShanghai200032China
| | - Cong Tan
- Department of PathologyFudan University Shanghai Cancer CenterShanghai200032China
| | - Hui Sun
- Department of PathologyFudan University Shanghai Cancer CenterShanghai200032China
| | - Xiadi He
- Department of Cancer BiologyDana‐Farber Cancer InstituteBostonMA02215USA
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonMA02115USA
| | - Chenyue Zhang
- Department of Integrated TherapyFudan University Shanghai Cancer CenterShanghai200032China
| | - Yao Zhu
- Department of UrologyFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Cancer InstituteShanghai Urological Cancer InstituteFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Min Zhang
- Pediatric Translational Medicine Institute and Pediatric Congenital Heart Disease InstituteShanghai Children's Medical CenterShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Dingwei Ye
- Department of UrologyFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Cancer InstituteShanghai Urological Cancer InstituteFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Jianhua Wang
- Cancer InstituteShanghai Urological Cancer InstituteFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| |
Collapse
|
31
|
Chen Q, Zhou Q. Identification of exosome-related gene signature as a promising diagnostic and therapeutic tool for breast cancer. Heliyon 2024; 10:e29551. [PMID: 38665551 PMCID: PMC11043961 DOI: 10.1016/j.heliyon.2024.e29551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Background Exosomes are promising tools for the development of new diagnostic and therapeutic approaches. Exosomes possess the ability to activate signaling pathways that contribute to the remodeling of the tumor microenvironment, angiogenesis, and the regulation of immune responses. We aimed to develop a prognostic score based on exosomes derived from breast cancer. Materials and methods Training was conducted on the TCGA-BRCA dataset, while validation was conducted on GSE20685, GSE5764, GSE7904, and GSE29431. A total of 121 genes related to exosomes were retrieved from the ExoBCD database. The Cox proportional hazards model is used to develop risk score model. The GSVA package was utilized to analyze single-sample gene sets and identify exosome signatures, while the WGCNA package was utilized to identify gene modules associated with clinical outcomes. The clusterProfiler and GSVA R packages facilitated gene set enrichment and variation analyses. Furthermore, CIBERSORT quantified immune infiltration, and a correlation between gene expression and drug sensitivity was assessed using the TIDE algorithm. Results An exosome-related prognostic score was established using the following selected genes: ABCC9, PIGR, CXCL13, DOK7, CD24, and IVL. Various immune cells that promote cancer immune evasion were associated with a high-risk prognostic score, which was an independent predictor of outcome. High-risk and low-risk groups exhibited significantly different infiltration abundances (p < 0.05). By conducting a sensitivity comparison, we found that patients with high-risk scores exhibited more favorable responses to immunotherapy than those with low-risk scores. Conclusion The exosome-related gene signature exhibits outstanding performance in predicting the prognosis and cancer status of patients with breast cancer and guiding immunotherapy.
Collapse
Affiliation(s)
- Qitong Chen
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Research Center for Breast Disease in Hunan Province, Changsha, Hunan, China
| | - Qin Zhou
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Research Center for Breast Disease in Hunan Province, Changsha, Hunan, China
| |
Collapse
|
32
|
Jiang X, Yang L, Chen G, Feng X, Liu Y, Gao Q, Mai M, Chen CYC, Ye S, Yang Z. Discovery of Kinetin in inhibiting colorectal cancer progression via enhancing PSMB1-mediated RAB34 degradation. Cancer Lett 2024; 584:216600. [PMID: 38159835 DOI: 10.1016/j.canlet.2023.216600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/29/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
Colorectal cancer (CRC) is one of the most prevalent malignancies worldwide. Understanding the underlying mechanism driving CRC progression and identifying potential therapeutic drug targets are of utmost urgency. We previously utilized LC-MS-based proteomic profiling to identify proteins associated with postoperative progression in stage II/III CRC. Here, we revealed that proteasome subunit beta type-1 (PSMB1) is an independent predictor for postoperative progression in stage II/III CRC. Mechanistically, PSMB1 binds directly to onco-protein RAB34 and promotes its proteasome-dependent degradation, potentially leading to the inactivation of the MEK/ERK signaling pathway and inhibition of CRC progression. To further identify potential anticancer drugs, we screened a library of 2509 FDA-approved drugs using computer-aided drug design (CADD) and identified Kinetin as a potentiating agent for PSMB1. Functional assays confirmed that Kinetin enhanced the interaction between PSMB1 and RAB34, hence facilitated the degradation of RAB34 protein and decreased the MEK/ERK phosphorylation. Kinetin suppresses CRC progression in patient-derived xenograft (PDX) and liver metastasis models. Conclusively, our study identifies PSMB1 as a potential biomarker and therapeutic target for CRC, and Kinetin as an anticancer drug by enhancing proteasome-dependent onco-protein degradation.
Collapse
Affiliation(s)
- Xuefei Jiang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Lanlan Yang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Guanxing Chen
- Artificial Intelligence Medical Research Center, School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 510275, China
| | - Xingzhi Feng
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Yiting Liu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Qianling Gao
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Mingru Mai
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Calvin Yu-Chian Chen
- Department of AI for Science, School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, China
| | - Shubiao Ye
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Zihuan Yang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Department of Clinical Laboratory, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510655, China.
| |
Collapse
|
33
|
Deng K, Zou F, Xu J, Xu D, Luo Z. Cancer-associated fibroblasts promote stemness maintenance and gemcitabine resistance via HIF-1α/miR-21 axis under hypoxic conditions in pancreatic cancer. Mol Carcinog 2024; 63:524-537. [PMID: 38197482 DOI: 10.1002/mc.23668] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 01/11/2024]
Abstract
Gemcitabine (GEM) resistance affects chemotherapy efficacy of pancreatic cancer (PC). Cancer-associated fibroblasts (CAFs) possess the ability of regulating chemoresistance. This study probed the mechanism of hypoxia-treated CAFs regulating cell stemness and GEM resistance in PC. Miapaca-2/SW1990 were co-cultured with PC-derived CAFs under normoxic/hypoxic conditions. Cell viability/self-renewal ability was determined by MTT/sphere formation assays, respectively. Protein levels of CD44, CD133, Oct4, and Sox2 were determined by western blot. GEM tumoricidal assay was performed. PC cell GEM resistance was evaluated by MTT assay. CAFs were cultured at normoxia/hypoxia. HIF-1α and miR-21 expression levels were assessed by RT-qPCR and western blot, with their binding sites and binding relationship predicted and verified. CAF-extracellular vesicles (EVs) were incubated with Miapaca-2 cells. The RAS/AKT/ERK pathway activation was detected by western blot. PC xenograft models were established and treated with hypoxic CAF-EVs and GEM. CAFs and PC cell co-culture increased cell stemness maintenance, GEM resistance, cell viability, stem cell sphere number, and protein levels of CD44, CD133, Oct4, and Sox2, and weakened GEM tumoricidal ability to PC cells, with the effects further enhanced by hypoxia. Hypoxia induced HIF-1α and miR-21 overexpression in CAFs. Hypoxia promoted CAFs to secrete high-level miR-21 EVs via the HIF-1α/miR-21 axis, and activated the miR-21/RAS/AKT/ERK pathway. CAF-EVs promoted GEM resistance in PC via the miR-21/RAS/ATK/ERK pathway in vivo. Hypoxia promoted CAFs to secrete high-level miR-21 EVs through the HIF-1α/miR-21 axis, and activated the miR-21/RAS/AKT/ERK pathway via EVs to trigger stemness maintenance and GEM resistance in PC.
Collapse
Affiliation(s)
- Keping Deng
- Department of General Surgery, The First Hospital of Changsha (The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University), Changsha, Hunan Province, China
| | - Fang Zou
- Department of General Surgery, The First Hospital of Changsha (The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University), Changsha, Hunan Province, China
| | - Jin Xu
- Department of General Surgery, The First Hospital of Changsha (The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University), Changsha, Hunan Province, China
| | - Dayong Xu
- Department of General Surgery, The First Hospital of Changsha (The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University), Changsha, Hunan Province, China
| | - Zhen Luo
- Department of General Surgery, The First Hospital of Changsha (The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University), Changsha, Hunan Province, China
| |
Collapse
|
34
|
Tian L, Lu J, Ng IOL. Extracellular vesicles and cancer stemness in hepatocellular carcinoma - is there a link? Front Immunol 2024; 15:1368898. [PMID: 38476233 PMCID: PMC10927723 DOI: 10.3389/fimmu.2024.1368898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/09/2024] [Indexed: 03/14/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly aggressive malignancy, with high recurrence rates and notorious resistance to conventional chemotherapy. Cancer stemness refers to the stem-cell-like phenotype of cancer cells and has been recognized to play important roles in different aspects of hepatocarcinogenesis. Small extracellular vesicles (sEVs) are small membranous particles secreted by cells that can transfer bioactive molecules, such as nucleic acids, proteins, lipids, and metabolites, to neighboring or distant cells. Recent studies have highlighted the role of sEVs in modulating different aspects of the cancer stemness properties of HCC. Furthermore, sEVs derived from diverse cellular sources, such as cancer cells, stromal cells, and immune cells, contribute to the maintenance of the cancer stemness phenotype in HCC. Through cargo transfer, specific signaling pathways are activated within the recipient cells, thus promoting the stemness properties. Additionally, sEVs can govern the secretion of growth factors from non-cancer cells to further maintain their stemness features. Clinically, plasma sEVs may hold promise as potential biomarkers for HCC diagnosis and treatment prediction. Understanding the underlying mechanisms by which sEVs promote cancer stemness in HCC is crucial, as targeting sEV-mediated communication may offer novel strategies in treatment and improve patient outcome.
Collapse
Affiliation(s)
- Lu Tian
- Department of Pathology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Pathology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jingyi Lu
- Department of Pathology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Irene Oi-Lin Ng
- Department of Pathology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Pathology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
35
|
Yao Y, Xu Y, Yu L, Xue T, Xiao Z, Tin P, Fung H, Ma H, Yun J, Yam JWP. NHE7 upregulation potentiates the uptake of small extracellular vesicles by enhancing maturation of macropinosomes in hepatocellular carcinoma. Cancer Commun (Lond) 2024; 44:251-272. [PMID: 38152992 PMCID: PMC10876205 DOI: 10.1002/cac2.12515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023] Open
Abstract
BACKGROUND Small extracellular vesicles (sEVs) mediate intercellular communication that contributes to hepatocellular carcinoma (HCC) progression via multifaceted pathways. The success of cell entry determines the effect of sEV on recipient cells. Here, we aimed to delineate the mechanisms underlying the uptake of sEV in HCC. METHODS Macropinocytosis was examined by the ability of cells to internalize dextran and sEV. Macropinocytosis was analyzed in Na(+)/H(+) exchanger 7 (NHE7)-knockdown and -overexpressing cells. The properties of cells were studied using functional assays. pH biosensor was used to evaluate the intracellular and endosomal pH. The expression of NHE7 in patients' liver tissues was examined by immunofluorescent staining. Inducible silencing of NHE7 in established tumors was performed to reveal the therapeutic potential of targeting NHE7. RESULTS The data revealed that macropinocytosis controlled the internalization of sEVs and their oncogenic effect on recipient cells. It was found that metastatic HCC cells exhibited the highest efficiency of sEV uptake relative to normal liver cells and non-metastatic HCC cells. Attenuation of macropinocytic activity by 5-(N-ethyl-N-isopropyl)-amiloride (EIPA) limited the entry of sEVs and compromised cell aggressiveness. Mechanistically, we delineated that high level of NHE7, a sodium-hydrogen exchanger, alkalized intracellular pH and acidized endosomal pH, leading to the maturation of macropinosomes. Inducible inhibition of NHE7 in established tumors developed in mice delayed tumor development and suppressed lung metastasis. Clinically, NHE7 expression was upregulated and linked to dismal prognosis of HCC. CONCLUSIONS This study advances the understanding that NHE7 enhances sEV uptake by macropinocytosis to promote the malignant properties of HCC cells. Inhibition of sEV uptake via macropinocytosis can be exploited as a treatment alone or in combination with conventional therapeutic approaches for HCC.
Collapse
Affiliation(s)
- Yue Yao
- Department of PathologySchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongP. R. China
- Department of Endocrinology and MetabolismSecond Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjingP. R. China
| | - Yi Xu
- Department of PathologySchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongP. R. China
- Department of Hepatopancreatobiliary SurgerySecond Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjingP. R. China
- State Key Laboratory of Oncology in South ChinaCancer Center of Sun Yat‐sen UniversityGuangzhouGuangdongP. R. China
| | - Liang Yu
- Department of PathologySchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongP. R. China
- Department of Hepatopancreatobiliary SurgerySecond Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjingP. R. China
| | - Ting‐Mao Xue
- Department of PathologySchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongP. R. China
- Department of Hepatobiliary Surgery IIZhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongP. R. China
| | - Zhi‐Jie Xiao
- Scientific Research CenterThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdongP. R. China
| | - Pui‐Chi Tin
- Department of PathologySchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongP. R. China
| | - Hiu‐Ling Fung
- Department of PathologySchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongP. R. China
| | - Hoi‐Tang Ma
- Department of PathologySchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongP. R. China
- State Key Laboratory of Liver ResearchThe University of Hong KongHong KongP. R. China
| | - Jing‐Ping Yun
- Department of PathologyCancer Center of Sun Yat‐sen UniversityGuangzhouGuangdongP. R. China
| | - Judy Wai Ping Yam
- Department of PathologySchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongP. R. China
- State Key Laboratory of Liver ResearchThe University of Hong KongHong KongP. R. China
| |
Collapse
|
36
|
Chen Z, Wang Q, Liu J, Wang W, Yuan W, Liu Y, Sun Z, Wang C. Effects of extracellular vesicle-derived noncoding RNAs on pre-metastatic niche and tumor progression. Genes Dis 2024; 11:176-188. [PMID: 37588211 PMCID: PMC10425748 DOI: 10.1016/j.gendis.2022.12.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/29/2022] [Accepted: 12/08/2022] [Indexed: 01/20/2023] Open
Abstract
A pre-metastatic niche (PMN) is a protective microenvironment that facilitates the colonization of disseminating tumor cells in future metastatic organs. Extracellular vesicles (EVs) play a role in intercellular communication by delivering cargoes, such as noncoding RNAs (ncRNAs). The pivotal role of extracellular vesicle-derived noncoding RNAs (EV-ncRNAs) in the PMN has attracted increasing attention. In this review, we summarized the effects of EV-ncRNAs on the PMN in terms of immunosuppression, vascular permeability and angiogenesis, inflammation, metabolic reprogramming, and fibroblast alterations. In particular, we provided a comprehensive overview of the effects of EV-ncRNAs on the PMN in different cancers. Finally, we discussed the promising clinical applications of EV-ncRNAs, including their potential as diagnostic and prognostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Zhuang Chen
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Qiming Wang
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Jinbo Liu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Wenkang Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yang Liu
- Department of Radiotherapy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Chengzeng Wang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| |
Collapse
|
37
|
Wong SWK, Tey SK, Mao X, Fung HL, Xiao Z, Wong DKH, Mak L, Yuen M, Ng IO, Yun JP, Gao Y, Yam JWP. Small Extracellular Vesicle-Derived vWF Induces a Positive Feedback Loop between Tumor and Endothelial Cells to Promote Angiogenesis and Metastasis in Hepatocellular Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302677. [PMID: 37387563 PMCID: PMC10502836 DOI: 10.1002/advs.202302677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/07/2023] [Indexed: 07/01/2023]
Abstract
Hepatocellular carcinoma (HCC) is a hypervascular malignancy by which its growth and dissemination are largely driven by the modulation of tumor-derived small extracellular vesicles (sEVs). Proteomic profiling of circulating sEVs of control individuals and HCC patients identifies von Willibrand factor (vWF) to be upregulated progressively along HCC stages. Elevated sEV-vWF levels are found in a larger cohort of HCC-sEV samples and metastatic HCC cell lines compared to their respective normal counterparts. Circulating sEVs of late-stage HCC patients markedly augment angiogenesis, tumor-endothelial adhesion, pulmonary vascular leakiness, and metastasis, which are significantly compromised by anti-vWF antibody. The role of vWF is further corroborated by the enhanced promoting effect of sEVs collected from vWF-overexpressing cells. sEV-vWF modulates endothelial cells through an elevated level of vascular endothelial growth factor A (VEGF-A) and fibroblast growth factor 2 (FGF2). Mechanistically, secreted FGF2 elicits a positive feedback response in HCC via the FGFR4/ERK1 signaling pathway. The co-administration of anti-vWF antibody or FGFR inhibitor significantly improves the treatment outcome of sorafenib in a patient-derived xenograft mouse model. This study reveals mutual stimulation between HCC and endothelial cells by tumor-derived sEVs and endothelial angiogenic factors, facilitating angiogenesis and metastasis. It also provides insights into a new therapeutic strategy involving blocking tumor-endothelial intercellular communication.
Collapse
Affiliation(s)
- Samuel Wan Ki Wong
- Department of PathologySchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Sze Keong Tey
- Department of PathologySchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
- Department of SurgerySchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Xiaowen Mao
- Department of PathologySchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
- State Key Laboratory of Liver Research, The University of Hong KongHong Kong
| | - Hiu Ling Fung
- Department of PathologySchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Zhi‐Jie Xiao
- Research CentreThe Seventh Affiliated HospitalSun Yat‐sen University518107ShenzhenP. R. China
| | - Danny Ka Ho Wong
- Department of MedicineSchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Lung‐Yi Mak
- Department of MedicineSchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Man‐Fung Yuen
- Department of MedicineSchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Irene Oi‐Lin Ng
- State Key Laboratory of Liver Research, The University of Hong KongHong Kong
| | - Jing Ping Yun
- Department of PathologySun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
| | - Yi Gao
- Department of Hepatobiliary Surgery IIZhuJiang HospitalSouthern Medical UniversityGuangzhouGuangdong510280P. R. China
| | - Judy Wai Ping Yam
- Department of PathologySchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
- State Key Laboratory of Liver Research, The University of Hong KongHong Kong
| |
Collapse
|
38
|
Garcia NA, Mellergaard M, Gonzalez-King H, Salomon C, Handberg A. Comprehensive Strategy for Identifying Extracellular Vesicle Surface Proteins as Biomarkers for Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2023; 24:13326. [PMID: 37686134 PMCID: PMC10487973 DOI: 10.3390/ijms241713326] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a liver disorder that has become a global health concern due to its increasing prevalence. There is a need for reliable biomarkers to aid in the diagnosis and prognosis of NAFLD. Extracellular vesicles (EVs) are promising candidates in biomarker discovery, as they carry proteins that reflect the pathophysiological state of the liver. In this review, we developed a list of EV proteins that could be used as diagnostic biomarkers for NAFLD. We employed a multi-step strategy that involved reviewing and comparing various sources of information. Firstly, we reviewed papers that have studied EVs proteins as biomarkers in NAFLD and papers that have studied circulating proteins as biomarkers in NAFLD. To further identify potential candidates, we utilized the EV database Vesiclepedia.org to qualify each protein. Finally, we consulted the Human Protein Atlas to search for candidates' localization, focusing on membrane proteins. By integrating these sources of information, we developed a comprehensive list of potential EVs membrane protein biomarkers that could aid in diagnosing and monitoring NAFLD. In conclusion, our multi-step strategy for identifying EV-based protein biomarkers for NAFLD provides a comprehensive approach that can also be applied to other diseases. The protein candidates identified through this approach could have significant implications for the development of non-invasive diagnostic tests for NAFLD and improve the management and treatment of this prevalent liver disorder.
Collapse
Affiliation(s)
| | - Maiken Mellergaard
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg Hobrovej 18-22, 9000 Aalborg, Denmark
- Department of Clinical Medicine, The Faculty of Medicine, Aalborg University, 9000 Aalborg, Denmark
| | - Hernan Gonzalez-King
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland, Brisbane, QLD 4029, Australia
| | - Aase Handberg
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg Hobrovej 18-22, 9000 Aalborg, Denmark
- Department of Clinical Medicine, The Faculty of Medicine, Aalborg University, 9000 Aalborg, Denmark
| |
Collapse
|
39
|
Lu Y, Zhang M, Zhou J, Liu X, Wang L, Hu X, Mao Y, Gan R, Chen Z. Extracellular vesicles in renal cell carcinoma: challenges and opportunities coexist. Front Immunol 2023; 14:1212101. [PMID: 37469514 PMCID: PMC10352798 DOI: 10.3389/fimmu.2023.1212101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/19/2023] [Indexed: 07/21/2023] Open
Abstract
Renal cell carcinoma (RCC) represents an extremely challenging disease in terms of both diagnosis and treatment. It poses a significant threat to human health, with incidence rates increasing at a yearly rate of roughly 2%. Extracellular vesicles (EVs) are lipid-based bilayer structures of membranes that are essential for intercellular interaction and have been linked to the advancement of RCC. This review provides an overview of recent studies on the role of EVs in RCC progression, including involvement in the interaction of tumor cells with M2 macrophages, mediating the generation of immune tolerance, and assuming the role of communication messengers in the tumor microenvironment leading to disease progression. Finally, the " troika " of EVs in RCC therapy is presented, including engineered sEVs' or EVs tumor vaccines, mesenchymal stem cell EVs therapy, and reduction of tumor-derived EVs secretion. In this context, we highlight the limitations and challenges of EV-based research and the prospects for future developments in this field. Overall, this review provides a comprehensive summary of the role of EVs in RCC and their potential as a viable pathway for the future treatment of this complex disease.
Collapse
Affiliation(s)
- Yukang Lu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Mengting Zhang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jiajun Zhou
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiulan Liu
- Department of Medical School, Kunming University of Science and Technology, Kunming, China
| | - Lanfeng Wang
- Department of Nephrology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xinyi Hu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yiping Mao
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Rongfa Gan
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Zhiping Chen
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
40
|
Lapitz A, Azkargorta M, Milkiewicz P, Olaizola P, Zhuravleva E, Grimsrud MM, Schramm C, Arbelaiz A, O'Rourke CJ, La Casta A, Milkiewicz M, Pastor T, Vesterhus M, Jimenez-Agüero R, Dill MT, Lamarca A, Valle JW, Macias RIR, Izquierdo-Sanchez L, Pérez Castaño Y, Caballero-Camino FJ, Riaño I, Krawczyk M, Ibarra C, Bustamante J, Nova-Camacho LM, Falcon-Perez JM, Elortza F, Perugorria MJ, Andersen JB, Bujanda L, Karlsen TH, Folseraas T, Rodrigues PM, Banales JM. Liquid biopsy-based protein biomarkers for risk prediction, early diagnosis, and prognostication of cholangiocarcinoma. J Hepatol 2023; 79:93-108. [PMID: 36868481 PMCID: PMC10292605 DOI: 10.1016/j.jhep.2023.02.027] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 03/05/2023]
Abstract
BACKGROUND & AIMS Cholangiocarcinoma (CCA), heterogeneous biliary tumours with dismal prognosis, lacks accurate early diagnostic methods especially important for individuals at high-risk (i.e. those with primary sclerosing cholangitis [PSC]). Here, we searched for protein biomarkers in serum extracellular vesicles (EVs). METHODS EVs from patients with isolated PSC (n = 45), concomitant PSC-CCA (n = 44), PSC who developed CCA during follow-up (PSC to CCA; n = 25), CCAs from non-PSC aetiology (n = 56), and hepatocellular carcinoma (n = 34) and healthy individuals (n = 56) were characterised by mass spectrometry. Diagnostic biomarkers for PSC-CCA, non-PSC CCA, or CCAs regardless of aetiology (Pan-CCAs) were defined and validated by ELISA. Their expression was evaluated in CCA tumours at a single-cell level. Prognostic EV biomarkers for CCA were investigated. RESULTS High-throughput proteomics of EVs identified diagnostic biomarkers for PSC-CCA, non-PSC CCA, or Pan-CCA, and for the differential diagnosis of intrahepatic CCA and hepatocellular carcinoma, which were cross-validated by ELISA using total serum. Machine learning-based algorithms disclosed CRP/FIBRINOGEN/FRIL for the diagnosis of PSC-CCA (local disease [LD]) vs. isolated PSC (AUC = 0.947; odds ratio [OR] =36.9) and, combined with carbohydrate antigen 19-9, overpowers carbohydrate antigen 19-9 alone. CRP/PIGR/VWF allowed the diagnosis of LD non-PSC CCAs vs. healthy individuals (AUC = 0.992; OR = 387.5). It is noteworthy that CRP/FRIL accurately diagnosed LD Pan-CCA (AUC = 0.941; OR = 89.4). Levels of CRP/FIBRINOGEN/FRIL/PIGR showed predictive capacity for CCA development in PSC before clinical evidence of malignancy. Multi-organ transcriptomic analysis revealed that serum EV biomarkers were mostly expressed in hepatobiliary tissues, and single-cell RNA sequencing and immunofluorescence analysis of CCA tumours showed their presence mainly in malignant cholangiocytes. Multivariable analysis unveiled EV prognostic biomarkers, with COMP/GNAI2/CFAI and ACTN1/MYCT1/PF4V associated negatively and positively with patients' survival, respectively. CONCLUSIONS Serum EVs contain protein biomarkers for the prediction, early diagnosis, and prognostication of CCA that are detectable using total serum, representing a tumour cell-derived liquid biopsy tool for personalised medicine. IMPACT AND IMPLICATIONS The accuracy of current imaging tests and circulating tumour biomarkers for cholangiocarcinoma (CCA) diagnosis is far from satisfactory. Most CCAs are considered sporadic, although up to 20% of patients with primary sclerosing cholangitis (PSC) develop CCA during their lifetime, constituting a major cause of PSC-related death. This international study has proposed protein-based and aetiology-related logistic models with predictive, diagnostic, or prognostic capacities by combining two to four circulating protein biomarkers, moving a step forward into personalised medicine. These novel liquid biopsy tools may allow the (i) easy and non-invasive diagnosis of sporadic CCAs, (ii) identification of patients with PSC with higher risk for CCA development, (iii) establishment of cost-effective surveillance programmes for the early detection of CCA in high-risk populations (e.g. PSC), and (iv) prognostic stratification of patients with CCA, which, altogether, may increase the number of cases eligible for potentially curative options or to receive more successful treatments, decreasing CCA-related mortality.
Collapse
Affiliation(s)
- Ainhoa Lapitz
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Mikel Azkargorta
- Proteomics Platform, CIC BioGUNE, Basque Research and Technology Alliance (BRTA), ProteoRed ISCIII, Bizkaia Science and Technology Park, Derio, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), ISCIII, Madrid, Spain
| | - Piotr Milkiewicz
- Liver and Internal Medicine Unit, Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland; Translational Medicine Group, Pomeranian Medical University, Szczecin, Poland
| | - Paula Olaizola
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), ISCIII, Madrid, Spain
| | - Ekaterina Zhuravleva
- Biotech Research and Innovation Centre, Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marit M Grimsrud
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Christoph Schramm
- European Reference Network Hepatological Diseases (ERN RARE-LIVER), Hamburg, Germany; 1st Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Martin Zeitz Centre for Rare Diseases, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Ander Arbelaiz
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Colm J O'Rourke
- Biotech Research and Innovation Centre, Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Adelaida La Casta
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Malgorzata Milkiewicz
- Department of Medical Biology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Tania Pastor
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Mette Vesterhus
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Raul Jimenez-Agüero
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Michael T Dill
- Department of Gastroenterology, Infectious Diseases and Intoxication, Heidelberg University Hospital, Heidelberg, Germany; Experimental Hepatology, Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Angela Lamarca
- Department of Medical Oncology, The Christie NHS Foundation Trust/Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Juan W Valle
- Department of Medical Oncology, The Christie NHS Foundation Trust/Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Rocio I R Macias
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), ISCIII, Madrid, Spain; Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
| | - Laura Izquierdo-Sanchez
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), ISCIII, Madrid, Spain
| | - Ylenia Pérez Castaño
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain; Osakidetza Basque Health Service, Bidasoa IHO, Bidasoa Hospital, Department of Digestive System, Irun, Spain
| | - Francisco Javier Caballero-Camino
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Ioana Riaño
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain; Clinical Research Unit, Spanish Clinical Research Network (SCReN) - ISCIII, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Marcin Krawczyk
- Department of Medicine II, Saarland University Medical Centre, Saarland University, Homburg, Germany
| | - Cesar Ibarra
- Osakidetza Basque Health Service, Ezkerraldea-Enkarterri-Cruces IHO, Cruces University Hospital, Barakaldo, Spain
| | - Javier Bustamante
- Osakidetza Basque Health Service, Ezkerraldea-Enkarterri-Cruces IHO, Cruces University Hospital, Barakaldo, Spain
| | - Luiz M Nova-Camacho
- Osakidetza Basque Health Service, Donostialdea IHO, Donostia University Hospital, Department of Pathology, San Sebastian, Spain
| | - Juan M Falcon-Perez
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), ISCIII, Madrid, Spain; Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Exosomes Laboratory, Derio, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Felix Elortza
- Proteomics Platform, CIC BioGUNE, Basque Research and Technology Alliance (BRTA), ProteoRed ISCIII, Bizkaia Science and Technology Park, Derio, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), ISCIII, Madrid, Spain
| | - Maria J Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), ISCIII, Madrid, Spain; Department of Medicine, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Jesper B Andersen
- Biotech Research and Innovation Centre, Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Luis Bujanda
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), ISCIII, Madrid, Spain; Department of Medicine, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Tom H Karlsen
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Trine Folseraas
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Section of Gastroenterology, Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | - Pedro M Rodrigues
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), ISCIII, Madrid, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), ISCIII, Madrid, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain; Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain.
| |
Collapse
|
41
|
Cen X, Lu Y, Lu J, Zhan P, Cheng Y, Luo C, Liu J, Xie C, Wang F. Upregulation of helicase-like transcription factor predicts poor prognosis and facilitates hepatocellular carcinoma progression. Hum Cell 2023:10.1007/s13577-023-00917-3. [PMID: 37227687 DOI: 10.1007/s13577-023-00917-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 05/12/2023] [Indexed: 05/26/2023]
Abstract
Helicase-like transcription factor (HLTF) belongs to the family of SWI/SNF proteins, which has been reported to exert oncogenic function in several human cancers. However, to date, its functional role in hepatocellular carcinoma (HCC) has not been revealed. Here, we found that HLTF was highly expressed in HCC tissues compared to nontumor tissues. Additionally, upregulation of HLTF was significantly associated with poor prognosis of patients with HCC. Functional experiments demonstrated that knockdown of HLTF expression significantly inhibited the proliferation, migration, and invasion of HCC cells in vitro, and suppressed tumor growth in vivo. In conclusion, our results suggest that upregulation of HLTF is associated with the development of HCC, and HLTF may be a potential therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Xuesong Cen
- Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, School of Medicine, Zhongshan Hospital of Xiamen University, Xiamen University, 209 South Hubin Road, Xiamen, 361004, Fujian Province, China
| | - Yuyan Lu
- Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, School of Medicine, Zhongshan Hospital of Xiamen University, Xiamen University, 209 South Hubin Road, Xiamen, 361004, Fujian Province, China
| | - Jing Lu
- Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, School of Medicine, Zhongshan Hospital of Xiamen University, Xiamen University, 209 South Hubin Road, Xiamen, 361004, Fujian Province, China
| | - Ping Zhan
- Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, School of Medicine, Zhongshan Hospital of Xiamen University, Xiamen University, 209 South Hubin Road, Xiamen, 361004, Fujian Province, China
| | - Yizhe Cheng
- Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, School of Medicine, Zhongshan Hospital of Xiamen University, Xiamen University, 209 South Hubin Road, Xiamen, 361004, Fujian Province, China
| | - Changhong Luo
- Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, School of Medicine, Zhongshan Hospital of Xiamen University, Xiamen University, 209 South Hubin Road, Xiamen, 361004, Fujian Province, China
| | - Jie Liu
- Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, School of Medicine, Zhongshan Hospital of Xiamen University, Xiamen University, 209 South Hubin Road, Xiamen, 361004, Fujian Province, China
| | - Chengrong Xie
- Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, School of Medicine, Zhongshan Hospital of Xiamen University, Xiamen University, 209 South Hubin Road, Xiamen, 361004, Fujian Province, China.
| | - Fuqiang Wang
- Department of Hepatobiliary Surgery, Xiamen Key Laboratory of Liver Diseases, Xiamen Hospital of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 1739 Xianyue Road, Xiamen, 361001, Fujian Province, China.
| |
Collapse
|
42
|
Morita M, Nishida N, Aoki T, Chishina H, Takita M, Ida H, Hagiwara S, Minami Y, Ueshima K, Kudo M. Role of β-Catenin Activation in the Tumor Immune Microenvironment and Immunotherapy of Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:cancers15082311. [PMID: 37190239 DOI: 10.3390/cancers15082311] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/09/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Recently, the therapeutic combination of atezolizumab and bevacizumab was widely used to treat advanced hepatocellular carcinoma (HCC). According to recent clinical trials, immune checkpoint inhibitors (ICIs) and molecular target agents are expected to be key therapeutic strategies in the future. Nonetheless, the mechanisms underlying molecular immune responses and immune evasion remain unclear. The tumor immune microenvironment plays a vital role in HCC progression. The infiltration of CD8-positive cells into tumors and the expression of immune checkpoint molecules are key factors in this immune microenvironment. Specifically, Wnt/β catenin pathway activation causes "immune exclusion", associated with poor infiltration of CD8-positive cells. Some clinical studies suggested an association between ICI resistance and β-catenin activation in HCC. Additionally, several subclassifications of the tumor immune microenvironment were proposed. The HCC immune microenvironment can be broadly divided into inflamed class and non-inflamed class, with several subclasses. β-catenin mutations are important factors in immune subclasses; this may be useful when considering therapeutic strategies as β-catenin activation may serve as a biomarker for ICI. Various types of β-catenin modulators were developed. Several kinases may also be involved in the β-catenin pathway. Therefore, combinations of β-catenin modulators, kinase inhibitors, and ICIs may exert synergistic effects.
Collapse
Affiliation(s)
- Masahiro Morita
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Japan
| | - Naoshi Nishida
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Japan
| | - Tomoko Aoki
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Japan
| | - Hirokazu Chishina
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Japan
| | - Masahiro Takita
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Japan
| | - Hiroshi Ida
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Japan
| | - Satoru Hagiwara
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Japan
| | - Yasunori Minami
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Japan
| | - Kazuomi Ueshima
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Japan
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Japan
| |
Collapse
|
43
|
He R, Xu Y, Yu L, Meng N, Wang H, Cui Y, Yam JWP. Extracellular Vesicles Act as Carriers for Cargo Delivery and Regulate Wnt Signaling in the Hepatocellular Carcinoma Tumor Microenvironment. Cancers (Basel) 2023; 15:cancers15072088. [PMID: 37046749 PMCID: PMC10093647 DOI: 10.3390/cancers15072088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/22/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
As the primary type of liver cancer, hepatocellular carcinoma (HCC) causes a large number of deaths every year. Despite extensive research conducted on this disease, the prognosis of HCC remains unclear. Recently, research has largely focused on extracellular vesicles (EVs), and they have been found to participate in various ways in the development of various diseases, including HCC, such as by regulating cell signaling pathways. However, recent studies have reported the mechanisms underlying the regulation of Wnt signaling by EVs in HCC, primarily focusing on the regulation of the canonical pathways. This review summarizes the current literature on the regulation of Wnt signaling by EVs in HCC and their underlying mechanisms. In addition, we also present future research directions in this field. This will deepen the understanding of HCC and provide new ideas for its treatment.
Collapse
Affiliation(s)
- Risheng He
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen 361000, China
- Jiangsu Province Engineering Research Center of Tumor Targeted Nano Diagnostic and Therapeutic Materials, Yancheng Teachers University, Yancheng 224007, China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou 310063, China
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Department of Pharmacy, Changxing People’s Hospital, Changxing 313000, China
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Liang Yu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Nanfeng Meng
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Hang Wang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Yunfu Cui
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Judy Wai Ping Yam
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China
| |
Collapse
|
44
|
Lu X, Li Y, Li Y, Zhang X, Shi J, Feng H, Gao Y, Yu Z. Advances of multi-omics applications in hepatic precancerous lesions and hepatocellular carcinoma: The role of extracellular vesicles. Front Mol Biosci 2023; 10:1114594. [PMID: 37006626 PMCID: PMC10060991 DOI: 10.3389/fmolb.2023.1114594] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Due to the lack of distinct early symptoms and specific biomarkers, most patients with hepatocellular carcinoma (HCC) are usually diagnosed at advanced stages, rendering the treatment ineffective and useless. Therefore, recognition of the malady at precancerous lesions and early stages is particularly important for improving patient outcomes. The interest in extracellular vesicles (EVs) has been growing in recent years with the accumulating knowledge of their multiple cargoes and related multipotent roles in the modulation of immune response and tumor progression. By virtue of the rapid advancement of high-throughput techniques, multiple omics, including genomics/transcriptomics, proteomics, and metabolomics/lipidomics, have been widely integrated to analyze the role of EVs. Comprehensive analysis of multi-omics data will provide useful insights for discovery of new biomarkers and identification of therapeutic targets. Here, we review the attainment of multi-omics analysis to the finding of the potential role of EVs in early diagnosis and the immunotherapy in HCC.
Collapse
Affiliation(s)
- Xiaona Lu
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuyao Li
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Li
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuemei Zhang
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia Shi
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hai Feng
- Institute of Infectious Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Hai Feng, ; Yueqiu Gao, ; Zhuo Yu,
| | - Yueqiu Gao
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Infectious Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Hai Feng, ; Yueqiu Gao, ; Zhuo Yu,
| | - Zhuo Yu
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Hai Feng, ; Yueqiu Gao, ; Zhuo Yu,
| |
Collapse
|
45
|
Targeting Tumor Microenvironment Akt Signaling Represents a Potential Therapeutic Strategy for Aggressive Thyroid Cancer. Int J Mol Sci 2023; 24:ijms24065471. [PMID: 36982542 PMCID: PMC10049397 DOI: 10.3390/ijms24065471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Effects of the tumor microenvironment (TME) stromal cells on progression in thyroid cancer are largely unexplored. Elucidating the effects and underlying mechanisms may facilitate the development of targeting therapy for aggressive cases of this disease. In this study, we investigated the impact of TME stromal cells on cancer stem-like cells (CSCs) in patient-relevant contexts where applying in vitro assays and xenograft models uncovered contributions of TME stromal cells to thyroid cancer progression. We found that TME stromal cells can enhance CSC self-renewal and invasiveness mainly via the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway. The disruption of Akt signaling could diminish the impact of TME stromal cells on CSC aggressiveness in vitro and reduce CSC tumorigenesis and metastasis in xenografts. Notably, disrupting Akt signaling did not cause detectable alterations in tumor histology and gene expression of major stromal components while it produced therapeutic benefits. In addition, using a clinical cohort, we discovered that papillary thyroid carcinomas with lymph node metastasis are more likely to have elevated Akt signaling compared with the ones without metastasis, suggesting the relevance of Akt-targeting. Overall, our results identify PI3K/Akt pathway-engaged contributions of TME stromal cells to thyroid tumor disease progression, illuminating TME Akt signaling as a therapeutic target in aggressive thyroid cancer.
Collapse
|
46
|
Hu J, Yuan Z, Jiang Y, Mo Z. Identification of Five Tumor Antigens for Development and Two Immune Subtypes for Personalized Medicine of mRNA Vaccines in Papillary Renal Cell Carcinoma. J Pers Med 2023; 13:jpm13020359. [PMID: 36836593 PMCID: PMC9965942 DOI: 10.3390/jpm13020359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Increasing evidence has revealed the promise of mRNA-type cancer vaccines as a new direction for cancer immune treatment in several solid tumors, however, its application in papillary renal cell carcinoma (PRCC) remains unclear. The purpose of this study was to identify potential tumor antigens and robust immune subtypes for the development and appropriate use of anti-PRCC mRNA vaccines, respectively. Raw sequencing data and clinical information of PRCC patients were downloaded from The Cancer Genome Atlas (TCGA) database. The cBioPortal was utilized for the visualization and comparison of genetic alterations. The TIMER was used to assess the correlation between preliminary tumor antigens and the abundance of infiltrated antigen presenting cells (APCs). Immune subtypes were determined by the consensus clustering algorithm, and clinical and molecular discrepancies were further explored for a deeper understanding of immune subtypes. Five tumor antigens, including ALOX15B, HS3ST2, PIGR, ZMYND15 and LIMK1, were identified for PRCC, which were correlated with patients' prognoses and infiltration levels of APCs. Two immune subtypes (IS1 and IS2) were disclosed with obviously distinct clinical and molecular characteristics. Compared with IS2, IS1 exhibited a significantly immune-suppressive phenotype, which largely weakened the efficacy of the mRNA vaccine. Overall, our study provides some insights for the design of anti-PRCC mRNA vaccines and, more importantly, the selection of suitable patients to be vaccinated.
Collapse
Affiliation(s)
- Jianpei Hu
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China
- Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Zhongze Yuan
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China
- Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yifen Jiang
- Department of Medical Record Management Center, The People’s Hospital of Yubei District of Chongqing City, Chongqing 401120, China
| | - Zengnan Mo
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China
- Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Correspondence:
| |
Collapse
|
47
|
Li D, Jia S, Wang S, Hu L. Glycoproteomic Analysis of Urinary Extracellular Vesicles for Biomarkers of Hepatocellular Carcinoma. Molecules 2023; 28:molecules28031293. [PMID: 36770959 PMCID: PMC9919939 DOI: 10.3390/molecules28031293] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
Hepatocellular carcinoma (HCC) accounts for the most common form of primary liver cancer cases and constitutes a major health problem worldwide. The diagnosis of HCC is still challenging due to the low sensitivity and specificity of the serum α-fetoprotein (AFP) diagnostic method. Extracellular vesicles (EVs) are heterogeneous populations of phospholipid bilayer-enclosed vesicles that can be found in many biological fluids, and have great potential as circulating biomarkers for biomarker discovery and disease diagnosis. Protein glycosylation plays crucial roles in many biological processes and aberrant glycosylation is a hallmark of cancer. Herein, we performed a comprehensive glycoproteomic profiling of urinary EVs at the intact N-glycopeptide level to screen potential biomarkers for the diagnosis of HCC. With the control of the spectrum-level false discovery rate ≤1%, 756 intact N-glycopeptides with 154 N-glycosites, 158 peptide backbones, and 107 N-glycoproteins were identified. Out of 756 intact N-glycopeptides, 344 differentially expressed intact N-glycopeptides (DEGPs) were identified, corresponding to 308 upregulated and 36 downregulated N-glycopeptides, respectively. Compared to normal control (NC), the glycoproteins LG3BP, PIGR and KNG1 are upregulated in HCC-derived EVs, while ASPP2 is downregulated. The findings demonstrated that specific site-specific glycoforms in these glycoproteins from urinary EVs could be potential and efficient non-invasive candidate biomarkers for HCC diagnosis.
Collapse
Affiliation(s)
- Dejun Li
- Center for Supramolecular Chemical Biology, School of Life Sciences, Jilin University, Changchun 130012, China
- Prenatal Diagnosis Center, Reproductive Medicine Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Shengnan Jia
- Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun 130041, China
- Correspondence: (S.J.); (L.H.)
| | - Shuyue Wang
- Center for Supramolecular Chemical Biology, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Lianghai Hu
- Center for Supramolecular Chemical Biology, School of Life Sciences, Jilin University, Changchun 130012, China
- Correspondence: (S.J.); (L.H.)
| |
Collapse
|
48
|
Xue T, Yam JWP. Role of Small Extracellular Vesicles in Liver Diseases: Pathogenesis, Diagnosis, and Treatment. J Clin Transl Hepatol 2022; 10:1176-1185. [PMID: 36381103 PMCID: PMC9634776 DOI: 10.14218/jcth.2022.00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/08/2022] [Accepted: 05/26/2022] [Indexed: 12/04/2022] Open
Abstract
Extracellular vesicles (EVs) are vesicular bodies that bud off from the cell membrane or are secreted virtually by all cell types. Small EVs (sEVs or exosomes) are key mediators of cell-cell communication by delivering their cargo, including proteins, lipids, or RNAs, to the recipient cells where they induce changes in signaling pathways and phenotypic properties. Tangible findings have revealed the pivotal involvement of sEVs in the pathogenesis of various diseases. On the bright side, they are rich sources of biomarkers for diagnosis, prognosis, treatment response, and disease monitoring. sEVs have high stability, biocompatibility, targetability, low toxicity, and are immunogenic in nature. Their intrinsic properties make sEVs an ideal delivery vehicle to be loaded with cargo for therapeutic interventions. Liver diseases are a major global health problem. This review aims to focus on the roles and mechanisms of sEVs in the pathogenesis of liver diseases, liver injury, liver failure, and liver cancer. sEVs are released not only by hepatocytes but also by stromal and immune cells in the microenvironment. Early detection of liver disease determines the chance for curative treatment and high survival of patients. This review focuses on the potential of circulating sEV cargo as specific and sensitive noninvasive biomarkers for the early detection and prognosis of liver diseases. In addition, the therapeutic use of sEVs derived from various cell types is discussed. Although sEVs hold promise for clinical applications, there are still challenges to be overcome by further research to bring utilization of sEVs into clinical practice.
Collapse
Affiliation(s)
- Tingmao Xue
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Judy Wai Ping Yam
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Correspondence to: Judy Wai Ping Yam, Department of Pathology, 7/F Block T, Queen Mary Hospital, Pokfulam, Hong Kong, China. ORCID: https://orcid.org/0000-0002-5637-121X. Tel: +852-22552681, Fax: +852-22185212, E-mail:
| |
Collapse
|
49
|
Genistein Restricts the Epithelial Mesenchymal Transformation (EMT) and Stemness of Hepatocellular Carcinoma via Upregulating miR-1275 to Inhibit the EIF5A2/PI3K/Akt Pathway. BIOLOGY 2022; 11:biology11101383. [PMID: 36290289 PMCID: PMC9598820 DOI: 10.3390/biology11101383] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 12/03/2022]
Abstract
Simple Summary Genistein is a natural phytoestrogen with various antitumor effects. Our study focused on exploring the mechanisms of microRNAs and genistein to inhibit the epithelial mesenchymal transformation (EMT) and stemness of hepatocellular carcinoma (HCC). We found that miR-1275 was more highly expressed in HCC cells treated with genistein compared with the control. Then, we performed series functional experiments to explore the relationship between genistein and miR-1275 in HCC. The inhibition of genistein on HCC cells was enhanced by the increase in treatment time and dose, and miR-1275 can be raised by genistein. The overall survival and recurrence-free survival of HCC patients with low expressed miR-1275 were lower than those of those with high expression levels. The experimental results exhibited that genistein and miR-1275 can both significantly suppress the proliferation, migration, invasion, metastasis, EMT and stemness of HCC. Moreover, the inhibition can be further enhanced with the co-existence of miR-1275 mimic and genistein. Finally, we demonstrated that miR-1275 can inhibit the EMT and stemness of HCC via inhibiting the EIF5A2/PI3K/Akt pathway. Our findings proved that genistein can inhibit the EIF5A2/PI3K/Akt pathway by upregulating miR-1275 so as to attenuate the EMT and stemness of HCC cells to restrict their progression and metastasis. Abstract Purpose: Genistein is a natural phytoestrogen with various antitumor effects. In recent years, some microRNAs (miRNA) in cancer cells have been reported to be regulated by genistein. Our study focused on exploring the mechanisms of miRNA upregulation to inhibit the epithelial mesenchymal transformation (EMT) and stemness of hepatocellular carcinoma (HCC). Patients and Methods: MiR-1275 was discovered by the transcriptome sequencing of miRNA expression profiles in HepG2 cells treated with genistein or DMSO as a control. Then, we performed series functional experiments in vitro and vivo to explore the relationship between genistein and miR-1275 in HCC. The target gene (Eukaryotic initiation factor 5A2, EIF5A2) of miR-1275 was predicted by databases and finally determined by a dual luciferase reporter assay. The downstream signaling pathway of EIF5A2 was assessed by bioinformatics analysis and Western blot. Results: the inhibition of genistein on the viability of HCC cells was enhanced by the increase in treatment time and dose, but it had no obvious inhibitory effect on normal hepatocytes (QSG-7701). Through qRT-PCR and transcriptome sequencing, we discovered that miR-1275 was lowly expressed in HCC, and it can be raised by genistein. The overall survival (OS) and recurrence-free survival (RFS) of HCC patients with lowly expressed miR-1275 were lower than those of those with high expression levels. In vitro and vivo experiments exhibited that genistein and the overexpression of miR-1275 can both significantly suppress the proliferation, migration, invasion, metastasis, EMT and stemness of HCC. Moreover, the inhibition can be further enhanced when miR-1275 mimic and genistein exist together. Finally, we demonstrated that miR-1275 can inhibit the epithelial mesenchymal transformation (EMT) and stemness of HCC via inhibiting the EIF5A2/PI3K/Akt pathway. Conclusion: Our findings proved that genistein can inhibit the EIF5A2/PI3K/Akt pathway by upregulating miR-1275 so as to attenuate the EMT and stemness of HCC cells to restrict their progression and metastasis.
Collapse
|
50
|
The Underlying Roles of Exosome-Associated PIGR in Fatty Acid Metabolism and Immune Signaling in Colorectal Cancer. JOURNAL OF ONCOLOGY 2022; 2022:4675683. [PMID: 36157233 PMCID: PMC9499750 DOI: 10.1155/2022/4675683] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/26/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022]
Abstract
The polymeric immunoglobulin receptor (PIGR), an exosome-associated glycoprotein, plays an important role in the occurrence and development of different tumors. This study aimed to investigate whether PIGR is essential for colorectal cancer (CRC). Comprehensive bioinformatics analysis and immunohistochemistry (IHC) revealed that expression of PIGR was significantly decreased in CRC patients. Upregulated PIGR displayed favorable prognostic values in CRC patients. Several algorithms, such as TISIDB and TIMER, were used to evaluate the roles of PIGR expression in the regulation of immune response in CRC. Moreover, GSEA enrichment analysis indicated the underlying role of PIGR in the regulation of fatty acid metabolism in CRC. Taken together, our findings might provide a new potential prognostic and immune-associated biomarker for CRC and supply a new destination for PIGR-related immunotherapy in clinical treatment.
Collapse
|