1
|
Choi Y, Park YK, Hur W, Kim G, Bae S. D-cycloserine, a potential candidate for reducing Hepatitis B virus cccDNA in vitro. J Virol Methods 2025; 336:115172. [PMID: 40306580 DOI: 10.1016/j.jviromet.2025.115172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 04/19/2025] [Accepted: 04/27/2025] [Indexed: 05/02/2025]
Abstract
Hepatitis B virus (HBV) is a 3.2 kb hepatotropic DNA that possesses a unique episomal DNA form known as covalently closed circular DNA (cccDNA). cccDNA is the major risk factor for persistent HBV infection and consequently causes chronic liver diseases such as hepatitis, cirrhosis, and hepatocellular carcinoma. To prevent the progression of liver disease, eradication of HBV, especially cccDNA, is essential. In this study, we established a drug screening system using artificial recombinant HBV cccDNA (rcccDNA), which is regulated by a loxP-HBV genome and CRE expression. To identify potential drugs targeting cccDNA, a total of 379 antiviral reagents were tested. Among them, several chemicals including danoprevir, L- and D-cycloserine, phenytoin sodium, amantadine, and germacrone showed a decrease in cccDNA levels. Especially, D-cycloserine diminished the secretion of HBV antigens and induced cccDNA degradation in the HBV infection system. This screening system helps to develop the therapeutic drug target to cccDNA This screening system may help develop therapeutic drugs targeting cccDNA.
Collapse
Affiliation(s)
- Yongwook Choi
- Division of Chronic Viral Disease Research, Center for Emerging Virus Research, National Institute of Infectious Diseases, National Institute of Health, Chungbuk, South Korea.
| | - Yong Kwang Park
- Division of Chronic Viral Disease Research, Center for Emerging Virus Research, National Institute of Infectious Diseases, National Institute of Health, Chungbuk, South Korea
| | - Wonhee Hur
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gahee Kim
- Division of Chronic Viral Disease Research, Center for Emerging Virus Research, National Institute of Infectious Diseases, National Institute of Health, Chungbuk, South Korea
| | - Songmee Bae
- Division of Chronic Viral Disease Research, Center for Emerging Virus Research, National Institute of Infectious Diseases, National Institute of Health, Chungbuk, South Korea
| |
Collapse
|
2
|
Yi M, Dai S, Fang L, Pan B, Fan B, Pan Y, Liu Z. Influence of Occult Hepatitis B Infection on Blood Transfusion Safety and Its Countermeasures. Pathogens 2025; 14:301. [PMID: 40333041 PMCID: PMC12030072 DOI: 10.3390/pathogens14040301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 05/09/2025] Open
Abstract
Occult hepatitis B infection (OBI) is a serious public health issue. Although a number of effective hepatitis B vaccines are available, hepatitis B still poses a threat to global public health. Patients with OBI are usually asymptomatic, but there may be active HBV DNA present in their blood, leading to the risk of virus transmission during blood transfusions or organ transplantation, constituting a hazard to the health of recipients and increasing the risk of liver cirrhosis and liver cancer. Although China has progressed in the development of blood-screening technology, OBI is still a significant hidden danger to blood transfusion safety. Therefore, in blood screening and blood transfusion, strengthening the monitoring and management of OBI is crucial to ensure blood safety and protect public health.
Collapse
Affiliation(s)
- Meng Yi
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Peking Union Medical College, Chengdu 610052, China; (M.Y.); (S.D.); (L.F.); (B.P.); (B.F.); (Y.P.)
| | - Shuchang Dai
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Peking Union Medical College, Chengdu 610052, China; (M.Y.); (S.D.); (L.F.); (B.P.); (B.F.); (Y.P.)
- China Key Laboratory of Transfusion Adverse Reactions, Chinese Academy of Medical Sciences, Chengdu 610052, China
| | - Lin Fang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Peking Union Medical College, Chengdu 610052, China; (M.Y.); (S.D.); (L.F.); (B.P.); (B.F.); (Y.P.)
- China Key Laboratory of Transfusion Adverse Reactions, Chinese Academy of Medical Sciences, Chengdu 610052, China
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Bo Pan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Peking Union Medical College, Chengdu 610052, China; (M.Y.); (S.D.); (L.F.); (B.P.); (B.F.); (Y.P.)
- China Key Laboratory of Transfusion Adverse Reactions, Chinese Academy of Medical Sciences, Chengdu 610052, China
| | - Bin Fan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Peking Union Medical College, Chengdu 610052, China; (M.Y.); (S.D.); (L.F.); (B.P.); (B.F.); (Y.P.)
| | - Yiming Pan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Peking Union Medical College, Chengdu 610052, China; (M.Y.); (S.D.); (L.F.); (B.P.); (B.F.); (Y.P.)
- China Key Laboratory of Transfusion Adverse Reactions, Chinese Academy of Medical Sciences, Chengdu 610052, China
| | - Zhong Liu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Peking Union Medical College, Chengdu 610052, China; (M.Y.); (S.D.); (L.F.); (B.P.); (B.F.); (Y.P.)
- China Key Laboratory of Transfusion Adverse Reactions, Chinese Academy of Medical Sciences, Chengdu 610052, China
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
3
|
Ma HN, Cao KS, Liu YM, Chen C, Zhang H, Tang FS. Tenofovir amibufenamide: A potential alternative for chronic hepatitis B treatment. World J Gastroenterol 2025; 31:102580. [PMID: 40093664 PMCID: PMC11886539 DOI: 10.3748/wjg.v31.i10.102580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/16/2025] [Accepted: 02/08/2025] [Indexed: 02/26/2025] Open
Abstract
Tenofovir amibufenamide (TMF) is a novel prodrug of tenofovir that demonstrates a promising safety and efficacy profile. A recent study by Peng et al compared TMF with tenofovir alafenamide in the treatment of chronic hepatitis B. The findings indicated that both medications offer similar efficacy in terms of viral response and alanine aminotransferase normalization. Notably, TMF showed potential advantages in lipid management, as it did not significantly affect cholesterol levels, unlike tenofovir alafenamide. This correspondence highlights the need for further research to evaluate the long-term safety and efficacy of TMF, its impact on cardiovascular risk, and its use in specific patient populations.
Collapse
Affiliation(s)
- Hai-Nan Ma
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563006, Guizhou Province, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, Guizhou Province, China
- Key Laboratory of Clinical Pharmacy in Zunyi City, Zunyi Medical University, Zunyi 563006, Guizhou Province, China
| | - Kai-Sen Cao
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563006, Guizhou Province, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, Guizhou Province, China
- Key Laboratory of Clinical Pharmacy in Zunyi City, Zunyi Medical University, Zunyi 563006, Guizhou Province, China
| | - Yan-Miao Liu
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563006, Guizhou Province, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, Guizhou Province, China
- Key Laboratory of Clinical Pharmacy in Zunyi City, Zunyi Medical University, Zunyi 563006, Guizhou Province, China
| | - Cheng Chen
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563006, Guizhou Province, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, Guizhou Province, China
- Key Laboratory of Clinical Pharmacy in Zunyi City, Zunyi Medical University, Zunyi 563006, Guizhou Province, China
| | - Hang Zhang
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563006, Guizhou Province, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, Guizhou Province, China
- Key Laboratory of Clinical Pharmacy in Zunyi City, Zunyi Medical University, Zunyi 563006, Guizhou Province, China
| | - Fu-Shan Tang
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563006, Guizhou Province, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, Guizhou Province, China
- Key Laboratory of Clinical Pharmacy in Zunyi City, Zunyi Medical University, Zunyi 563006, Guizhou Province, China
| |
Collapse
|
4
|
Kumar V. HBx protein as a therapeutic target for functional cure of hepatitis B virus infection. Virology 2025; 604:110438. [PMID: 39908774 DOI: 10.1016/j.virol.2025.110438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/07/2025]
Abstract
Hepatitis B virus (HBV) is a major cause of acute and chronic liver disease and represents a major public health problem worldwide. Current antiviral therapies with nucleos(t)ide analogues can effectively suppressing viremia but are not curative, and have little or no impact upon the HBV cccDNA minichromosome or the portions of integrated HBV DNA. Several alternative therapeutic strategies targeted at viral components and life cycle are under intense investigation. This article highlights the reasons for considering HBx as a therapeutic target as this may allow targeting of both virus and disease. Recent studies focused at HBx have led to the identification of several new pharmacological agents and development of some novel therapeutic approaches that now deserve to be taken to the next level for better management of hepatitis B. Besides, new therapies could be combined with other established therapies, to provide a functional cure from hepatitis B infection.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India.
| |
Collapse
|
5
|
Qiu Y, Tang Q, Liu XQ, Xue YL, Zeng Y, Hu P. Hepatitis B core-related antigen as a promising serological marker for monitoring hepatitis B virus cure. World J Hepatol 2025; 17:98658. [PMID: 39871916 PMCID: PMC11736480 DOI: 10.4254/wjh.v17.i1.98658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/25/2024] [Accepted: 12/13/2024] [Indexed: 01/06/2025] Open
Abstract
Hepatitis B virus (HBV) infection is a global health concern. The current sequential endpoints for the treatment of HBV infection include viral suppression, hepatitis B e antigen (HBeAg) seroconversion, functional cure, and covalently closed circular DNA (cccDNA) clearance. Serum hepatitis B core-related antigen (HBcrAg) is an emerging HBV marker comprising three components: HBeAg, hepatitis B core antigen, and p22cr. It responds well to the transcriptional activity of cccDNA in the patient's liver and is a promising alternative marker for serological testing. There is a strong correlation, and a decrease in its level corresponds to sustained viral suppression. In patients with chronic hepatitis B (CHB), serum HBcrAg levels are good predictors of HBeAg seroconversion (both spontaneous and after antiviral therapy), particularly in HBeAg-positive patients. Both low baseline HBcrAg levels and decreasing levels early in antiviral therapy favored HBsAg seroconversion, which may serve as a good surrogate option for treatment endpoints. In this review, we summarize the role of serum HBcrAg in the treatment of CHB. Therefore, long-term continuous monitoring of serum HBcrAg levels contributes to the clinical management of patients with CHB and optimizes the choice of treatment regimen, making it a promising marker for monitoring HBV cure.
Collapse
Affiliation(s)
- Yue Qiu
- Department of Infectious Diseases, Institute for Viral Hepatitis, The Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Qiao Tang
- Department of Infectious Diseases, Institute for Viral Hepatitis, The Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Xiao-Qing Liu
- Department of Infectious Diseases, Institute for Viral Hepatitis, The Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yun-Ling Xue
- Department of Infectious Diseases, Institute for Viral Hepatitis, The Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yi Zeng
- Department of Infectious Diseases, Institute for Viral Hepatitis, The Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Peng Hu
- Department of Infectious Diseases, Institute for Viral Hepatitis, The Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|
6
|
Boonstra A, Sari G. HBV cccDNA: The Molecular Reservoir of Hepatitis B Persistence and Challenges to Achieve Viral Eradication. Biomolecules 2025; 15:62. [PMID: 39858456 PMCID: PMC11763949 DOI: 10.3390/biom15010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Hepatitis B virus (HBV) is a major global health issue, with an estimated 254 million people living with chronic HBV infection worldwide as of 2022. Chronic HBV infection is the leading cause of cirrhosis and liver cancer. Current treatment with nucleos(t)ide analogs is effective in the suppression of viral activity but generally requires lifelong treatment. They fail to eradicate the HBV viral reservoir, called covalently closed circular DNA (cccDNA), which replicates in the nucleus of liver cells. The cccDNA serves as the sole template for viral replication, as it generates the pregenomic RNA (pgRNA) necessary for producing new viral genomes. This stable form of viral DNA can reactivate the virus when treatment is stopped. HBV cccDNA is therefore one of the main challenges in curing chronic HBV infections. By targeting steps such as cccDNA formation, capsid assembly, or particle secretion, researchers continue to seek ways to interfere with HBV replication and to reduce its persistence, ultimately to eradicate HBV as a global health problem. This review provides an overview of what is currently known about cccDNA formation and biogenesis and the ongoing efforts to target and eradicate it to cure chronic HBV infections.
Collapse
Affiliation(s)
| | - Gulce Sari
- Department of Gastroenterology and Hepatology, Erasmus Medical Center, Wytemaweg 80, 3015CN Rotterdam, The Netherlands
| |
Collapse
|
7
|
Seo DH, Hur W, Won J, Han JW, Yoon SK, Bae S, Kim KH, Sung PS. Chronic Hepatitis B Genotype C Mouse Model with Persistent Covalently Closed Circular DNA. Viruses 2024; 16:1890. [PMID: 39772197 PMCID: PMC11680097 DOI: 10.3390/v16121890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/29/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Hepatitis B virus (HBV) can cause chronic infections, significantly increasing the risk of death from cirrhosis and hepatocellular carcinoma (HCC). A key player in chronic HBV infection is covalently closed circular DNA (cccDNA), a stable episomal form of viral DNA that acts as a persistent reservoir in infected hepatocytes and drives continuous viral replication. Despite the development of several animal models, few adequately replicate cccDNA formation and maintenance, limiting our understanding of its dynamics and the evaluation of potential therapeutic interventions targeting cccDNA. In this study, we aimed to develop a mouse model to investigate cccDNA formation and maintenance. We infected C57BL/6 mice with recombinant adeno-associated virus (rAAV) carrying a 1.3-overlength HBV genome (genotype C) and collected liver tissue at various time points to assess cccDNA levels and viral replication. Our results demonstrated the successful establishment of a chronic hepatitis B mouse model using rAAV-HBV1.3, which supported persistent HBV infection with sustained cccDNA expression in hepatocytes. Serum levels of HBsAg and HBeAg were elevated for up to 12 weeks, while alanine transaminase (ALT) levels remained within the normal range, indicating limited liver damage during this period. We confirmed HBV DNA expression in hepatocytes, and importantly, cccDNA was detected using qPCR after Plasmid-Safe ATP-Dependent DNase treatment, which selectively removes non-cccDNA forms. Additionally, Southern blot analysis confirmed the presence of cccDNA isolated using the Hirt extraction method. This established model provides a valuable platform for studying the long-term maintenance of cccDNA in chronic HBV infection and offers an important tool for testing novel therapeutic strategies aimed at targeting cccDNA.
Collapse
Affiliation(s)
- Deok-Hwa Seo
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Wonhee Hur
- Division of Chronic Viral Diseases, Center for Emerging Virus Research, National Institute of Health (NIH), Cheongju 28159, Republic of Korea; (W.H.); (S.B.)
| | - Juhee Won
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Ji-Won Han
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea; (J.-W.H.); (S.-K.Y.)
| | - Seung-Kew Yoon
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea; (J.-W.H.); (S.-K.Y.)
| | - Songmee Bae
- Division of Chronic Viral Diseases, Center for Emerging Virus Research, National Institute of Health (NIH), Cheongju 28159, Republic of Korea; (W.H.); (S.B.)
| | - Kyun-Hwan Kim
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Pil-Soo Sung
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea; (J.-W.H.); (S.-K.Y.)
| |
Collapse
|
8
|
Li J, Liu S, Zang Q, Yang R, Zhao Y, He Y. Current trends and advances in antiviral therapy for chronic hepatitis B. Chin Med J (Engl) 2024; 137:2821-2832. [PMID: 38945693 PMCID: PMC11649291 DOI: 10.1097/cm9.0000000000003178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Indexed: 07/02/2024] Open
Abstract
ABSTRACT Chronic hepatitis B virus (HBV) infection is a global public health concern. Existing antiviral drugs, including nucleos(t)ide analogs and interferon-α, can suppress HBV replication and improve the prognosis. However, the persistence of covalently closed circular DNA (cccDNA), the integration of HBV-DNA into the host genome, and compromised immune responses impede the successful treatment of hepatitis B. While achieving a functional cure of HBV remains elusive with the current treatment methods, this is the goal of new therapeutic approaches. Therefore, developing novel antiviral drugs is necessary for achieving a functional or complete cure for chronic hepatitis B. In recent years, substantial progress has been made in drug discovery and development for HBV infection. Direct-acting antiviral agents such as entry inhibitors, capsid assembly modulators, subviral particle release inhibitors, cccDNA silencers, and RNA interference molecules have entered clinical trials. In addition, several immunomodulatory agents, including toll-like receptor agonists, therapeutic vaccines, checkpoint inhibitors, and monoclonal antibodies, are also making their way toward clinical use. In this review, we summarize the recent progress and limitations of chronic hepatitis B treatment and discuss perspectives on approaches to achieving functional cure. Although it will take some time for these new antiviral drugs to be widely used in clinical practice, combination therapy may become a preferable treatment option in the future.
Collapse
Affiliation(s)
- Juan Li
- Department of Infectious Diseases, First Affiliated Teaching Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
- Institution of Hepatology, First Affiliated Teaching Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Siyi Liu
- Department of Infectious Diseases, First Affiliated Teaching Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Qijuan Zang
- Department of Infectious Diseases, First Affiliated Teaching Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Ruijie Yang
- Institution of Hepatology, First Affiliated Teaching Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Yingren Zhao
- Department of Infectious Diseases, First Affiliated Teaching Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
- Institution of Hepatology, First Affiliated Teaching Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
- Shaanxi Clinical Research Center of Infectious Diseases, Xi’an, Shaanxi 710061, China
- Clinical Research Center for Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Yingli He
- Department of Infectious Diseases, First Affiliated Teaching Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
- Institution of Hepatology, First Affiliated Teaching Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
- Shaanxi Clinical Research Center of Infectious Diseases, Xi’an, Shaanxi 710061, China
- Clinical Research Center for Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| |
Collapse
|
9
|
Tu T, Wettengel J, Xia Y, Testoni B, Littlejohn M, Le Bert N, Ebert G, Verrier ER, Tavis JE, Cohen C. Major open questions in the hepatitis B and D field - Proceedings of the inaugural International emerging hepatitis B and hepatitis D researchers workshop. Virology 2024; 595:110089. [PMID: 38640789 PMCID: PMC11517827 DOI: 10.1016/j.virol.2024.110089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/01/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
The early and mid-career researchers (EMCRs) of scientific communities represent the forefront of research and the future direction in which a field takes. The opinions of this key demographic are not commonly aggregated to audit fields and precisely demonstrate where challenges lie for the future. To address this, we initiated the inaugural International Emerging Researchers Workshop for the global Hepatitis B and Hepatitis D scientific community (75 individuals). The cohort was split into small discussion groups and the significant problems, challenges, and future directions were assessed. Here, we summarise the outcome of these discussions and outline the future directions suggested by the EMCR community. We show an effective approach to gauging and accumulating the ideas of EMCRs and provide a succinct summary of the significant gaps remaining in the Hepatitis B and Hepatitis D field.
Collapse
Affiliation(s)
- Thomas Tu
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney at Westmead Hospital, Westmead, NSW, Australia; Centre for Infectious Diseases and Microbiology, Sydney Infectious Diseases Institute, The University of Sydney at Westmead Hospital, Westmead, NSW, Australia.
| | - Jochen Wettengel
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA; Institute of Virology, Technical University of Munich /Helmholtz Munich, Munich, Germany; German Center for Infection Research, Munich Partner Site, 81675, Munich, Germany
| | - Yuchen Xia
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China; Hubei Jiangxia Laboratory, Wuhan, China; Pingyuan Laboratory, Henan, China
| | - Barbara Testoni
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon, Lyon, France; University of Lyon, Université Claude-Bernard, Lyon, France; Hepatology Institute of Lyon, France
| | - Margaret Littlejohn
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital and Department of Infectious Disease, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Nina Le Bert
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Gregor Ebert
- Institute of Virology, Technical University of Munich /Helmholtz Munich, Munich, Germany
| | - Eloi R Verrier
- University of Strasbourg, Inserm, Institute for Translational Medicine and Liver Disease, UMR_S1110, Strasbourg, France
| | - John E Tavis
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine and the Saint Louis University Institute for Drug and Biotherapeutic Innovation, Saint Louis, MO, USA
| | | |
Collapse
|
10
|
Tang L, Remiszewski S, Snedeker A, Chiang LW, Shenk T. An allosteric inhibitor of sirtuin 2 blocks hepatitis B virus covalently closed circular DNA establishment and its transcriptional activity. Antiviral Res 2024; 226:105888. [PMID: 38641024 PMCID: PMC12053749 DOI: 10.1016/j.antiviral.2024.105888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
296 million people worldwide are predisposed to developing severe end-stage liver diseases due to chronic hepatitis B virus (HBV) infection. HBV forms covalently closed circular DNA (cccDNA) molecules that persist as episomal DNA in the nucleus of infected hepatocytes and drive viral replication. Occasionally, the HBV genome becomes integrated into host chromosomal DNA, a process that is believed to significantly contribute to circulating HBsAg levels and HCC development. Neither cccDNA accumulation nor expression from integrated HBV DNA are directly targeted by current antiviral treatments. In this study, we investigated the antiviral properties of a newly described allosteric modulator, FLS-359, that targets sirtuin 2 (SIRT2), an NAD+-dependent deacylase. Our results demonstrate that SIRT2 modulation by FLS-359 and by other tool compounds inhibits cccDNA synthesis following de novo infection of primary human hepatocytes and HepG2 (C3A)-NTCP cells, and FLS-359 substantially reduces cccDNA recycling in HepAD38 cells. While pre-existing cccDNA is not eradicated by short-term treatment with FLS-359, its transcriptional activity is substantially impaired, likely through inhibition of viral promoter activities. Consistent with the inhibition of viral transcription, HBsAg production by HepG2.2.15 cells, which contain integrated HBV genomes, is also suppressed by FLS-359. Our study provides further insights on SIRT2 regulation of HBV infection and supports the development of potent SIRT2 inhibitors as HBV antivirals.
Collapse
Affiliation(s)
- Liudi Tang
- Evrys Bio, LLC, Pennsylvania Biotechnology Center, Doylestown, PA, 18902, USA; Baruch S. Blumberg Institute, Doylestown, PA, 18902, USA.
| | - Stacy Remiszewski
- Evrys Bio, LLC, Pennsylvania Biotechnology Center, Doylestown, PA, 18902, USA
| | | | - Lillian W Chiang
- Evrys Bio, LLC, Pennsylvania Biotechnology Center, Doylestown, PA, 18902, USA
| | - Thomas Shenk
- Evrys Bio, LLC, Pennsylvania Biotechnology Center, Doylestown, PA, 18902, USA; Department of Molecular Biology, Princeton University, Princeton, NJ, 08540, USA
| |
Collapse
|
11
|
Yin S, Chen X, Li X, Zhang F, Wu J, Lin T. Was antiviral prophylaxis necessary after kidney transplantation utilizing HBcAb+ donors? A systematic review and meta-analysis. Transplant Rev (Orlando) 2024; 38:100840. [PMID: 38489866 DOI: 10.1016/j.trre.2024.100840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND Current guidelines lack consensus on whether antiviral prophylaxes should be administered after kidney transplantation from HBcAb+ donors. This systematic review and meta-analysis aimed to evaluate the incidence and risk factors of de novo HBV (DNH) infection, as well as graft and patient survival. METHODS We searched PubMed, Embase, and the Cochrane Library up to December 31, 2023. We included relevant studies that assessed clinical outcomes following transplantation utilizing HBcAb+ kidneys. Summary measures of effect and 95% confidence intervals (CI) for prevalence, risk factors, as well as graft and patient survival were estimated using random-effects meta-analysis. RESULTS Thirteen studies were included for the final analysis. The DNH incidence was at 0.36% (9/2516) with low heterogeneity (I2 = 6%). HBsAb+ recipients (OR: 0.78, 95%CI: 0.25-2.38), HBcAb+ recipients (OR: 3.11, 95%CI: 0.91-10.66, P = 0.071), and recipients not receiving any antiviral prophylaxis (OR: 1.26, 95%CI: 0.15-10.58) were not associated with higher DNH risk. Specifically, HBsAb-/HBcAb+ recipients had the highest DNH incidence (4.65%), followed by HBsAb-/HBcAb- (0.49%), HBsAb+/HBcAb- recipients (0.45%), and HBsAb+/HBcAb+ (0%). Furthermore, recipients receiving HBcAb+ kidneys had comparable graft survival (HR: 1.06, 95%CI: 0.94-1.19, P = 0.55) and patient survival (HR:1.16, 95%CI: 0.98-1.38, P = 0.090) compared with recipients receiving HBcAb- kidneys. CONCLUSION Kidney transplantation utilizing HBcAb+ kidneys contributed to comparable graft and patient survival with an extremely low risk of HBV transmission. Antiviral prophylaxes may only be administered in HBsAb-/HBcAb+ recipients.
Collapse
Affiliation(s)
- Saifu Yin
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu City, Sichuan Province, China; Kidney Transplantation Center, West China Hospital, Sichuan University, Chengdu City, Sichuan Province, China
| | - Xiaoting Chen
- Animal Experimental Center, West China Hospital, Sichuan University, Chengdu City, Sichuan Province, China
| | - Xingxing Li
- Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, China
| | - Fan Zhang
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu City, Sichuan Province, China; Kidney Transplantation Center, West China Hospital, Sichuan University, Chengdu City, Sichuan Province, China
| | - Jiapei Wu
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu City, Sichuan Province, China; Kidney Transplantation Center, West China Hospital, Sichuan University, Chengdu City, Sichuan Province, China
| | - Tao Lin
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu City, Sichuan Province, China; Kidney Transplantation Center, West China Hospital, Sichuan University, Chengdu City, Sichuan Province, China.
| |
Collapse
|
12
|
Soriano V, Moreno-Torres V, Treviño A, de Jesús F, Corral O, de Mendoza C. Prospects for Controlling Hepatitis B Globally. Pathogens 2024; 13:291. [PMID: 38668246 PMCID: PMC11054959 DOI: 10.3390/pathogens13040291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/29/2024] Open
Abstract
Infection with the hepatitis B virus (HBV) is highly prevalent globally. Over 250 million people suffer from chronic hepatitis B, and more than 800,000 patients die each year due to hepatitis B complications, including liver cancer. Although protective HBV vaccines are recommended for all newborns, global coverage is suboptimal. In adults, sexual transmission is by far the most frequent route of contagion. The WHO estimates that 1.5 million new HBV infections occur annually. Oral nucleos(t)ide analogues entecavir and tenofovir are the most frequent antivirals prescribed as HBV therapy. Almost all patients adherent to the medication achieve undetectable plasma viremia beyond 6 months of monotherapy. However, less than 5% achieve anti-HBs seroconversion, and viral rebound occurs following drug discontinuation. Therefore, nucleos(t)ide analogues need to be lifelong. New long-acting formulations of tenofovir and entecavir are being developed that will maximize treatment benefit and overcome adherence barriers. Furthermore, new antiviral agents are in development, including entry inhibitors, capside assembly modulators, and RNA interference molecules. The use of combination therapy pursues a functional HBV cure, meaning it is negative for both circulating HBV-DNA and HBsAg. Even when this goal is achieved, the cccDNA reservoir within infected hepatocytes remains a signal of past infection, and HBV can reactivate under immune suppression. Therefore, new gene therapies, including gene editing, are eagerly being pursued to silence or definitively disrupt HBV genomes within infected hepatocytes and, in this way, ultimately cure hepatitis B. At this time, three actions can be taken to push HBV eradication globally: (1) expand universal newborn HBV vaccination; (2) perform once-in-life testing of all adults to identify susceptible HBV persons that could be vaccinated (or re-vaccinated) and unveil asymptomatic carriers that could benefit from treatment; and (3) provide earlier antiviral therapy to chronic HBV carriers, as being aviremic reduces the risk of both clinical progression and transmission.
Collapse
Affiliation(s)
- Vicente Soriano
- UNIR Health Sciences School & Medical Center, 28010 Madrid, Spain
| | - Víctor Moreno-Torres
- UNIR Health Sciences School & Medical Center, 28010 Madrid, Spain
- Department of Internal Medicine, Puerta de Hierro University Hospital, Majadahonda, 28222 Madrid, Spain
| | - Ana Treviño
- UNIR Health Sciences School & Medical Center, 28010 Madrid, Spain
| | | | - Octavio Corral
- UNIR Health Sciences School & Medical Center, 28010 Madrid, Spain
| | - Carmen de Mendoza
- Department of Internal Medicine, Puerta de Hierro University Hospital, Majadahonda, 28222 Madrid, Spain
| |
Collapse
|
13
|
Pi Y, Li Y, Yan Q, Luo H, Zhou P, Chang W, Gong D, Hu Y, Wang K, Tang N, Huang A, Chen Y. SPOP inhibits HBV transcription and replication by ubiquitination and degradation of HNF1α. J Med Virol 2023; 95:e29254. [PMID: 38018242 DOI: 10.1002/jmv.29254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/20/2023] [Accepted: 11/11/2023] [Indexed: 11/30/2023]
Abstract
Hepatitis B virus (HBV) infection remains a significant public health burden worldwide. The persistence of covalently closed circular DNA (cccDNA) within the nucleus of infected hepatocytes is responsible for the failure of antiviral treatments. The ubiquitin proteasome system (UPS) has emerged as a promising antiviral target, as it can regulate HBV replication by promoting critical protein degradation in steps of viral life cycle. Speckle-type POZ protein (SPOP) is a critical adaptor for Cul3-RBX1 E3 ubiquitin ligase complex, but the effect of SPOP on HBV replication is less known. Here, we identified SPOP as a novel host antiviral factor against HBV infection. SPOP overexpression significantly inhibited the transcriptional activity of HBV cccDNA without affecting cccDNA level in HBV-infected HepG2-NTCP and primary human hepatocyte cells. Mechanism studies showed that SPOP interacted with hepatocyte nuclear factor 1α (HNF1α), and induced HNF1α degradation through host UPS pathway. Moreover, the antiviral role of SPOP was also confirmed in vivo. Together, our findings reveal that SPOP is a novel host factor which inhibits HBV transcription and replication by ubiquitination and degradation of HNF1α, providing a potential therapeutic strategy for the treatment of HBV infection.
Collapse
Affiliation(s)
- Yubo Pi
- Key Laboratory of Molecular Biology for Infectious Diseases, Department of Infectious Diseases, Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Institute for Viral Hepatitis, Chongqing, China
| | - Yang Li
- Chongqing Big Data Research Institute of Peking University, Chongqing, China
| | - Qi Yan
- Key Laboratory of Molecular Biology for Infectious Diseases, Department of Infectious Diseases, Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Institute for Viral Hepatitis, Chongqing, China
| | - Huimin Luo
- Key Laboratory of Molecular Biology for Infectious Diseases, Department of Infectious Diseases, Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Institute for Viral Hepatitis, Chongqing, China
| | - Peng Zhou
- Key Laboratory of Molecular Biology for Infectious Diseases, Department of Infectious Diseases, Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Institute for Viral Hepatitis, Chongqing, China
| | - Wenyi Chang
- Key Laboratory of Molecular Biology for Infectious Diseases, Department of Infectious Diseases, Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Institute for Viral Hepatitis, Chongqing, China
| | - Deao Gong
- Key Laboratory of Molecular Biology for Infectious Diseases, Department of Infectious Diseases, Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Institute for Viral Hepatitis, Chongqing, China
| | - Yuan Hu
- Key Laboratory of Molecular Biology for Infectious Diseases, Department of Infectious Diseases, Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Institute for Viral Hepatitis, Chongqing, China
| | - Kai Wang
- Key Laboratory of Molecular Biology for Infectious Diseases, Department of Infectious Diseases, Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Institute for Viral Hepatitis, Chongqing, China
| | - Ni Tang
- Key Laboratory of Molecular Biology for Infectious Diseases, Department of Infectious Diseases, Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Institute for Viral Hepatitis, Chongqing, China
| | - Ailong Huang
- Key Laboratory of Molecular Biology for Infectious Diseases, Department of Infectious Diseases, Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Institute for Viral Hepatitis, Chongqing, China
| | - Yanmeng Chen
- Key Laboratory of Laboratory Medical Diagnostics, Department of Laboratory Medicine, Ministry of Education, Chongqing Medical University, Chongqing, China
| |
Collapse
|
14
|
Zhuang AQ, Chen Y, Chen SM, Liu WC, Li Y, Zhang WJ, Wu YH. Current Status and Challenges in Anti-Hepatitis B Virus Agents Based on Inactivation/Inhibition or Elimination of Hepatitis B Virus Covalently Closed Circular DNA. Viruses 2023; 15:2315. [PMID: 38140556 PMCID: PMC10747957 DOI: 10.3390/v15122315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
There has been over half a century since the discovery of hepatitis B virus (HBV) to now, but approximately 300 million patients with chronic hepatitis B (CHB) still live in the world, resulting in about one million deaths every year. Although currently approved antivirals (e.g., nucleoside analogues) are effective at reducing HBV replication, they have almost no impact on the existing HBV covalently closed circular DNA (cccDNA) reservoir. HBV cccDNA is a critical obstacle to the complete elimination of the virus via antiviral therapy. The true cure of HBV infection requires the eradication of viral cccDNA from HBV-infected cells; thus, the development of new agents directly or indirectly targeting HBV cccDNA is urgently needed due to the limitations of current available drugs against HBV infection. In this regard, it is the major focus of current anti-HBV research worldwide via different mechanisms to either inactivate/inhibit (functional cure) or eliminate (complete cure) HBV cccDNA. Therefore, this review discussed and summarized recent advances and challenges in efforts to inactivate/silence or eliminate viral cccDNA using anti-HBV agents from different sources, such as small molecules (including epigenetic drugs) and polypeptides/proteins, and siRNA or gene-editing approaches targeting/attenuating HBV cccDNA via different mechanisms, as well as future directions that may be considered in efforts to truly cure chronic HBV infection. In conclusion, no breakthrough has been made yet in attenuating HBV cccDNA, although a number of candidates have advanced into the phase of clinical trials. Furthermore, the overwhelming majority of the candidates function to indirectly target HBV cccDNA. No outstanding candidate directly targets HBV cccDNA. Relatively speaking, CCC_R08 and nitazoxanide may be some of the most promising agents to clear HBV infection in small molecule compounds. Additionally, CRISPR-Cas9 systems can directly target HBV cccDNA for decay and demonstrate significant anti-HBV activity. Consequently, gene-editing approaches targeting HBV cccDNA may be one of the most promising means to achieve the core goal of anti-HBV therapeutic strategies. In short, more basic studies on HBV infection need to be carried out to overcome these challenges.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yi-Hang Wu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, Department of Pharmacy, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
15
|
Ogunnaike M, Das S, Raut SS, Sultana A, Nayan MU, Ganesan M, Edagwa BJ, Osna NA, Poluektova LY. Chronic Hepatitis B Infection: New Approaches towards Cure. Biomolecules 2023; 13:1208. [PMID: 37627273 PMCID: PMC10452112 DOI: 10.3390/biom13081208] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infection leads to the development of cirrhosis and hepatocellular carcinoma. Lifelong treatment with nucleotides/nucleoside antiviral agents is effective at suppressing HBV replication, however, adherence to daily therapy can be challenging. This review discusses recent advances in the development of long-acting formulations for HBV treatment and prevention, which could potentially improve adherence. Promising new compounds that target distinct steps of the virus life cycle are summarized. In addition to treatments that suppress viral replication, curative strategies are focused on the elimination of covalently closed circular DNA and the inactivation of the integrated viral DNA from infected hepatocytes. We highlight promising long-acting antivirals and genome editing strategies for the elimination or deactivation of persistent viral DNA products in development.
Collapse
Affiliation(s)
- Mojisola Ogunnaike
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA; (M.O.); (S.D.); (S.S.R.); (A.S.); (M.U.N.); (M.G.)
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Srijanee Das
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA; (M.O.); (S.D.); (S.S.R.); (A.S.); (M.U.N.); (M.G.)
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Samiksha S. Raut
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA; (M.O.); (S.D.); (S.S.R.); (A.S.); (M.U.N.); (M.G.)
| | - Ashrafi Sultana
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA; (M.O.); (S.D.); (S.S.R.); (A.S.); (M.U.N.); (M.G.)
| | - Mohammad Ullah Nayan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA; (M.O.); (S.D.); (S.S.R.); (A.S.); (M.U.N.); (M.G.)
| | - Murali Ganesan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA; (M.O.); (S.D.); (S.S.R.); (A.S.); (M.U.N.); (M.G.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Benson J. Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA; (M.O.); (S.D.); (S.S.R.); (A.S.); (M.U.N.); (M.G.)
| | - Natalia A. Osna
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA; (M.O.); (S.D.); (S.S.R.); (A.S.); (M.U.N.); (M.G.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Larisa Y. Poluektova
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA; (M.O.); (S.D.); (S.S.R.); (A.S.); (M.U.N.); (M.G.)
| |
Collapse
|