1
|
Yan S, Yin XM. Cholestasis in alcohol-associated liver disease. THE AMERICAN JOURNAL OF PATHOLOGY 2025:S0002-9440(25)00155-5. [PMID: 40350058 DOI: 10.1016/j.ajpath.2025.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/11/2025] [Accepted: 04/22/2025] [Indexed: 05/14/2025]
Abstract
Alcohol-associated liver disease (ALD) is a leading cause of liver-related morbidity and mortality. ALD covers a spectrum of diseases ranging from mild and reversible hepatic steatosis to the development of fibrosis, cirrhosis, and alcohol-associated hepatitis (AH). AH is marked by a rapid onset of jaundice and elevated serum levels of aspartate aminotransferase in individuals with heavy alcohol use. It can progress to acute-on-chronic liver failure with a mortality rate of approximately 30% within the first month. Unfortunately, treatment options for AH are still limited. Cholestasis refers to an impairment in bile formation or flow, leading to clinical symptoms such as fatigue, pruritus, and jaundice. Cholestasis and biliary dysfunction are commonly seen in patients with AH and can significantly worsen the prognosis. However, the mechanisms and roles of cholestasis in ALD are not yet fully understood. In this review, we will summarize recent findings and explore the potential roles and mechanisms of cholestasis in the progression of ALD.
Collapse
Affiliation(s)
- Shengmin Yan
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana, United States of America.
| | - Xiao-Ming Yin
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| |
Collapse
|
2
|
Meng L, Lv H, Liu A, Cao Q, Du X, Li C, Li Q, Luo Q, Xiao Y. Albiflorin inhibits inflammation to improve liver fibrosis by targeting the CXCL12/CXCR4 axis in mice. Front Pharmacol 2025; 16:1577201. [PMID: 40371331 PMCID: PMC12074940 DOI: 10.3389/fphar.2025.1577201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Accepted: 04/18/2025] [Indexed: 05/16/2025] Open
Abstract
Liver fibrosis is a common pathological feature of chronic hepatic injury that currently lacks effective therapeutic interventions. Albiflorin (ALB), a pinane-type monoterpene derived from Paeonia lactiflora Pall, has notable anti-inflammatory and hepatoprotective effects. However, the potential role of ALB against liver fibrosis is largely unknown. In this study, we discovered that ALB significantly inhibited CCl4-induced liver fibrosis in mice. This was evidenced by improvements in liver and kidney function indexes, fibrosis indicators, and histopathological findings. In vitro studies also showed that ALB inhibited TGF-β1-induced LX-2 cell activation and reduced the expression of α-SMA and collagen I. Additionally, we found that ALB mitigates inflammation and ameliorates liver fibrosis by targeting the CXCL12/CXCR4 axis, as confirmed using the CXCR4 inhibitor AMD3100 in CCl4-treated mice. Notably, combining ALB with metformin (MET) enhanced the inhibition of liver fibrosis progression. These findings highlight that ALB exerts anti-liver fibrosis effects by targeting the CXCL12/CXCR4 axis, underscoring its potential as a standalone treatment or as an adjuvant therapy.
Collapse
Affiliation(s)
- Lingjie Meng
- Institute of life sciences, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Huijing Lv
- Institute of life sciences, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Anli Liu
- Institute of life sciences, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Qian Cao
- Institute of life sciences, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xinyi Du
- Institute of life sciences, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Chengjin Li
- Institute of life sciences, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Qinggui Li
- Institute of life sciences, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Qingqing Luo
- Institute of life sciences, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yi Xiao
- Institute of life sciences, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
3
|
Gupta V, Sehrawat TS, Pinzani M, Strazzabosco M. Portal Fibrosis and the Ductular Reaction: Pathophysiological Role in the Progression of Liver Disease and Translational Opportunities. Gastroenterology 2025; 168:675-690. [PMID: 39251168 PMCID: PMC11885590 DOI: 10.1053/j.gastro.2024.07.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/27/2024] [Accepted: 07/20/2024] [Indexed: 09/11/2024]
Abstract
A consistent feature of chronic liver diseases and the hallmark of pathologic repair is the so-called "ductular reaction." This is a histologic abnormality characterized by an expansion of dysmorphic cholangiocytes inside and around portal spaces infiltrated by inflammatory, mesenchymal, and vascular cells. The ductular reaction is a highly regulated response based on the reactivation of morphogenetic signaling mechanisms and a complex crosstalk among a multitude of cell types. The nature and mechanism of these exchanges determine the difference between healthy regenerative liver repair and pathologic repair. An orchestrated signaling among cell types directs mesenchymal cells to deposit a specific extracellular matrix with distinct physical and biochemical properties defined as portal fibrosis. Progression of fibrosis leads to vast architectural and vascular changes known as "liver cirrhosis." The signals regulating the ecology of this microenvironment are just beginning to be addressed. Contrary to the tumor microenvironment, immune modulation inside this "benign" microenvironment is scarcely known. One of the reasons for this is that both the ductular reaction and portal fibrosis have been primarily considered a manifestation of cholestatic liver disease, whereas this phenomenon is also present, albeit with distinctive features, in all chronic human liver diseases. Novel human-derived cellular models and progress in "omics" technologies are increasing our knowledge at a fast pace. Most importantly, this knowledge is on the edge of generating new diagnostic and therapeutic advances. Here, we will critically review the latest advances, in terms of mechanisms, pathophysiology, and treatment prospects. In addition, we will delineate future avenues of research, including innovative translational opportunities.
Collapse
Affiliation(s)
- Vikas Gupta
- Liver Center and Section of Digestive Diseases, Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Tejasav S Sehrawat
- Liver Center and Section of Digestive Diseases, Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Massimo Pinzani
- UCL Institute for Liver & Digestive Health, Royal Free Hospital, London, United Kingdom; University of Pittsburgh Medical Center-Mediterranean Institute for Transplantation and Highly Specialized Therapies, Palermo, Italy
| | - Mario Strazzabosco
- Liver Center and Section of Digestive Diseases, Department of Internal Medicine, Yale University, New Haven, Connecticut.
| |
Collapse
|
4
|
Tang S, Wu S, Zhang W, Ma L, Zuo L, Wang H. Immunology and treatments of fatty liver disease. Arch Toxicol 2025; 99:127-152. [PMID: 39692857 DOI: 10.1007/s00204-024-03920-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024]
Abstract
Alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD) are two major chronic liver diseases worldwide. The triggers for fatty liver can be derived from external sources such as adipose tissue, the gut, personal diet, and genetics, or internal sources, including immune cell responses, lipotoxicity, hepatocyte death, mitochondrial dysfunction, and extracellular vesicles. However, their pathogenesis varies to some extent. This review summarizes various immune mechanisms and therapeutic targets associated with these two types of fatty liver disease. It describes the gut-liver axis and adipose tissue-liver crosstalk, as well as the roles of different immune cells (both innate and adaptive immune cells) in fatty liver disease. Additionally, mitochondrial dysfunction, extracellular vesicles, microRNAs (miRNAs), and gastrointestinal hormones are also related to the pathogenesis of fatty liver. Understanding the pathogenesis of fatty liver and corresponding therapeutic strategies provides a new perspective for developing novel treatments for fatty liver disease.
Collapse
Affiliation(s)
- Sainan Tang
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China
- Laboratory of Molecular Biology, Department of Biochemistry, School of Basic Medical Science, Anhui Medical University, Hefei, 230022, Anhui, China
| | - Shanshan Wu
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China
- Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, Anhui, China
| | - Wenzhe Zhang
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China
- The First College of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Lili Ma
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China
- The First College of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Li Zuo
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China.
- Laboratory of Molecular Biology, Department of Biochemistry, School of Basic Medical Science, Anhui Medical University, Hefei, 230022, Anhui, China.
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
5
|
Lu C, Zhang Y, Sun C, Na Y, Sun H, Ma J, Wang X, Cang X. Stromal Cell Derived Factor-1 Promotes Hepatic Insulin Resistance via Inhibiting Hepatocyte Lipophagy. J Cell Mol Med 2025; 29:e70352. [PMID: 39855896 PMCID: PMC11761003 DOI: 10.1111/jcmm.70352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 12/26/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Saturated fatty acid (SFA) accumulation in liver decreases hepatocyte lipophagy, a type of selective autophagy that degrades intracellular lipid droplets, leading to hepatic insulin resistance (IR), which contributes to simultaneous increases in liver glucose production and fat synthesis, resulting in hyperglycemia and dyslipidemia traits of type 2 diabetes mellitus (T2DM). Stromal cell derived factor-1 (SDF-1), a cytokine produced by hepatocytes, inhibits autophagy. In this study, we evaluated the hypothesis that SDF-1 promoted hepatic IR via inhibiting hepatocyte lipophagy during T2DM. Furthermore, we probed the downstream pathway participating in the role of SDF-1. The results showed that the neutralising of SDF-1 improved hepatic IR via promoting hepatocyte lipophagy in a mouse high-fat and high sucrose diet (HFHSD)-induced T2DM model. In vitro, SDF-1 expression and release increased in palmitic acid (PA, a kind of SFA)-treated hepatocytes. Meanwhile, SDF-1 bound to up-regulated C-X-C chemokine receptor type 4 (CXCR4) and C-X-C chemokine receptor type 7 (CXCR7) on PA-treated hepatocytes. Subsequently, SDF-1 inhibited lipophagy in PA-treated hepatocytes via CXCR4, rather than CXCR7. Finally, SDF-1/CXCR4/protein kinase B (AKT)/mechanistic target of rapamycin (mTOR) pathway-inhibited lipophagy promotes PA-induced hepatocyte IR. Collectively, this study discovered that SDF-1 might inhibit lipophagy in SFA-treated hepatocytes to promote hepatic IR via CXCR4/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Chunfeng Lu
- Department of EndocrinologySecondary Affiliated Hospital of Nantong University and the First People's Hospital of NantongNantongJiangsuChina
| | - Yuting Zhang
- Department of PathologyLixiang Eye Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Cuilian Sun
- Department of Pathogen Biology, Medical CollegeNantong UniversityNantongJiangsuChina
| | - Yuhang Na
- Department of Pathogen Biology, Medical CollegeNantong UniversityNantongJiangsuChina
| | - Haotian Sun
- Department of PathologyLixiang Eye Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Jianhua Ma
- Department of Endocrinology, Nanjing First HospitalNanjing Medical UniversityNanjingJiangsuChina
| | - Xueqin Wang
- Department of EndocrinologySecondary Affiliated Hospital of Nantong University and the First People's Hospital of NantongNantongJiangsuChina
| | - Xiaomin Cang
- Department of EndocrinologySecondary Affiliated Hospital of Nantong University and the First People's Hospital of NantongNantongJiangsuChina
| |
Collapse
|
6
|
Mullish BH, Thursz MR. Alcohol-associated liver disease: Emerging therapeutic strategies. Hepatology 2024; 80:1372-1389. [PMID: 38922808 DOI: 10.1097/hep.0000000000000986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024]
Abstract
The large and growing burden of alcohol-associated liver disease-and the considerable burden of morbidity and mortality associated with it-has been a drive toward ongoing research into novel strategies for its treatment, with a particular focus upon alcohol-associated hepatitis (AH). Management of alcohol-use disorder forms the central pillar of alcohol-associated liver disease care, with evidence-based psychological and pharmacological approaches being well established, and certain models demonstrating improved clinical outcomes when hepatology and addiction services are co-located. Corticosteroids have previously been used somewhat indiscriminately in patients with severe AH, but effective tools now exist to assess early response (and limit futile ongoing exposure). Techniques to predict risk of corticosteroid-related infection are also available, although current clinical strategies to mitigate this risk are limited. A variety of novel therapeutic approaches to AH are at different phases of trials and evidence gathering, with some of the most promising signals related to cytokine manipulation, epigenetic modulation, and targeting of the gut microbiota (ie, by means of fecal microbiota transplant). While remaining an ongoing source of debate, early liver transplant in severe AH has grown in interest and acceptability over the past decade as evidence supporting its efficacy builds, in the process challenging paradigms about mandatory pretransplant sobriety periods. However, uncertainty remains regarding the optimal selection criteria, and whether liver transplant has a role for only a highly limited proportion of patients with AH or more widespread application. This review aims to provide an overview of this fast-moving field.
Collapse
Affiliation(s)
- Benjamin H Mullish
- Section of Hepatology and Gastroenterology, Department of Metabolism, Digestion and Reproduction, Division of Digestive Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
- Department of Hepatology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Mark R Thursz
- Section of Hepatology and Gastroenterology, Department of Metabolism, Digestion and Reproduction, Division of Digestive Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
- Department of Hepatology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| |
Collapse
|
7
|
Spalding VA, Fellenstein BA, Ahodantin J, Jeyarajan AJ, Wang Y, Khan SK, Xu M, Lin W, Alatrakchi N, Su L, Chung RT, Salloum S. YAP mediates HIV-related liver fibrosis. JHEP Rep 2024; 6:101163. [PMID: 39524207 PMCID: PMC11544392 DOI: 10.1016/j.jhepr.2024.101163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/18/2024] [Accepted: 06/26/2024] [Indexed: 11/16/2024] Open
Abstract
Background & Aims HIV accelerates liver fibrosis attributable to multiple etiologies, including HCV, HBV, and steatotic liver disease. Evidence also suggests that HIV infection itself is associated with liver fibrogenesis. Recent studies have implicated Yes-associated protein 1 (YAP1) and the upstream lysophosphatidic acid (LPA)/PI3K/AKT pathway as critical regulators of hepatic fibrogenesis, and suggest a connection to HIV-related liver fibrosis. However, the relationship between YAP/PI3K/AKT pathway activation and HIV-related liver fibrosis remains uncertain. Methods qPCR, western blot, immunofluorescence, and ELISA (replicates n ≥3) were performed in an unbiased humanized mouse model (NRG-hu HSC mice, n = 6), the precision cut liver slice ex vivo model, and both traditional in vitro models as well as a 3D spheroid system. Results YAP target gene mRNA and protein levels (ANKRD, CTGF, CYR61) were upregulated across all models exposed to HIV. Humanized mice infected with HIV had significant increases in the percentage of YAP-positive nuclei (2.2-fold) and the percentage area of Sirius Red collagen staining (3.3-fold) compared to control mice. Serum concentrations of LPA were increased 5.8-fold in people living with HIV compared to healthy controls. Modulation of LPAR1, PI3K, and AKT by either inhibitors or small-interfering RNAs abrogated the fibrotic effects of HIV exposure and downregulated YAP target genes within cultured liver cells. Conclusions The LPAR/PI3K/AKT axis is vital for the activation of YAP and hepatic fibrogenesis due to HIV infection. This novel mechanistic insight suggests new pharmacologic targets for treatment of liver fibrosis in people living with HIV. Impact and implications There are currently no FDA-approved treatments for cirrhosis, while liver disease is the second leading cause of mortality among people living with HIV after AIDS. Increased lysophosphatidic acid concentrations and AKT activation after HIV infection found in recent work suggest that the Hippo pathway may be a key regulator of HIV-related fibrogenesis. By linking lysophosphatidic acid signaling, YAP activation, and HIV-related fibrogenesis, this mechanism presents a target for future research into therapeutic interventions for not only HIV but also other liver diseases, e.g. metabolic dysfunction- or alcohol-associated liver disease.
Collapse
Affiliation(s)
- Volney A. Spalding
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Brian A. Fellenstein
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - James Ahodantin
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Andre J. Jeyarajan
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Yongtao Wang
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Sanjoy K. Khan
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Min Xu
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Wenyu Lin
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Nadia Alatrakchi
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Lishan Su
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Raymond T. Chung
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Shadi Salloum
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| |
Collapse
|
8
|
Mandrekar P, Mandal A. Pathogenesis of Alcohol-Associated Liver Disease. Clin Liver Dis 2024; 28:647-661. [PMID: 39362713 DOI: 10.1016/j.cld.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The pathogenesis of alcohol-associated liver disease (ALD) is complex and multifactorial. Several intracellular, intrahepatic, and extrahepatic factors influence development of early fatty liver injury leading to inflammation and fibrosis. Alcohol metabolism, cellular stress, and gut-derived factors contribute to hepatocyte and immune cell injury leading to cytokine and chemokine production. The pathogenesis of alcohol-associated hepatitis (AH), an advanced form of acute-on-chronic liver failure due to excessive chronic intake in patients with underlying liver disease, is not well understood. While pathogenic mechanisms in early ALD are studied, the pathogenesis of AH requires further investigation to help design effective drugs for patients.
Collapse
Affiliation(s)
- Pranoti Mandrekar
- Department of Medicine, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| | - Abhishek Mandal
- Department of Medicine, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
9
|
Gao H, Jiang Y, Zeng G, Huda N, Thoudam T, Yang Z, Liangpunsakul S, Ma J. Cell-to-cell and organ-to-organ crosstalk in the pathogenesis of alcohol-associated liver disease. EGASTROENTEROLOGY 2024; 2:e100104. [PMID: 39735421 PMCID: PMC11674000 DOI: 10.1136/egastro-2024-100104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/08/2024] [Indexed: 12/31/2024]
Abstract
Alcohol-associated liver disease (ALD) is a growing global health concern and its prevalence and severity are increasing steadily. While bacterial endotoxin translocation into the portal circulation is a well-established key factor, recent evidence highlights the critical role of sterile inflammation, triggered by diverse stimuli, in alcohol-induced liver injury. This review provides a comprehensive analysis of the complex interactions within the hepatic microenvironment in ALD. It examines the contributions of both parenchymal cells, like hepatocytes, and non-parenchymal cells, such as hepatic stellate cells, Kupffer cells, neutrophils, and liver sinusoidal endothelial cells, in driving the progression of the disease. Additionally, we explored the involvement of key mediators, including cytokines, chemokines and inflammasomes, which regulate inflammatory responses and promote liver injury and fibrosis. A particular focus has been placed on extracellular vesicles (EVs) as essential mediators of intercellular communication both within and beyond the liver. These vesicles facilitate the transfer of signalling molecules, such as microRNAs and proteins, which modulate immune responses, fibrogenesis and lipid metabolism, thereby influencing disease progression. Moreover, we underscore the importance of organ-to-organ crosstalk, particularly in the gut-liver axis, where dysbiosis and increased intestinal permeability lead to microbial translocation, exacerbating hepatic inflammation. The adipose-liver axis is also highlighted, particularly the impact of adipokines and free fatty acids from adipose tissue on hepatic steatosis and inflammation in the context of alcohol consumption.
Collapse
Affiliation(s)
- Hui Gao
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yanchao Jiang
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ge Zeng
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Infectious Diseases, Southern Medical University, Guangzhou, China
| | - Nazmul Huda
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Themis Thoudam
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Zhihong Yang
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Suthat Liangpunsakul
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, USA
| | - Jing Ma
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
10
|
Yang C, Yang Y, Hu X, Tang Q, Zhang J, Zhang P, Lu X, Xu J, Li S, Dong Z, Zhu L, Wang L. Loss of GCN5L1 exacerbates damage in alcoholic liver disease through ferroptosis activation. Liver Int 2024; 44:1924-1936. [PMID: 38597373 DOI: 10.1111/liv.15936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND AND AIMS Iron overload, oxidative stress and ferroptosis are associated with liver injury in alcohol-associated liver disease (ALD), however, the crosstalk among these regulatory pathways in ALD development is unclear. METHODS ALD mouse model and general control of amino acid synthesis 5 like 1 (GCN5L1) liver knockout mice were generated to investigate the role of GCN5L1 in ALD development. Proteomic screening tests were performed to identify the key factors mediating GCN5L1 loss-induced ALD. RESULTS Gene Expression Omnibus data set analysis indicates that GCN5L1 expression is negatively associated with ALD progression. GCN5L1 hepatic knockout mice develop severe liver injury and lipid accumulation when fed an alcohol diet. Screening tests identified that GCN5L1 targeted the mitochondrial iron transporter CISD1 to regulate mitochondrial iron homeostasis in ethanol-induced ferroptosis. GCN5L1-modulated CISD1 acetylation and activity were crucial for iron accumulation and ferroptosis in response to alcohol exposure. CONCLUSION Pharmaceutical modulation of CISD1 activity is critical for cellular iron homeostasis and ethanol-induced ferroptosis. The GCN5L1/CISD1 axis is crucial for oxidative stress and ethanol-induced ferroptosis in ALD and is a promising avenue for novel therapeutic strategies.
Collapse
Affiliation(s)
- Chenxi Yang
- Department of Pharmacology, State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory of Inflammatory Biology, The Province and Ministry Co-Sponsored Collaborative Innovation Centre for Medical Epigenetics, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ye Yang
- Department of Pharmacology, State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory of Inflammatory Biology, The Province and Ministry Co-Sponsored Collaborative Innovation Centre for Medical Epigenetics, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiuya Hu
- Tianjin Key Laboratory of Cell Homeostasis and Major Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qiqi Tang
- Department of Pharmacology, State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory of Inflammatory Biology, The Province and Ministry Co-Sponsored Collaborative Innovation Centre for Medical Epigenetics, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jiaqi Zhang
- Tianjin Key Laboratory of Cell Homeostasis and Major Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Peiyu Zhang
- Tianjin Key Laboratory of Cell Homeostasis and Major Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xin Lu
- Tianjin Key Laboratory of Cell Homeostasis and Major Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Juan Xu
- Department of Pharmacology, State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory of Inflammatory Biology, The Province and Ministry Co-Sponsored Collaborative Innovation Centre for Medical Epigenetics, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Sai Li
- Department of Pharmacology, State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory of Inflammatory Biology, The Province and Ministry Co-Sponsored Collaborative Innovation Centre for Medical Epigenetics, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhengni Dong
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lu Zhu
- Department of Pharmacology, State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory of Inflammatory Biology, The Province and Ministry Co-Sponsored Collaborative Innovation Centre for Medical Epigenetics, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Lingdi Wang
- Tianjin Key Laboratory of Cell Homeostasis and Major Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
11
|
Feng D, Hwang S, Guillot A, Wang Y, Guan Y, Chen C, Maccioni L, Gao B. Inflammation in Alcohol-Associated Hepatitis: Pathogenesis and Therapeutic Targets. Cell Mol Gastroenterol Hepatol 2024; 18:101352. [PMID: 38697358 PMCID: PMC11234022 DOI: 10.1016/j.jcmgh.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
Alcohol-associated hepatitis (AH) is an acute-on-chronic liver injury that occurs in patients with chronic alcohol-associated liver disease (ALD). Patients with severe AH have high short-term mortality and lack effective pharmacologic therapies. Inflammation is believed to be one of the key factors promoting AH progression and has been actively investigated as therapeutic targets over the last several decades, but no effective inflammatory targets have been identified so far. In this review, we discuss how inflammatory cells and the inflammatory mediators produced by these cells contribute to the development and progression of AH, with focus on neutrophils and macrophages. The crosstalk between inflammatory cells and liver nonparenchymal cells in the pathogenesis of AH is elaborated. We also deliberate the application of recent cutting-edge technologies in characterizing liver inflammation in AH. Finally, the potential therapeutic targets of inflammatory mediators for AH are briefly summarized.
Collapse
Affiliation(s)
- Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland.
| | - Seonghwan Hwang
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Adrien Guillot
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Yang Wang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Yukun Guan
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Cheng Chen
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Luca Maccioni
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
12
|
Mavila N, Siraganahalli Eshwaraiah M, Kennedy J. Ductular Reactions in Liver Injury, Regeneration, and Disease Progression-An Overview. Cells 2024; 13:579. [PMID: 38607018 PMCID: PMC11011399 DOI: 10.3390/cells13070579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024] Open
Abstract
Ductular reaction (DR) is a complex cellular response that occurs in the liver during chronic injuries. DR mainly consists of hyper-proliferative or reactive cholangiocytes and, to a lesser extent, de-differentiated hepatocytes and liver progenitors presenting a close spatial interaction with periportal mesenchyme and immune cells. The underlying pathology of DRs leads to extensive tissue remodeling in chronic liver diseases. DR initiates as a tissue-regeneration mechanism in the liver; however, its close association with progressive fibrosis and inflammation in many chronic liver diseases makes it a more complicated pathological response than a simple regenerative process. An in-depth understanding of the cellular physiology of DRs and their contribution to tissue repair, inflammation, and progressive fibrosis can help scientists develop cell-type specific targeted therapies to manage liver fibrosis and chronic liver diseases effectively.
Collapse
Affiliation(s)
- Nirmala Mavila
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (M.S.E.); (J.K.)
- Division of Applied Cell Biology and Physiology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Mallikarjuna Siraganahalli Eshwaraiah
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (M.S.E.); (J.K.)
| | - Jaquelene Kennedy
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (M.S.E.); (J.K.)
| |
Collapse
|
13
|
Abstract
Alcohol-associated liver disease (ALD) is a major cause of chronic liver disease worldwide, and comprises a spectrum of several different disorders, including simple steatosis, steatohepatitis, cirrhosis, and superimposed hepatocellular carcinoma. Although tremendous progress has been made in the field of ALD over the last 20 years, the pathogenesis of ALD remains obscure, and there are currently no FDA-approved drugs for the treatment of ALD. In this Review, we discuss new insights into the pathogenesis and therapeutic targets of ALD, utilizing the study of multiomics and other cutting-edge approaches. The potential translation of these studies into clinical practice and therapy is deliberated. We also discuss preclinical models of ALD, interplay of ALD and metabolic dysfunction, alcohol-associated liver cancer, the heterogeneity of ALD, and some potential translational research prospects for ALD.
Collapse
|
14
|
Rastovic U, Bozzano SF, Riva A, Simoni-Nieves A, Harris N, Miquel R, Lackner C, Zen Y, Zamalloa A, Menon K, Heaton N, Chokshi S, Palma E. Human Precision-Cut Liver Slices: A Potential Platform to Study Alcohol-Related Liver Disease. Int J Mol Sci 2023; 25:150. [PMID: 38203321 PMCID: PMC10778645 DOI: 10.3390/ijms25010150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Alcohol-related liver disease (ALD) encompasses a range of pathological conditions that are complex to study at the clinical and preclinical levels. Despite the global burden of ALD, there is a lack of effective treatments, and mortality is high. One of the reasons for the unsuccessful development of novel therapies is that experimental studies are hindered by the challenge of recapitulating this multifactorial disorder in vitro, including the contributions of hepatotoxicity, impaired lipid metabolism, fibrosis and inflammatory cytokine storm, which are critical drivers in the pathogenesis of ALD in patients and primary targets for drug development. Here, we present the unique characteristics of the culture of human precision-cut liver slices (PCLS) to replicate key disease processes in ALD. PCLS were prepared from human liver specimens and treated with ethanol alone or in combination with fatty acids and lipopolysaccharide (FA + LPS) for up to 5 days to induce hepatotoxic, inflammatory and fibrotic events associated with ALD. Alcohol insult induced hepatocyte death which was more pronounced with the addition of FA + LPS. This mixture showed a significant increase in the cytokines conventionally associated with the prototypical inflammatory response observed in severe ALD, and interestingly, alcohol alone exhibited a different effect. Profibrogenic activation was also observed in the slices and investigated in the context of slice preparation. These results support the versatility of this organotypic model to study different pathways involved in alcohol-induced liver damage and ALD progression and highlight the applicability of the PCLS for drug discovery, confirming their relevance as a bridge between preclinical and clinical studies.
Collapse
Affiliation(s)
- Una Rastovic
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London SE5 9NT, UK
- Faculty of Life Sciences and Medicine, King’s College London, London WC2R 2LS, UK
| | - Sergio Francesco Bozzano
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London SE5 9NT, UK
- Faculty of Life Sciences and Medicine, King’s College London, London WC2R 2LS, UK
| | - Antonio Riva
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London SE5 9NT, UK
- Faculty of Life Sciences and Medicine, King’s College London, London WC2R 2LS, UK
| | - Arturo Simoni-Nieves
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London SE5 9NT, UK
- Faculty of Life Sciences and Medicine, King’s College London, London WC2R 2LS, UK
| | - Nicola Harris
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London SE5 9NT, UK
- Faculty of Life Sciences and Medicine, King’s College London, London WC2R 2LS, UK
| | - Rosa Miquel
- Institute of Liver Studies, King’s College London, London WC2R 2LS, UK
| | - Carolin Lackner
- Institute of Pathology, Medical University of Graz, 8010 Graz, Austria
| | - Yoh Zen
- Institute of Liver Studies, King’s College London, London WC2R 2LS, UK
| | - Ane Zamalloa
- Institute of Liver Studies, King’s College London, London WC2R 2LS, UK
| | - Krishna Menon
- Institute of Liver Studies, King’s College London, London WC2R 2LS, UK
| | - Nigel Heaton
- Institute of Liver Studies, King’s College London, London WC2R 2LS, UK
| | - Shilpa Chokshi
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London SE5 9NT, UK
- Faculty of Life Sciences and Medicine, King’s College London, London WC2R 2LS, UK
| | - Elena Palma
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London SE5 9NT, UK
- Faculty of Life Sciences and Medicine, King’s College London, London WC2R 2LS, UK
| |
Collapse
|
15
|
Bai J, Zhu L, Mi W, Gao Z, Ouyang M, Sheng W, Song L, Bao L, Ma Y, Xu Y. Multiscale integrative analyses unveil immune-related diagnostic signature for the progression of MASLD. Hepatol Commun 2023; 7:e0298. [PMID: 37851406 PMCID: PMC10586828 DOI: 10.1097/hc9.0000000000000298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/25/2023] [Indexed: 10/19/2023] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a chronic liver disease prevalent worldwide, with an increasing incidence associated with obesity, diabetes, and metabolic syndrome. The progression of MASLD to metabolic dysfunction-associated steatohepatitis (MASH) poses a pressing health concern, highlighting the significance of accurately identifying MASLD and its progression to MASH as a primary challenge in the field. In this study, a systematic integration of 66 immune cell types was conducted. Comprehensive analyses were performed on bulk, single-cell RNA-Seq, and clinical data to investigate the immune cell types implicated in MASLD progression thoroughly. Multiple approaches, including immune infiltration, gene expression trend analysis, weighted gene coexpression network analysis, and 4 machine learning algorithms, were used to examine the dynamic changes in genes and immune cells during MASLD progression. C-X-C motif chemokine receptor 4 and dedicator of cytokinesis 8 have been identified as potential diagnostic biomarkers for MASLD progression. Furthermore, cell communication analysis at the single-cell level revealed that the involvement of C-X-C motif chemokine receptor 4 and dedicator of cytokinesis 8 in MASLD progression is mediated through their influence on T cells. Overall, our study identified vital immune cells and a 2-gene diagnostic signature for the progression of MASLD, providing a new perspective on the diagnosis and immune-related molecular mechanisms of MASLD. These findings have important implications for developing innovative diagnostic tools and therapies for MASLD.
Collapse
Affiliation(s)
- Jing Bai
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Lun Zhu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Wanqi Mi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Zhengzheng Gao
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Minyue Ouyang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Wanlu Sheng
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Lin Song
- College of Mongolian Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Lidao Bao
- Hohhot Mongolian Medicine of Traditional Chinese Medicine Hospital, Hohhot, China
| | - Yuheng Ma
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Yingqi Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
- College of Mongolian Medicine, Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|