1
|
DePasquale AN, Poirier AC, Mah MA, Villalobos Suarez C, Guadamuz A, Cheves Hernandez S, Lopez Navarro R, Hogan JD, Rothman JM, Nevo O, Melin AD. Picking pithy plants: Pith selectivity by wild white-faced capuchin monkeys, Cebus imitator. Am J Primatol 2025; 87:e23549. [PMID: 37690098 PMCID: PMC11650937 DOI: 10.1002/ajp.23549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/11/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023]
Abstract
Understanding diet selectivity is a longstanding goal in primate ecology. Deciphering when and why primates consume different resources can provide insights into their nutritional ecology as well as adaptations to food scarcity. Plant pith, the spongy interior of plant stems, is occasionally eaten by primates, but the context is poorly understood. We examine the ecological, mechanical, chemical, and nutritional basis of plant pith selection by a wild, frugivorous-omnivorous primate (Cebus imitator). We test the hypothesis that pith is a fallback food, that is, consumed when fruit is less abundant, and test for differences between plant species from which pith is eaten versus avoided. We collected 3.5 years of capuchin pith consumption data to document dietary species and analyzed "pith patch visits" in relation to fruit availability, visits to fruit patches, and climatic seasonality. We analyzed dietary and non-dietary species for relative pith quantity, mechanical hardness, odor composition, and macronutrient concentrations. Capuchins ate pith from 11 of ~300 plant species common in the dry forest, most commonly Bursera simaruba. We find that pith consumption is not directly related to fruit availability or fruit foraging but occurs most frequently (84% of patch visits) during the months of seasonal transition. Relative to common non-dietary species, dietary pith species have relatively higher pith quantity, have softer outer branches and pith, and contain more terpenoids, a class of bioactive compounds notable for their widespread medicinal properties. Our results suggest that greater pith quantity, lower hardness, and a more complex, terpenoid-rich odor profile contribute to species selectivity; further, as pith is likely to be consistently available throughout the year, the seasonality of pith foraging may point to zoopharmacognosy, as seasonal transitions typically introduce new parasites or pathogens. Our study furthers our understanding of how climatic seasonality impacts primate behavior and sheds new light on food choice by an omnivorous primate.
Collapse
Affiliation(s)
| | - Alice C. Poirier
- Department of Anthropology and ArchaeologyUniversity of CalgaryCalgaryAlbertaCanada
| | - Megan A. Mah
- Department of Anthropology and ArchaeologyUniversity of CalgaryCalgaryAlbertaCanada
| | | | | | | | | | | | | | - Omer Nevo
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Institute of BiodiversityFriedrich Schiller University JenaJenaGermany
| | - Amanda D. Melin
- Department of Anthropology and ArchaeologyUniversity of CalgaryCalgaryAlbertaCanada
- Department of Medical GeneticsUniversity of CalgaryCalgaryAlbertaCanada
- Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
| |
Collapse
|
2
|
Campos FA, Wikberg EC, Orkin JD, Park Y, Snyder-Mackler N, Cheves Hernandez S, Lopez Navarro R, Fedigan LM, Gurven M, Higham JP, Jack KM, Melin AD. Wild capuchin monkeys as a model system for investigating the social and ecological determinants of ageing. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230482. [PMID: 39463253 PMCID: PMC11513648 DOI: 10.1098/rstb.2023.0482] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/29/2024] [Accepted: 05/10/2024] [Indexed: 10/29/2024] Open
Abstract
Studying biological ageing in animal models can circumvent some of the confounds exhibited by studies of human ageing. Ageing research in non-human primates has provided invaluable insights into human lifespan and healthspan. Yet data on patterns of ageing from wild primates remain relatively scarce, centred around a few populations of catarrhine species. Here, we introduce the white-faced capuchin, a long-lived platyrrhine primate, as a promising new model system for ageing research. Like humans, capuchins are highly social, omnivorous generalists, whose healthspan and lifespan relative to body size exceed that of other non-human primate model species. We review recent insights from capuchin ageing biology and outline our expanding, integrative research programme that combines metrics of the social and physical environments with physical, physiological and molecular hallmarks of ageing across the natural life courses of multiple longitudinally tracked individuals. By increasing the taxonomic breadth of well-studied primate ageing models, we generate new insights, increase the comparative value of existing datasets to geroscience and work towards the collective goal of developing accurate, non-invasive and reliable biomarkers with high potential for standardization across field sites and species, enhancing the translatability of primate studies.This article is part of the discussion meeting issue 'Understanding age and society using natural populations'.
Collapse
Affiliation(s)
- Fernando A. Campos
- Department of Anthropology, University of Texas at San Antonio, San Antonio, TX78249, USA
| | - Eva C. Wikberg
- Department of Anthropology, University of Texas at San Antonio, San Antonio, TX78249, USA
| | - Joseph D. Orkin
- Département d’anthropologie, Université de Montréal, Montréal, QuébecH3T 1N8, Canada
- Département de sciences biologiques, Université de Montréal, Montréal, QuébecH2V 0B3, Canada
| | - Yeonjoo Park
- Department of Management Science and Statistics, University of Texas at San Antonio, San Antonio, TX78249, USA
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, School of Life Sciences, School of Human Evolution and Social Change, Arizona State University, Tempe, AZ85287, USA
| | | | | | - Linda M. Fedigan
- Department of Anthropology and Archaeology, University of Calgary, Calgary, AlbertaT2N 1N4, Canada
| | - Michael Gurven
- Department of Anthropology, University of California, Santa Barbara, CA93106, USA
| | - James P. Higham
- Department of Anthropology, New York University, NY10003, USA
| | - Katharine M. Jack
- Department of Anthropology, Tulane University, New Orleans, LA70118, USA
| | - Amanda D. Melin
- Department of Anthropology and Archaeology, University of Calgary, Calgary, AlbertaT2N 1N4, Canada
- Department of Medical Genetics, University of Calgary, Calgary, AlbertaT2N 4N1, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AlbertaT2N 4N1, Canada
| |
Collapse
|
3
|
Mohan K, Das S, Singh M. Leaf dicers of Nelliyampathy: Observations of preconsumptive latex avoidance by a sciurid. Ecology 2024; 105:e4294. [PMID: 38558226 DOI: 10.1002/ecy.4294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/20/2023] [Accepted: 02/08/2024] [Indexed: 04/04/2024]
Affiliation(s)
- Kamaraj Mohan
- Biopsychology Laboratory, Institution of Excellence, University of Mysore, Mysuru, India
| | - Sayantan Das
- Biopsychology Laboratory, Institution of Excellence, University of Mysore, Mysuru, India
- Wildlife Information Liaison Development, Coimbatore, India
| | - Mewa Singh
- Biopsychology Laboratory, Institution of Excellence, University of Mysore, Mysuru, India
- Zoo Outreach Organization, Coimbatore, India
| |
Collapse
|
4
|
Harrington KJ, Folkertsma R, Auersperg AMI, Biondi L, Lambert ML. Innovative problem solving by wild falcons. Curr Biol 2024; 34:190-195.e3. [PMID: 37989310 DOI: 10.1016/j.cub.2023.10.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/06/2023] [Accepted: 10/26/2023] [Indexed: 11/23/2023]
Abstract
Innovation (i.e., a new solution to a familiar problem, or applying an existing behavior to a novel problem1,2) plays a fundamental role in species' ecology and evolution. It can be a useful measure for cross-group comparisons of behavioral and cognitive flexibility and a proxy for general intelligence.3,4,5 Among birds, experimental studies of innovation (and cognition more generally) are largely from captive corvids and parrots,6,7,8,9,10,11,12 though we lack serious models for avian technical intelligence outside these taxa. Striated caracaras (Phalcoboenus australis) are Falconiformes, sister clade to parrots and passerines,13,14,15 and those endemic to the Falkland Islands (Malvinas) show curiosity and neophilia similar to notoriously neophilic kea parrots16,17 and face similar socio-ecological pressures to corvids and parrots.18,19 We tested wild striated caracaras as a new avian model for technical cognition and innovation using a field-applicable 8-task comparative paradigm (adapted from Rössler et al.20 and Auersperg et al.21). The setup allowed us to assess behavior, rate, and flexibility of problem solving over repeated exposure in a natural setting. Like other generalist species with low neophobia,21,22 we predicted caracaras to demonstrate a haptic approach to solving tasks, flexibly switching to new, unsolved problems and improving their performance over time. Striated caracaras performed comparably to tool-using parrots,20 nearly reaching ceiling levels of innovation in few trials, repeatedly and flexibly solving tasks, and rapidly learning. We attribute our findings to the birds' ecology, including geographic restriction, resource unpredictability, and opportunistic generalism,23,24,25 and encourage future work investigating their cognitive abilities in the wild. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Katie J Harrington
- Comparative Cognition Unit, Messerli Research Institute, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria.
| | - Remco Folkertsma
- Comparative Cognition Unit, Messerli Research Institute, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Alice M I Auersperg
- Comparative Cognition Unit, Messerli Research Institute, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Laura Biondi
- Instituto de Investigaciones Marinas y Costeras (IIMyC), UNMdP - CONICET, Juan B. Justo 2550, Mar del Plata B7602GSD, Argentina
| | - Megan L Lambert
- Comparative Cognition Unit, Messerli Research Institute, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| |
Collapse
|
5
|
Dissegna A, Borrelli L, Ponte G, Chiandetti C, Fiorito G. Octopus vulgaris Exhibits Interindividual Differences in Behavioural and Problem-Solving Performance. BIOLOGY 2023; 12:1487. [PMID: 38132313 PMCID: PMC10740590 DOI: 10.3390/biology12121487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
By presenting individual Octopus vulgaris with an extractive foraging problem with a puzzle box, we examined the possible correlation between behavioural performances (e.g., ease of adaptation to captive conditions, prevalence of neophobic and neophilic behaviours, and propensity to learn individually or by observing conspecifics), biotic (body and brain size, age, sex) and abiotic (seasonality and place of origin) factors. We found more neophilic animals showing shorter latencies to approach the puzzle box and higher probability of solving the task; also, shorter times to solve the task were correlated with better performance on the individual learning task. However, the most neophilic octopuses that approached the puzzle box more quickly did not reach the solution earlier than other individuals, suggesting that strong neophilic tendency may lead to suboptimal performance at some stages of the problem-solving process. In addition, seasonal and environmental characteristics of location of origin appear to influence the rate of expression of individual traits central to problem solving. Overall, our analysis provides new insights into the traits associated with problem solving in invertebrates and highlights the presence of adaptive mechanisms that promote population-level changes in octopuses' behavioural traits.
Collapse
Affiliation(s)
- Andrea Dissegna
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (A.D.); (C.C.)
| | - Luciana Borrelli
- Animal Physiology and Evolution Lab, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
| | - Giovanna Ponte
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
| | - Cinzia Chiandetti
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (A.D.); (C.C.)
| | - Graziano Fiorito
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
| |
Collapse
|
6
|
Extractive foraging behaviour in woodpeckers evolves in species that retain a large ancestral brain. Anim Behav 2023. [DOI: 10.1016/j.anbehav.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
7
|
Fragaszy DM, Aiempichitkijkarn N, Eshchar Y, Mangalam M, Izar P, Resende B, Visalberghi E. The development of expertise at cracking palm nuts by wild bearded capuchin monkeys, Sapajus libidinosus. Anim Behav 2023. [DOI: 10.1016/j.anbehav.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
8
|
Veilleux CC, Dominy NJ, Melin AD. The sensory ecology of primate food perception, revisited. Evol Anthropol 2022; 31:281-301. [PMID: 36519416 DOI: 10.1002/evan.21967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 09/06/2022] [Accepted: 10/23/2022] [Indexed: 12/23/2022]
Abstract
Twenty years ago, Dominy and colleagues published "The sensory ecology of primate food perception," an impactful review that brought new perspectives to understanding primate foraging adaptations. Their review synthesized information on primate senses and explored how senses informed feeding behavior. Research on primate sensory ecology has seen explosive growth in the last two decades. Here, we revisit this important topic, focusing on the numerous new discoveries and lines of innovative research. We begin by reviewing each of the five traditionally recognized senses involved in foraging: audition, olfaction, vision, touch, and taste. For each sense, we provide an overview of sensory function and comparative ecology, comment on the state of knowledge at the time of the original review, and highlight advancements and lingering gaps in knowledge. Next, we provide an outline for creative, multidisciplinary, and innovative future research programs that we anticipate will generate exciting new discoveries in the next two decades.
Collapse
Affiliation(s)
- Carrie C Veilleux
- Department of Anatomy, Midwestern University, Glendale, Arizona, USA
| | - Nathaniel J Dominy
- Department of Anthropology, Dartmouth College, Hanover, New Hampshire, USA
| | - Amanda D Melin
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta, Canada.,Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
9
|
Collier S, Auster R. ‘Tail-dipping’ to drink from an open water source in Cebus imitator (Primates: Cebidae) in a protected area of Costa Rica. MAMMALOGY NOTES 2022. [DOI: 10.47603/mano.v8n1.319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Primate species demonstrate high levels of intelligence, innovation, and social learning. These characteristics give rise to a high likelihood of new behaviours occurring and being socially transmitted to other individuals within a group. Capuchin monkeys are group-living and are commonly considered to be among the most intelligent non-ape primates. They exhibit a large repertoire of complex behaviours and have been shown to be capable of innovating to problem solve. However, observations of new behaviours in wild populations are rare in comparison to captive populations. Here we describe Panamanian white-faced capuchins (Cebus imitator) carrying out a behaviour which has not been previously documented in capuchin species and may be related to predator avoidance. This behaviour was video-recorded and to our knowledge is the first record of a capuchin species using tail-dipping behaviour to access an open water source in the wild.
Collapse
|
10
|
Cáceres N, Cerezer FO, Bubadué J. Size reduction and skull shape parallelism following the evolutionary forest‐to‐savanna transition in Platyrrhini monkeys. Am J Primatol 2022; 84:e23447. [DOI: 10.1002/ajp.23447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 09/15/2022] [Accepted: 10/01/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Nilton Cáceres
- Departamento de Ecologia e Evolução, CCNE Universidade Federal de Santa Maria Santa Maria Rio Grande do Sul Brazil
| | - Felipe O. Cerezer
- Programa de Pós‐Graduacão em Biodiversidade Animal, Departamento de Ecologia e Evolução, CCNE Universidade Federal de Santa Maria Santa Maria Rio Grande do Sul Brazil
| | - Jamile Bubadué
- Programa de Pós‐Graduacão em Biodiversidade Animal, Departamento de Ecologia e Evolução, CCNE Universidade Federal de Santa Maria Santa Maria Rio Grande do Sul Brazil
- Laboratório de Ciências Ambientais, CBB, Universidade Estadual do Norte Fluminense Darcy Ribeiro Campos dos Goytacazes Rio de Janeiro Brazil
| |
Collapse
|
11
|
Melin AD, Veilleux CC, Janiak MC, Hiramatsu C, Sánchez-Solano KG, Lundeen IK, Webb SE, Williamson RE, Mah MA, Murillo-Chacon E, Schaffner CM, Hernández-Salazar L, Aureli F, Kawamura S. Anatomy and dietary specialization influence sensory behaviour among sympatric primates. Proc Biol Sci 2022; 289:20220847. [PMID: 35975434 PMCID: PMC9382214 DOI: 10.1098/rspb.2022.0847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Senses form the interface between animals and environments, and provide a window into the ecology of past and present species. However, research on sensory behaviours by wild frugivores is sparse. Here, we examine fruit assessment by three sympatric primates (Alouatta palliata, Ateles geoffroyi and Cebus imitator) to test the hypothesis that dietary and sensory specialization shape foraging behaviours. Ateles and Cebus groups are comprised of dichromats and trichromats, while all Alouatta are trichomats. We use anatomical proxies to examine smell, taste and manual touch, and opsin genotyping to assess colour vision. We find that the frugivorous spider monkeys (Ateles geoffroyi) sniff fruits most often, omnivorous capuchins (Cebus imitator), the species with the highest manual dexterity, use manual touch most often, and that main olfactory bulb volume is a better predictor of sniffing behaviour than nasal turbinate surface area. We also identify an interaction between colour vision phenotype and use of other senses. Controlling for species, dichromats sniff and bite fruits more often than trichromats, and trichromats use manual touch to evaluate cryptic fruits more often than dichromats. Our findings reveal new relationships among dietary specialization, anatomical variation and foraging behaviour, and promote understanding of sensory system evolution.
Collapse
Affiliation(s)
- Amanda D Melin
- Department of Anthropology and Archaeology, University of Calgary, Calgary, AB, Canada.,Department of Medical Genetics, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,German Primate Research Center, Gottingen, Germany
| | - Carrie C Veilleux
- Department of Anatomy, Midwestern University, Glendale, AZ, USA.,Department of Anthropology, University of Texas, Austin, TX, USA
| | - Mareike C Janiak
- Department of Anthropology and Archaeology, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,School of Science, Engineering & Environment, University of Salford, Manchester, UK
| | - Chihiro Hiramatsu
- Department of Human Science, Faculty of Design, Kyushu University, Fukuoka 815-8540, Japan
| | | | - Ingrid K Lundeen
- Department of Anthropology, University of Texas, Austin, TX, USA
| | - Shasta E Webb
- Department of Anthropology and Archaeology, University of Calgary, Calgary, AB, Canada
| | - Rachel E Williamson
- Department of Anthropology and Archaeology, University of Calgary, Calgary, AB, Canada
| | - Megan A Mah
- Department of Anthropology and Archaeology, University of Calgary, Calgary, AB, Canada
| | | | | | | | - Filippo Aureli
- Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Veracruz, México.,Research Centre in Evolutionary Anthropology and Palaeoecology, Liverpool John Moores University, Liverpool, UK
| | - Shoji Kawamura
- Department of Integrative Biosciences, University of Tokyo, Kashiwa, Japan
| |
Collapse
|
12
|
Dhananjaya T, Das S, Harpalani M, Huffman MA, Singh M. Can urbanization accentuate hand use in the foraging activities of primates? AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2022; 178:667-677. [PMID: 36790685 DOI: 10.1002/ajpa.24532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 04/08/2022] [Accepted: 04/19/2022] [Indexed: 11/07/2022]
Abstract
OBJECTIVES How a species uses its anatomical manipulators is determined by its anatomy, physiology, and ecology. While ecology explains interspecific variation in gripping, grasping, and manipulating objects, its role in intraspecific variation in mouth- and hand-use by animals is less explored. Primates are distinguished by their prehensile capabilities and manual dexterity. In context to the adaptive pressures of urbanization on primates, we examined if mouth and hand use differed across the forest-urban gradient in food retrieval and processing under experimental and naturalistic conditions in cercopithecids, a family comprising several urbanizing primates. MATERIALS AND METHODS We recorded the acquisition and processing of peanuts under experimental conditions in three groups of bonnet macaques (BM, Macaca radiata) differing in their dietary dependence on packaged food items along a rural-urban gradient. To affirm the pattern obtained in the experiment, we coded food acquisition of three cercopithecid species in similar habitats from video sources. RESULTS Urban macaques had a disproportionately higher hand use to acquire and process peanuts while rural macaques had higher mouth use. Based on analyses of videos, urban populations of BM, Japanese macaque (M. fuscata) and vervet monkey (Chlorocebus pygerythrus) showed a bias toward hand use during food acquisition. DISCUSSION The adaptive pressures of urbanization, like the manual constraints of extracting packaged foods and perhaps, the need for visual-haptic exploration of novel objects seem to accentuate hand use in synanthropic groups of primates. Additional research should ascertain similar patterns in other primates and determine specific aspects of urbanization that modulate the observed trend.
Collapse
Affiliation(s)
- Tejeshwar Dhananjaya
- Biopsychology laboratory, Institution of Excellence, University of Mysore, Mysuru, India
| | - Sayantan Das
- Biopsychology laboratory, Institution of Excellence, University of Mysore, Mysuru, India.,Wildlife Information Liaison Development, Coimbatore, Tamil Nadu, India
| | - Monica Harpalani
- Biopsychology laboratory, Institution of Excellence, University of Mysore, Mysuru, India
| | | | - Mewa Singh
- Biopsychology laboratory, Institution of Excellence, University of Mysore, Mysuru, India.,Zoo Outreach Organization, Coimbatore, Tamil Nadu, India
| |
Collapse
|
13
|
Gonçalves BDA, Lima LCP, Aguiar LM. Diet diversity and seasonality of robust capuchins (Sapajus sp.) in a tiny urban forest. Am J Primatol 2022; 84:e23396. [PMID: 35661391 DOI: 10.1002/ajp.23396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 05/04/2022] [Accepted: 05/11/2022] [Indexed: 11/10/2022]
Abstract
Capuchins are omnivorous neotropical primates that can survive in urban forests by supplementing their diet with human foods. However, few studies have analyzed the impact of these resources on their diet diversity and feeding seasonality. We aimed to assess the patterns of foraging, feeding, and diet diversity of urban capuchins (Sapajus sp.) that live in a tiny urban forest in Foz do Iguaçu, Brazil, where humans frequently feed them. We predicted that forest degradation and human foods could decrease diet diversity, though capuchins may, conversely, reduce their selectivity and expand their food repertoire. We followed the animals from dawn to dusk between May 2018 and April 2019 to list and quantify the species and items consumed. We used diversity indexes and cluster analysis to understand similarities and differences in the diet composition over the study period. We recorded 58 plant species (being 14 exotics) consumed by the monkeys, and nonconventional items, with low diet diversity overall. The diet consisted mainly of plants (69.8%), animal matter (20.6%), and processed foods (9.5%). Capuchins consumed more food from the anthropic environment (57.5%) than from the forest (42.4%), while their food from the forest included more invertebrates (47.8%) than fruits (40%). The cluster analysis showed two main groups of feeding months, in accordance with the seasons of high and low food production in local forests. Monkeys did not vary the frequencies of foraging or feeding between seasons, probably due to the omnipresent availability of human foods. Despite the high consumption of human foods, capuchins responded to the seasonality of the forest, expanding their feeding diversity in the drier period. Future studies should analyze the correspondence between food consumption and local phenology, as well as the potential role of capuchins as seed dispersers in this depauperate community.
Collapse
Affiliation(s)
- Bárbara de Araújo Gonçalves
- Departamento de Ecologia, Instituto de Ciências Biológicas, Programa de Pós-graduação em Ecologia, Universidade de Brasília (UnB), Campus Darcy Ribeiro, Brasília, Brazil
| | - Laura Cristina Pires Lima
- Programa de Pós-graduação em Biodiversidade Neotropical, Instituto Latino-Americano de Ciências da Vida e da Natureza, Universidade Federal da Integração Latino-Americana (UNILA), Foz do Iguaçu, Paraná, Brazil
| | - Lucas M Aguiar
- Programa de Pós-graduação em Biodiversidade Neotropical, Instituto Latino-Americano de Ciências da Vida e da Natureza, Universidade Federal da Integração Latino-Americana (UNILA), Foz do Iguaçu, Paraná, Brazil.,Departamento de Zoologia, Universidade Federal do Paraná (UFPR), Curitiba, Paraná, Brazil
| |
Collapse
|
14
|
Lang MM, Bertrand OC, San Martin Flores G, Law CJ, Abdul‐Sater J, Spakowski S, Silcox MT. Scaling Patterns of Cerebellar Petrosal Lobules in Euarchontoglires: Impacts of Ecology and Phylogeny. Anat Rec (Hoboken) 2022; 305:3472-3503. [DOI: 10.1002/ar.24929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 02/02/2022] [Accepted: 02/21/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Madlen M. Lang
- Department of Anthropology University of Toronto Scarborough Toronto ON Canada
| | - Ornella C. Bertrand
- School of GeoSciences University of Edinburgh, Grant Institute Edinburgh Scotland UK
| | | | - Chris J. Law
- Richard Gilder Graduate School, Department of Mammalogy, and Division of Paleontology American Museum of Natural History, 200 Central Park West New York NY
- Department of Biology University of Washington Seattle WA
- The University of Texas at Austin Austin TX
| | - Jade Abdul‐Sater
- Department of Anthropology University of Toronto Scarborough Toronto ON Canada
| | - Shayda Spakowski
- Department of Anthropology University of Toronto Scarborough Toronto ON Canada
| | - Mary T. Silcox
- Department of Anthropology University of Toronto Scarborough Toronto ON Canada
| |
Collapse
|
15
|
Smith RL, Rebergen K, Payne C, Megapanos E, Lusseau D. Dietary plasticity of a understudied primate (Sapajus cay) in a biodiversity hotspot: applying ecological traits to habitat conservation in the Upper Paraná Atlantic Forest. Folia Primatol (Basel) 2022. [DOI: 10.1163/14219980-20210407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
One of the main threats to wild primates is habitat alteration, fragmentation and destruction. Therefore it is crucial to understand the ability of those species to adapt to human-induced habitat changes to prevent extirpation. Key to this is a species diet plasticity. In Paraguay over 91% of the Upper Paraná Atlantic Forest has been destroyed to expand agricultural land. We determined the diet composition of three Sapajus cay groups in degraded and near-pristine Atlantic Forest in eastern Paraguay to assess whether the diet composition of this species changes with habitat degradation. We accounted for diet variability associated with demographic traits and forest characteristics using multinomial linear models. Once the effect of age, sex, and season were accounted for, we found that the diet of capuchins was plastic and shifted to adapt to studied degraded forest conditions. The results showed that (as expected) the capuchins have a generalist and flexible diet, including opportunistically taking advantage of crop plants, particularly Slash Pine plantations, when the risks were lower. The capuchins ability to adjust their diet in different habitat fragments demonstrates that small islands of Paraguayan Atlantic Forest are valuable for their persistence. This insight can be used to create applied conservation strategies, such as using the existing Payment for Ecosystem Services (PES) legislation to provide an opportunity to begin reconnecting fragments using native trees bordered by Slash Pine plantations. Using the capuchins as an umbrella species would increase public support of the program, while compensation through the PES scheme and profiting from the timber would encourage landowner participation.
Collapse
Affiliation(s)
- Rebecca L. Smith
- Fundación Para La Tierra, Centro IDEAL, Pilar, Ñeembucú, Paraguay
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Kelly Rebergen
- Fundación Para La Tierra, Centro IDEAL, Pilar, Ñeembucú, Paraguay
| | - Carter Payne
- Fundación Para La Tierra, Centro IDEAL, Pilar, Ñeembucú, Paraguay
| | | | - David Lusseau
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
- Technical University of Denmark, National Institute for Aquatic Resources, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|
16
|
Ferreira NIR, Verhaagh M, Heymann EW. Myrmecovory in Neotropical primates. Primates 2021; 62:871-877. [PMID: 34586529 PMCID: PMC8526450 DOI: 10.1007/s10329-021-00946-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/23/2021] [Indexed: 11/18/2022]
Abstract
Ants are the dominant group of animals in many habitats, particularly in tropical rainforests. High abundance and formation of large colonies convert them into a potential food source for a broad spectrum of animals. In this paper we review myrmecovory (consumption of ants) in Neotropical primates. Myrmecovory has been reported from 57 taxa (species + subspecies) out of 217 species of Neotropical primates, representing 18 out of 22 genera. The proportion of ants in the animal portion of the diet is highest amongst members of the genera Cebus, Sapajus, Cheracebus and Plecturocebus, but generally low in callitrichids, large pitheciids (Cacajao, Chiropotes) and atelids. Ants from seven subfamilies of Formicidae (out of 13 subfamilies found in the Neotropics) are consumed, including taxa with and without functional sting and with varying other defences. Foraging technics employed in myrmecovory range from picking ants from open substrates to extractive foraging involving the destruction of ant nests or shelters, but tool use has not been reported. We conclude that myrmecovory is widespread amongst Neotropical primates but on average contributes only a minor proportion of the diet. The diversity of foraging technics employed and lack of tool use in Neotropical primate myrmecovory, even for ants with functional stings and aggressive biting, suggests that tool use for myrmecovory in hominids has not evolved in response to ant defences but is a consequence of enhanced cognitive skills that evolved under other selection pressures.
Collapse
Affiliation(s)
- Nadja I Risch Ferreira
- Abteilung Soziobiologie/Anthropologie, Georg-August Universität Göttingen, Kellnerweg 6, 37077, Göttingen, Germany
- Verhaltensökologie and Soziobiologie, Deutsches Primatenzentrum-Leibniz-Institut für Primatenforschung, Kellnerweg 4, 37077, Göttingen, Germany
| | - Manfred Verhaagh
- Staatliches Museum für Naturkunde, Erbprinzenstr. 13, 76133, Karlsruhe, Germany
| | - Eckhard W Heymann
- Verhaltensökologie and Soziobiologie, Deutsches Primatenzentrum-Leibniz-Institut für Primatenforschung, Kellnerweg 4, 37077, Göttingen, Germany.
| |
Collapse
|
17
|
Lindshield S, Hernandez-Aguilar RA, Korstjens AH, Marchant LF, Narat V, Ndiaye PI, Ogawa H, Piel AK, Pruetz JD, Stewart FA, van Leeuwen KL, Wessling EG, Yoshikawa M. Chimpanzees (Pan troglodytes) in savanna landscapes. Evol Anthropol 2021; 30:399-420. [PMID: 34542218 DOI: 10.1002/evan.21924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/17/2020] [Accepted: 07/29/2021] [Indexed: 12/22/2022]
Abstract
Chimpanzees (Pan troglodytes) are the only great apes that inhabit hot, dry, and open savannas. We review the environmental pressures of savannas on chimpanzees, such as food and water scarcity, and the evidence for chimpanzees' behavioral responses to these landscapes. In our analysis, savannas were generally associated with low chimpanzee population densities and large home ranges. In addition, thermoregulatory behaviors that likely reduce hyperthermia risk, such as cave use, were frequently observed in the hottest and driest savanna landscapes. We hypothesize that such responses are evidence of a "savanna landscape effect" in chimpanzees and offer pathways for future research to understand its evolutionary processes and mechanisms. We conclude by discussing the significance of research on savanna chimpanzees to modeling the evolution of early hominin traits and informing conservation programs for these endangered apes.
Collapse
Affiliation(s)
- Stacy Lindshield
- Department of Anthropology, Purdue University, West Lafayette, Indiana, USA
| | - R Adriana Hernandez-Aguilar
- Department of Social Psychology and Quantitative Psychology, Faculty of Psychology, University of Barcelona, Barcelona, Spain.,Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Amanda H Korstjens
- Life and Environmental Sciences Department, Bournemouth University, Talbot Campus, Poole, UK
| | | | - Victor Narat
- CNRS/MNHN/Paris Diderot, UMR 7206 Eco-anthropology, Paris, France
| | - Papa Ibnou Ndiaye
- Département de Biologie Animale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar, Dakar, Senegal
| | - Hideshi Ogawa
- School of International Liberal Studies, Chukyo University, Toyota, Aichi, Japan
| | - Alex K Piel
- Department of Anthropology, University College London, London, UK
| | - Jill D Pruetz
- Department of Anthropology, Texas State University, San Marcos, Texas, USA
| | - Fiona A Stewart
- Department of Anthropology, University College London, London, UK.,School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Kelly L van Leeuwen
- Department of Life and Environmental Sciences, Bournemouth University, Talbot Campus, Poole, UK
| | - Erin G Wessling
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Midori Yoshikawa
- Department of Zoology, National Museum of Nature and Science, Ibaraki, Tokyo, Japan
| |
Collapse
|
18
|
Seasonality and Oldowan behavioral variability in East Africa. J Hum Evol 2021; 164:103070. [PMID: 34548178 DOI: 10.1016/j.jhevol.2021.103070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 10/20/2022]
Abstract
The extent, nature, and temporality of early hominin food procurement strategies have been subject to extensive debate. In this article, we examine evidence for the seasonal scheduling of resource procurement and technological investment in the Oldowan, starting with an evaluation of the seasonal signature of underground storage organs, freshwater resources, and terrestrial animal resources in extant primates and modern human hunter-gatherer populations. Subsequently, we use the mortality profiles, taxonomic composition, and taphonomy of the bovid assemblages at Kanjera South (Homa Peninsula, Kenya) and FLK-Zinj (Olduvai Gorge, Tanzania) to illustrate the behavioral flexibility of Oldowan hominins, who were targeting different seasonally vulnerable demographics. In terms of the lithic assemblages, the specific opportunities and constraints afforded by dry season subsistence at FLK-Zinj may have disincentivized lithic investment, resulting in a more expedient toolkit for fast and effective carcass processing. This may have been reinforced by raw material site provisioning during a relatively prolonged seasonal occupation, reducing pressures on the reduction and curation of lithic implements. In contrast, wet season plant abundance would have offered a predictable set of high-quality resources associated with low levels of competition and reduced search times, in the context of perhaps greater seasonal mobility and consequently shorter occupations. These factors appear to have fostered technological investment to reduce resource handling costs at Kanjera South, facilitated by more consistent net returns and enhanced planning of lithic deployment throughout the landscape. We subsequently discuss the seasonality of freshwater resources in Oldowan procurement strategies, focusing on FwJj20 (Koobi Fora, Kenya). Although more analytical studies with representative sample sizes are needed, we argue that interassemblage differences evidence the ability of Oldowan hominins to adapt to seasonal constraints and opportunities in resource exploitation.
Collapse
|
19
|
|
20
|
Buckner JC, Jack KM, Melin AD, Schoof VAM, Gutiérrez-Espeleta GA, Lima MGM, Lynch JW. Major histocompatibility complex class II DR and DQ evolution and variation in wild capuchin monkey species (Cebinae). PLoS One 2021; 16:e0254604. [PMID: 34383779 PMCID: PMC8360539 DOI: 10.1371/journal.pone.0254604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/29/2021] [Indexed: 11/18/2022] Open
Abstract
The major histocompatibility complex (MHC) is an important gene complex contributing to adaptive immunity. Studies of platyrrhine MHC have focused on identifying experimental models of immune system function in the equivalent Human Leukocyte Antigen (HLA). These genes have thus been explored primarily in captive platyrrhine individuals from research colonies. However, investigations of standing MHC variation and evolution in wild populations are essential to understanding its role in immunity, sociality and ecology. Capuchins are a promising model group exhibiting the greatest habitat diversity, widest diet breadth and arguably the most social complexity among platyrrhines, together likely resulting in varied immunological challenges. We use high-throughput sequencing to characterize polymorphism in four Class II DR and DQ exons for the first time in seven capuchin species. We find evidence for at least three copies for DQ genes and at least five for DRB, with possible additional unrecovered diversity. Our data also reveal common genotypes that are inherited across our most widely sampled population, Cebus imitator in Sector Santa Rosa, Costa Rica. Notably, phylogenetic analyses reveal that platyrrhine DQA sequences form a monophyletic group to the exclusion of all Catarrhini sequences examined. This result is inconsistent with the trans-species hypothesis for MHC evolution across infraorders in Primates and provides further evidence for the independent origin of current MHC genetic diversity in Platyrrhini. Identical allele sharing across cebid species, and more rarely genera, however, does underscore the complexity of MHC gene evolution and the need for more comprehensive assessments of allelic diversity and genome structure.
Collapse
Affiliation(s)
- Janet C. Buckner
- Museum of Natural Science, Louisiana State University, Baton Rouge, LA, United States of America
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, United States of America
- * E-mail: (JCB); (JWL)
| | - Katharine M. Jack
- Department of Anthropology, Tulane University, New Orleans, LA, United States of America
| | - Amanda D. Melin
- Department of Anthropology & Archaeology and Department of Medical Genetics, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Valérie A. M. Schoof
- Bilingual Biology Program, Glendon College, York University, Toronto, ON, Canada
| | | | - Marcela G. M. Lima
- Laboratory of Conservation Biogeography and Macroecology, Federal University of Pará, Belém, PA, Brazil
| | - Jessica W. Lynch
- Institute for Society and Genetics, University of California, Los Angeles, CA, United States of America
- Department of Anthropology, University of California, Los Angeles, CA, United States of America
- * E-mail: (JCB); (JWL)
| |
Collapse
|
21
|
Lindshield S, Rothman JM, Ortmann S, Pruetz JD. Western chimpanzees (Pan troglodytes verus) access a nutritionally balanced, high energy, and abundant food, baobab (Adansonia digitata) fruit, with extractive foraging and reingestion. Am J Primatol 2021; 83:e23307. [PMID: 34293210 DOI: 10.1002/ajp.23307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 06/01/2021] [Accepted: 07/05/2021] [Indexed: 11/08/2022]
Abstract
Intrinsic to several hypotheses explaining the evolution of foraging behavior complexity, such as proto-tool use, is the assumption that more complex ingestive behaviors are adaptations allowing individuals to access difficult to procure but nutritionally or energetically rewarding foods. However, nutritional approaches to understanding this complexity have been underutilized. The goal of this study was to evaluate potential nutritional determinants of two unusual foraging behaviors, fruit cracking with anvils and seed reingestion, by adult male western chimpanzees (Pan troglodytes verus) at Fongoli, Senegal during the baobab (Adansonia digitata) fruit season. We examined these behaviors in relation to nutrient and energy intake, and compared macronutrient and energy concentrations found in baobab fruits to other plant foods. Adult males ingested at least 31 distinct foods from 23 plant species. Baobab fruit comprised the majority of daily energy intake (68 ± 34%, range: 0%-98%). The energetic concentration of baobab fruit varied by phenophase and part ingested, with ripe and semi-ripe fruit ranking high in energy return rate. Males preferred ripe and semi-ripe baobab fruit but unripe fruit intake was higher overall. The seed kernels were high in protein and fat relative to fruit pulp, and these kernels were easier to access during the unripe stage. During the ripe stage, seed kernels were accessible by reingestion, after the seed coat was softened during gut passage. In addition to providing macronutrients and energy, baobab fruit was a relatively abundant food source. We conclude that baobab pulp and seed are high quality foods at Fongoli during the baobab season because they are nutritionally balanced, high in energy, and relatively abundant in the environment. These nutritional and abundance characteristics may explain, in part, why these chimpanzees use anvils and reingestion to access a mechanically challenging food.
Collapse
Affiliation(s)
- Stacy Lindshield
- Department of Anthropology, Purdue University, West Lafayette, Indiana, USA
| | - Jessica M Rothman
- Department of Anthropology, Hunter College of the City University of New York, New York, New York, USA.,New York Consortium in Evolutionary Primatology, New York, New York, USA
| | - Sylvia Ortmann
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Jill D Pruetz
- Department of Anthropology, Texas State University, San Marcos, Texas, USA
| |
Collapse
|
22
|
Mahandran V, Murugan CM, Gang W, Jin C, Nathan PT. Multimodal cues facilitate ripe-fruit localization and extraction in free-ranging pteropodid bats. Behav Processes 2021; 189:104426. [PMID: 34048877 DOI: 10.1016/j.beproc.2021.104426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 10/21/2022]
Abstract
Sensory cues play an important role in any plant-animal interaction. Yet, we know very little about the cues used by wild mammals during fruit selection. Existing evidence mainly comes from captive studies and suggests that the pteropodid bats rely on olfaction to find fruits. In this study, we avoided captivity-generated stressors and provide insights from natural selective forces by performing manipulative experiments on free-ranging fruit bats (Cynopterus sphinx) in a wild setting, in a tree species that exhibits a bat-fruit syndrome (Madhuca longifolia var. latifolia). We find that visual cues are necessary and sufficient to locate ripe fruits. Fruit experiments exhibiting visual cues alone received more bat visits than those exhibiting other combinations of visual and olfactory cues. Ripe fruit extractions were higher by bats that evaluated fruits by perching than hovering, indicating an additional cue, i.e., haptic cue. Visual cues appear to be informative over short distances, whereas olfactory and haptic cues facilitate the fruit evaluation for those bats that used hovering and perching strategies, respectively. This study also shows that adult bats were more skillful in extracting ripe fruits than the young bats, and there was a positive correlation between the weight of selected fruits and bat weight. This study suggests that the integration of multimodal cues (visual, olfactory and haptic) facilitate ripe-fruit localization and extraction in free-ranging pteropodid bats.
Collapse
Affiliation(s)
- Valliyappan Mahandran
- CAS-Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China
| | | | - Wang Gang
- CAS-Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China
| | - Chen Jin
- CAS-Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China
| | | |
Collapse
|
23
|
DePasquale AN, Webb SE, Williamson RE, Fedigan LM, Melin AD. Testing the niche differentiation hypothesis in wild capuchin monkeys with polymorphic color vision. Behav Ecol 2021. [DOI: 10.1093/beheco/arab001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
The polymorphic color vision system present in most North, Central, and South American monkeys is a textbook case of balancing selection, yet the mechanism behind it remains poorly understood. Previous work has established task-specific foraging advantages to different color vision phenotypes: dichromats (red-green colorblind) are more efficient foraging for invertebrates, while trichromats (color “normal” relative to humans) are more efficient foraging for “reddish” ripe fruit, suggesting that niche differentiation may underlie the maintenance of color vision variation. We explore a prediction of the niche differentiation hypothesis by asking whether dichromatic and trichromatic capuchin monkeys (Cebus imitator) diverge in their foraging activity budget, specifically testing whether dichromats forage more frequently for invertebrates and trichromats forage more frequently for “reddish” ripe fruit. To assess this, we analyze a large data set of behavioral scan samples (n = 21 984) from 48 wild adult female capuchins of known color vision genotype, dominance rank, and reproductive status, together with models of food conspicuity. We find no significant differences between dichromats and trichromats in the frequency of scans spent foraging for different food types but do find that nursing females forage less overall than cycling females. Our results suggest that the potential for color-vision-based niche differentiation in foraging time may be curtailed by the energetic requirements of reproduction, behavioral synchrony caused by group living, and/or individual preferences. While niche differentiation in activity budgets by color vision type is not apparent, fine-scale niche differentiation may be occurring. This research enhances our understanding of the evolutionary processes maintaining sensory polymorphisms.
Collapse
Affiliation(s)
- Allegra N DePasquale
- Department of Anthropology and Archaeology, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada
| | - Shasta E Webb
- Department of Anthropology and Archaeology, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada
| | - Rachel E Williamson
- Department of Anthropology and Archaeology, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada
| | - Linda M Fedigan
- Department of Anthropology and Archaeology, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada
| | - Amanda D Melin
- Department of Anthropology and Archaeology, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
24
|
Orkin JD, Montague MJ, Tejada-Martinez D, de Manuel M, Del Campo J, Cheves Hernandez S, Di Fiore A, Fontsere C, Hodgson JA, Janiak MC, Kuderna LFK, Lizano E, Martin MP, Niimura Y, Perry GH, Valverde CS, Tang J, Warren WC, de Magalhães JP, Kawamura S, Marquès-Bonet T, Krawetz R, Melin AD. The genomics of ecological flexibility, large brains, and long lives in capuchin monkeys revealed with fecalFACS. Proc Natl Acad Sci U S A 2021; 118:e2010632118. [PMID: 33574059 PMCID: PMC7896301 DOI: 10.1073/pnas.2010632118] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Ecological flexibility, extended lifespans, and large brains have long intrigued evolutionary biologists, and comparative genomics offers an efficient and effective tool for generating new insights into the evolution of such traits. Studies of capuchin monkeys are particularly well situated to shed light on the selective pressures and genetic underpinnings of local adaptation to diverse habitats, longevity, and brain development. Distributed widely across Central and South America, they are inventive and extractive foragers, known for their sensorimotor intelligence. Capuchins have among the largest relative brain size of any monkey and a lifespan that exceeds 50 y, despite their small (3 to 5 kg) body size. We assemble and annotate a de novo reference genome for Cebus imitator Through high-depth sequencing of DNA derived from blood, various tissues, and feces via fluorescence-activated cell sorting (fecalFACS) to isolate monkey epithelial cells, we compared genomes of capuchin populations from tropical dry forests and lowland rainforests and identified population divergence in genes involved in water balance, kidney function, and metabolism. Through a comparative genomics approach spanning a wide diversity of mammals, we identified genes under positive selection associated with longevity and brain development. Additionally, we provide a technological advancement in the use of noninvasive genomics for studies of free-ranging mammals. Our intra- and interspecific comparative study of capuchin genomics provides insights into processes underlying local adaptation to diverse and physiologically challenging environments, as well as the molecular basis of brain evolution and longevity.
Collapse
Affiliation(s)
- Joseph D Orkin
- Department of Anthropology and Archaeology, University of Calgary, Calgary, AB T2N 1N4, Canada;
- Institut de Biologia Evolutiva, Universitat Pompeu Fabra, Consejo Superior de Investigaciones Cientificas, 08003 Barcelona, Spain
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T38 6A8, Canada
| | - Michael J Montague
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19146
| | - Daniela Tejada-Martinez
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107
- Doctorado en Ciencias mención Ecología y Evolución, Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, United Kingdom
| | - Marc de Manuel
- Institut de Biologia Evolutiva, Universitat Pompeu Fabra, Consejo Superior de Investigaciones Cientificas, 08003 Barcelona, Spain
| | - Javier Del Campo
- Institut de Biologia Evolutiva, Universitat Pompeu Fabra, Consejo Superior de Investigaciones Cientificas, 08003 Barcelona, Spain
| | | | - Anthony Di Fiore
- Department of Anthropology and Primate Molecular Ecology and Evolution Laboratory, University of Texas at Austin, Austin, TX 78712
- College of Biological and Environmental Sciences, Universidad San Francisco de Quito, 170901 Cumbayá, Ecuador
| | - Claudia Fontsere
- Institut de Biologia Evolutiva, Universitat Pompeu Fabra, Consejo Superior de Investigaciones Cientificas, 08003 Barcelona, Spain
| | - Jason A Hodgson
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
| | - Mareike C Janiak
- Department of Anthropology and Archaeology, University of Calgary, Calgary, AB T2N 1N4, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T38 6A8, Canada
- School of Science, Engineering and Environment, University of Salford, Salford M5 4WT, United Kingdom
| | - Lukas F K Kuderna
- Institut de Biologia Evolutiva, Universitat Pompeu Fabra, Consejo Superior de Investigaciones Cientificas, 08003 Barcelona, Spain
| | - Esther Lizano
- Institut de Biologia Evolutiva, Universitat Pompeu Fabra, Consejo Superior de Investigaciones Cientificas, 08003 Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Maria Pia Martin
- Kids Saving the Rainforest Wildlife Rescue Center, 60601 Quepos, Costa Rica
| | - Yoshihito Niimura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - George H Perry
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802
- Department of Biology, Pennsylvania State University, University Park, PA 16802
| | | | - Jia Tang
- Department of Anthropology and Archaeology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Wesley C Warren
- Division of Animal Sciences, School of Medicine, University of Missouri, Columbia, MO 65211
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, United Kingdom
| | - Shoji Kawamura
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 277-8562 Chiba, Japan
| | - Tomàs Marquès-Bonet
- Institut de Biologia Evolutiva, Universitat Pompeu Fabra, Consejo Superior de Investigaciones Cientificas, 08003 Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
- Catalan Institution of Research and Advanced Studies, 08010 Barcelona, Spain
- Centro Nacional de Análisis Genómico-Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Roman Krawetz
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB T38 6A8, Canada
| | - Amanda D Melin
- Department of Anthropology and Archaeology, University of Calgary, Calgary, AB T2N 1N4, Canada;
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T38 6A8, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T38 6A8, Canada
| |
Collapse
|
25
|
Melin AD, Hogan JD, Campos FA, Wikberg E, King‐Bailey G, Webb S, Kalbitzer U, Asensio N, Murillo‐Chacon E, Cheves Hernandez S, Guadamuz Chavarria A, Schaffner CM, Kawamura S, Aureli F, Fedigan L, Jack KM. Primate life history, social dynamics, ecology, and conservation: Contributions from long‐term research in Área de Conservación Guanacaste, Costa Rica. Biotropica 2020. [DOI: 10.1111/btp.12867] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Amanda D. Melin
- Department of Anthropology and Archaeology University of Calgary Calgary AB Canada
- Verhaltensökologie & Soziobiologie Deutsches Primatenzentrum – Leibniz‐Institut für Primatenforschung Göttingen Germany
| | - Jeremy D. Hogan
- Department of Anthropology and Archaeology University of Calgary Calgary AB Canada
| | | | - Eva Wikberg
- Department of Anthropology Tulane University New Orleans LA USA
| | | | - Shasta Webb
- Department of Anthropology and Archaeology University of Calgary Calgary AB Canada
| | - Urs Kalbitzer
- Department of Anthropology McGill University Montreal QC Canada
| | - Norberto Asensio
- Departamento de Psicología Social y Metodología de las Ciencias del Comportamiento Universidad del País Vasco Bilbao Spain
| | | | | | | | | | - Shoji Kawamura
- Department of Integrated Biosciences The University of Tokyo Kashiwa Japan
| | - Filippo Aureli
- Instituto de Neuroetología Universidad Veracruzana Xalapa Mexico
- Research Centre in Evolutionary Anthropology and Palaeoecology Liverpool John Moores University Liverpool UK
| | - Linda Fedigan
- Department of Anthropology and Archaeology University of Calgary Calgary AB Canada
| | - Katharine M. Jack
- Department of Anthropology University of Texas at San Antonio San Antonio TX USA
| |
Collapse
|
26
|
Reitsema LJ, Jones CE, Gilbert HR, Fragaszy D, Izar P. Isotopic and elemental corroborates for wild bearded capuchin (Sapajus libidinosus) omnivorous dietary adaptation at Fazenda Boa Vista, Brazil. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8856. [PMID: 32526804 DOI: 10.1002/rcm.8856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/15/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE This study analyzes variability in the diets of wild bearded capuchin monkeys, Sapajus libidinosus, by analyzing stable carbon (δ13 C) and nitrogen (δ15 N) isotope ratios and elemental concentrations (%C and %N) of fecal samples and food items. Developing isotopic and elemental correlates for diets of habituated subjects is a necessary step towards applying similar methods to interpret diets of unhabituated or cryptic subjects. METHODS Fecal samples from wild capuchins and their foods were collected at Fazenda Boa Vista, Brazil. Fecal samples from laboratory-housed Sapajus spp. and their foods were analyzed to establish diet-feces offsets for δ13 C, δ15 N, %C, and %N. Samples were dried, powdered, and measured for isotopic and elemental values. A Bayesian mixing model commutes isotopic and elemental data from wild capuchins into likely proportions of different food categories. RESULTS The captive study shows small diet-feces spaces for Sapajus spp. of -0.8 ± 0.7‰ for δ13 C, -0.2 ± 0.4‰ for δ15 N, -6.1 ± 1.7% for %C, and -1.0 ± 0.6% for %N. The wild study shows omnivorous diets based on C3 , C4 , and CAM plants, and fauna. Subject diets are highly varied within and between days. Fecal data show age-related differences in diet and crop-raiding. There is no consistent isotopic or elemental difference between mothers and infants. CONCLUSIONS Fecal stable isotope and elemental evidence employed in a Bayesian mixing model reflects the highly varied diets of capuchin monkeys in an isotopically heterogeneous environment. The isotopic and elemental variability reported here will aid similar diet reconstructions among unhabituated subjects in the future, but precludes tracking weaning isotopically among capuchins in this environment.
Collapse
Affiliation(s)
| | - Caroline E Jones
- Department of Psychology, University of Georgia, Athens, GA, USA
| | - Hannah R Gilbert
- Department of Chemistry, University of Georgia, Athens, GA, USA
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Dorothy Fragaszy
- Department of Psychology, University of Georgia, Athens, GA, USA
| | - Patrícia Izar
- Department of Experimental Psychology, University of Sao Paulo, Sao Paulo, BRAZIL
| |
Collapse
|
27
|
Environmental variability supports chimpanzee behavioural diversity. Nat Commun 2020; 11:4451. [PMID: 32934202 PMCID: PMC7493986 DOI: 10.1038/s41467-020-18176-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 08/07/2020] [Indexed: 11/18/2022] Open
Abstract
Large brains and behavioural innovation are positively correlated, species-specific traits, associated with the behavioural flexibility animals need for adapting to seasonal and unpredictable habitats. Similar ecological challenges would have been important drivers throughout human evolution. However, studies examining the influence of environmental variability on within-species behavioural diversity are lacking despite the critical assumption that population diversification precedes genetic divergence and speciation. Here, using a dataset of 144 wild chimpanzee (Pan troglodytes) communities, we show that chimpanzees exhibit greater behavioural diversity in environments with more variability — in both recent and historical timescales. Notably, distance from Pleistocene forest refugia is associated with the presence of a larger number of behavioural traits, including both tool and non-tool use behaviours. Since more than half of the behaviours investigated are also likely to be cultural, we suggest that environmental variability was a critical evolutionary force promoting the behavioural, as well as cultural diversification of great apes. Environmental variability is one potential driver of behavioural and cultural diversity in humans and other animals. Here, the authors show that chimpanzee behavioural diversity is higher in habitats that are more seasonal and historically unstable, and in savannah woodland relative to forested sites.
Collapse
|
28
|
Dias da Silva RHP, Castro Sa MJ, Baccaro FB, Tománek P, Barnett AA. Juggling options: Manipulation ease determines primate optimal fruit‐size choice. Biotropica 2020. [DOI: 10.1111/btp.12835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | - Pavel Tománek
- School of Behavioral Sciences Czech University of Life Sciences Prague Prague Czech Republic
| | - Adrian A. Barnett
- Biology Department Amazonas Federal University Manaus Brazil
- School of Behavioral Sciences Czech University of Life Sciences Prague Prague Czech Republic
- School of Life Sciences Roehampton University London UK
- Zoology Department Pernambuco Federal University Recife Brazil
| |
Collapse
|
29
|
Complex Economic Behavior Patterns Are Constructed from Finite, Genetically Controlled Modules of Behavior. Cell Rep 2020; 28:1814-1829.e6. [PMID: 31412249 PMCID: PMC7476553 DOI: 10.1016/j.celrep.2019.07.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 02/22/2019] [Accepted: 07/12/2019] [Indexed: 12/18/2022] Open
Abstract
Complex ethological behaviors could be constructed from finite modules that are reproducible functional units of behavior. Here, we test this idea for foraging and develop methods to dissect rich behavior patterns in mice. We uncover discrete modules of foraging behavior reproducible across different strains and ages, as well as nonmodular behavioral sequences. Modules differ in terms of form, expression frequency, and expression timing and are expressed in a probabilistically determined order. Modules shape economic patterns of feeding, exposure, activity, and perseveration responses. The modular architecture of foraging changes developmentally, and different developmental, genetic, and parental effects are found to shape the expression of specific modules. Dissecting modules from complex patterns is powerful for phenotype analysis. We discover that both parental alleles of the imprinted Prader-Willi syndrome gene Magel2 are functional in mice but regulate different modules. Our study found that complex economic patterns are built from finite, genetically controlled modules. The principles and mechanisms involved in constructing complex behavior patterns are not well defined. Stacher Hörndli et al. find that complex foraging patterns in mice are constructed from finite modules, defined as significantly reproducible behavioral sequences. Modules are expressed in a probabilistically defined order to construct complex patterns and controlled by genetic mechanisms.
Collapse
|
30
|
Tamura M. Extractive foraging on hard‐shelled walnuts and variation of feeding techniques in wild Japanese macaques (
Macaca fuscata
). Am J Primatol 2020; 82:e23130. [DOI: 10.1002/ajp.23130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 03/24/2020] [Accepted: 03/27/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Masaya Tamura
- Laboratory of Human Evolution Studies, Graduate School of ScienceKyoto University Kyoto Japan
| |
Collapse
|
31
|
Campos FA, Kalbitzer U, Melin AD, Hogan JD, Cheves SE, Murillo-Chacon E, Guadamuz A, Myers MS, Schaffner CM, Jack KM, Aureli F, Fedigan LM. Differential impact of severe drought on infant mortality in two sympatric neotropical primates. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200302. [PMID: 32431912 PMCID: PMC7211846 DOI: 10.1098/rsos.200302] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 03/04/2020] [Indexed: 05/06/2023]
Abstract
Extreme climate events can have important consequences for the dynamics of natural populations, and severe droughts are predicted to become more common and intense due to climate change. We analysed infant mortality in relation to drought in two primate species (white-faced capuchins, Cebus capucinus imitator, and Geoffroy's spider monkeys, Ateles geoffroyi) in a tropical dry forest in northwestern Costa Rica. Our survival analyses combine several rare and valuable long-term datasets, including long-term primate life-history, landscape-scale fruit abundance, food-tree mortality, and climate conditions. Infant capuchins showed a threshold mortality response to drought, with exceptionally high mortality during a period of intense drought, but not during periods of moderate water shortage. By contrast, spider monkey females stopped reproducing during severe drought, and the mortality of infant spider monkeys peaked later during a period of low fruit abundance and high food-tree mortality linked to the drought. These divergent patterns implicate differing physiology, behaviour or associated factors in shaping species-specific drought responses. Our findings link predictions about the Earth's changing climate to environmental influences on primate mortality risk and thereby improve our understanding of how the increasing severity and frequency of droughts will affect the dynamics and conservation of wild primates.
Collapse
Affiliation(s)
- Fernando A. Campos
- Department of Anthropology, University of Texas at San Antonio, San Antonio, TX, USA
| | - Urs Kalbitzer
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Amanda D. Melin
- Department of Anthropology and Archaeology, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Jeremy D. Hogan
- Department of Anthropology and Archaeology, University of Calgary, Calgary, AB, Canada
| | | | | | | | | | | | | | - Filippo Aureli
- Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Mexico
- Research Centre in Evolutionary Anthropology and Palaeoecology, Liverpool John Moores University, Liverpool, UK
| | - Linda M. Fedigan
- Department of Anthropology and Archaeology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
32
|
Abstract
Innovation is the ability to solve novel problems or find novel solutions to familiar problems, and it is known to affect fitness in both human and non-human animals. In primates, innovation has been mostly studied in captivity, although differences in living conditions may affect individuals’ ability to innovate. Here, we tested innovation in a wild group of Barbary macaques (Macaca sylvanus). In four different conditions, we presented the group with several identical foraging boxes containing food. To understand which individual characteristics and behavioural strategies best predicted innovation rate, we measured the identity of the individuals manipulating the boxes and retrieving the food, and their behaviour during the task. Our results showed that success in the novel task was mainly affected by the experimental contingencies and the behavioural strategies used during the task. Individuals were more successful in the 1-step conditions, if they participated in more trials, showed little latency to approach the boxes and mainly manipulated functional parts of the box. In contrast, we found no effect of inhibition, social facilitation and individual characteristics like sex, age, rank, centrality, neophobia and reaction to humans, on the individuals’ ability to innovate.
Collapse
|
33
|
Amici F, Widdig A, Lehmann J, Majolo B. A meta-analysis of interindividual differences in innovation. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
34
|
The nutritional importance of invertebrates to female
Cebus capucinus imitator
in a highly seasonal tropical dry forest. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 170:207-216. [DOI: 10.1002/ajpa.23913] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/05/2019] [Accepted: 07/18/2019] [Indexed: 12/12/2022]
|
35
|
Orkin JD, Webb SE, Melin AD. Small to modest impact of social group on the gut microbiome of wild Costa Rican capuchins in a seasonal forest. Am J Primatol 2019; 81:e22985. [PMID: 31081233 DOI: 10.1002/ajp.22985] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/13/2019] [Accepted: 04/14/2019] [Indexed: 12/18/2022]
Abstract
The horizontal transmission of pathogenic and beneficial microbes has implications for health and development of socially living animals. Social group is repeatedly implicated as an important predictor of gut microbiome structure among primates, with individuals in neighboring social groups exhibiting distinct microbiomes. Here we examine whether group membership is a predictor of gut microbiome structure and diversity across three groups of white-faced capuchins (Cebus capucinus imitator) inhabiting a seasonal Costa Rican forest. We collected 62 fecal samples from 18 adult females during four sampling bouts. Sampling bouts spanned the dry-to-wet-to-dry seasonal transitions. To investigate gut microbial composition, we sequenced the V4 region of the 16S rRNA gene. We used the DADA2 pipeline to assign amplicon sequence variants and the RDP database to classify taxa. Our findings are: 1) gut microbiomes of capuchins clustered by social group in the late dry season, but this pattern was less evident in other sampling bouts; 2) social group was a significant variable in a PERMANOVA test of beta diversity, but it accounted for less variation than season; 3) social group was not an important predictor of abundance for the ten most abundant microbial taxa in capuchins; 4) when examining log2-fold abundances of microbes between social groups, there were significant differences in some pairwise comparisons. While this is suggestive of group-wide differences, individual variation may have a strong impact and should be assessed in future studies. Overall, we found a minor impact of social group membership on the gut microbiota of wild white-faced capuchins. Future research including home range overlap and resource use, as well as fine-scale investigation of individual variation, will further elucidate patterns of socially structured microbes.
Collapse
Affiliation(s)
- Joseph Daniel Orkin
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta
| | - Shasta Ellen Webb
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta
| | - Amanda Dawn Melin
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta.,Department of Medical Genetics, University of Calgary, Calgary, Alberta
| |
Collapse
|
36
|
Miller IF, Barton RA, Nunn CL. Quantitative uniqueness of human brain evolution revealed through phylogenetic comparative analysis. eLife 2019; 8:e41250. [PMID: 30702428 PMCID: PMC6379089 DOI: 10.7554/elife.41250] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/29/2019] [Indexed: 12/26/2022] Open
Abstract
While the human brain is clearly large relative to body size, less is known about the timing of brain and brain component expansion within primates and the relative magnitude of volumetric increases. Using Bayesian phylogenetic comparative methods and data for both extant and fossil species, we identified that a distinct shift in brain-body scaling occurred as hominins diverged from other primates, and again as humans and Neanderthals diverged from other hominins. Within hominins, we detected a pattern of directional and accelerating evolution towards larger brains, consistent with a positive feedback process in the evolution of the human brain. Contrary to widespread assumptions, we found that the human neocortex is not exceptionally large relative to other brain structures. Instead, our analyses revealed a single increase in relative neocortex volume at the origin of haplorrhines, and an increase in relative cerebellar volume in apes.
Collapse
Affiliation(s)
- Ian F Miller
- Ecology and Evolutionary BiologyPrinceton UniversityPrincetonUnited States
- Department of Evolutionary AnthropologyDuke UniversityDurhamUnited States
| | - Robert A Barton
- Evolutionary Anthropology Research Group, Department of AnthropologyUniversity of DurhamDurhamUnited Kingdom
| | - Charles L Nunn
- Department of Evolutionary AnthropologyDuke UniversityDurhamUnited States
- Duke Global Health InstituteDuke UniversityDurhamUnited States
| |
Collapse
|
37
|
Orkin JD, Campos FA, Myers MS, Cheves Hernandez SE, Guadamuz A, Melin AD. Seasonality of the gut microbiota of free-ranging white-faced capuchins in a tropical dry forest. ISME JOURNAL 2018; 13:183-196. [PMID: 30135468 DOI: 10.1038/s41396-018-0256-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/24/2018] [Accepted: 07/19/2018] [Indexed: 02/08/2023]
Abstract
Research on the gut microbiota of free-ranging mammals is offering new insights into dietary ecology. However, for free-ranging primates, little information is available for how microbiomes are influenced by ecological variation through time. Primates inhabiting seasonal tropical dry forests undergo seasonally specific decreases in food abundance and water availability, which have been linked to adverse health effects. Throughout the course of a seasonal transition in 2014, we collected fecal samples from three social groups of free-ranging white-faced capuchin monkeys (Cebus capucinus imitator) in Sector Santa Rosa, Área de Conservación Guanacaste, Costa Rica. 16S rRNA sequencing data reveal that unlike other primates, the white-faced capuchin monkey gut is dominated by Bifidobacterium and Streptococcus. Linear mixed effects models indicate that abundances of these genera are associated with fluctuating availability and consumption of fruit and arthropods, whereas beta diversity clusters by rainfall season. Whole shotgun metagenomics revealed that the capuchin gut is dominated by carbohydrate-binding modules associated with digestion of plant polysaccharides and chitin, matching seasonal dietary patterns. We conclude that rainfall and diet are associated with the diversity, composition, and function of the capuchin gut microbiome. Additionally, microbial fluctuations are likely contributing to nutrient uptake and the health of wild primate populations.
Collapse
Affiliation(s)
- Joseph D Orkin
- Department of Anthropology & Archaeology, University of Calgary, Calgary, AB, Canada. .,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada. .,Department of Anthropology, Washington University in St. Louis, St. Louis, MO, USA.
| | - Fernando A Campos
- Department of Anthropology, University of Texas at San Antonio, San Antonio, TX, USA.,Department of Biology, Duke University, Durham, NC, USA
| | - Monica S Myers
- Department of Anthropology & Archaeology, University of Calgary, Calgary, AB, Canada.,Área de Conservación Guanacaste, Guanacaste, Costa Rica
| | - Saul E Cheves Hernandez
- Department of Anthropology & Archaeology, University of Calgary, Calgary, AB, Canada.,Área de Conservación Guanacaste, Guanacaste, Costa Rica
| | | | - Amanda D Melin
- Department of Anthropology & Archaeology, University of Calgary, Calgary, AB, Canada. .,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada. .,Department of Anthropology, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
38
|
de Andrade AC, de Sousa AB. Hand preferences and differences in extractive foraging in seven capuchin monkey species. Am J Primatol 2018; 80:e22901. [DOI: 10.1002/ajp.22901] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/03/2018] [Accepted: 07/05/2018] [Indexed: 01/16/2023]
Affiliation(s)
- Antonio C. de Andrade
- Universidade Federal da Paraiba, Centro de Ciencias Aplicadas e Educacao; Departamento de Engenharia e Meio Ambiente; Rio Tinto Paraíba Brazil
| | - Allana B. de Sousa
- Universidade Federal da Paraiba, Centro de Ciencias Aplicadas e Educacao; Departamento de Engenharia e Meio Ambiente; Rio Tinto Paraíba Brazil
| |
Collapse
|
39
|
Barrett BJ, Monteza-Moreno CM, Dogandžić T, Zwyns N, Ibáñez A, Crofoot MC. Habitual stone-tool-aided extractive foraging in white-faced capuchins, Cebus capucinus. ROYAL SOCIETY OPEN SCIENCE 2018; 5:181002. [PMID: 30225086 PMCID: PMC6124021 DOI: 10.1098/rsos.181002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 07/25/2018] [Indexed: 06/08/2023]
Abstract
Habitual reliance on tool use is a marked behavioural difference between wild robust (genus Sapajus) and gracile (genus Cebus) capuchin monkeys. Despite being well studied and having a rich repertoire of social and extractive foraging traditions, Cebus sp. rarely use tools and have never been observed using stone tools. By contrast, habitual tool use by Sapajus is widespread. We review theory and discuss factors which might explain these differences in patterns of tool use between Cebus and Sapajus. We then report the first case of habitual stone tool use in a gracile capuchin: a population of white-faced capuchins (Cebus capucinus imitator) in Coiba National Park, Panama who habitually rely on hammerstone and anvil tool use to access structurally protected food items in coastal areas including Terminalia catappa seeds, hermit crabs, marine snails, terrestrial crabs and other items. This behaviour has persisted on one island in Coiba National Park since at least 2004. From 1 year of camera trapping, we found that stone tool use is strongly male-biased. Of the 205 camera trap days where tool use was recorded, adult females were never observed to use stone tools, although they were frequently recorded at the sites and engaged in scrounging behaviour. Stone tool use occurs year-round in this population; over half of all identifiable individuals were observed participating. At the most active tool use site, 83.2% of days where capuchins were sighted corresponded with tool use. Capuchins inhabiting the Coiba archipelago are highly terrestrial, under decreased predation pressure and potentially experience resource limitation compared to mainland populations-three conditions considered important for the evolution of stone tool use. White-faced capuchin tool use in Coiba National Park thus offers unique opportunities to explore the ecological drivers and evolutionary underpinnings of stone tool use in a comparative within- and between-species context.
Collapse
Affiliation(s)
- Brendan J. Barrett
- Cognitive and Cultural Ecology Group, Max Planck Institute for Ornithology, Radolfzell, Germany
- Department of Human Behavior, Ecology, and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Animal Behavior Graduate Group, University of California, Davis, CA, USA
- Department of Anthropology, University of California, Davis, CA, USA
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panamá, Republic of Panamá
| | - Claudio M. Monteza-Moreno
- Animal Behavior Graduate Group, University of California, Davis, CA, USA
- Department of Anthropology, University of California, Davis, CA, USA
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panamá, Republic of Panamá
- Estación Científica COIBA-AIP, Ciudad del Saber, Clayton, Panamá, Republic of Panamá
| | - Tamara Dogandžić
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Anthropology, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicolas Zwyns
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Anthropology, University of California, Davis, CA, USA
| | | | - Margaret C. Crofoot
- Animal Behavior Graduate Group, University of California, Davis, CA, USA
- Department of Anthropology, University of California, Davis, CA, USA
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panamá, Republic of Panamá
| |
Collapse
|
40
|
Powell LE, Isler K, Barton RA. Re-evaluating the link between brain size and behavioural ecology in primates. Proc Biol Sci 2018; 284:rspb.2017.1765. [PMID: 29046380 DOI: 10.1098/rspb.2017.1765] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/25/2017] [Indexed: 12/15/2022] Open
Abstract
Comparative studies have identified a wide range of behavioural and ecological correlates of relative brain size, with results differing between taxonomic groups, and even within them. In primates for example, recent studies contradict one another over whether social or ecological factors are critical. A basic assumption of such studies is that with sufficiently large samples and appropriate analysis, robust correlations indicative of selection pressures on cognition will emerge. We carried out a comprehensive re-examination of correlates of primate brain size using two large comparative datasets and phylogenetic comparative methods. We found evidence in both datasets for associations between brain size and ecological variables (home range size, diet and activity period), but little evidence for an effect of social group size, a correlation which has previously formed the empirical basis of the Social Brain Hypothesis. However, reflecting divergent results in the literature, our results exhibited instability across datasets, even when they were matched for species composition and predictor variables. We identify several potential empirical and theoretical difficulties underlying this instability and suggest that these issues raise doubts about inferring cognitive selection pressures from behavioural correlates of brain size.
Collapse
Affiliation(s)
- Lauren E Powell
- Evolutionary Anthropology Research Group, Department of Anthropology, University of Durham, South Road, Durham DH1 3LE, UK
| | - Karin Isler
- Department of Anthropology, University of Zürich-Irchel, Winterthurerstr. 190, Zürich 8057, Switzerland
| | - Robert A Barton
- Evolutionary Anthropology Research Group, Department of Anthropology, University of Durham, South Road, Durham DH1 3LE, UK
| |
Collapse
|
41
|
Heldstab SA, Müller DWH, Graber SM, Bingaman Lackey L, Rensch E, Hatt JM, Zerbe P, Clauss M. Geographical Origin, Delayed Implantation, and Induced Ovulation Explain Reproductive Seasonality in the Carnivora. J Biol Rhythms 2018; 33:402-419. [DOI: 10.1177/0748730418773620] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Patterns of reproductive seasonality in the Carnivora are difficult to study comparatively, due to limited numbers of species for which information is available. Long-term databases of captive populations could overcome this difficulty. We apply a categorical description and a quantitative high-resolution measure (birth peak breadth, the number of days in which 80% of all births occur) based on daily observations in captivity to characterize the degree of reproductive seasonality in the Carnivora for 114 species with on average 1357 births per species. We find that the majority of species retained the birth seasonality displayed in the wild. Latitude of natural origin, delayed implantation, and induced ovulation were the main factors influencing reproductive seasonality. Most species were short-day breeders, but there was no evidence of an absolute photoperiodic signal for the timing of mating or conception. The length of the gestation period (corrected for body mass) generally decreased with birth seasonality but increased in species with delayed implantation. Birth seasons become shorter with increasing latitude of geographical origin, likely because the length of the favorable season declines with increasing latitude, exerting a strong selective pressure on fitting both the reproductive cycle and the interval offspring needs for growth following the termination of parental care into the short time window of optimal environmental conditions. Species with induced ovulation exhibit a less seasonal reproductive pattern, potentially because mates do not have to meet during a short time window of a fixed ovulation. Seasonal species of Carnivora shorten their gestation period so reproduction can occur during the short time window of optimal environmental conditions. Alternatively, other Carnivora species lengthen their gestation periods in order to bridge long winters. Interestingly, this occurs not by decelerating intrauterine growth but by delaying implantation.
Collapse
Affiliation(s)
- Sandra A. Heldstab
- Department of Anthropology, University of Zurich, Zurich, Switzerland
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | | | - Sereina M. Graber
- Department of Anthropology, University of Zurich, Zurich, Switzerland
| | | | - Eberhard Rensch
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Jean-Michel Hatt
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Philipp Zerbe
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Marcus Clauss
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
42
|
Mallott EK, Amato KR, Garber PA, Malhi RS. Influence of fruit and invertebrate consumption on the gut microbiota of wild white‐faced capuchins (
Cebus capucinus
). AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 165:576-588. [DOI: 10.1002/ajpa.23395] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/09/2017] [Accepted: 12/13/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Elizabeth K. Mallott
- Department of AnthropologyNorthwestern University1810 Hinman Ave, Evanston Illinois 60208
| | - Katherine R. Amato
- Department of AnthropologyNorthwestern University1810 Hinman Ave, Evanston Illinois 60208
| | - Paul A. Garber
- Department of AnthropologyUniversity of Illinois at Urbana‐Champaign109A Davenport Hall, 607 South Mathews Avenue, Urbana Illinois 61801
| | - Ripan S. Malhi
- Department of AnthropologyUniversity of Illinois at Urbana‐Champaign109A Davenport Hall, 607 South Mathews Avenue, Urbana Illinois 61801
- Carl R Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐Champaign1206 West Gregory Drive, Urbana Illinois 61801
| |
Collapse
|
43
|
Pal A, Kumara HN, Mishra PS, Velankar AD, Singh M. Extractive foraging and tool-aided behaviors in the wild Nicobar long-tailed macaque (Macaca fascicularis umbrosus). Primates 2017; 59:173-183. [PMID: 29086889 DOI: 10.1007/s10329-017-0635-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 10/15/2017] [Indexed: 11/28/2022]
Abstract
Macaques possess a repertoire of extractive foraging techniques that range from complex manipulation to tool-aided behaviors, to access food items that increase their foraging efficiency substantially. However, the complexity and composition of such techniques vary considerably between species and even between populations. In the present study, we report seven such complex manipulative behaviors that include six extractive foraging behaviors, and teeth flossing, in a population of Nicobar long-tailed macaques. The apparent purpose of these behaviors was an extraction of encased food, processing food, foraging hidden invertebrates, and dental flossing. Among these behaviors, three behaviors viz. wrapping, wiping, and teeth-flossing were tool-aided behaviors, where macaques used both natural and synthetic materials as tools. Occasionally macaques also modified those tools prior to their use. The substrate use patterns of leaf rubbing and teeth flossing were similar to that observed in other macaques. The spontaneous tool modification to perform wrapping was a first time observation. These observations suggest that Nicobar long-tailed macaques have a high level of sensorimotor intelligence which helps to evolve such innovative foraging solutions.
Collapse
Affiliation(s)
- Arijit Pal
- Sálim Ali Centre for Ornithology and Natural History, Coimbatore, Tamil Nadu, India.,Manipal University, Manipal, Karnataka, India
| | - Honnavalli N Kumara
- Sálim Ali Centre for Ornithology and Natural History, Coimbatore, Tamil Nadu, India.
| | - Partha Sarathi Mishra
- Sálim Ali Centre for Ornithology and Natural History, Coimbatore, Tamil Nadu, India.,Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Avadhoot D Velankar
- Sálim Ali Centre for Ornithology and Natural History, Coimbatore, Tamil Nadu, India.,Manipal University, Manipal, Karnataka, India
| | - Mewa Singh
- Biopsychology Laboratory and Institution of Excellence, University of Mysore, Mysore, Karnataka, India.,Organismal Biology Unit, Jawaharlal Nehru Centre for Advance Scientific Research, Bangalore, Karnataka, India
| |
Collapse
|
44
|
Trichromacy increases fruit intake rates of wild capuchins ( Cebus capucinus imitator). Proc Natl Acad Sci U S A 2017; 114:10402-10407. [PMID: 28894009 DOI: 10.1073/pnas.1705957114] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Intraspecific color vision variation is prevalent among nearly all diurnal monkeys in the neotropics and is seemingly a textbook case of balancing selection acting to maintain genetic polymorphism. Clear foraging advantages to monkeys with trichromatic vision over those with dichromatic "red-green colorblind" vision have been observed in captive studies; however, evidence of trichromatic advantage during close-range foraging has been surprisingly scarce in field studies, perhaps as a result of small sample sizes and strong impacts of environmental or individual variation on foraging performance. To robustly test the effects of color vision type on foraging efficiency in the wild, we conducted an extensive study of dichromatic and trichromatic white-faced capuchin monkeys (Cebus capucinus imitator), controlling for plant-level and monkey-level variables that may affect fruit intake rates. Over the course of 14 months, we collected behavioral data from 72 monkeys in Sector Santa Rosa, Costa Rica. We analyzed 19,043 fruit feeding events within 1,602 foraging bouts across 27 plant species. We find that plant species, color conspicuity category, and monkey age class significantly impact intake rates, while sex does not. When plant species and age are controlled for, we observe that trichromats have higher intake rates than dichromats for plant species with conspicuously colored fruits. This study provides clear evidence of trichromatic advantage in close-range fruit feeding in wild monkeys. Taken together with previous reports of dichromatic advantage for finding cryptic foods, our results illuminate an important aspect of balancing selection maintaining primate opsin polymorphism.
Collapse
|
45
|
Bergstrom ML, Emery Thompson M, Melin AD, Fedigan LM. Using urinary parameters to estimate seasonal variation in the physical condition of female white-faced capuchin monkeys (Cebus capucinus imitator). AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2017; 163:707-715. [PMID: 28555757 DOI: 10.1002/ajpa.23239] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 04/15/2017] [Accepted: 04/17/2017] [Indexed: 02/04/2023]
Abstract
OBJECTIVES The physical condition of females depends on access to resources, which vary over space and time. Assessing variation in physical condition can help identify factors affecting reproductive success, but noninvasive measurement is difficult in wild animals. Creatinine concentration relative to the specific gravity (i.e., density) of urine has promise for noninvasively quantifying the relative muscle mass (RMM) of wild primates. We verified the relationship between these urinary parameters for wild white-faced capuchin monkeys, and assessed temporal changes in the RMM of females across groups and between periods of high and low resource abundance. MATERIALS AND METHODS We collected urine from 25 adult females in three groups across varying seasons at Sector Santa Rosa, Costa Rica. We measured the specific gravity and creatinine concentration of 692 samples and the effect of specific gravity on creatinine concentration. We used the residuals of this relationship to measure effects of group and season using mixed-effects models. RESULTS Specific gravity significantly predicted creatinine concentration. Season, group membership and the interaction between these variables were significant predictors of residual creatinine variation. Specifically, RMM was higher during months with high fruit energy density, lower in one social group, and less variable among females in the smallest group. DISCUSSION Our findings suggest that specific gravity and creatinine may be used as urinary parameters to make inferences about the RMM of capuchins. Using this technique, we infer that females experienced changes in muscle mass according to variation in resource energy availability and social group variation.
Collapse
Affiliation(s)
- Mackenzie L Bergstrom
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | | | - Amanda D Melin
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta, T2N 1N4, Canada.,Department of Medical Genetics, University of Calgary, Calgary, Alberta, T2N 1N4, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Linda M Fedigan
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| |
Collapse
|
46
|
Melin AD, Khetpal V, Matsushita Y, Zhou K, Campos FA, Welker B, Kawamura S. Howler monkey foraging ecology suggests convergent evolution of routine trichromacy as an adaptation for folivory. Ecol Evol 2017; 7:1421-1434. [PMID: 28261454 PMCID: PMC5330884 DOI: 10.1002/ece3.2716] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/28/2016] [Accepted: 12/18/2016] [Indexed: 02/03/2023] Open
Abstract
Primates possess remarkably variable color vision, and the ecological and social factors shaping this variation remain heavily debated. Here, we test whether central tenants of the folivory hypothesis of routine trichromacy hold for the foraging ecology of howler monkeys. Howler monkeys (genus Alouatta) and paleotropical primates (Parvorder: Catarrhini) have independently acquired routine trichromacy through fixation of distinct mid- to long-wavelength-sensitive (M/LWS) opsin genes on the X-chromosome. The presence of routine trichromacy in howlers, while other diurnal neotropical monkeys (Platyrrhini) possess polymorphic trichromacy, is poorly understood. A selective force proposed to explain the evolution of routine trichromacy in catarrhines-reliance on young, red leaves-has received scant attention in howlers, a gap we fill in this study. We recorded diet, sequenced M/LWS opsin genes in four social groups of Alouatta palliata, and conducted colorimetric analysis of leaves consumed in Sector Santa Rosa, Costa Rica. For a majority of food species, including Ficus trees, an important resource year-round, young leaves were more chromatically conspicuous from mature leaves to trichromatic than to hypothetical dichromatic phenotypes. We found that 18% of opsin genes were MWS/LWS hybrids; when combined with previous research, the incidence of hybrid M/LWS opsins in this species is 13%. In visual models of food discrimination ability, the hybrid trichromatic phenotype performed slightly poorer than normal trichromacy, but substantially better than dichromacy. Our results provide support for the folivory hypothesis of routine trichromacy. Similar ecological pressures, that is, the search for young, reddish leaves, may have driven the independent evolution of routine trichromacy in primates on separate continents. We discuss our results in the context of balancing selection acting on New World monkey opsin genes and hypothesize that howlers experience stronger selection against dichromatic phenotypes than other sympatric species, which rely more heavily on cryptic foods.
Collapse
Affiliation(s)
- Amanda D. Melin
- Department of Anthropology and ArchaeologyUniversity of CalgaryCalgaryABCanada
- Department of Medical Genetics and Alberta Children’s Hospital Research InstituteUniversity of CalgaryCalgaryABCanada
| | - Vishal Khetpal
- Department of AnthropologyWashington University in St. LouisSt. LouisMOUSA
| | - Yuka Matsushita
- Department of Integrated BiosciencesGraduate School of Frontier SciencesThe University of TokyoTokyoJapan
| | - Kaile Zhou
- Department of Integrated BiosciencesGraduate School of Frontier SciencesThe University of TokyoTokyoJapan
- Department of Plant ProtectionCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouZhejiangChina
| | - Fernando A. Campos
- Department of Anthropology and ArchaeologyUniversity of CalgaryCalgaryABCanada
- Department of AnthropologyTulane UniversityNew OrleansLAUSA
| | - Barbara Welker
- Department of AnthropologyState University of New York at GeneseoGeneseoNYUSA
| | - Shoji Kawamura
- Department of Integrated BiosciencesGraduate School of Frontier SciencesThe University of TokyoTokyoJapan
| |
Collapse
|
47
|
Mallott EK, Garber PA, Malhi RS. Integrating feeding behavior, ecological data, and DNA barcoding to identify developmental differences in invertebrate foraging strategies in wild white-faced capuchins (Cebus capucinus). AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2016; 162:241-254. [PMID: 27704526 DOI: 10.1002/ajpa.23113] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 09/21/2016] [Accepted: 09/24/2016] [Indexed: 01/28/2023]
Abstract
OBJECTIVES Invertebrate foraging strategies in nonhuman primates often require complex extractive foraging or prey detection techniques. As these skills take time to master, juveniles may have reduced foraging efficiency or concentrate their foraging efforts on easier to acquire prey than adults. MATERIALS AND METHODS We use DNA barcoding, behavioral observations, and ecological data to assess age-based differences in invertebrate prey foraging strategies in a group of white-faced capuchins (Cebus capucinus) in northeastern Costa Rica. Invertebrate availability was monitored using canopy traps and sweep netting. Fecal samples were collected from adult female, adult male, and juvenile white-faced capuchins (n = 225). COI mtDNA sequences were compared with known sequences in GenBank and the Barcode of Life Database. RESULTS Frequencies of Lepidoptera and Hymenoptera consumption were higher in juveniles than in adults. A significantly smaller proportion of juvenile fecal samples contained Gryllidae and Cercopidae sequences, compared with adults (0% and 4.2% vs. 4.6% and 12.5%), and a significantly larger proportion contained Tenthredinidae, Culicidae, and Crambidae (5.6%, 9.7%, and 5.6% vs. 1.3%, 0.7%, and 1.3%). Juveniles spent significantly more time feeding and foraging than adults, and focused their foraging efforts on prey that require different skills to capture or extract. Arthropod availability was not correlated with foraging efficiency, and the rate of consumption of specific orders of invertebrates was not correlated with the availability of those same taxa. DISCUSSION Our data support the hypothesis that juveniles are concentrating their foraging efforts on different prey than adults, potentially focusing their foraging efforts on more easily acquired types of prey.
Collapse
Affiliation(s)
- Elizabeth K Mallott
- Department of Anthropology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| | - Paul A Garber
- Department of Anthropology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| | - Ripan S Malhi
- Department of Anthropology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801.,Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| |
Collapse
|
48
|
Hogan JD, Melin AD, Mosdossy KN, Fedigan LM. Seasonal importance of flowers to Costa Rican capuchins (Cebus capucinus imitator): Implications for plant and primate. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2016; 161:591-602. [PMID: 27492752 DOI: 10.1002/ajpa.23059] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 07/07/2016] [Accepted: 07/24/2016] [Indexed: 11/07/2022]
Abstract
OBJECTIVES Our goal is to investigate flower foraging by capuchin monkeys, a behavior rarely studied in wild primates. We ask what drives seasonal variation in florivory rates: flower quality and abundance or fluctuations in fruit and invertebrate abundances. We explore how capuchins affect the reproductive success of flower food species by quantifying the potential pollination rate. MATERIALS AND METHODS We followed capuchin groups from dawn to dusk and recorded all flower foraging bouts. Flower food nutritional composition was compared to fruit and invertebrate foods. We recorded overall flower, fruit, and invertebrate abundances and compared the rate of flower foraging to these. We estimated the likelihood of pollination from the proportion of flower patch visits to each plant species that satisfied minimum behavioral requirements. RESULTS Flower eating was highly seasonal, and was significantly negatively related to overall fruit and invertebrate abundance but not flower abundance. Although smaller than most fruits, flowers were nutritionally comparable to fruit foods by dry mass and contained higher average concentrations of protein. Capuchins are likely pollinators for Luehea speciosa; most foraging visits to this species occurred in a manner that makes outcrossing or geitonogamous pollination likely. DISCUSSION Flowers are an important seasonal resource for capuchins. Flowers likely act as fallback foods during periods of reduced fruit and invertebrate abundance, and may exert evolutionary pressure disproportionate to their consumption. Capuchin florivory likely affects the reproductive success of some plants, potentially shaping forest structure. Our study illustrates the value of assessing the importance of rare foods in the primate diet.
Collapse
Affiliation(s)
- Jeremy D Hogan
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Amanda D Melin
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Krisztina N Mosdossy
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Linda M Fedigan
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| |
Collapse
|
49
|
Dominy NJ, Yeakel JD, Bhat U, Ramsden L, Wrangham RW, Lucas PW. How chimpanzees integrate sensory information to select figs. Interface Focus 2016; 6:20160001. [PMID: 27274803 PMCID: PMC4843626 DOI: 10.1098/rsfs.2016.0001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Figs are keystone resources that sustain chimpanzees when preferred fruits are scarce. Many figs retain a green(ish) colour throughout development, a pattern that causes chimpanzees to evaluate edibility on the basis of achromatic accessory cues. Such behaviour is conspicuous because it entails a succession of discrete sensory assessments, including the deliberate palpation of individual figs, a task that requires advanced visuomotor control. These actions are strongly suggestive of domain-specific information processing and decision-making, and they call attention to a potential selective force on the origin of advanced manual prehension and digital dexterity during primate evolution. To explore this concept, we report on the foraging behaviours of chimpanzees and the spectral, chemical and mechanical properties of figs, with cutting tests revealing ease of fracture in the mouth. By integrating the ability of different sensory cues to predict fructose content in a Bayesian updating framework, we quantified the amount of information gained when a chimpanzee successively observes, palpates and bites the green figs of Ficus sansibarica. We found that the cue eliciting ingestion was not colour or size, but fig mechanics (including toughness estimates from wedge tests), which relays higher-quality information on fructose concentrations than colour vision. This result explains why chimpanzees evaluate green figs by palpation and dental incision, actions that could explain the adaptive origins of advanced manual prehension.
Collapse
Affiliation(s)
- Nathaniel J. Dominy
- Department of Anthropology, Dartmouth College, 6047 Silsby Hall, Hanover, NH 03755, USA
- Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, NH 03755, USA
| | - Justin D. Yeakel
- School of Natural Sciences, University of California, 5200 North Lake Road, Merced, CA 95343, USA
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| | - Uttam Bhat
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
- Physics Department, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, USA
| | - Lawrence Ramsden
- School of Biological Sciences, University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China
| | - Richard W. Wrangham
- Department of Human Evolutionary Biology, Harvard University, 11 Divinity Avenue, Cambridge, MA 02138, USA
| | - Peter W. Lucas
- Smithsonian Tropical Research Institute, Apartado Postal, 0843-03092, Balboa, Ancon, Panama
| |
Collapse
|
50
|
Heldstab SA, Kosonen ZK, Koski SE, Burkart JM, van Schaik CP, Isler K. Manipulation complexity in primates coevolved with brain size and terrestriality. Sci Rep 2016; 6:24528. [PMID: 27075921 PMCID: PMC4830942 DOI: 10.1038/srep24528] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/31/2016] [Indexed: 11/09/2022] Open
Abstract
Humans occupy by far the most complex foraging niche of all mammals, built around sophisticated technology, and at the same time exhibit unusually large brains. To examine the evolutionary processes underlying these features, we investigated how manipulation complexity is related to brain size, cognitive test performance, terrestriality, and diet quality in a sample of 36 non-human primate species. We categorized manipulation bouts in food-related contexts into unimanual and bimanual actions, and asynchronous or synchronous hand and finger use, and established levels of manipulative complexity using Guttman scaling. Manipulation categories followed a cumulative ranking. They were particularly high in species that use cognitively challenging food acquisition techniques, such as extractive foraging and tool use. Manipulation complexity was also consistently positively correlated with brain size and cognitive test performance. Terrestriality had a positive effect on this relationship, but diet quality did not affect it. Unlike a previous study on carnivores, we found that, among primates, brain size and complex manipulations to acquire food underwent correlated evolution, which may have been influenced by terrestriality. Accordingly, our results support the idea of an evolutionary feedback loop between manipulation complexity and cognition in the human lineage, which may have been enhanced by increasingly terrestrial habits.
Collapse
Affiliation(s)
- Sandra A Heldstab
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Zaida K Kosonen
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Sonja E Koski
- University of Helsinki, Centre of Excellence in Intersubjectivity in Interaction. P.O.Box 4, Vuorikatu 3, 00014 Helsinki, Finland
| | - Judith M Burkart
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Carel P van Schaik
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Karin Isler
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|