1
|
Grine FE, Post NW, Greening V, Crevecoeur I, Billings BK, Meyer A, Holt S, Black W, Morris AG, Veeramah KR, Mongle CS. Frontal sinus size in South African Later Stone Age Holocene Khoe-San. Anat Rec (Hoboken) 2025; 308:801-826. [PMID: 39118368 DOI: 10.1002/ar.25556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/01/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024]
Abstract
Frontal size variation is comparatively poorly sampled among sub-Saharan African populations. This study assessed frontal sinus size in a sample of Khoe-San skeletal remains from South African Later Stone Age contexts. Volumes were determined from CT scans of 102 adult crania; individual sex could be estimated in 82 cases. Sinus volume is not sexually dimorphic in this sample. The lack of frontal sinus aplasia is concordant with the low incidences recorded for other sub-Saharan African and most other global populations save those that inhabit high latitudes. There is considerable variation in frontal sinus size among global populations, and the Khoe-San possess among the smallest. The Khoe-San have rather diminutive sinuses compared to sub-Saharan Bantu-speaking populations but resemble a northern African (Sudanese) population. Genetic studies indicate the earliest population divergence within Homo sapiens to have been between the Khoe-San and all other living groups, and that this likely occurred in Africa during the span of Marine Isotope Stages 8-6. There is scant information on frontal sinus development among Late Quaternary African fossils that are likely either closely related or attributable to Homo sapiens. Among these, the MIS 3 cranium from Hofmeyr, South Africa, exhibits distinct Khoe-San cranial affinities and despite its large size has a very small frontal sinus. This raises the possibility that the small frontal sinuses of the Holocene South African Khoe-San might be a feature retained from an earlier MIS 3 population.
Collapse
Affiliation(s)
- Frederick E Grine
- Department of Anthropology, Stony Brook University, Stony Brook, New York, USA
- Department of Anatomical Sciences, School of Medicine, Stony Brook University, New York, USA
| | - Nicholas W Post
- Richard Gilder Graduate School and Division of Anthropology, American Museum of Natural History, New York, New York, USA
| | | | - Isabelle Crevecoeur
- Laboratoire de la Préhistoire à l'Actuel: Culture, Environnement et Anthropologie, Université de Bordeaux, Pessac Cedex, France
- Chargée de Recherche CNRS, Université de Bordeaux, Pessac Cedex, France
| | - Brendon K Billings
- Human Variation and Identification Research Unit, School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand Parktown, Johannesburg, South Africa
| | - Anja Meyer
- Human Variation and Identification Research Unit, School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand Parktown, Johannesburg, South Africa
| | - Sharon Holt
- Florisbad Quaternary Research Station, National Museum, Bloemfontein, South Africa
| | - Wendy Black
- Archaeology Unit, Iziko Museums of South Africa, Cape Town, South Africa
| | - Alan G Morris
- Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Krishna R Veeramah
- Department of Ecology & Evolution, Stony Brook University, Stony Brook, New York, USA
| | - Carrie S Mongle
- Department of Anthropology, Stony Brook University, Stony Brook, New York, USA
- Turkana Basin Institute, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
2
|
Kaifu Y, Kurniawan I, Mizushima S, Sawada J, Lague M, Setiawan R, Sutisna I, Wibowo UP, Suwa G, Kono RT, Sasaki T, Brumm A, van den Bergh GD. Early evolution of small body size in Homo floresiensis. Nat Commun 2024; 15:6381. [PMID: 39107275 PMCID: PMC11303730 DOI: 10.1038/s41467-024-50649-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/18/2024] [Indexed: 08/09/2024] Open
Abstract
Recent discoveries of Homo floresiensis and H. luzonensis raise questions regarding how extreme body size reduction occurred in some extinct Homo species in insular environments. Previous investigations at Mata Menge, Flores Island, Indonesia, suggested that the early Middle Pleistocene ancestors of H. floresiensis had even smaller jaws and teeth. Here, we report additional hominin fossils from the same deposits at Mata Menge. An adult humerus is estimated to be 9 - 16% shorter and thinner than the type specimen of H. floresiensis dated to ~60,000 years ago, and is smaller than any other Plio-Pleistocene adult hominin humeri hitherto reported. The newly recovered teeth are both exceptionally small; one of them bears closer morphological similarities to early Javanese H. erectus. The H. floresiensis lineage most likely evolved from early Asian H. erectus and was a long-lasting lineage on Flores with markedly diminutive body size since at least ~700,000 years ago.
Collapse
Affiliation(s)
- Yousuke Kaifu
- The University Museum, The University of Tokyo, Tokyo, Japan.
| | - Iwan Kurniawan
- Center for Geological Survey, Geological Agency, Bandung, Indonesia.
| | - Soichiro Mizushima
- Department of Anatomy, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Junmei Sawada
- Institute of Physical Anthropology, Niigata University of Health and Welfare, Niigata, Japan
| | - Michael Lague
- School of Natural Sciences and Mathematics, Stockton University, Stockton, NJ, USA
| | - Ruly Setiawan
- Center for Geological Survey, Geological Agency, Bandung, Indonesia
| | - Indra Sutisna
- Geology Museum Bandung, Geological Agency, Bandung, Indonesia
| | - Unggul P Wibowo
- Geology Museum Bandung, Geological Agency, Bandung, Indonesia
| | - Gen Suwa
- The University Museum, The University of Tokyo, Tokyo, Japan
| | - Reiko T Kono
- Faculty of Letters, Keio University, Kanagawa, Japan
| | | | - Adam Brumm
- Australian Research Centre for Human Evolution, Griffith University, Brisbane, QLD, Australia
| | - Gerrit D van den Bergh
- Centre for Archaeological Science, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
3
|
Mahoney P, McFarlane G, Taurozzi AJ, Madupe PP, O'Hara MC, Molopyane K, Cappellini E, Hawks J, Skinner MM, Berger L. Human-like enamel growth in Homo naledi. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 184:e24893. [PMID: 38180115 DOI: 10.1002/ajpa.24893] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/12/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024]
Abstract
OBJECTIVES A modern pattern (rate and duration) of dental development occurs relatively recently during human evolution. Given the temporal overlap of Homo naledi with the first appearance of fossil Homo sapiens in Africa, this small-bodied and small-brained hominin presents an opportunity to elucidate the evolution of enamel growth in the hominin clade. Here we conduct the first histological study of two permanent mandibular canines and one permanent maxillary first molar, representing three individuals attributed to H. naledi. We reconstruct the rate and duration of enamel growth and compare these findings to those reported for other fossil hominins and recent humans. MATERIALS AND METHODS Thin sections of each tooth were produced using standard histological methods. Daily and longer period incremental markings were measured to reconstruct enamel secretion and extension rates, Retzius periodicity, canine crown and molar cusp formation time. RESULTS Daily enamel secretion rates overlapped with those from recent hominins. Canine crown formation time is similar to that observed in recent Europeans but is longer than canine formation times reported for most other hominins including Australopithecus and H. neanderthalensis. The extended period of canine formation appears to be due to a relatively tall enamel crown and a sustained slow rate of enamel extension in the cervical portion of the crown. A Retzius periodicity of 11 days for the canines, and nine days for the molar, in H. naledi parallel results found in recent humans. An 11-day periodicity has not been reported for Late Pleistocene Homo (H. erectus, H. neanderthalensis) and is rarely found in Australopithecus and Paranthropus species. DISCUSSION Enamel growth of H. naledi is most similar to recent humans though comparative data are limited for most fossil hominin species. The high Retzius periodicity values do not follow expectations for a small-brained hominin.
Collapse
Affiliation(s)
- Patrick Mahoney
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Gina McFarlane
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Alberto J Taurozzi
- Section for GeoGenetics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Palesa P Madupe
- Section for GeoGenetics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Human Evolution Research Institute, University of Cape Town, Rondebosch, South Africa
| | - Mackie C O'Hara
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Keneiloe Molopyane
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
- The National Geographic Society, Washington, District of Columbia, USA
| | - Enrico Cappellini
- Section for GeoGenetics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - John Hawks
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
- Department of Anthropology, University of Wisconsin-Madison, USA
| | - Matthew M Skinner
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Lee Berger
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
- The National Geographic Society, Washington, District of Columbia, USA
- The Carnegie Institution for Science, Washington, District of Columbia, USA
| |
Collapse
|
4
|
Pérez-Claros JA, Palmqvist P. Heterochronies and allometries in the evolution of the hominid cranium: a morphometric approach using classical anthropometric variables. PeerJ 2022; 10:e13991. [PMID: 36042865 PMCID: PMC9420405 DOI: 10.7717/peerj.13991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 08/11/2022] [Indexed: 01/19/2023] Open
Abstract
This article studies the evolutionary change of allometries in the relative size of the two main cranial modules (neurocranium and splanchnocranium) in the five living hominid species and a diverse sample of extinct hominins. We use six standard craniometric variables as proxies for the length, width and height of each cranial module. Factor analysis and two-block partial least squares (2B-PLS) show that the great apes and modern humans share a pervasive negative ontogenetic allometry in the neurocranium and a positive one in the splanchnocranium. This developmental constraint makes it possible to interpret the cranial heterochronies in terms of ontogenetic scaling processes (i.e., extensions or truncations of the ancestral ontogenetic trajectory) and lateral transpositions (i.e., parallel translations of the entire trajectory starting from a different shape for a given cranial size). We hypothesize that ontogenetic scaling is the main evolutionary modality in the australopithecines while in the species of Homo it is also necessary to apply transpositions. Both types of processes are coordinated in Homo, which result in an evolutionary trend toward an increase in brain size and in the degree of paedomorphosis from the earliest habilines.
Collapse
|
5
|
Bowland LA, Scott JE, Kivell TL, Patel BA, Tocheri MW, Orr CM. Homo naledi pollical metacarpal shaft morphology is distinctive and intermediate between that of australopiths and other members of the genus Homo. J Hum Evol 2021; 158:103048. [PMID: 34340120 DOI: 10.1016/j.jhevol.2021.103048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 10/20/2022]
Abstract
Homo naledi fossils from the Rising Star cave system provide important insights into the diversity of hand morphology within the genus Homo. Notably, the pollical (thumb) metacarpal (Mc1) displays an unusual suite of characteristics including a median longitudinal crest, a narrow proximal base, and broad flaring intrinsic muscle flanges. The present study evaluates the affinities of H. naledi Mc1 morphology via 3D geometric morphometric analysis of shaft shape using a broader comparative sample (n = 337) of fossil hominins, recent humans, apes, and cercopithecoid monkeys than in prior work. Results confirm that the H. naledi Mc1 is distinctive from most other hominins in being narrow at the proximal end but surmounted by flaring muscle flanges distally. Only StW 418 (Australopithecus cf. africanus) is similar in these aspects of shape. The gracile proximal shaft is most similar to cercopithecoids, Pan, Pongo, Australopithecus afarensis, and Australopithecus sediba, suggesting that H. naledi retains the condition primitive for the genus Homo. In contrast, Neandertal Mc1s are characterized by wide proximal bases and shafts, pinched midshafts, and broad distal flanges, while those of recent humans generally have straight shafts, less robust muscle flanges, and wide proximal shafts/bases. Although uncertainties remain regarding character polarity, the morphology of the H. naledi thumb might be interpreted as a retained intermediate state in a transformation series between the overall gracility of the shaft and the robust shafts of later hominins. Such a model suggests that the addition of broad medial and lateral muscle flanges to a primitively slender shaft was the first modification in transforming the Mc1 into the overall more robust structure exhibited by other Homo taxa including Neandertals and recent Homo sapiens in whose shared lineage the bases and proximal shafts became expanded, possibly as an adaptation to the repeated recruitment of powerful intrinsic pollical muscles.
Collapse
Affiliation(s)
- Lucyna A Bowland
- Department of Anthropology, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Jill E Scott
- Department of Sociology and Anthropology, Metropolitan State University of Denver, Denver, CO, 80217, USA; Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, WITS 2050, Johannesburg, South Africa
| | - Tracy L Kivell
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, WITS 2050, Johannesburg, South Africa; School of Anthropology and Conservation, University of Kent, Canterbury, CT2 7NR, UK; Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany
| | - Biren A Patel
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA; Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Matthew W Tocheri
- Department of Anthropology, Lakehead University, Thunder Bay, ON, P7K 1L8, Canada; Human Origins Program, Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington DC, 20560, USA; Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - Caley M Orr
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, 80045, USA; Department of Anthropology, University of Colorado Denver, Denver, CO, 80217, USA.
| |
Collapse
|
6
|
Bergmann I, Hublin JJ, Gunz P, Freidline SE. How did modern morphology evolve in the human mandible? The relationship between static adult allometry and mandibular variability in Homo sapiens. J Hum Evol 2021; 157:103026. [PMID: 34214909 DOI: 10.1016/j.jhevol.2021.103026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023]
Abstract
Key to understanding human origins are early Homo sapiens fossils from Jebel Irhoud, as well as from the early Late Pleistocene sites Tabun, Border Cave, Klasies River Mouth, Skhul, and Qafzeh. While their upper facial shape falls within the recent human range of variation, their mandibles display a mosaic morphology. Here we quantify how mandibular shape covaries with mandible size and how static allometry differs between Neanderthals, early H. sapiens, and modern humans from the Upper Paleolithic/Later Stone Age and Holocene (= later H. sapiens). We use 3D (semi)landmark geometric morphometric methods to visualize allometric trends and to explore how gracilization affects the expression of diagnostic shape features. Early H. sapiens were highly variable in mandible size, exhibiting a unique allometric trajectory that explains aspects of their 'archaic' appearance. At the same time, early H. sapiens share a suite of diagnostic features with later H. sapiens that are not related to mandibular sizes, such as an incipient chin and an anteroposteriorly decreasing corpus height. The mandibular morphology, often referred to as 'modern', can partly be explained by gracilization owing to size reduction. Despite distinct static allometric shape changes in each group studied, bicondylar and bigonial breadth represent important structural constraints for the expression of shape features in most Middle to Late Pleistocene hominin mandibles.
Collapse
Affiliation(s)
- Inga Bergmann
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany.
| | - Jean-Jacques Hublin
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Philipp Gunz
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Sarah E Freidline
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| |
Collapse
|
7
|
Irish JD, Grabowski M. Relative tooth size, Bayesian inference, and Homo naledi. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021; 176:262-282. [PMID: 34190335 DOI: 10.1002/ajpa.24353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/04/2021] [Accepted: 06/08/2021] [Indexed: 01/29/2023]
Abstract
OBJECTIVES Size-corrected tooth crown measurements were used to estimate phenetic affinities among Homo naledi (~335-236 ka) and 11 other Plio-Pleistocene and recent species. To assess further their efficacy, and identify dental evolutionary trends, the data were then quantitatively coded for phylogenetic analyses. Results from both methods contribute additional characterization of H. naledi relative to other hominins. MATERIALS AND METHODS After division by their geometric mean, scaled mesiodistal and buccolingual dimensions were used in tooth size apportionment analysis to compare H. naledi with Australopithecus africanus, A. afarensis, Paranthropus robustus, P. boisei, H. habilis, H. ergaster, H. erectus, H. heidelbergensis, H. neanderthalensis, H. sapiens, and Pan troglodytes. These data produce equivalently scaled samples unaffected by interspecific size differences. The data were then gap-weighted for Bayesian inference. RESULTS Congruence in interspecific relationships is evident between methods, and with many inferred from earlier systematic studies. However, the present results place H. naledi as a sister taxon to H. habilis, based on a symplesiomorphic pattern of relative tooth size. In the preferred Bayesian phylogram, H. naledi is nested within a clade comprising all Homo species, but it shares some characteristics with australopiths and, particularly, early Homo. DISCUSSION Phylogenetic analyses of relative tooth size yield information about evolutionary dental trends not previously reported in H. naledi and the other hominins. Moreover, with an appropriate model these data recovered plausible evolutionary relationships. Together, the findings support recent study suggesting H. naledi originated long before the geological date of the Dinaledi Chamber, from which the specimens under study were recovered.
Collapse
Affiliation(s)
- Joel D Irish
- Research Centre in Evolutionary Anthropology and Palaeoecology, School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK.,The Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
| | - Mark Grabowski
- Research Centre in Evolutionary Anthropology and Palaeoecology, School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK.,Centre for Ecology and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
8
|
Divergence-time estimates for hominins provide insight into encephalization and body mass trends in human evolution. Nat Ecol Evol 2021; 5:808-819. [PMID: 33795855 DOI: 10.1038/s41559-021-01431-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 02/25/2021] [Indexed: 12/18/2022]
Abstract
Quantifying speciation times during human evolution is fundamental as it provides a timescale to test for the correlation between key evolutionary transitions and extrinsic factors such as climatic or environmental change. Here, we applied a total evidence dating approach to a hominin phylogeny to estimate divergence times under different topological hypotheses. The time-scaled phylogenies were subsequently used to perform ancestral state reconstructions of body mass and phylogenetic encephalization quotient (PEQ). Our divergence-time estimates are consistent with other recent studies that analysed extant species. We show that the origin of the genus Homo probably occurred between 4.30 and 2.56 million years ago. The ancestral state reconstructions show a general trend towards a smaller body mass before the emergence of Homo, followed by a trend towards a greater body mass. PEQ estimations display a general trend of gradual but accelerating encephalization evolution. The obtained results provide a rigorous temporal framework for human evolution.
Collapse
|
9
|
Varón-González C, Whelan S, Klingenberg CP. Estimating Phylogenies from Shape and Similar Multidimensional Data: Why It Is Not Reliable. Syst Biol 2021; 69:863-883. [PMID: 31985800 DOI: 10.1093/sysbio/syaa003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 01/03/2020] [Accepted: 01/17/2020] [Indexed: 12/20/2022] Open
Abstract
In recent years, there has been controversy whether multidimensional data such as geometric morphometric data or information on gene expression can be used for estimating phylogenies. This study uses simulations of evolution in multidimensional phenotype spaces to address this question and to identify specific factors that are important for answering it. Most of the simulations use phylogenies with four taxa, so that there are just three possible unrooted trees and the effect of different combinations of branch lengths can be studied systematically. In a comparison of methods, squared-change parsimony performed similarly well as maximum likelihood, and both methods outperformed Wagner and Euclidean parsimony, neighbor-joining and UPGMA. Under an evolutionary model of isotropic Brownian motion, phylogeny can be estimated reliably if dimensionality is high, even with relatively unfavorable combinations of branch lengths. By contrast, if there is phenotypic integration such that most variation is concentrated in one or a few dimensions, the reliability of phylogenetic estimates is severely reduced. Evolutionary models with stabilizing selection also produce highly unreliable estimates, which are little better than picking a phylogenetic tree at random. To examine how these results apply to phylogenies with more than four taxa, we conducted further simulations with up to eight taxa, which indicated that the effects of dimensionality and phenotypic integration extend to more than four taxa, and that convergence among internal nodes may produce additional complications specifically for greater numbers of taxa. Overall, the simulations suggest that multidimensional data, under evolutionary models that are plausible for biological data, do not produce reliable estimates of phylogeny. [Brownian motion; gene expression data; geometric morphometrics; morphological integration; squared-change parsimony; phylogeny; shape; stabilizing selection.].
Collapse
Affiliation(s)
- Ceferino Varón-González
- School of Biological Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Simon Whelan
- School of Biological Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.,Department of Evolutionary Biology, EBC, Uppsala University, Norbyägen 18D, 75236 Uppsala, Sweden
| | - Christian Peter Klingenberg
- School of Biological Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
10
|
Brophy JK, Moggi-Cecchi J, Matthews GJ, Bailey SE. Comparative morphometric analyses of the deciduous molars of Homo naledi from the Dinaledi Chamber, South Africa. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 174:299-314. [PMID: 33290582 DOI: 10.1002/ajpa.24190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/12/2020] [Accepted: 11/09/2020] [Indexed: 11/08/2022]
Abstract
OBJECTIVES The purpose of this study is to help elucidate the taxonomic relationship between Homo naledi and other hominins. MATERIALS AND METHODS Homo naledi deciduous maxillary and mandibular molars from the Dinaledi Chamber, South Africa were compared to those of Australopithecus africanus, Australopithecus afarensis, Paranthropus robustus, Paranthropus boisei, early Homo sp., Homo erectus, early Homo sapiens, Upper Paleolithic H. sapiens, recent southern African H. sapiens, and Neanderthals by means of morphometric analyses of crown outlines and relative cusp areas. The crown shapes were analyzed using elliptical Fourier analyses followed by principal component analyses (PCA). The absolute and relative cusp areas were obtained in ImageJ and compared using PCA and cluster analyses. RESULTS PCA suggests that the crown shapes and relative cusp areas of mandibular molars are more diagnostic than the maxillary molars. The H. naledi deciduous mandibular first and second molar (dm1 and dm2 ) do not have a strong affinity to any taxon in the comparative sample in all analyses. While the H. naledi dm2 plots as an outlier in the relative cusp analysis, the H. naledi specimen fall closest to Australopithecus due to their relatively large metaconid, a primitive trait for the genus Homo. Although useful for differentiating Neanderthals from recent southern African H. sapiens and UP H. sapiens, the PCA of the relative cusp areas suggests that the deciduous maxillary second molars (dm2 ) do not differentiate other groups. The three H. naledi dm2 cuspal areas are variable and fall within the ranges of other Homo, as well as Australopithecus, and Paranthropus suggesting weak diagnostic utility. DISCUSSION This research provides another perspective on the morphology of, and variation within, H. naledi. The H. naledi deciduous molars do not consistently align with any genus or species in the comparative sample in either the crown shape or relative cusp analyses. This line of inquiry is consistent with other cranial and postcranial studies suggesting that H. naledi is unique.
Collapse
Affiliation(s)
- Juliet K Brophy
- Department of Geography and Anthropology, Louisiana State University, Baton Rouge, Louisiana, USA.,Evolutionary Studies Institute, University of the Witwatersrand, WITS, South Africa
| | - Jacopo Moggi-Cecchi
- Laboratori di Antropologia, Dipartimento di Biologia, Università degli Studi di Firenze, Florence, Italy
| | - Gregory J Matthews
- Department of Mathematics and Statistics, Loyola University Chicago, Chicago, Illinois, USA
| | - Shara E Bailey
- Center for the Study of Human Origins, Department of Anthropology, New York University, New York, New York, USA.,New York Consortium in Evolutionary Primatology, New York, New York, USA.,Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
11
|
White JD, Ortega-Castrillon A, Virgo C, Indencleef K, Hoskens H, Shriver MD, Claes P. Sources of variation in the 3dMDface and Vectra H1 3D facial imaging systems. Sci Rep 2020; 10:4443. [PMID: 32157192 PMCID: PMC7064576 DOI: 10.1038/s41598-020-61333-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/17/2020] [Indexed: 12/21/2022] Open
Abstract
As technology advances and collaborations grow, our ability to finely quantify and explore morphological variation in 3D structures can enable important discoveries and insights into clinical, evolutionary, and genetic questions. However, it is critical to explore and understand the relative contribution of potential sources of error to the structures under study. In this study, we isolated the level of error in 3D facial images attributable to four sources, using the 3dMDface and Vectra H1 camera systems. When the two camera systems are used separately to image human participants, this analysis finds an upper bound of error potentially introduced by the use of the 3dMDface or Vectra H1 camera systems, in conjunction with the MeshMonk registration toolbox, at 0.44 mm and 0.40 mm, respectively. For studies using both camera systems, this upper bound increases to 0.85 mm, on average, and there are systematic differences in the representation of the eyelids, nostrils, and mouth by the two camera systems. Our results highlight the need for careful assessment of potential sources of error in 3D images, both in terms of magnitude and position, especially when dealing with very small measurements or performing many tests.
Collapse
Affiliation(s)
- Julie D White
- Department of Anthropology, The Pennsylvania State University, University Park, PA, United States.
| | - Alejandra Ortega-Castrillon
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
- Medical Imaging Research Center, UZ Leuven, Leuven, Belgium
| | - Ciara Virgo
- Department of Anthropology, The Pennsylvania State University, University Park, PA, United States
| | - Karlijne Indencleef
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
- Medical Imaging Research Center, UZ Leuven, Leuven, Belgium
| | - Hanne Hoskens
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
- Department of Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Mark D Shriver
- Department of Anthropology, The Pennsylvania State University, University Park, PA, United States
| | - Peter Claes
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium.
- Medical Imaging Research Center, UZ Leuven, Leuven, Belgium.
- Department of Human Genetics, University Hospitals Leuven, Leuven, Belgium.
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia.
- Department of Biomedical Engineering, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
12
|
White S, Soligo C, Pope M, Hillson S. Taxonomic variation in the supraorbital region of catarrhine primates. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 171:198-218. [PMID: 31762014 DOI: 10.1002/ajpa.23975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 11/07/2022]
Abstract
OBJECTIVES This study aimed to test the taxonomic utility of the catarrhine supraorbital region using 3D geometric morphometrics, with the aim of establishing its potential use in elucidating the position of more debated hominin groups. MATERIALS AND METHODS 230 3D coordinates were used to record the supraorbital morphology of two datasets: one containing 460 non-hominin catarrhine primates from species and subspecies of Gorilla, Pan, Papio, and Macaca; and the other containing 55 Pleistocene hominins from Homo, Australopithecus, and Paranthropus. Principal component analyses in tangent, form, and allometry-free shape space were used to assess differentiation of taxa, with biological distinctiveness of taxa being established using step-wise discriminant analysis with subsampling. RESULTS Results indicated that the recorded supraorbital morphology could be used to separate non-hominin catarrhine primate genera, species, and subspecies, although accuracy was found to decrease with decreasing Linnaean rank. In addition, analyses in tangent space were found to produce the highest accuracy when classifying primates of known taxonomy. Biological distinctiveness of the middle and later Homo species was comparable to or higher than that of the non-hominin primates, and relatively lower for the earlier groups of Homo. DISCUSSION This study indicates that the supraorbital region preserves taxonomic information that can be used to delineate between closely related groups, both within hominins and wider catarrhine primates. Therefore, this region may be used to provide insight when assessing the taxonomic affiliation of disputed hominin specimens.
Collapse
Affiliation(s)
- Suzanna White
- Department of Anthropology, University College London, London, UK
| | | | - Matt Pope
- Institute of Archaeology, University College London, London, UK
| | - Simon Hillson
- Institute of Archaeology, University College London, London, UK
| |
Collapse
|
13
|
Bailey SE, Brophy JK, Moggi-Cecchi J, Delezene LK. The deciduous dentition of Homo naledi: A comparative study. J Hum Evol 2019; 136:102655. [DOI: 10.1016/j.jhevol.2019.102655] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 08/06/2019] [Accepted: 08/08/2019] [Indexed: 12/23/2022]
|
14
|
Kupczik K, Delezene LK, Skinner MM. Mandibular molar root and pulp cavity morphology in Homo naledi and other Plio-Pleistocene hominins. J Hum Evol 2019; 130:83-95. [PMID: 31010546 DOI: 10.1016/j.jhevol.2019.03.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 12/31/2022]
Abstract
The craniomandibular morphology of Homo naledi shows variable resemblances with species across Homo, which confounds an easy assessment of its phylogenetic position. In terms of skull shape, H. naledi has its closest affinities with Homo erectus, while mandibular shape places it closer to early Homo. From a tooth crown perspective, the smaller molars of H. naledi make it distinct from early Homo and H. erectus. Here, we compare the mandibular molar root morphology of six H. naledi individuals from the Dinaledi Chamber to those of African and Eurasian Plio-Pleistocene fossil hominins (totalling 183 mandibular first, second and third molars). The analysis of five root metric variables (cervical plane area, root length, root cervix volume, root branch volume, and root surface area) derived from microCT reconstructions reveals that the molar roots of H. naledi are smaller than those of Homo habilis, Homo rudolfensis, and H. erectus, but that they resemble those of three Homo sp. specimens from Swartkrans and Koobi Fora in size and overall appearance. Moreover, though H. naledi molar roots are similar in absolute size to Pleistocene Homo sapiens, they differ from H. sapiens in having a larger root volume for a given cervical plane area and less taurodont roots; the root cervix-to-branch proportions of H. naledi are comparable to those of Australopithecus africanus and species of Paranthropus. H. naledi also shares a metameric root volume pattern (M2 > M3 > M1) with Australopithecus and Paranthropus but not with any of the other Homo species (M2 > M1 > M3). Our findings therefore concur with previous studies that found that H. naledi shares plesiomorphic features with early Homo, Australopithecus, and Paranthropus. While absolute molar root size aligns H. naledi with Homo from North and South Africa, it is distinguishable from these in terms of root volumetric proportions.
Collapse
Affiliation(s)
- Kornelius Kupczik
- Max Planck Weizmann Center for Integrative Archaeology and Anthropology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany.
| | - Lucas K Delezene
- Department of Anthropology, University of Arkansas, 330 Old Main, Fayetteville, AR, 72701, USA; Evolutionary Studies Institute and Centre for Excellence in PaleoSciences, University of the Witwatersrand, South Africa
| | - Matthew M Skinner
- Evolutionary Studies Institute and Centre for Excellence in PaleoSciences, University of the Witwatersrand, South Africa; School of Anthropology and Conservation, University of Kent, Canterbury, UK; Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
15
|
Braga J, Zimmer V, Dumoncel J, Samir C, de Beer F, Zanolli C, Pinto D, Rohlf FJ, Grine FE. Efficacy of diffeomorphic surface matching and 3D geometric morphometrics for taxonomic discrimination of Early Pleistocene hominin mandibular molars. J Hum Evol 2019; 130:21-35. [PMID: 31010541 DOI: 10.1016/j.jhevol.2019.01.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 12/23/2022]
Abstract
Morphometric assessments of the dentition have played significant roles in hypotheses relating to taxonomic diversity among extinct hominins. In this regard, emphasis has been placed on the statistical appraisal of intraspecific variation to identify morphological criteria that convey maximum discriminatory power. Three-dimensional geometric morphometric (3D GM) approaches that utilize landmarks and semi-landmarks to quantify shape variation have enjoyed increasingly popular use over the past twenty-five years in assessments of the outer enamel surface (OES) and enamel-dentine junction (EDJ) of fossil molars. Recently developed diffeomorphic surface matching (DSM) methods that model the deformation between shapes have drastically reduced if not altogether eliminated potential methodological inconsistencies associated with the a priori identification of landmarks and delineation of semi-landmarks. As such, DSM has the potential to better capture the geometric details that describe tooth shape by accounting for both homologous and non-homologous (i.e., discrete) features, and permitting the statistical determination of geometric correspondence. We compare the discriminatory power of 3D GM and DSM in the evaluation of the OES and EDJ of mandibular permanent molars attributed to Australopithecus africanus, Paranthropus robustus and early Homo sp. from the sites of Sterkfontein and Swartkrans. For all three molars, classification and clustering scores demonstrate that DSM performs better at separating the A. africanus and P. robustus samples than does 3D GM. The EDJ provided the best results. P. robustus evinces greater morphological variability than A. africanus. The DSM assessment of the early Homo molar from Swartkrans reveals its distinctiveness from either australopith sample, and the "unknown" specimen from Sterkfontein (Stw 151) is notably more similar to Homo than to A. africanus.
Collapse
Affiliation(s)
- José Braga
- Computer-assisted Palaeoanthropology Team, UMR 5288 CNRS-Université de Toulouse (Paul Sabatier), 37 Allées Jules Guesde, 31000 Toulouse, France; Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg 2050, South Africa.
| | - Veronika Zimmer
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; Department of Biomedical Engineering, King's College London, London, UK.
| | - Jean Dumoncel
- Computer-assisted Palaeoanthropology Team, UMR 5288 CNRS-Université de Toulouse (Paul Sabatier), 37 Allées Jules Guesde, 31000 Toulouse, France.
| | - Chafik Samir
- LIMOS, UMR 6158 CNRS-Université Clermont Auvergne, 63173 Aubière, France.
| | - Frikkie de Beer
- South African Nuclear Energy Corporation (NECSA), Pelindaba, North West Province, South Africa.
| | - Clément Zanolli
- Computer-assisted Palaeoanthropology Team, UMR 5288 CNRS-Université de Toulouse (Paul Sabatier), 37 Allées Jules Guesde, 31000 Toulouse, France.
| | - Deborah Pinto
- Computer-assisted Palaeoanthropology Team, UMR 5288 CNRS-Université de Toulouse (Paul Sabatier), 37 Allées Jules Guesde, 31000 Toulouse, France.
| | - F James Rohlf
- Department of Anthropology, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Frederick E Grine
- Department of Anthropology, Stony Brook University, Stony Brook, NY 11794, USA; Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
16
|
Multiple Components of Phylogenetic Non-stationarity in the Evolution of Brain Size in Fossil Hominins. Evol Biol 2019. [DOI: 10.1007/s11692-019-09471-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
17
|
Ancient teeth, phenetic affinities, and African hominins: Another look at where Homo naledi fits in. J Hum Evol 2018; 122:108-123. [DOI: 10.1016/j.jhevol.2018.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 05/18/2018] [Accepted: 05/21/2018] [Indexed: 12/25/2022]
|
18
|
Neubauer S, Gunz P, Leakey L, Leakey M, Hublin JJ, Spoor F. Reconstruction, endocranial form and taxonomic affinity of the early Homo calvaria KNM-ER 42700. J Hum Evol 2018; 121:25-39. [DOI: 10.1016/j.jhevol.2018.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 12/23/2022]
|
19
|
Description and analysis of three Homo naledi incudes from the Dinaledi Chamber, Rising Star cave (South Africa). J Hum Evol 2018; 122:146-155. [PMID: 30001870 DOI: 10.1016/j.jhevol.2018.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 11/22/2022]
Abstract
This study describes three incudes recovered from the Dinaledi Chamber in the Rising Star cave system in South Africa. All three bones were recovered during sieving of excavated sediments and likely represent three Homo naledi individuals. Morphologically and metrically, the Dinaledi ossicles resemble those of chimpanzees and Paranthropus robustus more than they do later members of the genus Homo, and fall outside of the modern human range of variation in several dimensions. Despite this, when overall size is considered, the functional lengths in H. naledi and P. robustus are very similar to those predicted for a human with a similar-sized incus. In this sense, both taxa seem to show a relatively elongated functional length, distinguishing them from chimpanzees. The functional length in H. naledi is slightly longer in absolute terms than in P. robustus, suggesting H. naledi may already show a slight increase in functional length compared with early hominins. While H. naledi lacks the more open angle between the long and short processes found in modern humans, considered a derived feature within the genus Homo, the value in H. naledi is similar to that predicted for a hominoid with a similar-sized incus. Principal components analysis of size-standardized variables shows H. naledi falling outside of the recent human range of variation, but within the confidence ellipse for gorillas. Phylogenetic polarity is complicated by the absence of incus data from early members of the genus Homo, but the generally primitive nature of the H. naledi incudes is consistent with other primitive features of the species, such as the very small cranial capacity. These ossicles add significantly to the understanding of incus variation in hominins and provide important new data on the morphology and taxonomic affinities of H. naledi.
Collapse
|
20
|
Usui K, Tokita M. Creating diversity in mammalian facial morphology: a review of potential developmental mechanisms. EvoDevo 2018; 9:15. [PMID: 29946416 PMCID: PMC6003202 DOI: 10.1186/s13227-018-0103-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/25/2018] [Indexed: 12/22/2022] Open
Abstract
Mammals (class Mammalia) have evolved diverse craniofacial morphology to adapt to a wide range of ecological niches. However, the genetic and developmental mechanisms underlying the diversification of mammalian craniofacial morphology remain largely unknown. In this paper, we focus on the facial length and orofacial clefts of mammals and deduce potential mechanisms that produced diversity in mammalian facial morphology. Small-scale changes in facial morphology from the common ancestor, such as slight changes in facial length and the evolution of the midline cleft in some lineages of bats, could be attributed to heterochrony in facial bone ossification. In contrast, large-scale changes of facial morphology from the common ancestor, such as a truncated, widened face as well as the evolution of the bilateral cleft possessed by some bat species, could be brought about by changes in growth and patterning of the facial primordium (the facial processes) at the early stages of embryogenesis.
Collapse
Affiliation(s)
- Kaoru Usui
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510 Japan
| | - Masayoshi Tokita
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510 Japan
| |
Collapse
|
21
|
de Ruiter DJ, Churchill S, Hawks J, Berger L. Late Australopiths and the Emergence of Homo. ANNUAL REVIEW OF ANTHROPOLOGY 2017. [DOI: 10.1146/annurev-anthro-102116-041734] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
New fossil discoveries and new analyses increasingly blur the lines between Australopithecus and Homo, changing scientific ideas about the transition between the two genera. The concept of the genus itself remains an unsettled issue, though recent fossil discoveries and theoretical advances, alongside developments in phylogenetic reconstruction and hypothesis testing, are helping us approach a resolution. A review of the latest discoveries and research reveals that (a) despite the recent recovery of key fossil specimens, the antiquity of the genus Homo remains uncertain; (b) although there exist several australopith candidate ancestors for the genus Homo, there is little consensus about which of these, if any, represents the actual ancestor; and (c) potential convergent evolution (homoplasy) in adaptively significant features in late australopiths and basal members of the Homo clade, combined with probable reticulate evolution, makes it currently impossible to identify the direct ancestor of Homo erectus.
Collapse
Affiliation(s)
- Darryl J. de Ruiter
- Department of Anthropology, Texas A&M University, College Station, Texas 77843
- Evolutionary Studies Institute and Centre for Excellence in PalaeoSciences, University of the Witwatersrand, Wits 2050, South Africa
| | - S.E. Churchill
- Evolutionary Studies Institute and Centre for Excellence in PalaeoSciences, University of the Witwatersrand, Wits 2050, South Africa
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina 27708
| | - J. Hawks
- Evolutionary Studies Institute and Centre for Excellence in PalaeoSciences, University of the Witwatersrand, Wits 2050, South Africa
- Department of Anthropology, University of Wisconsin, Madison, Wisconsin 53706
| | - L.R. Berger
- Evolutionary Studies Institute and Centre for Excellence in PalaeoSciences, University of the Witwatersrand, Wits 2050, South Africa
- School of Geosciences, University of the Witwatersrand, Wits 2050, South Africa
| |
Collapse
|
22
|
Schroeder L, Ackermann RR. Evolutionary processes shaping diversity across the Homo lineage. J Hum Evol 2017; 111:1-17. [DOI: 10.1016/j.jhevol.2017.06.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 06/15/2017] [Accepted: 06/16/2017] [Indexed: 02/05/2023]
|
23
|
Garvin HM, Elliott MC, Delezene LK, Hawks J, Churchill SE, Berger LR, Holliday TW. Body size, brain size, and sexual dimorphism in Homo naledi from the Dinaledi Chamber. J Hum Evol 2017; 111:119-138. [DOI: 10.1016/j.jhevol.2017.06.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 06/19/2017] [Accepted: 06/23/2017] [Indexed: 01/07/2023]
|
24
|
NEVES WALTERA, BERNARDO DANILOV, PANTALEONI IVAN. Morphological affinities of Homo naledi with other Plio-Pleistocene hominins: a phenetic approach. AN ACAD BRAS CIENC 2017; 89:2199-2207. [DOI: 10.1590/0001-3765201720160841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/21/2017] [Indexed: 11/22/2022] Open
|
25
|
Argue D, Groves CP, Lee MS, Jungers WL. The affinities of Homo floresiensis based on phylogenetic analyses of cranial, dental, and postcranial characters. J Hum Evol 2017; 107:107-133. [DOI: 10.1016/j.jhevol.2017.02.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 02/21/2017] [Accepted: 02/23/2017] [Indexed: 01/09/2023]
|
26
|
Hawks J, Elliott M, Schmid P, Churchill SE, Ruiter DJD, Roberts EM, Hilbert-Wolf H, Garvin HM, Williams SA, Delezene LK, Feuerriegel EM, Randolph-Quinney P, Kivell TL, Laird MF, Tawane G, DeSilva JM, Bailey SE, Brophy JK, Meyer MR, Skinner MM, Tocheri MW, VanSickle C, Walker CS, Campbell TL, Kuhn B, Kruger A, Tucker S, Gurtov A, Hlophe N, Hunter R, Morris H, Peixotto B, Ramalepa M, Rooyen DV, Tsikoane M, Boshoff P, Dirks PH, Berger LR. New fossil remains of Homo naledi from the Lesedi Chamber, South Africa. eLife 2017; 6. [PMID: 28483039 PMCID: PMC5423776 DOI: 10.7554/elife.24232] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/18/2017] [Indexed: 01/06/2023] Open
Abstract
The Rising Star cave system has produced abundant fossil hominin remains within the Dinaledi Chamber, representing a minimum of 15 individuals attributed to Homo naledi. Further exploration led to the discovery of hominin material, now comprising 131 hominin specimens, within a second chamber, the Lesedi Chamber. The Lesedi Chamber is far separated from the Dinaledi Chamber within the Rising Star cave system, and represents a second depositional context for hominin remains. In each of three collection areas within the Lesedi Chamber, diagnostic skeletal material allows a clear attribution to H. naledi. Both adult and immature material is present. The hominin remains represent at least three individuals based upon duplication of elements, but more individuals are likely present based upon the spatial context. The most significant specimen is the near-complete cranium of a large individual, designated LES1, with an endocranial volume of approximately 610 ml and associated postcranial remains. The Lesedi Chamber skeletal sample extends our knowledge of the morphology and variation of H. naledi, and evidence of H. naledi from both recovery localities shows a consistent pattern of differentiation from other hominin species.
Collapse
Affiliation(s)
- John Hawks
- Evolutionary Studies Institute, University of the Witwatersrand, Wits, South Africa.,Department of Anthropology, University of Wisconsin, Madison, United States
| | - Marina Elliott
- Evolutionary Studies Institute, University of the Witwatersrand, Wits, South Africa
| | - Peter Schmid
- Evolutionary Studies Institute, University of the Witwatersrand, Wits, South Africa.,Anthropological Institute and Museum, University of Zürich, Winterthurerstr, Zürich, Switzerland
| | - Steven E Churchill
- Evolutionary Studies Institute, University of the Witwatersrand, Wits, South Africa.,Department of Evolutionary Anthropology, Duke University, Durham, United States
| | - Darryl J de Ruiter
- Evolutionary Studies Institute, University of the Witwatersrand, Wits, South Africa.,Department of Anthropology, Texas A&M University, College Station, United States
| | - Eric M Roberts
- Geosciences, College of Science and Engineering, James Cook University, Townsville, Australia
| | - Hannah Hilbert-Wolf
- Geosciences, College of Science and Engineering, James Cook University, Townsville, Australia
| | - Heather M Garvin
- Evolutionary Studies Institute, University of the Witwatersrand, Wits, South Africa.,Department of Anthropology/Archaeology, Mercyhurst University, Erie, United States.,Department of Applied Forensic Sciences, Mercyhurst University, Erie, United States
| | - Scott A Williams
- Evolutionary Studies Institute, University of the Witwatersrand, Wits, South Africa.,Center for the Study of Human Origins, Department of Anthropology, New York University, New York, United States.,New York Consortium in Evolutionary Primatology, New York, United States
| | - Lucas K Delezene
- Evolutionary Studies Institute, University of the Witwatersrand, Wits, South Africa.,Department of Anthropology, University of Arkansas, Fayetteville, United States
| | - Elen M Feuerriegel
- Evolutionary Studies Institute, University of the Witwatersrand, Wits, South Africa.,Department of Anthropology, University of Washington, Seattle, United States
| | - Patrick Randolph-Quinney
- Evolutionary Studies Institute, University of the Witwatersrand, Wits, South Africa.,School of Anatomical Sciences, University of the Witwatersrand Medical School, Johannesburg, South Africa.,School of Forensic and Applied Sciences, University of Central Lancashire, Preston, United Kingdom
| | - Tracy L Kivell
- Evolutionary Studies Institute, University of the Witwatersrand, Wits, South Africa.,School of Anthropology and Conservation, University of Kent, Canterbury, United Kingdom.,Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Myra F Laird
- Evolutionary Studies Institute, University of the Witwatersrand, Wits, South Africa.,Department of Organismal Biology and Anatomy, University of Chicago, Chicago, United States
| | - Gaokgatlhe Tawane
- Evolutionary Studies Institute, University of the Witwatersrand, Wits, South Africa
| | - Jeremy M DeSilva
- Evolutionary Studies Institute, University of the Witwatersrand, Wits, South Africa.,Department of Anthropology, Dartmouth College, Hanover, United States
| | - Shara E Bailey
- Center for the Study of Human Origins, Department of Anthropology, New York University, New York, United States.,New York Consortium in Evolutionary Primatology, New York, United States
| | - Juliet K Brophy
- Evolutionary Studies Institute, University of the Witwatersrand, Wits, South Africa.,Department of Geography and Anthropology, Louisiana State University, Baton Rouge, United States
| | - Marc R Meyer
- Department of Anthropology, Chaffey College, Rancho Cucamonga, United States
| | - Matthew M Skinner
- Evolutionary Studies Institute, University of the Witwatersrand, Wits, South Africa.,School of Anthropology and Conservation, University of Kent, Canterbury, United Kingdom.,Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Matthew W Tocheri
- Department of Anthropology, Lakehead University, Thunder Bay, Canada.,Human Origins Program, Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, United States
| | - Caroline VanSickle
- Evolutionary Studies Institute, University of the Witwatersrand, Wits, South Africa.,Department of Anthropology, University of Wisconsin, Madison, United States.,Department of Anthropology, Bryn Mawr College, Bryn Mawr, United States
| | - Christopher S Walker
- Evolutionary Studies Institute, University of the Witwatersrand, Wits, South Africa.,Department of Evolutionary Anthropology, Duke University, Durham, United States.,Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, United States
| | - Timothy L Campbell
- Department of Anthropology, Texas A&M University, College Station, United States
| | - Brian Kuhn
- Department of Geology, University of Johannesburg, Johannesburg, South Africa
| | - Ashley Kruger
- Evolutionary Studies Institute, University of the Witwatersrand, Wits, South Africa.,School of Geosciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Steven Tucker
- Evolutionary Studies Institute, University of the Witwatersrand, Wits, South Africa
| | - Alia Gurtov
- Evolutionary Studies Institute, University of the Witwatersrand, Wits, South Africa.,Department of Anthropology, University of Wisconsin, Madison, United States
| | - Nompumelelo Hlophe
- Evolutionary Studies Institute, University of the Witwatersrand, Wits, South Africa
| | - Rick Hunter
- Evolutionary Studies Institute, University of the Witwatersrand, Wits, South Africa
| | - Hannah Morris
- Evolutionary Studies Institute, University of the Witwatersrand, Wits, South Africa.,Department of Forestry and Natural Resources, University of Georgia, Athens, United States
| | - Becca Peixotto
- Evolutionary Studies Institute, University of the Witwatersrand, Wits, South Africa.,Department of Anthropology, American University, Washington, United States
| | - Maropeng Ramalepa
- Evolutionary Studies Institute, University of the Witwatersrand, Wits, South Africa
| | - Dirk van Rooyen
- Evolutionary Studies Institute, University of the Witwatersrand, Wits, South Africa
| | - Mathabela Tsikoane
- Evolutionary Studies Institute, University of the Witwatersrand, Wits, South Africa
| | - Pedro Boshoff
- Evolutionary Studies Institute, University of the Witwatersrand, Wits, South Africa
| | - Paul Hgm Dirks
- Geosciences, College of Science and Engineering, James Cook University, Townsville, Australia
| | - Lee R Berger
- Evolutionary Studies Institute, University of the Witwatersrand, Wits, South Africa
| |
Collapse
|
27
|
Berger LR, Hawks J, Dirks PHGM, Elliott M, Roberts EM. Homo naledi and Pleistocene hominin evolution in subequatorial Africa. eLife 2017; 6:e24234. [PMID: 28483041 PMCID: PMC5423770 DOI: 10.7554/elife.24234] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/19/2017] [Indexed: 01/22/2023] Open
Abstract
New discoveries and dating of fossil remains from the Rising Star cave system, Cradle of Humankind, South Africa, have strong implications for our understanding of Pleistocene human evolution in Africa. Direct dating of Homo naledi fossils from the Dinaledi Chamber (Berger et al., 2015) shows that they were deposited between about 236 ka and 335 ka (Dirks et al., 2017), placing H. naledi in the later Middle Pleistocene. Hawks and colleagues (Hawks et al., 2017) report the discovery of a second chamber within the Rising Star system (Dirks et al., 2015) that contains H. naledi remains. Previously, only large-brained modern humans or their close relatives had been demonstrated to exist at this late time in Africa, but the fossil evidence for any hominins in subequatorial Africa was very sparse. It is now evident that a diversity of hominin lineages existed in this region, with some divergent lineages contributing DNA to living humans and at least H. naledi representing a survivor from the earliest stages of diversification within Homo. The existence of a diverse array of hominins in subequatorial comports with our present knowledge of diversity across other savanna-adapted species, as well as with palaeoclimate and paleoenvironmental data. H. naledi casts the fossil and archaeological records into a new light, as we cannot exclude that this lineage was responsible for the production of Acheulean or Middle Stone Age tool industries.
Collapse
Affiliation(s)
- Lee R Berger
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - John Hawks
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
- Department of Anthropology, University of Wisconsin, Madison, United States
| | - Paul HGM Dirks
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
- Department of Geosciences, James Cook University, Townsville, Australia
| | - Marina Elliott
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Eric M Roberts
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
- Department of Geosciences, James Cook University, Townsville, Australia
| |
Collapse
|
28
|
Laird MF, Schroeder L, Garvin HM, Scott JE, Dembo M, Radovčić D, Musiba CM, Ackermann RR, Schmid P, Hawks J, Berger LR, de Ruiter DJ. The skull of Homo naledi. J Hum Evol 2017; 104:100-123. [DOI: 10.1016/j.jhevol.2016.09.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 09/13/2016] [Accepted: 09/15/2016] [Indexed: 01/05/2023]
|
29
|
Williams SA, García-Martínez D, Bastir M, Meyer MR, Nalla S, Hawks J, Schmid P, Churchill SE, Berger LR. The vertebrae and ribs of Homo naledi. J Hum Evol 2017; 104:136-154. [DOI: 10.1016/j.jhevol.2016.11.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 10/20/2022]
|