1
|
Nohesara S, Mostafavi Abdolmaleky H, Pettinato G, Pirani A, Thiagalingam S, Zhou JR. IUPHAR review: Eating disorders, gut microbiota dysbiosis and epigenetic aberrations. Pharmacol Res 2025; 213:107653. [PMID: 39970995 DOI: 10.1016/j.phrs.2025.107653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/05/2025] [Accepted: 02/11/2025] [Indexed: 02/21/2025]
Abstract
Eating disorders (EDs) are a heterogeneous class of increasing mental disorders that are characterized by disturbances in eating behaviors, body weight regulation, and associated psychological dysfunctions. These disorders create physiological imbalances that alter the diversity and composition of the gut microbiota. While evidence suggests that EDs can arise from epigenetic aberrations, alterations in gut microbial communities may also contribute to the development and/or persistence of EDs through epigenetic mechanisms. Understanding the interplay among gut microbial communities, epigenetic processes, and the risk of EDs provides opportunities for designing preventive and/or therapeutic interventions through gut microbiome modulation. This review highlights how microbiome-based therapeutics and specific dietary interventions can contribute to improving various subtypes of EDs by modulating gut microbial communities and mitigating epigenetic aberrations. First, we briefly review the literature on links between epigenetic aberrations and the pathophysiology of EDs. Second, we examine the potential role of the gut microbiome in the pathogenesis of EDs through epigenetic mechanisms. Next, we explore the associations between EDs and other psychiatric disorders, and examine the potential roles of the microbiome in their pathogenesis. Finally, we present evidence supporting the potential of microbiome-based therapeutics and specific dietary interventions to improve EDs through epigenetic modifications.
Collapse
Affiliation(s)
- Shabnam Nohesara
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Hamid Mostafavi Abdolmaleky
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Nutrition/Metabolism laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Giuseppe Pettinato
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ahmad Pirani
- Mental Health Research Center, Psychosocial Health Research Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sam Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Jin-Rong Zhou
- Nutrition/Metabolism laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Novelle MG, Naranjo-Martínez B, López-Cánovas JL, Díaz-Ruiz A. Fecal microbiota transplantation, a tool to transfer healthy longevity. Ageing Res Rev 2025; 103:102585. [PMID: 39586550 DOI: 10.1016/j.arr.2024.102585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/13/2024] [Accepted: 11/12/2024] [Indexed: 11/27/2024]
Abstract
The complex gut microbiome influences host aging and plays an important role in the manifestation of age-related diseases. Restoring a healthy gut microbiome via Fecal Microbiota Transplantation (FMT) is receiving extensive consideration to therapeutically transfer healthy longevity. Herein, we comprehensively review the benefits of gut microbial rejuvenation - via FMT - to promote healthy aging, with few studies documenting life length properties. This review explores how preconditioning donors via standard - lifestyle and pharmacological - antiaging interventions reshape gut microbiome, with the resulting benefits being also FMT-transferable. Finally, we expose the current clinical uses of FMT in the context of aging therapy and address FMT challenges - regulatory landscape, protocol standardization, and health risks - that require refinement to effectively utilize microbiome interventions in the elderly.
Collapse
Affiliation(s)
- Marta G Novelle
- Department of Genetics, Physiology and Microbiology (Unity of Animal Physiology), Faculty of Biology, Complutense University of Madrid (UCM), Madrid, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Spain
| | - Beatriz Naranjo-Martínez
- Laboratory of Cellular and Molecular Gerontology, Precision Nutrition and Aging, Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | - Juan L López-Cánovas
- Laboratory of Cellular and Molecular Gerontology, Precision Nutrition and Aging, Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | - Alberto Díaz-Ruiz
- Laboratory of Cellular and Molecular Gerontology, Precision Nutrition and Aging, Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, Madrid, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Spain.
| |
Collapse
|
3
|
Ebrahimi R, Farsi Y, Nejadghaderi SA. Fecal microbiota transplantation for glaucoma; a potential emerging treatment strategy. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100314. [PMID: 39726974 PMCID: PMC11670420 DOI: 10.1016/j.crmicr.2024.100314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
Glaucoma is the primary cause of irreversible blindness globally. Different glaucoma subtypes are identified by their underlying mechanisms, and treatment options differ by its pathogenesis. Current management includes topical medications to lower intraocular pressure and surgical procedures like trabeculoplasty and glaucoma drainage implants. Fecal microbiota transplantation (FMT) is an almost effective and safe treatment option for recurrent Clostridium difficile infection. The relationship between bacterial populations, metabolites, and inflammatory pathways in retinal diseases indicates possible therapeutic strategies. Thus, incorporating host microbiota-based therapies could offer an additional treatment option for glaucoma patients. Here, we propose that combining FMT with standard glaucoma treatments may benefit those affected by this condition. Also, the potential safety, efficacy, cost-effectiveness and clinical applications are discussed.
Collapse
Affiliation(s)
- Rasoul Ebrahimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yeganeh Farsi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Aria Nejadghaderi
- HIV/STI Surveillance Research Center, and WHO Collaborating Center for HIV Surveillance, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
4
|
Laperrousaz B, Levast B, Fontaine M, Nancey S, Dechelotte P, Doré J, Lehert P. Safety comparison of single-donor and pooled fecal microbiota transfer product preparation in ulcerative colitis: systematic review and meta-analysis. BMC Gastroenterol 2024; 24:402. [PMID: 39528920 PMCID: PMC11552227 DOI: 10.1186/s12876-024-03487-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Multiple studies have evaluated fecal microbiota transfer (FMT) in patients with ulcerative colitis (UC) using single-donor (SDN) and multidonor (MDN) products. Systematic review and meta-analysis were performed to compare the safety of SDN and MDN products. METHODS Systematic searches were performed in Web of Science, Scopus, PubMed, and Orbit Intelligence to identify studies that compared FMT products manufactured using SDN or MDN strategies against control treatment in patients with UC. Fifteen controlled studies were selected for meta-analysis (11 randomized controlled trials and 4 controlled cohort trials). Safety of each treatment type was assessed using the counts of adverse events and serious adverse events using fixed- and random-effects models. Significance of the indirect difference between FMT preparations was assessed using a network approach. Benefit-risk ratios were calculated by multiplicative utility model, incorporating geometric mean of risk ratios (RRs) of efficacy and safety. RESULTS Safety data was collected for a total of 587 patients (193 exposed to SDN products, 114 exposed to MDN products and 280 exposed to control treatment). The 12 studies showed similar overall safety event counts for MDN and SDN versus placebo (RRs: 0.90 and 1.09, respectively [P = 0.206 and P = 0.420, respectively]). Results indicated similar risk of safety events for MDN compared to SDN (RR: 0.83, P = 0.159). Positive benefit-risk ratios were demonstrated for MDN and SDN versus placebo (RRs: 1.70 and 1.16, respectively [P = 0.003 and P = 0.173, respectively]). MDN had a greater benefit-risk ratio compared to SDN (RR: 1.46, P = 0.072). CONCLUSION Similar safety profiles were observed for MDN and SDN strategies. Alongside previously described superior efficacy, treatment with MDN has greater benefit-risk ratio than SDN in patients with UC. Further development of MDN FMT treatment for UC should be considered.
Collapse
Affiliation(s)
| | | | | | - Stéphane Nancey
- Department of Gastroenterology, Lyon-Sud Hospital, CHU de Lyon, University Claude Bernard Lyon 1 and CIRI-INSERM U1111, Lyon, France
| | | | - Joël Doré
- Université Paris-Saclay, INRAE, MetaGenoPolis, AgroParis Tech, MICALIS, Jouy-en-Josas, 78350, France
| | - Philippe Lehert
- Faculty of Management, UCL, Louvain, Belgium
- Faculty of Medicine, University of Melbourne, Melbourne, Australia
| |
Collapse
|
5
|
Dutta R, Stothers L, Ackerman AL. Manipulating the Gut Microbiome in Urinary Tract Infection-Prone Patients. Urol Clin North Am 2024; 51:525-536. [PMID: 39349020 DOI: 10.1016/j.ucl.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Although antibiotics remain the mainstay of urinary tract infection treatment, many affected women can be caught in a vicious cycle in which antibiotics given to eradicate one infection predispose them to develop another. This effect is primarily mediated by disturbances in the gut microbiome that both directly enrich for uropathogenic overgrowth and induce systemic alterations in inflammation, tissue permeability, and metabolism that also decrease host resistance to infection recurrences. Here, we discuss nonantibiotic approaches to manipulating the gut microbiome to reverse the systemic consequences of antibiotics, including cranberry supplementation and other dietary approaches, probiotic administration, and fecal microbiota transplantation.
Collapse
Affiliation(s)
- Rahul Dutta
- Division of Urogynecology and Reconstructive Pelvic Surgery, David Geffen School of Medicine at UCLA, Box 951738, Los Angeles, CA 90095-1738, USA
| | - Lynn Stothers
- Division of Urogynecology and Reconstructive Pelvic Surgery, David Geffen School of Medicine at UCLA, Box 951738, Los Angeles, CA 90095-1738, USA
| | - A Lenore Ackerman
- Division of Urogynecology and Reconstructive Pelvic Surgery, David Geffen School of Medicine at UCLA, Box 951738, Los Angeles, CA 90095-1738, USA.
| |
Collapse
|
6
|
Karimi M, Shirsalimi N, Hashempour Z, Salehi Omran H, Sedighi E, Beigi F, Mortezazadeh M. Safety and efficacy of fecal microbiota transplantation (FMT) as a modern adjuvant therapy in various diseases and disorders: a comprehensive literature review. Front Immunol 2024; 15:1439176. [PMID: 39391303 PMCID: PMC11464302 DOI: 10.3389/fimmu.2024.1439176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
The human gastrointestinal (GI) tract microbiome is a complex and all-encompassing ecological system of trillions of microorganisms. It plays a vital role in digestion, disease prevention, and overall health. When this delicate balance is disrupted, it can lead to various health issues. Fecal microbiota transplantation (FMT) is an emerging therapeutic intervention used as an adjuvant therapy for many diseases, particularly those with dysbiosis as their underlying cause. Its goal is to restore this balance by transferring fecal material from healthy donors to the recipients. FMT has an impressive reported cure rate between 80% and 90% and has become a favored treatment for many diseases. While FMT may have generally mild to moderate transient adverse effects, rare severe complications underscore the importance of rigorous donor screening and standardized administration. FMT has enormous potential as a practical therapeutic approach; however, additional research is required to further determine its potential for clinical utilization, as well as its safety and efficiency in different patient populations. This comprehensive literature review offers increased confidence in the safety and effectiveness of FMT for several diseases affecting the intestines and other systems, including diabetes, obesity, inflammatory and autoimmune illness, and other conditions.
Collapse
Affiliation(s)
- Mehdi Karimi
- Bogomolets National Medical University (NMU), Kyiv, Ukraine
| | - Niyousha Shirsalimi
- Faculty of Medicine, Hamadan University of Medical Science (UMSHA), Hamadan, Iran
| | - Zahra Hashempour
- School of Medicine, Shiraz University of Medical Sciences (SUMS), Shiraz, Iran
| | - Hossein Salehi Omran
- School of Medicine, Shahid Beheshti University of Medical Sciences (SBMUS), Tehran, Iran
| | - Eshagh Sedighi
- Department of Veterinary Medicine, Islamic Azad University Branch of Urmia, Urmia, Iran
| | - Farzan Beigi
- Students Research Committee, Arak University of Medical Sciences, Arak, Iran
| | - Masoud Mortezazadeh
- Department of Internal Medicine, Sina Hospital, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
7
|
Berry P, Khanna S. Fecal microbiota spores, live-brpk (VOWST™/VOS) for prevention of recurrent Clostridioides difficile infection. Future Microbiol 2024; 19:1519-1528. [PMID: 39320321 DOI: 10.1080/17460913.2024.2403892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024] Open
Abstract
Clostridioides difficile infection (CDI) is a health crisis comprising a majority of healthcare-associated infections and is now being seen in the community. Persistent dysbiosis despite treatment with standard-of-care antibiotics increases risk of recurrent infections. Fecal microbiota transplantation has been an effective way of addressing dysbiosis, but the studies have lacked standardization, which makes outcome and safety data difficult to interpret. Standardized microbiome therapies have demonstrated efficacy and safety for recurrent CDI and have been approved to prevent recurrent infection. In this review, we discuss the data behind and the practice use of fecal microbiota spores, live-brpk (VOWST™ / VOS), a US FDA approved live biotherapeutic for the prevention of recurrent CDI.
Collapse
Affiliation(s)
- Parul Berry
- C. difficile Clinic & Microbiome Restoration Program, Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Sahil Khanna
- C. difficile Clinic & Microbiome Restoration Program, Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
8
|
You M, Chen N, Yang Y, Cheng L, He H, Cai Y, Liu Y, Liu H, Hong G. The gut microbiota-brain axis in neurological disorders. MedComm (Beijing) 2024; 5:e656. [PMID: 39036341 PMCID: PMC11260174 DOI: 10.1002/mco2.656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 07/23/2024] Open
Abstract
Previous studies have shown a bidirectional communication between human gut microbiota and the brain, known as the microbiota-gut-brain axis (MGBA). The MGBA influences the host's nervous system development, emotional regulation, and cognitive function through neurotransmitters, immune modulation, and metabolic pathways. Factors like diet, lifestyle, genetics, and environment shape the gut microbiota composition together. Most research have explored how gut microbiota regulates host physiology and its potential in preventing and treating neurological disorders. However, the individual heterogeneity of gut microbiota, strains playing a dominant role in neurological diseases, and the interactions of these microbial metabolites with the central/peripheral nervous systems still need exploration. This review summarizes the potential role of gut microbiota in driving neurodevelopmental disorders (autism spectrum disorder and attention deficit/hyperactivity disorder), neurodegenerative diseases (Alzheimer's and Parkinson's disease), and mood disorders (anxiety and depression) in recent years and discusses the current clinical and preclinical gut microbe-based interventions, including dietary intervention, probiotics, prebiotics, and fecal microbiota transplantation. It also puts forward the current insufficient research on gut microbiota in neurological disorders and provides a framework for further research on neurological disorders.
Collapse
Affiliation(s)
- Mingming You
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Nan Chen
- Master of Public HealthSchool of Public HealthXiamen UniversityXiamenChina
| | - Yuanyuan Yang
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Lingjun Cheng
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Hongzhang He
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Yanhua Cai
- Master of Public HealthSchool of Public HealthXiamen UniversityXiamenChina
| | - Yating Liu
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Haiyue Liu
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Guolin Hong
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| |
Collapse
|
9
|
Davido B, Watson AR, de Truchis P, Galazzo G, Dinh A, Batista R, Terveer EM, Lawrence C, Michelon H, Jobard M, Saleh-Mghir A, Kuijper EJ, Caballero S. Bacterial diversity and specific taxa are associated with decolonization of carbapenemase-producing enterobacterales after fecal microbiota transplantation. J Infect 2024; 89:106216. [PMID: 38964511 DOI: 10.1016/j.jinf.2024.106216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
OBJECTIVES We evaluated the effect of fecal microbiota transplantation (FMT) on the clearance of carbapenemase-producing Enterobacterales (CPE) carriage. METHODS We performed a prospective, multi-center study, conducted among patients who received a single dose of FMT from one of four healthy donors. The primary endpoint was complete clearance of CPE carriage two weeks after FMT with a secondary endpoint at three months. Shotgun metagenomic sequencing was performed to assess gut microbiota composition of donors and recipients before and after FMT. RESULTS Twenty CPE-colonized patients were included in the study, where post-FMT 20% (n = 4/20) of patients met the primary endpoint and 40% (n = 8/20) of patients met the secondary endpoint. Kaplan-Meier curves between patients with FMT intervention and the control group (n = 82) revealed a similar rate of decolonization between groups. Microbiota composition analyses revealed that response to FMT was not donor-dependent. Responders had a significantly lower relative abundance of CPE species pre-FMT than non-responders, and 14 days post-FMT responders had significantly higher bacterial species richness and alpha diversity compared to non-responders (p < 0.05). Responder fecal samples were also enriched in specific species, with significantly higher relative abundances of Faecalibacterium prausnitzii, Parabacteroides distasonis, Collinsella aerofaciens, Alistipes finegoldii and Blautia_A sp900066335 (q<0.01) compared to non-responders. CONCLUSION FMT administration using the proposed regimen did not achieve statistical significance for complete CPE decolonization but was correlated with the relative abundance of specific bacterial taxa, including CPE species.
Collapse
Affiliation(s)
- Benjamin Davido
- Maladies Infectieuses, Hôpital Universitaire Raymond-Poincaré, AP-HP Université Paris Saclay, 92380 Garches, France; FHU PaCeMM, Hôpital Saint-Antoine, AP-HP Université Paris Centre, 75571 Paris Cedex 12, France.
| | | | - Pierre de Truchis
- Maladies Infectieuses, Hôpital Universitaire Raymond-Poincaré, AP-HP Université Paris Saclay, 92380 Garches, France
| | | | - Aurelien Dinh
- Maladies Infectieuses, Hôpital Universitaire Raymond-Poincaré, AP-HP Université Paris Saclay, 92380 Garches, France; FHU PaCeMM, Hôpital Saint-Antoine, AP-HP Université Paris Centre, 75571 Paris Cedex 12, France
| | - Rui Batista
- Pharmacie Hospitalière, Hôpital Universitaire Cochin, AP-HP, 75014 Paris, France
| | - Elisabeth M Terveer
- Department of Medical Microbiology, Netherlands Donor Feces Bank (NDFB) at Leiden University Medical Center, Leiden, the Netherlands
| | - Christine Lawrence
- Laboratoire de Microbiologie, Hôpital Universitaire Raymond-Poincaré, AP-HP Université Paris Saclay, 92380 Garches, France
| | - Hugues Michelon
- Pharmacie Hospitalière, Hôpital Universitaire Raymond-Poincaré, AP-HP Université Paris Saclay, 92380 Garches, France
| | - Marion Jobard
- Pharmacie Hospitalière, Hôpital Universitaire Cochin, AP-HP, 75014 Paris, France
| | - Azzam Saleh-Mghir
- Maladies Infectieuses, Hôpital Universitaire Raymond-Poincaré, AP-HP Université Paris Saclay, 92380 Garches, France; UMR1173, Université Versailles Saint-Quentin, 78000 Versailles, France
| | - Ed J Kuijper
- Department of Medical Microbiology, Netherlands Donor Feces Bank (NDFB) at Leiden University Medical Center, Leiden, the Netherlands
| | | |
Collapse
|
10
|
Hunt A, Drwiega E, Wang Y, Danziger L. A review of fecal microbiota, live-jslm for the prevention of recurrent Clostridioides difficile infection. Am J Health Syst Pharm 2024; 81:e402-e411. [PMID: 38470061 DOI: 10.1093/ajhp/zxae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Indexed: 03/13/2024] Open
Abstract
PURPOSE To review the composition, preparation, proposed mechanism of action, safety, efficacy, and current place in therapy of Rebyota (fecal microbiota, live-jslm). SUMMARY As the first agent in a new class of drugs, live biotherapeutic products (LBPs), fecal microbiota, live-jslm offers another therapeutic approach for the prevention of recurrent Clostridioides difficile infection (rCDI). LBPs are given following antibiotic therapy for C. difficile to reintroduce certain bacteria present in the normal microbiome, as a means to reconstitute the microbiome of infected individuals. This review provides a summary of phase 2 and 3 clinical trials, product information, discussion of data limitations, and recommendations for place in therapy. High efficacy rates compared to placebo with sustained response up to 24 months after administration have been reported. The majority of adverse events identified were mild to moderate without significant safety signals. CONCLUSION Fecal microbiota, live-jslm has consistently been shown in randomized trials to be safe and effective in reducing rCDI. Its approval marks the culmination of decades of work to identify, characterize, and refine the intestinal microbiome to create pharmaceutical products.
Collapse
Affiliation(s)
- Aaron Hunt
- University of Illinois Chicago College of Pharmacy, Chicago, IL, USA
| | - Emily Drwiega
- University of Illinois Chicago College of Pharmacy, Chicago, IL, USA
| | - Yifan Wang
- University of Illinois Chicago College of Pharmacy, Chicago, IL, USA
| | - Larry Danziger
- University of Illinois Chicago College of Pharmacy, Chicago, IL, USA
| |
Collapse
|
11
|
Tejada JN, Walters WA, Wang Y, Kordahi M, Chassaing B, Pickard J, Nunez G, Ley R, Gewirtz AT. Prevention and cure of murine C. difficile infection by a Lachnospiraceae strain. Gut Microbes 2024; 16:2392872. [PMID: 39189608 DOI: 10.1080/19490976.2024.2392872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/09/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024] Open
Abstract
We sought to better understand how intestinal microbiota confer protection against Clostridioides difficile (C. difficile) infection (CDI). We utilized gnotobiotic altered Schaedler flora (ASF) mice, which lack the abnormalities of germfree (GF) mice as well as the complexity and heterogeneity of antibiotic-treated mice. Like GF mice, ASF mice were highly prone to rapid lethal CDI, without antibiotics, while very low infectious doses resulted in chronic CDI. Administering such chronic CDI mice an undefined preparation of Clostridia lowered C. difficile levels by several logs. Importantly, such resolution of CDI was associated with colonization of Lachnospiraceae. Fractionation of the Clostridia population to enrich for Lachnospiraceae led to the appreciation that its CDI-impeding property strongly associated with a specific Lachnospiraceae strain, namely uncultured bacteria and archaea (UBA) 3401. UBA3401 was recalcitrant to being propagated as a pure culture but could be maintained in ASF mice, wherein it comprised up to about 50% of the intestinal microbiota, which was sufficient to generate a high-quality genomic sequence of this bacterium. Sequence analysis and ex vivo study of UBA3401 indicated that it had the ability to secrete substance(s) that directly impeded C. difficile growth. Moreover, in vivo administration of UBA3401/ASF feces provided strong protection to C. difficile challenge. Thus, UBA3401 may contribute to and/or provide a means to study microbiota-mediated CDI resistance.
Collapse
Affiliation(s)
- Juan Noriega Tejada
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - William A Walters
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
| | - Yanling Wang
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Melissa Kordahi
- INSERM Team "Mucosal Microbiota in Chronic Inflammatory Diseases", CNRS UMR 8104, Université Paris Cité, Paris, France
- Institut Pasteur, Université Paris Cité, INSERM, Microbiome-Host Interaction Group, Paris, France
| | - Benoit Chassaing
- INSERM Team "Mucosal Microbiota in Chronic Inflammatory Diseases", CNRS UMR 8104, Université Paris Cité, Paris, France
- Institut Pasteur, Université Paris Cité, INSERM, Microbiome-Host Interaction Group, Paris, France
| | - Joseph Pickard
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gabriel Nunez
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ruth Ley
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
| | - Andrew T Gewirtz
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
12
|
Lauko S, Gancarcikova S, Hrckova G, Hajduckova V, Andrejcakova Z, Fecskeova LK, Bertkova I, Hijova E, Kamlarova A, Janicko M, Ambro L, Kvakova M, Gulasova Z, Strojny L, Strkolcova G, Mudronova D, Madar M, Demeckova V, Nemetova D, Pacuta I, Sopkova D. Beneficial Effect of Faecal Microbiota Transplantation on Mild, Moderate and Severe Dextran Sodium Sulphate-Induced Ulcerative Colitis in a Pseudo Germ-Free Animal Model. Biomedicines 2023; 12:43. [PMID: 38255150 PMCID: PMC10813722 DOI: 10.3390/biomedicines12010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Transplantation of faecal microbiota (FMT) is generally considered a safe therapeutic procedure with few adverse effects. The main factors that limit the spread of the use of FMT therapy for idiopathic inflammatory bowel disease (IBD) are the necessity of minimising the risk of infection and transfer of another disease. Obtaining the animal model of UC (ulcerative colitis) by exposure to DSS (dextran sodium sulphate) depends on many factors that significantly affect the result. Per os intake of DSS with water is individual for each animal and results in the development of a range of various forms of induced UC. For this reason, the aim of our study was to evaluate the modulation and regenerative effects of FMT on the clinical and histopathological responses and the changes in the bowel microenvironment in pseudo germ-free (PGF) mice of the BALB/c line subjected to chemical induction of mild, moderate and serious forms of UC. The goal was to obtain new data related to the safety and effectiveness of FMT that can contribute to its improved and optimised use. The animals with mild and moderate forms of UC subjected to FMT treatment exhibited lower severity of the disease and markedly lower damage to the colon, including reduced clinical and histological disease index and decreased inflammatory response of colon mucosa. However, FMT treatment failed to achieve the expected therapeutic effect in animals with the serious form of UC activity. The results of our study indicated a potential safety risk involving development of bacteraemia and also translocation of non-pathogenic representatives of bowel microbiota associated with FMT treatment of animals with a diagnosed serious form of UC.
Collapse
Affiliation(s)
- Stanislav Lauko
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia; (S.L.); (V.H.); (D.M.); (M.M.); (D.N.); (I.P.)
| | - Sona Gancarcikova
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia; (S.L.); (V.H.); (D.M.); (M.M.); (D.N.); (I.P.)
| | - Gabriela Hrckova
- Institute of Parasitology, Slovak Academy of Sciences, 041 81 Kosice, Slovakia;
| | - Vanda Hajduckova
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia; (S.L.); (V.H.); (D.M.); (M.M.); (D.N.); (I.P.)
| | - Zuzana Andrejcakova
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia; (Z.A.); (D.S.)
| | - Livia Kolesar Fecskeova
- Associated Tissue Bank, Faculty of Medicine, Pavol Jozef Safarik University and Louis Pasteur University Hospital (UHLP) in Kosice, 040 11 Kosice, Slovakia;
| | - Izabela Bertkova
- Center of Clinical and Preclinical Research—MEDIPARK, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, 040 11 Kosice, Slovakia; (I.B.); (E.H.); (A.K.); (M.K.); (Z.G.); (L.S.)
| | - Emilia Hijova
- Center of Clinical and Preclinical Research—MEDIPARK, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, 040 11 Kosice, Slovakia; (I.B.); (E.H.); (A.K.); (M.K.); (Z.G.); (L.S.)
| | - Anna Kamlarova
- Center of Clinical and Preclinical Research—MEDIPARK, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, 040 11 Kosice, Slovakia; (I.B.); (E.H.); (A.K.); (M.K.); (Z.G.); (L.S.)
| | - Martin Janicko
- 2nd Department of Internal Medicine, Faculty of Medicine, Pavol Jozef Safarik University and Louis Pasteur University Hospital in Kosice, 040 11 Kosice, Slovakia;
| | - Lubos Ambro
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, Pavol Jozef Safarik University in Kosice, 040 01 Kosice, Slovakia;
| | - Monika Kvakova
- Center of Clinical and Preclinical Research—MEDIPARK, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, 040 11 Kosice, Slovakia; (I.B.); (E.H.); (A.K.); (M.K.); (Z.G.); (L.S.)
| | - Zuzana Gulasova
- Center of Clinical and Preclinical Research—MEDIPARK, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, 040 11 Kosice, Slovakia; (I.B.); (E.H.); (A.K.); (M.K.); (Z.G.); (L.S.)
| | - Ladislav Strojny
- Center of Clinical and Preclinical Research—MEDIPARK, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, 040 11 Kosice, Slovakia; (I.B.); (E.H.); (A.K.); (M.K.); (Z.G.); (L.S.)
| | - Gabriela Strkolcova
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia;
| | - Dagmar Mudronova
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia; (S.L.); (V.H.); (D.M.); (M.M.); (D.N.); (I.P.)
| | - Marian Madar
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia; (S.L.); (V.H.); (D.M.); (M.M.); (D.N.); (I.P.)
| | - Vlasta Demeckova
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Safarik University in Kosice, 040 01 Kosice, Slovakia;
| | - Daniela Nemetova
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia; (S.L.); (V.H.); (D.M.); (M.M.); (D.N.); (I.P.)
| | - Ivan Pacuta
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia; (S.L.); (V.H.); (D.M.); (M.M.); (D.N.); (I.P.)
| | - Drahomira Sopkova
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia; (Z.A.); (D.S.)
| |
Collapse
|
13
|
Zhuang Z, Zhou P, Wang J, Lu X, Chen Y. The Characteristics, Mechanisms and Therapeutics: Exploring the Role of Gut Microbiota in Obesity. Diabetes Metab Syndr Obes 2023; 16:3691-3705. [PMID: 38028999 PMCID: PMC10674108 DOI: 10.2147/dmso.s432344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023] Open
Abstract
Presently, obesity has emerged as a significant global public health concern due to its escalating prevalence and incidence rates. The gut microbiota, being a crucial environmental factor, has emerged as a key player in the etiology of obesity. Nevertheless, the intricate and specific interactions between obesity and gut microbiota, along with the underlying mechanisms, remain incompletely understood. This review comprehensively summarizes the gut microbiota characteristics in obesity, the mechanisms by which it induces obesity, and explores targeted therapies centered on gut microbiota restoration.
Collapse
Affiliation(s)
- Zequn Zhuang
- Department of General Surgery, the Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi, People’s Republic of China
| | - Peng Zhou
- Department of General Surgery, the Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi, People’s Republic of China
| | - Jing Wang
- Jiangnan University Medical Center, Wuxi, People’s Republic of China
| | - Xiaojing Lu
- Department of General Surgery, the Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi, People’s Republic of China
| | - Yigang Chen
- Department of General Surgery, the Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi, People’s Republic of China
- Jiangnan University Medical Center, Wuxi, People’s Republic of China
- Wuxi Clinical College, Nantong University, Wuxi, People’s Republic of China
| |
Collapse
|
14
|
Hoek KL, McClanahan KG, Latour YL, Shealy N, Piazuelo MB, Vallance BA, Byndloss MX, Wilson KT, Olivares-Villagómez D. Turicibacterales protect mice from severe Citrobacter rodentium infection. Infect Immun 2023; 91:e0032223. [PMID: 37800916 PMCID: PMC10652940 DOI: 10.1128/iai.00322-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 10/07/2023] Open
Abstract
One of the major contributors to child mortality in the world is diarrheal diseases, with an estimated 800,000 deaths per year. Many pathogens are causative agents of these illnesses, including the enteropathogenic or enterohemorrhagic forms of Escherichia coli. These bacteria are characterized by their ability to cause attaching and effacing lesions in the gut mucosa. Although much has been learned about the pathogenicity of these organisms and the immune response against them, the role of the intestinal microbiota during these infections is not well characterized. Infection of mice with E. coli requires pre-treatment with antibiotics in most mouse models, which hinders the study of the microbiota in an undisturbed environment. Using Citrobacter rodentium as a murine model for attaching and effacing bacteria, we show that C57BL/6 mice deficient in granzyme B expression are highly susceptible to severe disease caused by C. rodentium infection. Although a previous publication from our group shows that granzyme B-deficient CD4+ T cells are partially responsible for this phenotype, in this report, we present data demonstrating that the microbiota, in particular members of the order Turicibacterales, have an important role in conferring resistance. Mice deficient in Turicibacter sanguinis have increased susceptibility to severe disease. However, when these mice are co-housed with resistant mice or colonized with T. sanguinis, susceptibility to severe infection is reduced. These results clearly suggest a critical role for this commensal in the protection against enteropathogens.
Collapse
Affiliation(s)
- Kristen L. Hoek
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kathleen G. McClanahan
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yvonne L. Latour
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Nicolas Shealy
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - M. Blanca Piazuelo
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Bruce A. Vallance
- Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mariana X. Byndloss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute of Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Microbiome Innovation Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Keith T. Wilson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Veternas Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Danyvid Olivares-Villagómez
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute of Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
15
|
Zhang X, Luo X, Tian L, Yue P, Li M, Liu K, Zhu D, Huang C, Shi Q, Yang L, Xia Z, Zhao J, Ma Z, Li J, Leung JW, Lin Y, Yuan J, Meng W, Li X, Chen Y. The gut microbiome dysbiosis and regulation by fecal microbiota transplantation: umbrella review. Front Microbiol 2023; 14:1286429. [PMID: 38029189 PMCID: PMC10655098 DOI: 10.3389/fmicb.2023.1286429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Background Gut microbiome dysbiosis has been implicated in various gastrointestinal and extra-gastrointestinal diseases, but evidence on the efficacy and safety of fecal microbiota transplantation (FMT) for therapeutic indications remains unclear. Methods The gutMDisorder database was used to summarize the associations between gut microbiome dysbiosis and diseases. We performed an umbrella review of published meta-analyses to determine the evidence synthesis on the efficacy and safety of FMT in treating various diseases. Our study was registered in PROSPERO (CRD42022301226). Results Gut microbiome dysbiosis was associated with 117 gastrointestinal and extra-gastrointestinal. Colorectal cancer was associated with 92 dysbiosis. Dysbiosis involving Firmicutes (phylum) was associated with 34 diseases. We identified 62 published meta-analyses of FMT. FMT was found to be effective for 13 diseases, with a 95.56% cure rate (95% CI: 93.88-97.05%) for recurrent Chloridoids difficile infection (rCDI). Evidence was high quality for rCDI and moderate to high quality for ulcerative colitis and Crohn's disease but low to very low quality for other diseases. Conclusion Gut microbiome dysbiosis may be implicated in numerous diseases. Substantial evidence suggests FMT improves clinical outcomes for certain indications, but evidence quality varies greatly depending on the specific indication, route of administration, frequency of instillation, fecal preparation, and donor type. This variability should inform clinical, policy, and implementation decisions regarding FMT.
Collapse
Affiliation(s)
- Xianzhuo Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Xufei Luo
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Liang Tian
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Ping Yue
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Mengyao Li
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Kefeng Liu
- Department of Pharmacy, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Daoming Zhu
- Department of Radiology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Chongfei Huang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Qianling Shi
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Liping Yang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Zhili Xia
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Jinyu Zhao
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Zelong Ma
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Jianlong Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Joseph W. Leung
- Division of Gastroenterology and Hepatology, UC Davis Medical Center and Sacramento VA Medical Center, Sacramento, CA, United States
| | - Yanyan Lin
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Jinqiu Yuan
- Clinical Research Center, Big Data Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Wenbo Meng
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xun Li
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yaolong Chen
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Research Unit of Evidence-Based Evaluation and Guidelines, Chinese Academy of Medical Sciences, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Institute of Health Data Science, Lanzhou University, Lanzhou, China
- WHO Collaborating Centre for Guideline Implementation and Knowledge Translation, Lanzhou, China
| |
Collapse
|
16
|
Vendrik KE, Chernova VO, Kuijper EJ, Terveer EM, van Hilten JJ, Contarino MF. Safety and feasibility of faecal microbiota transplantation for patients with Parkinson's disease: a protocol for a self-controlled interventional donor-FMT pilot study. BMJ Open 2023; 13:e071766. [PMID: 37798034 PMCID: PMC10565159 DOI: 10.1136/bmjopen-2023-071766] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/30/2023] [Indexed: 10/07/2023] Open
Abstract
INTRODUCTION Experimental studies suggest a role of gut microbiota in the pathophysiology of Parkinson's disease (PD) via the gut-brain axis. The gut microbiota can also influence the metabolism of levodopa, which is the mainstay of treatment of PD. Therefore, modifying the gut microbiota by faecal microbiota transplantation (FMT) could be a supportive treatment strategy. METHODS AND ANALYSIS We have developed a study protocol for a single-centre, prospective, self-controlled, interventional, safety and feasibility donor-FMT pilot study with randomisation and double-blinded allocation of donor faeces. The primary objectives are feasibility and safety of FMT in patients with PD. Secondary objectives include exploring whether FMT leads to alterations in motor complications (fluctuations and dyskinesias) and PD motor and non-motor symptoms (including constipation), determining alterations in gut microbiota composition, assessing donor-recipient microbiota similarities and their association with PD symptoms and motor complications, evaluating the ease of the study protocol and examining FMT-related adverse events in patients with PD. The study population will consist of 16 patients with idiopathic PD that use levodopa and experience motor complications. They will receive FMT with faeces from one of two selected healthy human donors. FMT will be administered via a gastroscope into the duodenum, after treatment with oral vancomycin, bowel lavage and domperidone. There will be seven follow-up moments during 12 months. ETHICS AND DISSEMINATION This study was approved by the Medical Ethical Committee Leiden Den Haag Delft (ref. P20.087). Study results will be disseminated through publication in peer-reviewed journals and international conferences. TRIAL REGISTRATION NUMBER International Clinical Trial Registry Platform: NL9438.
Collapse
Affiliation(s)
- Karuna Ew Vendrik
- Department of Medical Microbiology, Centre for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Vlada O Chernova
- Department of Medical Microbiology, Centre for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ed J Kuijper
- Department of Medical Microbiology, Centre for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Elisabeth M Terveer
- Department of Medical Microbiology, Centre for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Jacobus J van Hilten
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maria Fiorella Contarino
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Neurology, Haga Teaching hospital, The Hague, The Netherlands
| |
Collapse
|
17
|
Rossier L, Matter C, Burri E, Galperine T, Hrúz P, Juillerat P, Schoepfer A, Vavricka SR, Zahnd N, Décosterd N, Seibold F. Swiss expert opinion: current approaches in faecal microbiota transplantation in daily practice. Swiss Med Wkly 2023; 153:40100. [PMID: 37769622 DOI: 10.57187/smw.2023.40100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023] Open
Abstract
INTRODUCTION Faecal microbiota transplantation (FMT) is an established therapy for recurrent C. difficile infection, and recent studies have reported encouraging results of FMT in patients with ulcerative colitis. Few international consensus guidelines exist for this therapy, and thus FMT policies and practices differ among European countries. As of 2019, stool transplants are considered a non-standardised medicinal product in Switzerland, and a standardised production process requires authorisation by the Swiss Agency for Therapeutic Products. This authorisation leads to prolonged administrative procedures and increasing costs, which reduces treatment accessibility. In particular, patients with ulcerative colitis in Switzerland can only benefit from FMT off-label, even though it is a valid therapeutic option. Therefore, this study summarised the available data on FMT and established a framework for the standardised use of FMT. METHODS A panel of Swiss gastroenterologists with a special interest in inflammatory bowel disease was established to identify the current key issues of FMT. After a comprehensive review of the literature, statements were formulated about FMT indications, donor screening, stool transplant preparation and administration, and safety aspects. The panel then voted on the statements following the Delphi process; the statements were reformulated and revoted until a consensus was reached. The manuscript was then reviewed by an infectiologist (the head of Lausanne's FMT centre). RESULTS The established statements are summarised in the supplementary tables in the appendix to this paper. The working group hopes these will help standardise FMT practice in Switzerland and contribute to making faecal microbiota transplantation a safe and accessible treatment for patients with recurrent C. difficile infections and selected patients with ulcerative colitis, as well as other indications in the future.
Collapse
Affiliation(s)
- Laura Rossier
- Intesto - Gastroenterology practice and Crohn-colitis Center, Bern, Switzerland
| | - Christoph Matter
- Intesto - Gastroenterology practice and Crohn-colitis Center, Bern, Switzerland
| | - Emanuel Burri
- Department of Gastroenterology and Hepatology, University Medical Clinic, Baselland Canton Hospital, Liestal, Switzerland
| | - Tatiana Galperine
- Fecal microbiota transplantation center, Department of infectious disease, Lausanne University Hospital, Lausanne, Switzerland
| | - Petr Hrúz
- Clarunis, Department of Gastroenterology, St Clara hospital and University hospital Basel, Basel, Switzerland
| | - Pascal Juillerat
- GastroGeb - Gastroenterology practice and Crohn-colitis Center, Lausanne - Bulle, Switzerland
| | - Alain Schoepfer
- Department of Gastroenterology, Lausanne University Hospital, Lausanne, Switzerland
| | - Stephan R Vavricka
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | | | - Natalie Décosterd
- Intesto - Gastroenterology practice and Crohn-colitis Center, Bern, Switzerland
| | - Frank Seibold
- Intesto - Gastroenterology practice and Crohn-colitis Center, Bern, Switzerland
| |
Collapse
|
18
|
Lahtinen P, Jalanka J, Mattila E, Tillonen J, Bergman P, Satokari R, Arkkila P. Fecal microbiota transplantation for the maintenance of remission in patients with ulcerative colitis: A randomized controlled trial. World J Gastroenterol 2023; 29:2666-2678. [PMID: 37213403 PMCID: PMC10198050 DOI: 10.3748/wjg.v29.i17.2666] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/06/2023] [Accepted: 04/11/2023] [Indexed: 05/23/2023] Open
Abstract
BACKGROUND Fecal microbial transplantation (FMT) is a promising new method for treating active ulcerative colitis (UC), but knowledge regarding FMT for quiescent UC is scarce.
AIM To investigate FMT for the maintenance of remission in UC patients.
METHODS Forty-eight UC patients were randomized to receive a single-dose FMT or autologous transplant via colonoscopy. The primary endpoint was set to the maintenance of remission, a fecal calprotectin level below 200 μg/g, and a clinical Mayo score below three throughout the 12-mo follow-up. As secondary endpoints, we recorded the patient’s quality of life, fecal calprotectin, blood chemistry, and endoscopic findings at 12 mo.
RESULTS The main endpoint was achieved by 13 out of 24 (54%) patients in the FMT group and by 10 out of 24 (41%) patients in the placebo group (log-rank test, P = 0.660). Four months after FMT, the quality-of-life scores decreased in the FMT group compared to the placebo group (P = 0.017). In addition, the disease-specific quality of life measure was higher in the placebo group than in the FMT group at the same time point (P = 0.003). There were no differences in blood chemistry, fecal calprotectin, or endoscopic findings among the study groups at 12 mo. The adverse events were infrequent, mild, and distributed equally between the groups.
CONCLUSION There were no differences in the number of relapses between the study groups at the 12-mo follow-up. Thus, our results do not support the use of a single-dose FMT for the maintenance of remission in UC.
Collapse
Affiliation(s)
- Perttu Lahtinen
- Department of Gastroenterology, Päijät-Häme Central Hospital, Lahti 15610, Finland
- Department of Medicine, University of Helsinki, Helsinki 00014, Finland
| | - Jonna Jalanka
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| | - Eero Mattila
- Department of Infectious Diseases, Helsinki University Hospital, Helsinki 00029, Uusimaa, Finland
| | - Jyrki Tillonen
- Department of Gastroenterology, Päijät-Häme Central Hospital, Lahti 15610, Finland
| | - Paula Bergman
- Department of Bioinformatics, Helsinki University Hospital, Helsinki 00014, Finland
| | - Reetta Satokari
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| | - Perttu Arkkila
- Department of Gastroenterology, University Helsinki, Center Hospital, Helsinki 00029, Uusimaa, Finland
| |
Collapse
|
19
|
Louie T, Golan Y, Khanna S, Bobilev D, Erpelding N, Fratazzi C, Carini M, Menon R, Ruisi M, Norman JM, Faith JJ, Olle B, Li M, Silber JL, Pardi DS. VE303, a Defined Bacterial Consortium, for Prevention of Recurrent Clostridioides difficile Infection: A Randomized Clinical Trial. JAMA 2023; 329:1356-1366. [PMID: 37060545 PMCID: PMC10105904 DOI: 10.1001/jama.2023.4314] [Citation(s) in RCA: 111] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/07/2023] [Indexed: 04/16/2023]
Abstract
IMPORTANCE The effect of rationally defined nonpathogenic, nontoxigenic, commensal strains of Clostridia on prevention of Clostridioides difficile infection (CDI) is unknown. OBJECTIVE To determine the efficacy of VE303, a defined bacterial consortium of 8 strains of commensal Clostridia, in adults at high risk for CDI recurrence. The primary objective was to determine the recommended VE303 dosing for a phase 3 trial. DESIGN, SETTING, AND PARTICIPANTS Phase 2, randomized, double-blind, placebo-controlled, dose-ranging study conducted from February 2019 to September 2021 at 27 sites in the US and Canada. The study included 79 participants aged 18 years or older who were diagnosed with laboratory-confirmed CDI with 1 or more prior CDI episodes in the last 6 months and those with primary CDI at high risk for recurrence (defined as aged ≥75 years or ≥65 years with ≥1 risk factors: creatinine clearance <60 mL/min/1.73 m2, proton pump inhibitor use, remote [>6 months earlier] CDI history). INTERVENTIONS Participants were randomly assigned to high-dose VE303 (8.0 × 109 colony-forming units [CFUs]) (n = 30), low-dose VE303 (1.6 × 109 CFUs) (n = 27), or placebo capsules (n = 22) orally once daily for 14 days. MAIN OUTCOMES AND MEASURES The primary efficacy end point was the proportion of participants with CDI recurrence at 8 weeks using a combined clinical and laboratory definition. The primary efficacy end point was analyzed in 3 prespecified analyses, using successively broader definitions for an on-study CDI recurrence: (1) diarrhea consistent with CDI plus a toxin-positive stool sample; (2) diarrhea consistent with CDI plus a toxin-positive, polymerase chain reaction-positive, or toxigenic culture-positive stool sample; and (3) diarrhea consistent with CDI plus laboratory confirmation or (in the absence of a stool sample) treatment with a CDI-targeted antibiotic. RESULTS Baseline characteristics were similar across the high-dose VE303 (n = 29; 1 additional participant excluded from efficacy analysis), low-dose VE303 (n = 27), and placebo (n = 22) groups. The participants' median age was 63.5 years (range, 24-96); 70.5% were female; and 1.3% were Asian, 1.3% Black, 2.6% Hispanic, and 96.2% White. CDI recurrence rates through week 8 (using the efficacy analysis 3 definition) were 13.8% (4/29) for high-dose VE303, 37.0% (10/27) for low-dose VE303, and 45.5% (10/22) for placebo (P = .006, high-dose VE303 vs placebo). CONCLUSIONS AND RELEVANCE Among adults with laboratory-confirmed CDI with 1 or more prior CDI episodes in the last 6 months and those with primary CDI at high risk for recurrence, high-dose VE303 prevented recurrent CDI compared with placebo. A larger, phase 3 study is needed to confirm these findings. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT03788434.
Collapse
Affiliation(s)
- Thomas Louie
- University of Calgary and Foothills Medical Centre, Calgary, Alberta, Canada
| | - Yoav Golan
- Tufts Medical Center, Boston, Massachusetts
| | | | - Dmitri Bobilev
- Vedanta Biosciences Inc, Cambridge, Massachusetts
- Fusion Pharmaceuticals, Boston, Massachusetts
| | - Nathalie Erpelding
- Vedanta Biosciences Inc, Cambridge, Massachusetts
- Bicycle Therapeutics, Cambridge, Massachusetts
| | - Candida Fratazzi
- Vedanta Biosciences Inc, Cambridge, Massachusetts
- Boston Biotech Clinical Research, Natick, Massachusetts
| | - Meg Carini
- Vedanta Biosciences Inc, Cambridge, Massachusetts
| | - Rajita Menon
- Vedanta Biosciences Inc, Cambridge, Massachusetts
| | - Mary Ruisi
- Vedanta Biosciences Inc, Cambridge, Massachusetts
- C4 Therapeutics, Watertown, Massachusetts
| | | | | | - Bernat Olle
- Vedanta Biosciences Inc, Cambridge, Massachusetts
| | | | | | | |
Collapse
|
20
|
Hoek KL, McClanahan KG, Latour YL, Shealy N, Piazuelo MB, Vallance BA, Byndloss MX, Wilson KT, Olivares-Villagómez D. Turicibacterales protect mice from severe Citrobacter rodentium infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.25.538270. [PMID: 37163036 PMCID: PMC10168287 DOI: 10.1101/2023.04.25.538270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
One of the major contributors to child mortality in the world is diarrheal diseases, with an estimated 800,000 deaths per year. Many pathogens are causative agents of these illnesses, including the enteropathogenic (EPEC) or enterohemorrhagic (EHEC) forms of Escherichia coli. These bacteria are characterized by their ability to cause attaching and effacing lesions in the gut mucosa. Although much has been learned about the pathogenicity of these organisms and the immune response against them, the role of the intestinal microbiota during these infections is not well characterized. Infection of mice with E. coli requires pre-treatment with antibiotics in most mouse models, which hinders the study of the microbiota in an undisturbed environment. Using Citrobacter rodentium as a murine model for attaching and effacing bacteria, we show that C57BL/6 mice deficient in granzyme B expression are highly susceptible to severe disease caused by C. rodentium infection. Although a previous publication from our group shows that granzyme B-deficient CD4+ T cells are partially responsible for this phenotype, in this report we present data demonstrating that the microbiota, in particular members of the order Turicibacterales, have an important role in conferring resistance. Mice deficient in Turicibacter sanguinis have increased susceptibility to severe disease. However, when these mice are co-housed with resistant mice, or colonized with T. sanguinis, susceptibility to severe infection is reduced. These results clearly suggest a critical role for this commensal in the protection against entero-pathogens.
Collapse
Affiliation(s)
- Kristen L. Hoek
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kathleen G. McClanahan
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yvonne L. Latour
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nicolas Shealy
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M. Blanca Piazuelo
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bruce A. Vallance
- Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Mariana X. Byndloss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute of Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Microbiome Innovation Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Keith T. Wilson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
- Veternas Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Danyvid Olivares-Villagómez
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute of Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
21
|
Del Barrio M, Lavín L, Santos-Laso Á, Arias-Loste MT, Odriozola A, Rodriguez-Duque JC, Rivas C, Iruzubieta P, Crespo J. Faecal Microbiota Transplantation, Paving the Way to Treat Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2023; 24:ijms24076123. [PMID: 37047094 PMCID: PMC10094628 DOI: 10.3390/ijms24076123] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/12/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is currently the most prevalent cause of chronic liver disease (CLD). Currently, the only therapeutic recommendation available is a lifestyle change. However, adherence to this approach is often difficult to guarantee. Alteration of the microbiota and an increase in intestinal permeability seem to be key in the development and progression of NAFLD. Therefore, the manipulation of microbiota seems to provide a promising therapeutic strategy. One way to do so is through faecal microbiota transplantation (FMT). Here, we summarize the key aspects of FMT, detail its current indications and highlight the most recent advances in NAFLD.
Collapse
Affiliation(s)
- María Del Barrio
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, Av. Valdecilla 25, 39008 Santander, Cantabria, Spain
| | - Lucía Lavín
- Clinical Trial Agency Valdecilla-IDIVAL, Marqués de Valdecilla University Hospital, Av. Valdecilla, 25, 39008 Santander, Cantabria, Spain
| | - Álvaro Santos-Laso
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, Av. Valdecilla 25, 39008 Santander, Cantabria, Spain
| | - Maria Teresa Arias-Loste
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, Av. Valdecilla 25, 39008 Santander, Cantabria, Spain
| | - Aitor Odriozola
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, Av. Valdecilla 25, 39008 Santander, Cantabria, Spain
| | - Juan Carlos Rodriguez-Duque
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, Av. Valdecilla 25, 39008 Santander, Cantabria, Spain
| | - Coral Rivas
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, Av. Valdecilla 25, 39008 Santander, Cantabria, Spain
| | - Paula Iruzubieta
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, Av. Valdecilla 25, 39008 Santander, Cantabria, Spain
| | - Javier Crespo
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, Av. Valdecilla 25, 39008 Santander, Cantabria, Spain
| |
Collapse
|
22
|
Valles-Colomer M, Menni C, Berry SE, Valdes AM, Spector TD, Segata N. Cardiometabolic health, diet and the gut microbiome: a meta-omics perspective. Nat Med 2023; 29:551-561. [PMID: 36932240 PMCID: PMC11258867 DOI: 10.1038/s41591-023-02260-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/16/2023] [Indexed: 03/19/2023]
Abstract
Cardiometabolic diseases have become a leading cause of morbidity and mortality globally. They have been tightly linked to microbiome taxonomic and functional composition, with diet possibly mediating some of the associations described. Both the microbiome and diet are modifiable, which opens the way for novel therapeutic strategies. High-throughput omics techniques applied on microbiome samples (meta-omics) hold the unprecedented potential to shed light on the intricate links between diet, the microbiome, the metabolome and cardiometabolic health, with a top-down approach. However, effective integration of complementary meta-omic techniques is an open challenge and their application on large cohorts is still limited. Here we review meta-omics techniques and discuss their potential in this context, highlighting recent large-scale efforts and the novel insights they provided. Finally, we look to the next decade of meta-omics research and discuss various translational and clinical pathways to improving cardiometabolic health.
Collapse
Affiliation(s)
- Mireia Valles-Colomer
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Cristina Menni
- Department of Twin Research, King's College London, London, UK
| | - Sarah E Berry
- Department of Nutritional Sciences, King's College London, London, UK
| | - Ana M Valdes
- School of Medicine, University of Nottingham, Nottingham, UK
- Nottingham National Institute for Health Research Biomedical Research Centre, Nottingham, UK
| | - Tim D Spector
- Department of Twin Research, King's College London, London, UK
| | - Nicola Segata
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy.
- European Institute of Oncology, Scientific Institute for Research, Hospitalization and Healthcare, Milan, Italy.
| |
Collapse
|
23
|
Wu N, Li X, Ma H, Zhang X, Liu B, Wang Y, Zheng Q, Fan X. The role of the gut microbiota and fecal microbiota transplantation in neuroimmune diseases. Front Neurol 2023; 14:1108738. [PMID: 36816570 PMCID: PMC9929158 DOI: 10.3389/fneur.2023.1108738] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
The gut microbiota plays a key role in the function of the host immune system and neuroimmune diseases. Alterations in the composition of the gut microbiota can lead to pathology and altered formation of microbiota-derived components and metabolites. A series of neuroimmune diseases, such as myasthenia gravis (MG), multiple sclerosis (MS), neuromyelitis optica spectrum disorders (NMOSDs), Guillain-Barré syndrome (GBS), and autoimmune encephalitis (AIE), are associated with changes in the gut microbiota. Microecological therapy by improving the gut microbiota is expected to be an effective measure for treating and preventing some neuroimmune diseases. This article reviews the research progress related to the roles of gut microbiota and fecal microbiota transplantation (FMT) in neuroimmune diseases.
Collapse
Affiliation(s)
- Nan Wu
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
| | - Xizhi Li
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
| | - He Ma
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
| | - Xue Zhang
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
| | - Bin Liu
- Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Yuan Wang
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China,*Correspondence: Yuan Wang ✉
| | - Qi Zheng
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China,Qi Zheng ✉
| | - Xueli Fan
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China,Xueli Fan ✉
| |
Collapse
|
24
|
Green JE, McGuinness AJ, Berk M, Castle D, Athan E, Hair C, Strandwitz P, Loughman A, Nierenberg AA, Cryan JF, Mohebbi M, Jacka F. Safety and feasibility of faecal microbiota transplant for major depressive disorder: study protocol for a pilot randomised controlled trial. Pilot Feasibility Stud 2023; 9:5. [PMID: 36624505 PMCID: PMC9827014 DOI: 10.1186/s40814-023-01235-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Mental disorders, including major depressive disorder (MDD), are a leading cause of non-fatal burden of disease globally. Current conventional treatments for depression have significant limitations, and there have been few new treatments in decades. The microbiota-gut-brain-axis is now recognised as playing a role in mental and brain health, and promising preclinical and clinical data suggest Faecal Microbiota Transplants (FMT) may be efficacious for treating a range of mental illnesses. However, there are no existing published studies in humans evaluating the efficacy of FMT for MDD. METHODS AND DESIGN This protocol describes an 8-week, triple-blind, 2:1 parallel group, randomised controlled pilot trial (n = 15), of enema-delivered FMT treatment (n = 10) compared with a placebo enema (n = 5) in adults with moderate-to-severe MDD. There will be a further 26-week follow-up to monitor longer-term safety. Participants will receive four FMT or placebo enemas over four consecutive days. The primary aims of the study are to evaluate feasibility and safety of FMT as an adjunctive treatment for MDD in adults. Changes in gut microbiota will be assessed as a secondary outcome. Other data will be collected, including changes in depression and anxiety symptoms, and safety parameters. DISCUSSION Modification of the microbiota-gut-brain axis via FMT is a promising potential treatment for MDD, but there are no published rigorous clinical trials evaluating its use. If this study finds that our FMT strategy is safe and feasible, a larger fully powered RCT is planned. Further high-quality research in this field is urgently needed to address unmet need. TRIAL REGISTRATION Australian and New Zealand Clinical Trials Registry: ACTRN12621000932864.
Collapse
Affiliation(s)
- Jessica E. Green
- grid.414257.10000 0004 0540 0062Deakin University, Food & Mood Centre, IMPACT-the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia ,grid.1002.30000 0004 1936 7857Monash Alfred Psychiatry Research Centre (MAPrc), Central Clinical School, Faculty of Medicine Nursing and Health Sciences, Monash University, Melbourne, Australia ,grid.466993.70000 0004 0436 2893Department of Psychiatry, Peninsula Health, Frankston, Australia
| | - Amelia J. McGuinness
- grid.414257.10000 0004 0540 0062Deakin University, Food & Mood Centre, IMPACT-the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Michael Berk
- grid.414257.10000 0004 0540 0062Deakin University, Food & Mood Centre, IMPACT-the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia ,grid.1008.90000 0001 2179 088XDepartment of Psychiatry, University of Melbourne, Parkville, Australia ,grid.488596.e0000 0004 0408 1792Orygen Youth Health Research Centre and the Centre of Youth Mental Health, Melbourne, Australia ,grid.418025.a0000 0004 0606 5526The Florey Institute for Neuroscience and Mental Health, Parkville, Australia ,grid.414257.10000 0004 0540 0062Barwon Health, Geelong, Australia
| | - David Castle
- grid.17063.330000 0001 2157 2938Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Eugene Athan
- grid.414257.10000 0004 0540 0062Deakin University, Food & Mood Centre, IMPACT-the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia ,grid.414257.10000 0004 0540 0062Barwon Health, Geelong, Australia ,grid.1021.20000 0001 0526 7079School of Medicine, Deakin University, Geelong, Australia
| | - Christopher Hair
- grid.414257.10000 0004 0540 0062Barwon Health, Geelong, Australia
| | | | - Amy Loughman
- grid.414257.10000 0004 0540 0062Deakin University, Food & Mood Centre, IMPACT-the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Andrew A. Nierenberg
- grid.32224.350000 0004 0386 9924Dauten Family Center for Bipolar Treatment Innovation, Department of Psychiatry, Massachusetts General Hospital, Boston, MA USA ,grid.38142.3c000000041936754XHarvard Medical School, Boston, MA USA
| | - John F. Cryan
- grid.7872.a0000000123318773Department of Anatomy and Neuroscience, University College Cork and APC Microbiome, Cork, Ireland
| | - Mohammadreza Mohebbi
- grid.414257.10000 0004 0540 0062Deakin University, Food & Mood Centre, IMPACT-the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Felice Jacka
- grid.414257.10000 0004 0540 0062Deakin University, Food & Mood Centre, IMPACT-the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia ,grid.416107.50000 0004 0614 0346Centre for Adolescent Health, Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, Australia ,grid.418393.40000 0001 0640 7766Black Dog Institute, Melbourne, Australia ,grid.1011.10000 0004 0474 1797James Cook University, Townsville, Australia
| |
Collapse
|
25
|
Tu Y, Kuang X, Zhang L, Xu X. The associations of gut microbiota, endocrine system and bone metabolism. Front Microbiol 2023; 14:1124945. [PMID: 37089533 PMCID: PMC10116073 DOI: 10.3389/fmicb.2023.1124945] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/16/2023] [Indexed: 04/25/2023] Open
Abstract
Gut microbiota is of great importance in human health, and its roles in the maintenance of skeletal homeostasis have long been recognized as the "gut-bone axis." Recent evidence has indicated intercorrelations between gut microbiota, endocrine system and bone metabolism. This review article discussed the complex interactions between gut microbiota and bone metabolism-related hormones, including sex steroids, insulin-like growth factors, 5-hydroxytryptamine, parathyroid hormone, glucagon-like peptides, peptide YY, etc. Although the underlying mechanisms still need further investigation, the regulatory effect of gut microbiota on bone health via interplaying with endocrine system may provide a new paradigm for the better management of musculoskeletal disorders.
Collapse
Affiliation(s)
- Ye Tu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinyi Kuang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Zhang
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Ling Zhang,
| | - Xin Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Xin Xu,
| |
Collapse
|
26
|
Vasiliu O. Is fecal microbiota transplantation a useful therapeutic intervention for psychiatric disorders? A narrative review of clinical and preclinical evidence. Curr Med Res Opin 2023; 39:161-177. [PMID: 36094098 DOI: 10.1080/03007995.2022.2124071] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The therapeutic management of psychiatric disorders is currently confronted with a critical need to find new therapeutic interventions due to the high rates of non-responsivity or low responsivity in the key pathologies, e.g. schizophrenia spectrum disorders, alcohol use disorders, or major depressive disorder. The modulation of intestinal microbiota has been explored in various organic and psychiatric dysfunctions, with different degrees of success. However, this type of intervention may represent a helpful add-on at a conceptual level since it does not associate negative pharmacokinetics interactions, significant adverse events, or risk for non-adherence in the long term. Oral administration of pre-, pro-, or synbiotics, and especially the treatment with fecal microbiota transplantation (FMT), are methods still in their early research phase for patients with psychiatric disorders, therefore an exploration of data regarding the potential benefits and adverse events of FMT was considered necessary. In order to accomplish this purpose, the available results of research dedicated to each category of psychiatric disorders, starting with depressive and anxiety disorders, continuing with schizophrenia, substance use disorders, and finishing with disorders diagnosed during childhood, were presented in this paper. Seven clinical trials, 16 preclinical studies, three meta-analyses/systematic reviews, and six case reports, all of these representing ten distinct categories of psychiatric disorders or manifestations, have been reviewed. Mood disorders, anxiety disorders, and alcohol dependence have been the most extensively investigated clinical entities from the FMT efficacy and tolerability perspective, and reviewed data are generally promising. Based on the current status of research, FMT may be considered a helpful intervention in specific psychiatric pathologies. Still, this review showed that most of the information is derived from entirely preclinical studies. Therefore, clinical trials with sound methodology and more participants are needed to clarify FMT's benefits and risks in psychiatric disorders.
Collapse
Affiliation(s)
- Octavian Vasiliu
- Spitalul Universitar de Urgenţă Militar Central Dr Carol Davila Ringgold standard institution, Bucuresti, Romania
| |
Collapse
|
27
|
Borgers JSW, Burgers FH, Terveer EM, van Leerdam ME, Korse CM, Kessels R, Flohil CC, Blank CU, Schumacher TN, van Dijk M, Henderickx JGE, Keller JJ, Verspaget HW, Kuijper EJ, Haanen JBAG. Conversion of unresponsiveness to immune checkpoint inhibition by fecal microbiota transplantation in patients with metastatic melanoma: study protocol for a randomized phase Ib/IIa trial. BMC Cancer 2022; 22:1366. [PMID: 36585700 PMCID: PMC9801532 DOI: 10.1186/s12885-022-10457-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/16/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The gut microbiome plays an important role in immune modulation. Specifically, presence or absence of certain gut bacterial taxa has been associated with better antitumor immune responses. Furthermore, in trials using fecal microbiota transplantation (FMT) to treat melanoma patients unresponsive to immune checkpoint inhibitors (ICI), complete responses (CR), partial responses (PR), and durable stable disease (SD) have been observed. However, the underlying mechanism determining which patients will or will not respond and what the optimal FMT composition is, has not been fully elucidated, and a discrepancy in microbial taxa associated with clinical response has been observed between studies. Furthermore, it is unknown whether a change in the microbiome itself, irrespective of its origin, or FMT from ICI responding donors, is required for reversion of ICI-unresponsiveness. To address this, we will transfer microbiota of either ICI responder or nonresponder metastatic melanoma patients via FMT. METHODS In this randomized, double-blinded phase Ib/IIa trial, 24 anti-PD1-refractory patients with advanced stage cutaneous melanoma will receive an FMT from either an ICI responding or nonresponding donor, while continuing anti-PD-1 treatment. Donors will be selected from patients with metastatic melanoma treated with anti-PD-1 therapy. Two patients with a good response (≥ 30% decrease according to RECIST 1.1 within the past 24 months) and two patients with progression (≥ 20% increase according to RECIST 1.1 within the past 3 months) will be selected as ICI responding or nonresponding donors, respectively. The primary endpoint is clinical benefit (SD, PR or CR) at 12 weeks, confirmed on a CT scan at 16 weeks. The secondary endpoint is safety, defined as the occurrence of grade ≥ 3 toxicity. Exploratory endpoints are progression-free survival and changes in the gut microbiome, metabolome, and immune cells. DISCUSSION Transplanting fecal microbiota to restore the patients' perturbed microbiome has proven successful in several indications. However, less is known about the potential role of FMT to improve antitumor immune response. In this trial, we aim to investigate whether administration of FMT can reverse resistance to anti-PD-1 treatment in patients with advanced stage melanoma, and whether the ICI-responsiveness of the feces donor is associated with its effectiveness. TRIAL REGISTRATION ClinicalTrials.gov: NCT05251389 (registered 22-Feb-2022). Protocol V4.0 (08-02-2022).
Collapse
Affiliation(s)
- J. S. W. Borgers
- grid.430814.a0000 0001 0674 1393Department of Medical Oncology, Antoni Van Leeuwenhoek, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - F. H. Burgers
- grid.430814.a0000 0001 0674 1393Department of Medical Oncology, Antoni Van Leeuwenhoek, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - E. M. Terveer
- grid.10419.3d0000000089452978Netherlands Donor Feces Bank, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands ,grid.10419.3d0000000089452978Center for Microbiome Analyses and Therapeutics at Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - M. E. van Leerdam
- grid.430814.a0000 0001 0674 1393Department of Gastrointestinal Oncology, Antoni Van Leeuwenhoek, The Netherlands Cancer Institute, Amsterdam, The Netherlands ,grid.10419.3d0000000089452978Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - C. M. Korse
- grid.430814.a0000 0001 0674 1393Department of Laboratory Medicine, Antoni Van Leeuwenhoek, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - R. Kessels
- grid.430814.a0000 0001 0674 1393Department of Biometrics, Antoni Van Leeuwenhoek, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - C. C. Flohil
- grid.430814.a0000 0001 0674 1393Department of Pathology, Antoni Van Leeuwenhoek, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - C. U. Blank
- grid.430814.a0000 0001 0674 1393Department of Medical Oncology, Antoni Van Leeuwenhoek, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - T. N. Schumacher
- grid.430814.a0000 0001 0674 1393Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands ,grid.10419.3d0000000089452978Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - M. van Dijk
- grid.430814.a0000 0001 0674 1393Clinical Trial Service Unit, Antoni Van Leeuwenhoek, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - J. G. E. Henderickx
- grid.10419.3d0000000089452978Center for Microbiome Analyses and Therapeutics at Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - J. J. Keller
- grid.10419.3d0000000089452978Netherlands Donor Feces Bank, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands ,grid.10419.3d0000000089452978Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands ,grid.414842.f0000 0004 0395 6796Department of Gastroenterology, Haaglanden Medical Center, Den Haag, The Netherlands
| | - H. W. Verspaget
- grid.10419.3d0000000089452978Netherlands Donor Feces Bank, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands ,grid.10419.3d0000000089452978Department of Biobanking, Leiden University Medical Center, Leiden, The Netherlands
| | - E. J. Kuijper
- grid.10419.3d0000000089452978Netherlands Donor Feces Bank, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands ,grid.10419.3d0000000089452978Center for Microbiome Analyses and Therapeutics at Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - J. B. A. G. Haanen
- grid.430814.a0000 0001 0674 1393Department of Medical Oncology, Antoni Van Leeuwenhoek, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
28
|
Alaoui Mdarhri H, Benmessaoud R, Yacoubi H, Seffar L, Guennouni Assimi H, Hamam M, Boussettine R, Filali-Ansari N, Lahlou FA, Diawara I, Ennaji MM, Kettani-Halabi M. Alternatives Therapeutic Approaches to Conventional Antibiotics: Advantages, Limitations and Potential Application in Medicine. Antibiotics (Basel) 2022; 11:1826. [PMID: 36551487 PMCID: PMC9774722 DOI: 10.3390/antibiotics11121826] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 12/23/2022] Open
Abstract
Resistance to antimicrobials and particularly multidrug resistance is one of the greatest challenges in the health system nowadays. The continual increase in the rates of antimicrobial resistance worldwide boosted by the ongoing COVID-19 pandemic poses a major public health threat. Different approaches have been employed to minimize the effect of resistance and control this threat, but the question still lingers as to their safety and efficiency. In this context, new anti-infectious approaches against multidrug resistance are being examined. Use of new antibiotics and their combination with new β-lactamase inhibitors, phage therapy, antimicrobial peptides, nanoparticles, and antisense antimicrobial therapeutics are considered as one such promising approach for overcoming bacterial resistance. In this review, we provide insights into these emerging alternative therapies that are currently being evaluated and which may be developed in the future to break the progression of antimicrobial resistance. We focus on their advantages and limitations and potential application in medicine. We further highlight the importance of the combination therapy approach, wherein two or more therapies are used in combination in order to more effectively combat infectious disease and increasing access to quality healthcare. These advances could give an alternate solution to overcome antimicrobial drug resistance. We eventually hope to provide useful information for clinicians who are seeking solutions to the problems caused by antimicrobial resistance.
Collapse
Affiliation(s)
- Hiba Alaoui Mdarhri
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
- National Reference Laboratory, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| | - Rachid Benmessaoud
- National Reference Laboratory, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| | - Houda Yacoubi
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
- National Reference Laboratory, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| | - Lina Seffar
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
- National Reference Laboratory, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| | - Houda Guennouni Assimi
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
- National Reference Laboratory, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| | - Mouhsine Hamam
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
- National Reference Laboratory, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| | - Rihabe Boussettine
- Laboratory of Virology, Oncology, Biosciences, Environment and New Energies, Faculty of Sciences and Techniques Mohammedia, University Hassan II of Casablanca, Casablanca 28 806, Morocco
| | - Najoie Filali-Ansari
- Laboratory of Virology, Oncology, Biosciences, Environment and New Energies, Faculty of Sciences and Techniques Mohammedia, University Hassan II of Casablanca, Casablanca 28 806, Morocco
| | - Fatima Azzahra Lahlou
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
- National Reference Laboratory, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| | - Idrissa Diawara
- Department of Biological Engineering, Higher Institute of Bioscience and Biotechnology, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| | - Moulay Mustapha Ennaji
- Laboratory of Virology, Oncology, Biosciences, Environment and New Energies, Faculty of Sciences and Techniques Mohammedia, University Hassan II of Casablanca, Casablanca 28 806, Morocco
| | - Mohamed Kettani-Halabi
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
- National Reference Laboratory, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| |
Collapse
|
29
|
Lu J, Jin X, Yang S, Li Y, Wang X, Wu M. Immune mechanism of gut microbiota and its metabolites in the occurrence and development of cardiovascular diseases. Front Microbiol 2022; 13:1034537. [PMID: 36590426 PMCID: PMC9794627 DOI: 10.3389/fmicb.2022.1034537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022] Open
Abstract
The risk of cardiovascular disease (CVD) is associated with unusual changes in the human gut microbiota, most commonly coronary atherosclerotic heart disease, hypertension, and heart failure. Immune mechanisms maintain a dynamic balance between the gut microbiota and the host immune system. When one side changes and the balance is disrupted, different degrees of damage are inflicted on the host and a diseased state gradually develops over time. This review summarizes the immune mechanism of the gut microbiota and its metabolites in the occurrence of common CVDs, discusses the relationship between gut-heart axis dysfunction and the progression of CVD, and lists the currently effective methods of regulating the gut microbiota for the treatment of CVDs.
Collapse
|
30
|
Zhang X, Ishikawa D, Ohkusa T, Fukuda S, Nagahara A. Hot topics on fecal microbiota transplantation for the treatment of inflammatory bowel disease. Front Med (Lausanne) 2022; 9:1068567. [PMID: 36530877 PMCID: PMC9755187 DOI: 10.3389/fmed.2022.1068567] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/21/2022] [Indexed: 11/04/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic intestinal mucosal inflammatory disease with complex etiology. Traditional anti-inflammatory treatment regimens have yielded unsatisfactory results. As research continues to deepen, it has been found that the gut microbiota of patients with IBD is generally altered. The presence of microorganisms in the human gastrointestinal tract is inextricably linked to the regulation of health and disease. Disruption of the microbiotic balance of microbiota in the gastrointestinal tract is called dysbiosis, which leads to disease. Therefore, in recent years, the exploration of therapeutic methods to restore the homeostasis of the gut microbiota has attracted attention. Moreover, the use of the well-established fecal microbiota transplantation (FMT) regimen for the treatment of Clostridioides difficile infection has attracted the interest of IBD researchers. Therefore, there are an increasing number of clinical studies regarding FMT for IBD treatment. However, a series of questions regarding FMT in the treatment of IBD warrants further investigation and discussion. By reviewing published studies, this review explored hot topics such as the efficacy, safety, and administration protocol flow of FMT in the treatment of IBD. Different administration protocols have generally shown reassuring results with significant efficacy and safety. However, the FMT treatment regimen needs to be further optimized. We believe that in the future, individual customized or standard FMT implementation will further enhance the relevance of FMT in the treatment of IBD.
Collapse
Affiliation(s)
- Xiaochen Zhang
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
| | - Dai Ishikawa
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
- Department of Regenerative Microbiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Toshifumi Ohkusa
- Department of Microbiota Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Gastroenterology and Hepatology, The Jikei University Kashiwa Hospital, Chiba, Japan
| | - Shinji Fukuda
- Department of Regenerative Microbiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Akihito Nagahara
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
- Department of Regenerative Microbiology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
31
|
Zhao H, Zhang W, Cheng D, You L, Huang Y, Lu Y. Investigating dysbiosis and microbial treatment strategies in inflammatory bowel disease based on two modified Koch's postulates. Front Med (Lausanne) 2022; 9:1023896. [PMID: 36438062 PMCID: PMC9684636 DOI: 10.3389/fmed.2022.1023896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/28/2022] [Indexed: 12/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic non-specific inflammatory disease that occurs in the intestinal tract. It is mainly divided into two subtypes, i.e., the Crohn's disease (CD) and ulcerative colitis (UC). At present, its pathogenesis has not been fully elucidated, but it has been generally believed that the environment, immune disorders, genetic susceptibility, and intestinal microbes are the main factors for the disease pathogenesis. With the development of the sequencing technology, microbial factors have received more and more attention. The gut microbiota is in a state of precise balance with the host, in which the host immune system is tolerant to immunogenic antigens produced by gut commensal microbes. In IBD patients, changes in the balance between pathogenic microorganisms and commensal microbes lead to changes in the composition and diversity of gut microbes, and the balance between microorganisms and the host would be disrupted. This new state is defined as dysbiosis. It has been confirmed, in both clinical and experimental settings, that dysbiosis plays an important role in the occurrence and development of IBD, but the causal relationship between dysbiosis and inflammation has not been elucidated. On the other hand, as a classic research method for pathogen identification, the Koch's postulates sets the standard for verifying the role of pathogens in disease. With the further acknowledgment of the disease pathogenesis, it is realized that the traditional Koch's postulates is not applicable to the etiology research (determination) of infectious diseases. Thus, many researchers have carried out more comprehensive and complex elaboration of Koch's postulates to help people better understand and explain disease pathogenesis through the improved Koch's postulates. Therefore, focusing on the new perspective of the improved Koch's postulates is of great significance for deeply understanding the relationship between dysbiosis and IBD. This article has reviewed the studies on dysbiosis in IBD, the use of microbial agents in the treatment of IBD, and their relationship to the modified Koch's postulates.
Collapse
Affiliation(s)
- HanZheng Zhao
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - WenHui Zhang
- Department of Pain Medicine, Harbin Medical University Cancer Hospital, Harbin, China
| | - Die Cheng
- Cancer Research Laboratory, Chengde Medical College, Chengde, China
| | - LiuPing You
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - YueNan Huang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - YanJie Lu
- Cancer Research Laboratory, Chengde Medical College, Chengde, China
| |
Collapse
|
32
|
Intestinal Flora Affect Alzheimer's Disease by Regulating Endogenous Hormones. Neurochem Res 2022; 47:3565-3582. [DOI: 10.1007/s11064-022-03784-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/13/2022] [Accepted: 10/01/2022] [Indexed: 11/25/2022]
|
33
|
Khanna S, Assi M, Lee C, Yoho D, Louie T, Knapple W, Aguilar H, Garcia-Diaz J, Wang GP, Berry SM, Marion J, Su X, Braun T, Bancke L, Feuerstadt P. Efficacy and Safety of RBX2660 in PUNCH CD3, a Phase III, Randomized, Double-Blind, Placebo-Controlled Trial with a Bayesian Primary Analysis for the Prevention of Recurrent Clostridioides difficile Infection. Drugs 2022; 82:1527-1538. [PMID: 36287379 PMCID: PMC9607700 DOI: 10.1007/s40265-022-01797-x] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2022] [Indexed: 12/02/2022]
Abstract
BACKGROUND Recurrent Clostridioides difficile infection, associated with dysbiosis of gut microbiota, has substantial disease burden in the USA. RBX2660 is a live biotherapeutic product consisting of a broad consortium of microbes prepared from human stool that is under investigation for the reduction of recurrent C. difficile infection. METHODS A randomized, double-blind, placebo-controlled, phase III study, with a Bayesian primary analysis integrating data from a previous phase IIb study, was conducted. Adults who had one or more C. difficile infection recurrences with a positive stool assay for C. difficile and who were previously treated with standard-of-care antibiotics were randomly assigned 2:1 to receive a subsequent blinded, single-dose enema of RBX2660 or placebo. The primary endpoint was treatment success, defined as the absence of C. difficile infection diarrhea within 8 weeks of study treatment. RESULTS Of the 320 patients screened, 289 were randomly assigned and 267 received blinded treatment (n = 180, RBX2660; n = 87, placebo). Original model estimates of treatment success were 70.4% versus 58.1% with RBX2660 and placebo, respectively. However, after aligning the data to improve the exchangeability and interpretability of the Bayesian analysis, the model-estimated treatment success rate was 70.6% with RBX2660 versus 57.5% with placebo, with an estimated treatment effect of 13.1% and a posterior probability of superiority of 0.991. More than 90% of the participants who achieved treatment success at 8 weeks had sustained response through 6 months in both the RBX2660 and the placebo groups. Overall, RBX2660 was well tolerated, with manageable adverse events. The incidence of treatment-emergent adverse events was higher in RBX2660 recipients compared with placebo and was mostly driven by a higher incidence of mild gastrointestinal events. CONCLUSIONS RBX2660 is a safe and effective treatment to reduce recurrent C. difficile infection following standard-of-care antibiotics with a sustained response through 6 months. CLINICAL TRIAL REGISTRATION NCT03244644; 9 August, 2017.
Collapse
Affiliation(s)
- Sahil Khanna
- Gastroenterology and Hepatology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA.
| | - Maha Assi
- University of Kansas School of Medicine-Wichita, Wichita, KS, USA
| | | | - David Yoho
- Kaiser Permanente Springfield Medical Center, Springfield, VA, USA
| | | | | | | | | | | | | | | | - Xin Su
- Formerly of Rebiotix, Inc, Roseville, MN, USA
| | | | | | - Paul Feuerstadt
- Yale School of Medicine, New Haven, CT, USA
- PACT Gastroenterology Center, Hamden, CT, USA
| |
Collapse
|
34
|
Garbuzenko DV. Pathophysiological Prerequisites and Therapeutic Potential of Fecal Microbiota Transplantation in Severe Alcoholic Hepatitis. THE RUSSIAN ARCHIVES OF INTERNAL MEDICINE 2022; 12:352-362. [DOI: 10.20514/2226-6704-2022-12-5-352-362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2024]
|
35
|
Efficacy and Safety of Fecal Microbiota Transplantation for Clearance of Multidrug-Resistant Organisms under Multiple Comorbidities: A Prospective Comparative Trial. Biomedicines 2022; 10:biomedicines10102404. [PMID: 36289668 PMCID: PMC9598999 DOI: 10.3390/biomedicines10102404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Fecal microbiota transplantation (FMT) could decolonize multidrug-resistant organisms. We investigated FMT effectiveness and safety in the eradication of carbapenem-resistant Enterobacteriaceae (CRE) and vancomycin-resistant enterococci (VRE) intestinal colonization. A prospective non-randomized comparative study was performed with 48 patients. FMT material (60 g) was obtained from a healthy donor, frozen, and administered via endoscopy. The primary endpoint was 1-month decolonization, and secondary endpoints were 3-month decolonization and adverse events. Microbiota analysis of fecal samples was performed using 16S rRNA sequencing. Intention-to-treat analysis revealed overall negative conversion between the FMT and control groups at 1 (26% vs. 10%, p = 0.264) and 3 (52% vs. 24%, p = 0.049) months. The 1-month and 3-month CRE clearance did not differ significantly by group (36% vs. 10%, p = 0.341; and 71% vs. 30%, p = 0.095, respectively). Among patients with VRE, FMT was ineffective for 1-month or 3-month negative conversion (13% vs. 9%, p > 0.999; and 36% vs. 18%, p = 0.658, respectively) However, cumulative overall negative-conversion rate was significantly higher in the FMT group (p = 0.037). Enterococcus abundance in patients with VRE significantly decreased following FMT. FMT may be effective at decolonizing multidrug-resistant organisms in the intestinal tract.
Collapse
|
36
|
Nigam M, Panwar AS, Singh RK. Orchestrating the fecal microbiota transplantation: Current technological advancements and potential biomedical application. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 4:961569. [PMID: 36212607 PMCID: PMC9535080 DOI: 10.3389/fmedt.2022.961569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/29/2022] [Indexed: 01/10/2023] Open
Abstract
Fecal microbiota transplantation (FMT) has been proved to be an effective treatment for gastrointestinal disorders caused due to microbial disbalance. Nowadays, this approach is being used to treat extragastrointestinal conditions like metabolic and neurological disorders, which are considered to have their provenance in microbial dysbiosis in the intestine. Even though case studies and clinical trials have demonstrated the potential of FMT in treating a variety of ailments, safety and ethical concerns must be answered before the technique is widely used to the community's overall benefit. From this perspective, it is not unexpected that techniques for altering gut microbiota may represent a form of medication whose potential has not yet been thoroughly addressed. This review intends to gather data on recent developments in FMT and its safety, constraints, and ethical considerations.
Collapse
Affiliation(s)
- Manisha Nigam
- Department of Biochemistry, School of Life Sciences, H.N.B. Garhwal University, Srinagar, India
- Correspondence: Manisha Nigam Rahul Kunwar Singh
| | - Abhaya Shikhar Panwar
- Department of Biochemistry, School of Life Sciences, H.N.B. Garhwal University, Srinagar, India
| | - Rahul Kunwar Singh
- Department of Microbiology, School of Life Sciences, H.N.B. Garhwal University, Srinagar, India
- Correspondence: Manisha Nigam Rahul Kunwar Singh
| |
Collapse
|
37
|
Montagnese S, Rautou PE, Romero-Gómez M, Larsen FS, Shawcross DL, Thabut D, Vilstrup H, Weissenborn K. EASL Clinical Practice Guidelines on the management of hepatic encephalopathy. J Hepatol 2022; 77:807-824. [PMID: 35724930 DOI: 10.1016/j.jhep.2022.06.001] [Citation(s) in RCA: 208] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 12/12/2022]
Abstract
The EASL Clinical Practice Guidelines (CPGs) on the management of hepatic encephalopathy (HE) present evidence-based answers to a set of relevant questions (where possible, formulated in PICO [patient/population, intervention, comparison and outcomes] format) on the definition, diagnosis, differential diagnosis and treatment of HE. The document does not cover the pathophysiology of HE and does not cover all available treatment options. The methods through which it was developed and any information relevant to its interpretation are also provided.
Collapse
|
38
|
Impacts of Gut Microbiota on the Immune System and Fecal Microbiota Transplantation as a Re-Emerging Therapy for Autoimmune Diseases. Antibiotics (Basel) 2022; 11:antibiotics11081093. [PMID: 36009962 PMCID: PMC9404867 DOI: 10.3390/antibiotics11081093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 12/02/2022] Open
Abstract
The enormous and diverse population of microorganisms residing in the digestive tracts of humans and animals influence the development, regulation, and function of the immune system. Recently, the understanding of the association between autoimmune diseases and gut microbiota has been improved due to the innovation of high-throughput sequencing technologies with high resolutions. Several studies have reported perturbation of gut microbiota as one of the factors playing a role in the pathogenesis of many diseases, such as inflammatory bowel disease, recurrent diarrhea due to Clostridioides difficile infections. Restoration of healthy gut microbiota by transferring fecal material from a healthy donor to a sick recipient, called fecal microbiota transplantation (FMT), has resolved or improved symptoms of autoimmune diseases. This (re)emerging therapy was approved for the treatment of drug-resistant recurrent C. difficile infections in 2013 by the U.S. Food and Drug Administration. Numerous human and animal studies have demonstrated FMT has the potential as the next generation therapy to control autoimmune and other health problems. Alas, this new therapeutic method has limitations, including the risk of transferring antibiotic-resistant pathogens or transmission of genes from donors to recipients and/or exacerbating the conditions in some patients. Therefore, continued research is needed to elucidate the mechanisms by which gut microbiota is involved in the pathogenesis of autoimmune diseases and to improve the efficacy and optimize the preparation of FMT for different disease conditions, and to tailor FMT to meet the needs in both humans and animals. The prospect of FMT therapy includes shifting from the current practice of using the whole fecal materials to the more aesthetic transfer of selective microbial consortia assembled in vitro or using their metabolic products.
Collapse
|
39
|
Mironova M, Ehrlich AC, Grinspan A, Protano MA. Fecal microbiota transplantation may reduce the mortality of patients with severe and fulminant Clostridioides difficile infection compared to standard-of-care antibiotics in a community hospital. J Dig Dis 2022; 23:500-505. [PMID: 36183340 DOI: 10.1111/1751-2980.13134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 08/30/2022] [Accepted: 09/29/2022] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Clostridioides difficile infection (CDI) is known for significant morbidity and mortality. Fecal microbiota transplantation (FMT) is an effective therapy for recurrent and resistant CDI. However, its impact on the mortality rate of patients with severe and fulminant CDI has not been rigorously studied yet. We aimed to evaluate the effectiveness of FMT on the mortality rate of patients with severe or fulminant CDI in a community hospital system. METHODS Our study included 106 inpatients with severe or fulminant CDI. Both standard-of-care (SOC) and FMT were provided to 14 (13.2%) patients (the FMT group). SOC antibiotics alone were provided to 92 (86.8%) patients, out of whom 28 patients were included via propensity score matching in a 2:1 ratio (the SOC group). The primary outcome was defined as the composite end-point of mortality during admission, within 30 and 90 days after discharge, and discharge with comfort measures only. Each component was a secondary end-point. RESULTS The primary outcome rate in the FMT group was 7.1% (1/14) compared to 25.0% (7/28) in the SOC group. Univariate analysis demonstrated that FMT decreases mortality (odds ratio [OR] 0.08, 95% confidence interval [CI] 0.01-0.58, P = 0.01). However, multivariate regression did not show statistical significance (OR 0.15, 95% CI 0.01-2.53, P = 0.19), possibly due to the small sample size. CONCLUSIONS FMT may decrease the mortality of patients with severe and fulminant CDI. Large studies are needed to validate these findings.
Collapse
Affiliation(s)
- Maria Mironova
- Division of Internal Medicine, Capital Health, Trenton, New Jersey, USA
| | - Adam C Ehrlich
- Section of Gastroenterology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Ari Grinspan
- The Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | |
Collapse
|
40
|
Chen C, Chen L, Sun D, Li C, Xi S, Ding S, Luo R, Geng Y, Bai Y. Adverse events of intestinal microbiota transplantation in randomized controlled trials: a systematic review and meta-analysis. Gut Pathog 2022; 14:20. [PMID: 35619175 PMCID: PMC9134705 DOI: 10.1186/s13099-022-00491-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 04/11/2022] [Indexed: 01/04/2025] Open
Abstract
Background Intestinal microbiota transplantation (IMT) has been recognized as an effective treatment for recurrent Clostridium difficile infection (rCDI) and a novel treatment option for other diseases. However, the safety of IMT in patients has not been established. Aims This systematic review and meta-analysis was conducted to assess the safety of IMT. Methods We systematically reviewed all randomized controlled trials (RCTs) of IMT studies published up to 28 February 2021 using databases including PubMed, EMBASE and the Cochrane Library. Studies were excluded if they did not report adverse events (AEs). Two authors independently extracted the data. The relative risk (RR) of serious adverse events (SAEs) and common adverse events (CAEs) were estimated separately, as were predefined subgroups. Publication bias was evaluated by a funnel plot and Egger’s regression test. Results Among 978 reports, 99 full‐text articles were screened, and 20 articles were included for meta-analysis, involving 1132 patients (603 in the IMT group and 529 in the control group). We found no significant difference in the incidence of SAEs between the IMT group and the control group (RR = 1.36, 95% CI 0.56–3.31, P = 0.50). Of these 20 studies, 7 described the number of patients with CAEs, involving 360 patients (195 in the IMT group and 166 in the control group). An analysis of the eight studies revealed that the incidence of CAEs was also not significantly increased in the IMT group compared with the control group (RR = 1.06, 95% CI 0.91–1.23, P = 0.43). Subgroup analysis showed that the incidence of CAEs was significantly different between subgroups of delivery methods (P(CAE) = 0.04), and the incidence of IMT-related SAEs and CAEs was not significantly different in the other predefined subgroups. Conclusion Currently, IMT is widely used in many diseases, but its associated AEs should not be ignored. To improve the safety of IMT, patients' conditions should be fully evaluated before IMT, appropriate transplantation methods should be selected, each operative step of faecal bacteria transplantation should be strictly controlled, AE management mechanisms should be improved, and a close follow-up system should be established.
Collapse
Affiliation(s)
- Chong Chen
- Department of Gastroenterology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518037, China
| | - Liyu Chen
- Department of Gastroenterology, 923Th Hospital of PLA Joint Logistics Support Force, Nanning, 530021, China
| | - Dayong Sun
- Department of Gastroenterology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518037, China
| | - Cailan Li
- Department of Gastroenterology, 923Th Hospital of PLA Joint Logistics Support Force, Nanning, 530021, China
| | - Shiheng Xi
- Department of Gastroenterology, 923Th Hospital of PLA Joint Logistics Support Force, Nanning, 530021, China
| | - Shihua Ding
- Department of Gastroenterology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518037, China
| | - Rongrong Luo
- Department of Gastroenterology, 923Th Hospital of PLA Joint Logistics Support Force, Nanning, 530021, China
| | - Yan Geng
- Department of Gastroenterology, 923Th Hospital of PLA Joint Logistics Support Force, Nanning, 530021, China.
| | - Yang Bai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
41
|
Michailidis L, Currier AC, Le M, Flomenhoft DR. Adverse events of fecal microbiota transplantation: a meta-analysis of high-quality studies. Ann Gastroenterol 2021; 34:802-814. [PMID: 34815646 PMCID: PMC8596209 DOI: 10.20524/aog.2021.0655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Fecal microbiota transplantation (FMT) has shown excellent efficacy in treating Clostridioides difficile infection, as well as promise in several other diseases. The heightened interest is accompanied by concerns over adverse events (AE) and safety. To further understand that in FMT, we performed a systematic review of the literature and a meta-analysis of high-quality, prospective randomized controlled trials FMT. METHODS Studies were selected based on predefined exclusion criteria and were assessed for quality. Only prospective, randomized, controlled studies of high quality were included in the final analysis. Data were extracted on demographics, AE, indication, delivery method and follow-up duration. RESULTS Out of 334 articles reviewed, 9 high quality studies with 756 FMTs were selected for final analysis. The pooled rate of AE was 39.3% (95% confidence interval [CI] 0.19-0.642) as they were reported by 112 patients who received FMT. The SAE rate was 5.3% (95%CI 3.1-8.8%). The most common AE reported was abdominal pain, followed by diarrhea. The most common SAE was Clostridium difficile infection. Upper gastrointestinal tract delivery was associated with a higher rate of total AE, but not SAE. CONCLUSIONS Based on the selected studies, the AE rate of FMT is 39.3%, with most AE being mild and self-limiting. SAE were uncommon at 5.3%, and many were only possibly related to the FMT. Adherence to standardized reporting of AE as well as longitudinal studies and registries will help further clarify the safety of FMT in the future.
Collapse
Affiliation(s)
- Lamprinos Michailidis
- Department of Digestive Diseases and Nutrition, University of Kentucky College of Medicine, Lexington, KY, USA
- Correspondence to: Lamprinos Michailidis, MD, University of Kentucky College of Medicine 800 Rose Street Room MN649, Lexington, KY 40536, USA, e-mail:
| | - Alden C. Currier
- Department of Digestive Diseases and Nutrition, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Michelle Le
- Department of Digestive Diseases and Nutrition, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Deborah R. Flomenhoft
- Department of Digestive Diseases and Nutrition, University of Kentucky College of Medicine, Lexington, KY, USA
| |
Collapse
|
42
|
Arora T, Tremaroli V. Therapeutic Potential of Butyrate for Treatment of Type 2 Diabetes. Front Endocrinol (Lausanne) 2021; 12:761834. [PMID: 34737725 PMCID: PMC8560891 DOI: 10.3389/fendo.2021.761834] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/23/2021] [Indexed: 12/18/2022] Open
Abstract
Metagenomics studies have shown that type 2 diabetes (T2D) is associated with an altered gut microbiota. Whereas different microbiota patterns have been observed in independent human cohorts, reduction of butyrate-producing bacteria has consistently been found in individuals with T2D, as well as in those with prediabetes. Butyrate is produced in the large intestine by microbial fermentations, particularly of dietary fiber, and serves as primary fuel for colonocytes. It also acts as histone deacetylase inhibitor and ligand to G-protein coupled receptors, affecting cellular signaling in target cells, such as enteroendocrine cells. Therefore, butyrate has become an attractive drug target for T2D, and treatment strategies have been devised to increase its intestinal levels, for example by supplementation of butyrate-producing bacteria and dietary fiber, or through fecal microbiota transplant (FMT). In this review, we provide an overview of current literature indicating that these strategies have yielded encouraging results and short-term benefits in humans, but long-term improvements of glycemic control have not been reported so far. Further studies are required to find effective approaches to restore butyrate-producing bacteria and butyrate levels in the human gut, and to investigate their impact on glucose regulation in T2D.
Collapse
Affiliation(s)
- Tulika Arora
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Valentina Tremaroli
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
43
|
Khanna S, Pardi DS, Jones C, Shannon WD, Gonzalez C, Blount K. RBX7455, a Non-frozen, Orally Administered Investigational Live Biotherapeutic, Is Safe, Effective, and Shifts Patients' Microbiomes in a Phase 1 Study for Recurrent Clostridioides difficile Infections. Clin Infect Dis 2021; 73:e1613-e1620. [PMID: 32966574 PMCID: PMC8492147 DOI: 10.1093/cid/ciaa1430] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Recurrent Clostridioides difficile infections (rCDI) are a global public health threat. To reduce rCDI, microbiota-restoring therapies are needed, particularly standardized, easy-to-administer formulations. METHODS This phase I open-label trial assessed the safety, efficacy in preventing rCDI recurrence, and intestinal microbiome effects of RBX7455, a room temperature-stable, orally administered investigational live biotherapeutic. Adult participants with 1 or more prior episodes of rCDI received: 4 RBX7455 capsules twice daily for 4 days (group 1); 4 RBX7455 capsules twice daily for 2 days (group 2); or 2 RBX7455 capsules twice daily for 2 days (group 3). For all groups, the first dose was administered in clinic, with remaining doses self-administered at home. Adverse events were monitored during and for 6 months after treatment. Treatment success was defined as rCDI prevention through 8 weeks after treatment. Participants' microbiome composition was assessed prior to and for 6 months after treatment. RESULTS Nine of 10 group 1 patients (90%), 8 of 10 group 2 patients (80%), and 10 of 10 group 3 patients (100%) were recurrence-free at the 8-week endpoint with durability to 6 months. Seventy-five treatment-emergent adverse events were observed in 27 participants with no serious investigational product-related events. Prior to treatment, participants' microbiomes were dissimilar from the RBX7455 composition with decreased Bacteroidia- and Clostridia-class bacteria, whereas after treatment, responders' microbiomes showed increased Bacteroidia and Clostridia. CONCLUSIONS Three dosing regimens of RBX7455 were safe and effective at preventing rCDI. Responders' microbiomes converged toward the composition of RBX7455. These results support its continued clinical evaluation. CLINICAL TRIALS REGISTRATION NCT02981316.
Collapse
Affiliation(s)
- Sahil Khanna
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Darrell S Pardi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Courtney Jones
- Rebiotix Inc, a Ferring Company, Roseville, Minnesota, USA
| | | | | | - Ken Blount
- Rebiotix Inc, a Ferring Company, Roseville, Minnesota, USA
| |
Collapse
|
44
|
Baunwall SMD, Dahlerup JF, Engberg JH, Erikstrup C, Helms M, Juel MA, Kjeldsen J, Nielsen HL, Nilsson AC, Rode AA, Vinter-Jensen L, Hvas CL. Danish national guideline for the treatment of Clostridioides difficile infection and use of faecal microbiota transplantation (FMT). Scand J Gastroenterol 2021; 56:1056-1077. [PMID: 34261379 DOI: 10.1080/00365521.2021.1922749] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Aim: This Danish national guideline describes the treatment of adult patients with Clostridioides (formerly Clostridium) difficile (CD) infection and the use of faecal microbiota transplantation (FMT). It suggests minimum standard for implementing an FMT service.Method: Four scientific societies appointed members for a working group which conducted a systematic literature review and agreed on the text and recommendations. All clinical recommendations were evalluated for evidence level and grade of recommendation.Results: In CD infection, the use of marketed and experimental antibiotics as well as microbiota-based therapies including FMT are described. An algorithm for evaluating treatment effect is suggested. The organisation of FMT, donor recruitment and screening, laboratory preparation, clinical application and follow-up are described.Conclusion: Updated evidence for the treatment of CD infection and the use of FMT is provided.
Collapse
Affiliation(s)
| | - Jens Frederik Dahlerup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Morten Helms
- Department of Infectious Diseases, Hvidovre Hospital, Hvidovre, Denmark
| | | | - Jens Kjeldsen
- Department of Gastroenterology, Odense University Hospital, Odense, Denmark
| | - Hans Linde Nielsen
- Department of Clinical Microbiology, Aalborg University Hospital, Aalborg, Denmark
| | | | - Anne Abildtrup Rode
- Department of Internal Medicine, Zealand University Hospital, Roskilde, Denmark
| | - Lars Vinter-Jensen
- Department of Gastroenterology, Aalborg University Hospital, Aalborg, Denmark
| | - Christian Lodberg Hvas
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
45
|
Li Z, Wang Y, Liu J, Rawding P, Bu J, Hong S, Hu Q. Chemically and Biologically Engineered Bacteria-Based Delivery Systems for Emerging Diagnosis and Advanced Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102580. [PMID: 34347325 DOI: 10.1002/adma.202102580] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/10/2021] [Indexed: 06/13/2023]
Abstract
Bacteria are one of the main groups of organisms, which dynamically and closely participate in human health and disease development. With the integration of chemical biotechnology, bacteria have been utilized as an emerging delivery system for various biomedical applications. Given the unique features of bacteria such as their intrinsic biocompatibility and motility, bacteria-based delivery systems have drawn wide interest in the diagnosis and treatment of various diseases, including cancer, infectious diseases, kidney failure, and hyperammonemia. Notably, at the interface of chemical biotechnology and bacteria, many research opportunities have been initiated, opening a promising frontier in biomedical application. Herein, the current synergy of chemical biotechnology and bacteria, the design principles for bacteria-based delivery systems, the microbial modulation, and the clinical translation are reviewed, with a special focus on the emerging advances in diagnosis and therapy.
Collapse
Affiliation(s)
- Zhaoting Li
- Pharmaceutical Sciences Division, School of Pharmacy, Wisconsin Center for NanoBioSystems, Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin, 53705, USA
| | - Yixin Wang
- Pharmaceutical Sciences Division, School of Pharmacy, Wisconsin Center for NanoBioSystems, Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin, 53705, USA
| | - Jun Liu
- Pharmaceutical Sciences Division, School of Pharmacy, Wisconsin Center for NanoBioSystems, Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin, 53705, USA
| | - Piper Rawding
- Pharmaceutical Sciences Division, School of Pharmacy, Wisconsin Center for NanoBioSystems, Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin, 53705, USA
| | - Jiyoon Bu
- Pharmaceutical Sciences Division, School of Pharmacy, Wisconsin Center for NanoBioSystems, Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin, 53705, USA
| | - Seungpyo Hong
- Pharmaceutical Sciences Division, School of Pharmacy, Wisconsin Center for NanoBioSystems, Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin, 53705, USA
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, Wisconsin Center for NanoBioSystems, Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin, 53705, USA
| |
Collapse
|
46
|
Genetic and environmental factors in Alzheimer's and Parkinson's diseases and promising therapeutic intervention via fecal microbiota transplantation. NPJ Parkinsons Dis 2021; 7:70. [PMID: 34381040 PMCID: PMC8357954 DOI: 10.1038/s41531-021-00213-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 07/23/2021] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases are characterized by neuronal impairment and loss of function, and with the major shared histopathological hallmarks of misfolding and aggregation of specific proteins inside or outside cells. Some genetic and environmental factors contribute to the promotion of the development and progression of neurodegenerative diseases. Currently, there are no effective treatments for neurodegenerative diseases. It has been revealed that bidirectional communication exists between the brain and the gut. The gut microbiota is a changeable and experience-dependent ecosystem and can be modified by genetic and environmental factors. The gut microbiota provides potential therapeutic targets that can be regulated as new interventions for neurodegenerative diseases. In this review, we discuss genetic and environmental risk factors for neurodegenerative diseases, summarize the communication among the components of the microbiota-gut-brain axis, and discuss the treatment strategy of fecal microbiota transplantation (FMT). FMT is a promising treatment for neurodegenerative diseases, and restoration of the gut microbiota to a premorbid state is a novel goal for prevention and treatment strategies.
Collapse
|
47
|
Gupta M, Krishan P, Kaur A, Arora S, Trehanpati N, Singh TG, Bedi O. Mechanistic and physiological approaches of fecal microbiota transplantation in the management of NAFLD. Inflamm Res 2021; 70:765-776. [PMID: 34212214 DOI: 10.1007/s00011-021-01480-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2021] [Indexed: 12/14/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a multifaceted disease allied with various metabolic disorders, obesity and dysbiosis. Gut microbiota plays an influential role in the pathogenesis of NAFLD and other metabolic disorders. However, recent scientific upsurge emphasizes on the utility of beneficial gut microbiota and bacteriotherapy in the management of NAFLD. Fecal microbiota transplantation (FMT) is the contemporary therapeutic approach with state-of-the-art methods for the treatment of NAFLD. Other potential therapies include probiotics and prebiotics supplements which are based on alteration of gut microbes to treat NAFLD. In this review, our major focus is on the pathological association of gut microbiota with progression of NAFLD, historical aspects and recent advances in FMT with possible intervention to combat NAFLD and its associated metabolic dysfunctions.
Collapse
Affiliation(s)
- Manisha Gupta
- Chitkara College of Pharmacy, Chitkara University, Chandigarh-Patiala National Highway (NH-64), Rajpura, 140401, Punjab, India
| | - Pawan Krishan
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Chandigarh-Patiala National Highway (NH-64), Rajpura, 140401, Punjab, India
| | - Sandeep Arora
- Chitkara College of Pharmacy, Chitkara University, Chandigarh-Patiala National Highway (NH-64), Rajpura, 140401, Punjab, India
| | - Nirupma Trehanpati
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Chandigarh-Patiala National Highway (NH-64), Rajpura, 140401, Punjab, India
| | - Onkar Bedi
- Chitkara College of Pharmacy, Chitkara University, Chandigarh-Patiala National Highway (NH-64), Rajpura, 140401, Punjab, India.
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India.
| |
Collapse
|
48
|
Faecal Microbiome Transplantation as a Solution to Chronic Enteropathies in Dogs: A Case Study of Beneficial Microbial Evolution. Animals (Basel) 2021; 11:ani11051433. [PMID: 34067662 PMCID: PMC8156139 DOI: 10.3390/ani11051433] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/08/2021] [Accepted: 05/13/2021] [Indexed: 12/27/2022] Open
Abstract
Chronic enteropathies (CE) are gastrointestinal diseases that afflict about one in five dogs in Europe. Conventional therapeutic approaches include dietary intervention, pharmacological treatment and probiotic supplements. The patient response can be highly variable and the interventions are often not resolutive. Moreover, the therapeutic strategy is usually planned (and gradually corrected) based on the patient's response to empirical treatment, with few indirect gut health indicators useful to drive clinicians' decisions. The ever-diminishing cost of high-throughput sequencing (HTS) allows clinicians to directly follow and characterise the evolution of the whole gut microbial community in order to highlight possible weaknesses. In this framework, faecal microbiome transplantation (FMT) is emerging as a feasible solution to CE, based on the implant of a balanced, eubiotic microbial community from a healthy donor to a dysbiotic patient. In this study, we report the promising results of FMT carried out in a 9-year-old dog suffering from CE for the last 3 years. The patient underwent a two-cycle oral treatment of FMT and the microbiota evolution was monitored by 16S rRNA gene sequencing both prior to FMT and after the two administrations. We evaluated the variation of microbial composition by calculating three different alpha diversity indices and compared the patient and donor data to a healthy control population of 94 dogs. After FMT, the patient's microbiome and clinical parameters gradually shifted to values similar to those observed in healthy dogs. Symptoms disappeared during a follow-up period of six months after the second FMT. We believe that this study opens the door for potential applications of FMT in clinical veterinary practice and highlights the need to improve our knowledge on this relevant topic.
Collapse
|
49
|
Abstract
Tuberculosis (TB) remains an infectious disease of global significance and a
leading cause of death in low- and middle-income countries. Significant effort
has been directed towards understanding Mycobacterium
tuberculosis genomics, virulence, and pathophysiology within the
framework of Koch postulates. More recently, the advent of “-omics” approaches
has broadened our appreciation of how “commensal” microbes have coevolved with
their host and have a central role in shaping health and susceptibility to
disease. It is now clear that there is a diverse repertoire of interactions
between the microbiota and host immune responses that can either sustain or
disrupt homeostasis. In the context of the global efforts to combatting TB, such
findings and knowledge have raised important questions: Does microbiome
composition indicate or determine susceptibility or resistance to
M. tuberculosis infection? Is the
development of active disease or latent infection upon M.
tuberculosis exposure influenced by the microbiome? Does
microbiome composition influence TB therapy outcome and risk of reinfection with
M. tuberculosis? Can the microbiome be
actively managed to reduce risk of M.
tuberculosis infection or recurrence of TB? Here, we
explore these questions with a particular focus on microbiome-immune
interactions that may affect TB susceptibility, manifestation and progression,
the long-term implications of anti-TB therapy, as well as the potential of the
host microbiome as target for clinical manipulation.
Collapse
Affiliation(s)
- Giorgia Mori
- The University of Queensland Diamantina Institute, Faculty
of Medicine, The University of Queensland, Brisbane, Australia
| | - Mark Morrison
- The University of Queensland Diamantina Institute, Faculty
of Medicine, The University of Queensland, Brisbane, Australia
| | - Antje Blumenthal
- The University of Queensland Diamantina Institute, Faculty
of Medicine, The University of Queensland, Brisbane, Australia
- * E-mail:
| |
Collapse
|
50
|
Mehta SR, Yen EF. Microbiota-based Therapies Clostridioides difficile infection that is refractory to antibiotic therapy. Transl Res 2021; 230:197-207. [PMID: 33278650 DOI: 10.1016/j.trsl.2020.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/05/2020] [Accepted: 11/29/2020] [Indexed: 11/27/2022]
Abstract
Clostridioides difficile infection (CDI) has had a devastating impact worldwide with significant rates of mortality, especially among the elderly. Despite effective antibiotics, the incidence of recurrent CDI (rCDI) is increasing and more difficult to treat with antibiotics alone. Fecal Microbiota Transplantation (FMT) has emerged as a consistently effective treatment for rCDI. Mechanisms for FMT are not entirely understood, but remain an area of active investigation. There have been recent safety reports with the use of FMT regarding transmission of pathogens in a few patients that have led to serious illness. With appropriate screening, FMT can be safely administered and continue to have a significant impact on eradication of rCDI and improve the lives of patients suffering from this disease. In this review, we summarize current treatments for CDI with a focus on microbiota-based therapies used for antibiotic refractory disease.
Collapse
Affiliation(s)
- Shama R Mehta
- NorthShore University HealthSystem, Division of Gastroenterology, 2650 Ridge Avenue, Suite G221, Evanston, IL 60201
| | - Eugene F Yen
- NorthShore University HealthSystem, Division of Gastroenterology, 2650 Ridge Avenue, Suite G221, Evanston, IL 60201.
| |
Collapse
|