1
|
Cady SR, Lambrecht JM, Dsouza KT, Dunning JL, Anderson JR, Malone KJ, Chepla KJ, Graczyk EL, Tyler DJ. First-in-human implementation of a bidirectional somatosensory neuroprosthetic system with wireless communication. J Neuroeng Rehabil 2025; 22:90. [PMID: 40269935 PMCID: PMC12020317 DOI: 10.1186/s12984-025-01613-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/21/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Limitations in upper limb prosthesis function and lack of sensory feedback are major contributors to high prosthesis abandonment rates. Peripheral nerve stimulation and intramuscular recording can restore touch and relay motor intentions for individuals with upper limb loss. Percutaneous systems have enabled significant progress in implanted neural interfaces but require chronic lead maintenance and unwieldy external equipment. Fully implanted sensorimotor systems without percutaneous leads are crucial for advancing implanted neuroprosthetic technologies to long-term community use and commercialization. METHODS We present the first-in-human technical performance of the implanted Somatosensory Electrical Neurostimulation and Sensing (iSens®) system-an implanted, high-channel count myoelectric sensing and nerve stimulation system that uses wireless communication for advanced prosthetic systems. Two individuals with unilateral transradial amputations received iSens® with four 16-channel composite Flat Interface Nerve Electrodes (C-FINEs) and four Tetra Intramuscular (TIM) electrodes. This study achieved two key objectives to demonstrate system feasibility prior to long-term community use: (1) evaluating the chronic stability of extraneural cuff electrodes, intramuscular electrodes, and active implantable devices in a wirelessly connected system and (2) assessing the impacts of peripheral nerve stimulation on three degree-of-freedom controller performance in a wirelessly connected system to validate iSens® as a bidirectional interface. RESULTS Similar to prior percutaneous systems, we demonstrate chronically stable extraneural cuff electrodes and intramuscular electrodes in a wirelessly connected implanted system for more than two years in one participant and four months in the second participant, whose iSens® system was explanted due to an infection of unknown origin. Using an artificial neural network controller trained on implanted electromyographic data collected during known hand movements, one participant commanded a virtual hand and sensorized prosthesis in 3 degrees-of-freedom. The iSens® system simultaneously produced stimulation for sensation while recording high resolution muscle activity for real-time control. Although restored sensation did not significantly improve initial trials of prosthetic controller performance, the participant reported that sensation was helpful for functional tasks. CONCLUSIONS This case series describes a wirelessly connected, bidirectional neuroprosthetic system with somatosensory feedback and advanced myoelectric prosthetic control that is ready for implementation in long-term home use clinical trials. TRIAL REGISTRATION ClinicalTrials.gov ID: NCT04430218, 2020-06-30.
Collapse
Affiliation(s)
- Sedona R Cady
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, 44106, USA
| | - Joris M Lambrecht
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, 44106, USA
| | - Karina T Dsouza
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, 44106, USA
| | - Jeremy L Dunning
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, 44106, USA
| | - J Robert Anderson
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, 44106, USA
- University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Kevin J Malone
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, 44106, USA
- University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Kyle J Chepla
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, 44106, USA
- MetroHealth Medical Center, Cleveland, OH, 44109, USA
| | - Emily L Graczyk
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, 44106, USA
| | - Dustin J Tyler
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, 44106, USA.
| |
Collapse
|
2
|
Tian Y, Valle G, Cederna PS, Kemp SWP. The Next Frontier in Neuroprosthetics: Integration of Biomimetic Somatosensory Feedback. Biomimetics (Basel) 2025; 10:130. [PMID: 40136784 PMCID: PMC11940524 DOI: 10.3390/biomimetics10030130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/28/2025] [Accepted: 02/01/2025] [Indexed: 03/27/2025] Open
Abstract
The development of neuroprosthetic limbs-robotic devices designed to restore lost limb functions for individuals with limb loss or impairment-has made significant strides over the past decade, reaching the stage of successful human clinical trials. A current research focus involves providing somatosensory feedback to these devices, which was shown to improve device control performance and embodiment. However, widespread commercialization and clinical adoption of somatosensory neuroprosthetic limbs remain limited. Biomimetic neuroprosthetics, which seeks to resemble the natural sensory processing of tactile information and to deliver biologically relevant inputs to the nervous system, offer a promising path forward. This method could bridge the gap between existing neurotechnology and the future realization of bionic limbs that more closely mimic biological limbs. In this review, we examine the recent key clinical trials that incorporated somatosensory feedback on neuroprosthetic limbs through biomimetic neurostimulation for individuals with missing or paralyzed limbs. Furthermore, we highlight the potential impact of cutting-edge advances in tactile sensing, encoding strategies, neuroelectronic interfaces, and innovative surgical techniques to create a clinically viable human-machine interface that facilitates natural tactile perception and advanced, closed-loop neuroprosthetic control to improve the quality of life of people with sensorimotor impairments.
Collapse
Affiliation(s)
- Yucheng Tian
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (Y.T.); (P.S.C.)
| | - Giacomo Valle
- Department of Electrical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden;
| | - Paul S. Cederna
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (Y.T.); (P.S.C.)
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stephen W. P. Kemp
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (Y.T.); (P.S.C.)
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
Greenspon CM, Valle G, Shelchkova ND, Hobbs TG, Verbaarschot C, Callier T, Berger-Wolf EI, Okorokova EV, Hutchison BC, Dogruoz E, Sobinov AR, Jordan PM, Weiss JM, Fitzgerald EE, Prasad D, Van Driesche A, He Q, Liu F, Kirsch RF, Miller JP, Lee RC, Satzer D, Gonzalez-Martinez J, Warnke PC, Ajiboye AB, Graczyk EL, Boninger ML, Collinger JL, Downey JE, Miller LE, Hatsopoulos NG, Gaunt RA, Bensmaia SJ. Evoking stable and precise tactile sensations via multi-electrode intracortical microstimulation of the somatosensory cortex. Nat Biomed Eng 2024:10.1038/s41551-024-01299-z. [PMID: 39643730 DOI: 10.1038/s41551-024-01299-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/31/2024] [Indexed: 12/09/2024]
Abstract
Tactile feedback from brain-controlled bionic hands can be partially restored via intracortical microstimulation (ICMS) of the primary somatosensory cortex. In ICMS, the location of percepts depends on the electrode's location and the percept intensity depends on the stimulation frequency and amplitude. Sensors on a bionic hand can thus be linked to somatotopically appropriate electrodes, and the contact force of each sensor can be used to determine the amplitude of a stimulus. Here we report a systematic investigation of the localization and intensity of ICMS-evoked percepts in three participants with cervical spinal cord injury. A retrospective analysis of projected fields showed that they were typically composed of a focal hotspot with diffuse borders, arrayed somatotopically in keeping with their underlying receptive fields and stable throughout the duration of the study. When testing the participants' ability to rapidly localize a single ICMS presentation, individual electrodes typically evoked only weak sensations, making object localization and discrimination difficult. However, overlapping projected fields from multiple electrodes produced more localizable and intense sensations and allowed for a more precise use of a bionic hand.
Collapse
Affiliation(s)
- Charles M Greenspon
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA.
| | - Giacomo Valle
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Natalya D Shelchkova
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL, USA
| | - Taylor G Hobbs
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ceci Verbaarschot
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
| | - Thierri Callier
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Ev I Berger-Wolf
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Elizaveta V Okorokova
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Brianna C Hutchison
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Efe Dogruoz
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Anton R Sobinov
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Patrick M Jordan
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Jeffrey M Weiss
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
| | - Emily E Fitzgerald
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Dillan Prasad
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Ashley Van Driesche
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Qinpu He
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Fang Liu
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robert F Kirsch
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Department of Neurosurgery, The Neurological Institute, University Hospital Cleveland Medical Center, Cleveland, OH, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Jonathan P Miller
- Department of Neurosurgery, The Neurological Institute, University Hospital Cleveland Medical Center, Cleveland, OH, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
- School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Ray C Lee
- Schwab Rehabilitation Hospital, Chicago, IL, USA
| | - David Satzer
- Department of Neurological Surgery, University of Chicago, Chicago, IL, USA
| | | | - Peter C Warnke
- Department of Neurological Surgery, University of Chicago, Chicago, IL, USA
| | - Abidemi B Ajiboye
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Department of Neurosurgery, The Neurological Institute, University Hospital Cleveland Medical Center, Cleveland, OH, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Emily L Graczyk
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Department of Neurosurgery, The Neurological Institute, University Hospital Cleveland Medical Center, Cleveland, OH, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Michael L Boninger
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jennifer L Collinger
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - John E Downey
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Lee E Miller
- Department of Neuroscience, Northwestern University, Chicago, IL, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA
- Shirley Ryan Ability Lab, Chicago, IL, USA
| | - Nicholas G Hatsopoulos
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, USA
| | - Robert A Gaunt
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Sliman J Bensmaia
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, USA
| |
Collapse
|
4
|
Demirdel S, Demirdel E, Söyler O, Akyol M. Reliability and validity of the Turkish version of the Prosthesis Embodiment Scale for Lower Limb Amputees. Prosthet Orthot Int 2024; 48:727-733. [PMID: 38506639 DOI: 10.1097/pxr.0000000000000332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 12/18/2023] [Indexed: 03/21/2024]
Abstract
BACKGROUND Prosthetic embodiment is the perception of the prosthesis as a part of the body, and it is important for acceptance and adequate and effective use of the prosthesis. OBJECTIVE The aim of this study was to investigate the validity and reliability of the Turkish version of the Prosthesis Embodiment Scale for Lower Limb Amputees. METHODS This cross-sectional study included a total of 88 lower limb amputees. Internal consistency was evaluated using Cronbach α coefficient. The test-retest reliability of the scale, which was reapplied after 7-10 d, was evaluated using intraclass correlation coefficient. Principal component analysis with Varimax rotation was used to analyze the factor structure. Spearman correlation coefficient with Trinity Amputation and Prosthesis Experience Scale subscales was calculated for concurrent validity. RESULTS The mean age of the participants was 45.13 ± 15.05 years, and 76.1% were male. Internal consistency (Cronbach α = 0.905) and test-retest reliability (intraclass correlation coefficient = 0.822) were high. 76.1% of the total variance could be explained by the 3 dimensions. Significant correlation was found with the Trinity Amputation and Prosthesis Experience Scale subscales (r = 0.542 for psychosocial adjustment subscale, r = -0.452 for activity restriction subscale, r = 0.490 for prosthesis satisfaction subscale, p < 0.001). CONCLUSIONS The results of this study showed that the Turkish version of the Prosthesis Embodiment Scale for Lower Limb Amputees is a valid and reliable tool that can be used to evaluate prosthetic rehabilitation outcomes.
Collapse
Affiliation(s)
- Senem Demirdel
- Gülhane Faculty of Physiotherapy and Rehabilitation, University of Health Sciences Turkey, Ankara, Turkey
| | - Ertuğrul Demirdel
- Gülhane Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| | - Osman Söyler
- Health Sciences Institute, Lokman Hekim University, Ankara, Turkey
| | - Mesut Akyol
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| |
Collapse
|
5
|
Rosario M, Zhang J, Kaleem MI, Chandra N, Yan Y, Moran D, Wood M, Ray WZ, MacEwan M. A method for quantitative spatial analysis of immunolabeled fibers at regenerative electrode interfaces. J Neurosci Methods 2024; 412:110295. [PMID: 39321988 DOI: 10.1016/j.jneumeth.2024.110295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/10/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND Regenerative electrodes are being explored as robust peripheral nerve interfaces for neuro-prosthetic control and sensory feedback. Current designs differ in electrode number, spatial arrangement, and porosity which impacts the regeneration, activation, and spatial distribution of fibers at the device interface. Knowledge of sensory and motor fiber distributions are important in optimizing selective fiber activation and recording. NEW METHOD We use confocal microscopy and immunofluorescence methods to conduct spatial analysis of immunolabeled fibers across whole nerve cross sections. RESULTS This protocol was implemented to characterize motor fiber distribution within 3 macro-sieve electrode regenerated (MSE), 3 silicone-conduit regenerated, and 3 unmanipulated control rodent sciatic nerves. Total motor fiber counts were 1485 [SD: +/- 50.11], 1899 [SD: +/- 359], and 5732 [SD: +/- 1410] for control, MSE, and conduit nerves respectively. MSE motor fiber distributions exhibited evidence of deviation from complete spatial randomness and evidence of dispersion and clustering tendencies at varying scales. Notably, MSE motor fibers exhibited clustering within the central portion of the cross section, whereas conduit regenerated motor fibers exhibited clustering along the periphery. COMPARISON WITH EXISTING METHODS Prior exploration of fiber distributions at regenerative interfaces was limited to either quadrant-based density analysis of randomly sampled subregions or qualitative description. This method extends existing sample preparation and microscopy techniques to quantitatively assess immunolabeled fiber distributions within whole nerve cross-sections. CONCLUSIONS This approach is an effective way to examine the spatial organization of fiber subsets at regenerative electrode interfaces, enabling robust assessment of fiber distributions relative to electrode arrangement.
Collapse
Affiliation(s)
- Michael Rosario
- Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Jingyuan Zhang
- Department of Neurological Surgery, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Muhammad Irfan Kaleem
- Department of Neurological Surgery, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Nikhil Chandra
- Department of Neurological Surgery, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Ying Yan
- Department of Neurological Surgery, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Daniel Moran
- McKelvey School of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Matthew Wood
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110, USA
| | - Wilson Z Ray
- Department of Neurological Surgery, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA; McKelvey School of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Matthew MacEwan
- Department of Neurological Surgery, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA; McKelvey School of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, MO, USA.
| |
Collapse
|
6
|
Maibam PC, Pei D, Olikkal P, Vinjamuri RK, Kakoty NM. Enhancing prosthetic hand control: A synergistic multi-channel electroencephalogram. WEARABLE TECHNOLOGIES 2024; 5:e18. [PMID: 39811472 PMCID: PMC11729493 DOI: 10.1017/wtc.2024.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/29/2024] [Accepted: 08/14/2024] [Indexed: 01/16/2025]
Abstract
Electromyogram (EMG) has been a fundamental approach for prosthetic hand control. However it is limited by the functionality of residual muscles and muscle fatigue. Currently, exploring temporal shifts in brain networks and accurately classifying noninvasive electroencephalogram (EEG) for prosthetic hand control remains challenging. In this manuscript, it is hypothesized that the coordinated and synchronized temporal patterns within the brain network, termed as brain synergy, contain valuable information to decode hand movements. 32-channel EEGs were acquired from 10 healthy participants during hand grasp and open. Synergistic spatial distribution pattern and power spectra of brain activity were investigated using independent component analysis of EEG. Out of 32 EEG channels, 15 channels spanning the frontal, central and parietal regions were strategically selected based on the synergy of spatial distribution pattern and power spectrum of independent components. Time-domain and synergistic features were extracted from the selected 15 EEG channels. These features were employed to train a Bayesian optimizer-based support vector machine (SVM). The optimized SVM classifier could achieve an average testing accuracy of 94.39 .84% using synergistic features. The paired t-test showed that synergistic features yielded significantly higher area under curve values (p < .05) compared to time-domain features in classifying hand movements. The output of the classifier was employed for the control of the prosthetic hand. This synergistic approach for analyzing temporal activities in motor control and control of prosthetic hands have potential contributions to future research. It addresses the limitations of EMG-based approaches and emphasizes the effectiveness of synergy-based control for prostheses.
Collapse
Affiliation(s)
- Pooya Chanu Maibam
- Embedded Systems and Robotics Lab, Tezpur University, Tezpur, Assam, India
| | - Dingyi Pei
- Vinjamuri Lab, University of Maryland, Baltimore County, Baltimore, MD, USA
| | - Parthan Olikkal
- Vinjamuri Lab, University of Maryland, Baltimore County, Baltimore, MD, USA
| | | | - Nayan M. Kakoty
- Embedded Systems and Robotics Lab, Tezpur University, Tezpur, Assam, India
| |
Collapse
|
7
|
Scarpelli A, Demofonti A, Cordella F, Coffa U, Mereu F, Gruppioni E, Zollo L. Eliciting Force and Slippage in Upper Limb Amputees Through Transcutaneous Electrical Nerve Stimulation (TENS). IEEE Trans Neural Syst Rehabil Eng 2024; 32:3006-3017. [PMID: 39141466 DOI: 10.1109/tnsre.2024.3443398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Upper limb amputation severely affects the quality of life of individuals. Therefore, developing closed-loop upper-limb prostheses would enhance the sensory-motor capabilities of the prosthetic user. Considering design priorities based on user needs, the restoration of sensory feedback is one of the most desired features. This study focuses on employing Transcutaneous Electrical Nerve Stimulation (TENS) as a non-invasive somatotopic stimulation technique for restoring somatic sensations in upper-limb amputees. The aim of this study is to propose two encoding strategies to elicit force and slippage sensations in transradial amputees. The former aims at restoring three different levels of force through a Linear Pulse Amplitude Modulation (LPAM); the latter is devoted to elicit slippage sensations through Apparent Moving Sensation (AMS) by means of three different algorithms, i.e. the Pulse Amplitude Variation (PAV), the Pulse Width Variation (PWV) and Inter-Stimulus Delay Modulation (ISDM). Amputees had to characterize perceived sensations and to perform force and slippage recognition tasks. Results demonstrates that amputees were able to correctly identify low, medium and high levels of force, with an accuracy above the 80% and similarly, to also discriminate the slippage moving direction with a high accuracy above 90%, also highlighting that ISDM would be the most suitable method, among the three AMS strategies to deliver slippage sensations. It was demonstrated for the first time that the developed encoding strategies are effective methods to somatotopically reintroduce in the amputees, by means of TENS, force and slippage sensations.
Collapse
|
8
|
Chicos LA, Rangaprakash D, Srinivasan SS, Gutierrez-Arango S, Song H, Barry RL, Herr HM. Resting state neurophysiology of agonist-antagonist myoneural interface in persons with transtibial amputation. Sci Rep 2024; 14:13456. [PMID: 38862558 PMCID: PMC11166995 DOI: 10.1038/s41598-024-63134-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 05/24/2024] [Indexed: 06/13/2024] Open
Abstract
The agonist-antagonist myoneural interface (AMI) is an amputation surgery that preserves sensorimotor signaling mechanisms of the central-peripheral nervous systems. Our first neuroimaging study investigating AMI subjects conducted by Srinivasan et al. (2020) focused on task-based neural signatures, and showed evidence of proprioceptive feedback to the central nervous system. The study of resting state neural activity helps non-invasively characterize the neural patterns that prime task response. In this study on resting state functional magnetic resonance imaging in AMI subjects, we compared functional connectivity in patients with transtibial AMI (n = 12) and traditional (n = 7) amputations (TA). To test our hypothesis that we would find significant neurophysiological differences between AMI and TA subjects, we performed a whole-brain exploratory analysis to identify a seed region; namely, we conducted ANOVA, followed by t-test statistics to locate a seed in the salience network. Then, we implemented a seed-based connectivity analysis to gather cluster-level inferences contrasting our subject groups. We show evidence supporting our hypothesis that the AMI surgery induces functional network reorganization resulting in a neural configuration that significantly differs from the neural configuration after TA surgery. AMI subjects show significantly less coupling with regions functionally dedicated to selecting where to focus attention when it comes to salient stimuli. Our findings provide researchers and clinicians with a critical mechanistic understanding of the effect of AMI amputation on brain networks at rest, which has promising implications for improved neurorehabilitation and prosthetic control.
Collapse
Affiliation(s)
- Laura A Chicos
- Biomechatronics Group, Massachusetts Institute of Technology, Media Lab, Cambridge, MA, 02139, USA.
- K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - D Rangaprakash
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Department of Radiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Shriya S Srinivasan
- Harvard-MA Institute of Technology Division of Health Sciences and Technology, Cambridge, MA, 02139, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, 02134, USA
| | - Samantha Gutierrez-Arango
- Biomechatronics Group, Massachusetts Institute of Technology, Media Lab, Cambridge, MA, 02139, USA
- K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Hyungeun Song
- Biomechatronics Group, Massachusetts Institute of Technology, Media Lab, Cambridge, MA, 02139, USA
- K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Harvard-MA Institute of Technology Division of Health Sciences and Technology, Cambridge, MA, 02139, USA
| | - Robert L Barry
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Department of Radiology, Harvard Medical School, Boston, MA, 02115, USA
- Harvard-MA Institute of Technology Division of Health Sciences and Technology, Cambridge, MA, 02139, USA
| | - Hugh M Herr
- Biomechatronics Group, Massachusetts Institute of Technology, Media Lab, Cambridge, MA, 02139, USA
- K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
9
|
Wijk U, Björkman A, Carlsson IK, Kristjansdottir F, Mrkonjic A, Rosén B, Antfolk C. A BIONIC HAND VS. A REPLANTED HAND. JOURNAL OF REHABILITATION MEDICINE. CLINICAL COMMUNICATIONS 2024; 7:24854. [PMID: 38274357 PMCID: PMC10810139 DOI: 10.2340/jrmcc.v7.24854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024]
Abstract
Objective Evaluation of the hand function affected when replacing a malfunctioning hand by a bionic hand. Design Case report. Subjects One individual that wished for a better quality of life after unsatisfying hand function following a replantation. Methods A quantitative and qualitative evaluation of body functions as well as activity performance and participation before and after a planned amputation and prosthetic fitting is presented. Results Improvements were seen in the patient-reported outcome measures (PROMs) that were used regarding activity (Disability of the Arm, Shoulder and Hand [DASH] and Canadian Occupational Performance Measure [COPM]), pain (Neuropathic Pain Symptom Inventory [NPSI], Brief Pain Inventory [BPI], Visual Analogue Scale [VAS]), cold intolerance (CISS) and health related quality of life (SF-36), as well as in the standardised grip function test, Southampton Hand Assessment Procedure (SHAP). No referred sensations were seen but the discriminative touch on the forearm was improved. In the qualitative interview, a relief of pain, a lack of cold intolerance, improved appearance, better grip function and overall emotional wellbeing were expressed. Conclusions The planned amputation and subsequent fitting and usage of a hand prosthesis were satisfying for the individual with positive effects on activity and participation. Clinical relevance When the hand function after a hand replantation does not reach satisfactory levels, a planned amputation and a prosthetic hand can be the right solution.
Collapse
Affiliation(s)
- Ulrika Wijk
- Department of Translational Medicine - Hand Surgery, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Anders Björkman
- Department of Hand Surgery, Institute of Clinical Sciences, Sahlgrenska University Hospital, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ingela K Carlsson
- Department of Translational Medicine - Hand Surgery, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Freyja Kristjansdottir
- Department of Translational Medicine - Hand Surgery, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Ante Mrkonjic
- Department of Translational Medicine - Hand Surgery, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Birgitta Rosén
- Department of Translational Medicine - Hand Surgery, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Christian Antfolk
- Deptartment of Biomedical Engineering, Faculty of Engineering, Lund University, Lund, Sweden
| |
Collapse
|
10
|
Einfeldt AK, Rebmann F, Yao D, Stukenborg-Colsmann C, Hurschler C, Windhagen H, Jakubowitz E. What do users and their aiding professionals want from future devices in upper limb prosthetics? A focus group study. PLoS One 2023; 18:e0295516. [PMID: 38157364 PMCID: PMC10756510 DOI: 10.1371/journal.pone.0295516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND High rejection rates of upper limb prosthetics indicate that current prosthetic devices only partially meet user demands. This study therefore investigated the benefits and challenges with current prostheses, associated services and potential areas for improvement from the perspective of upper limb prosthesis users and various professionals working in the field of upper limb and hand prosthetics. METHODS AND FINDINGS Seven different focus group discussions were conducted with 32 participants. Participants were grouped by prosthesis type, if they were prosthesis users, or professionals. All focus group discussions were transcribed verbatim, and a summarizing content analysis was performed. Three main topic areas to be addressed emerged from the interviews: 1. a properly functioning prosthesis, 2. the infrastructure, and 3. users' psychological and physical prerequisites. The interaction between a well-functioning prosthesis and a well-developed infrastructure was shown to be important for successful use. CONCLUSIONS Our study raises many of the same issues that have been reported in previous qualitative studies, dating back over several decades. This study underlines the need to include users and professionals in the future development of prosthetic devices.
Collapse
Affiliation(s)
- Ann-Kathrin Einfeldt
- Laboratory for Biomechanics and Biomaterials, Department of Orthopedic Surgery, Hannover Medical School, Hannover, Germany
| | - Franziska Rebmann
- Laboratory for Biomechanics and Biomaterials, Department of Orthopedic Surgery, Hannover Medical School, Hannover, Germany
| | - Dawei Yao
- Department of Orthopedic Surgery, Hannover Medical School, Hannover, Germany
| | | | - Christof Hurschler
- Laboratory for Biomechanics and Biomaterials, Department of Orthopedic Surgery, Hannover Medical School, Hannover, Germany
| | - Henning Windhagen
- Department of Orthopedic Surgery, Hannover Medical School, Hannover, Germany
| | - Eike Jakubowitz
- Laboratory for Biomechanics and Biomaterials, Department of Orthopedic Surgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
11
|
Abstract
Efforts to design devices emulating complex cognitive abilities and response processes of biological systems have long been a coveted goal. Recent advancements in flexible electronics, mirroring human tissue's mechanical properties, hold significant promise. Artificial neuron devices, hinging on flexible artificial synapses, bioinspired sensors, and actuators, are meticulously engineered to mimic the biological systems. However, this field is in its infancy, requiring substantial groundwork to achieve autonomous systems with intelligent feedback, adaptability, and tangible problem-solving capabilities. This review provides a comprehensive overview of recent advancements in artificial neuron devices. It starts with fundamental principles of artificial synaptic devices and explores artificial sensory systems, integrating artificial synapses and bioinspired sensors to replicate all five human senses. A systematic presentation of artificial nervous systems follows, designed to emulate fundamental human nervous system functions. The review also discusses potential applications and outlines existing challenges, offering insights into future prospects. We aim for this review to illuminate the burgeoning field of artificial neuron devices, inspiring further innovation in this captivating area of research.
Collapse
Affiliation(s)
- Ke He
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Cong Wang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yongli He
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jiangtao Su
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Xiaodong Chen
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| |
Collapse
|
12
|
Ortiz-Catalan M, Zbinden J, Millenaar J, D'Accolti D, Controzzi M, Clemente F, Cappello L, Earley EJ, Mastinu E, Kolankowska J, Munoz-Novoa M, Jönsson S, Cipriani C, Sassu P, Brånemark R. A highly integrated bionic hand with neural control and feedback for use in daily life. Sci Robot 2023; 8:eadf7360. [PMID: 37820004 DOI: 10.1126/scirobotics.adf7360] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 09/14/2023] [Indexed: 10/13/2023]
Abstract
Restoration of sensorimotor function after amputation has remained challenging because of the lack of human-machine interfaces that provide reliable control, feedback, and attachment. Here, we present the clinical implementation of a transradial neuromusculoskeletal prosthesis-a bionic hand connected directly to the user's nervous and skeletal systems. In one person with unilateral below-elbow amputation, titanium implants were placed intramedullary in the radius and ulna bones, and electromuscular constructs were created surgically by transferring the severed nerves to free muscle grafts. The native muscles, free muscle grafts, and ulnar nerve were implanted with electrodes. Percutaneous extensions from the titanium implants provided direct skeletal attachment and bidirectional communication between the implanted electrodes and a prosthetic hand. Operation of the bionic hand in daily life resulted in improved prosthetic function, reduced postamputation, and increased quality of life. Sensations elicited via direct neural stimulation were consistently perceived on the phantom hand throughout the study. To date, the patient continues using the prosthesis in daily life. The functionality of conventional artificial limbs is hindered by discomfort and limited and unreliable control. Neuromusculoskeletal interfaces can overcome these hurdles and provide the means for the everyday use of a prosthesis with reliable neural control fixated into the skeleton.
Collapse
Affiliation(s)
- Max Ortiz-Catalan
- Center for Bionics and Pain Research, Mölndal, Sweden
- Bionics Institute, Melbourne, Australia
- Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden
- University of Melbourne, Melbourne, Australia
| | - Jan Zbinden
- Center for Bionics and Pain Research, Mölndal, Sweden
- Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | | | - Daniele D'Accolti
- Biorobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Marco Controzzi
- Biorobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | | | - Leonardo Cappello
- Biorobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Eric J Earley
- Center for Bionics and Pain Research, Mölndal, Sweden
- Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Osseointegration Research Consortium, University of Colorado, Aurora, CO, USA
| | - Enzo Mastinu
- Center for Bionics and Pain Research, Mölndal, Sweden
- Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Biorobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | | | - Maria Munoz-Novoa
- Center for Bionics and Pain Research, Mölndal, Sweden
- Center for Advanced Reconstruction of Extremities, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Stewe Jönsson
- TeamOlmed, Department of Upper Limb Prosthetics, Kungsbacka, Sweden
| | - Christian Cipriani
- Biorobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Paolo Sassu
- Center for Bionics and Pain Research, Mölndal, Sweden
- Department of Hand Surgery, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Orthopaedics, IRCCS, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Rickard Brånemark
- Integrum AB, Mölndal, Sweden
- Department of Orthopaedics, Gothenburg University, Gothenburg, Sweden
- K. Lisa Yang Center for Bionics, MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
13
|
Castro F, Lenggenhager B, Zeller D, Pellegrino G, D'Alonzo M, Di Pino G. From rubber hands to neuroprosthetics: Neural correlates of embodiment. Neurosci Biobehav Rev 2023; 153:105351. [PMID: 37544389 PMCID: PMC10582798 DOI: 10.1016/j.neubiorev.2023.105351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 07/10/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Our interaction with the world rests on the knowledge that we are a body in space and time, which can interact with the environment. This awareness is usually referred to as sense of embodiment. For the good part of the past 30 years, the rubber hand illusion (RHI) has been a prime tool to study embodiment in healthy and people with a variety of clinical conditions. In this paper, we provide a critical overview of this research with a focus on the RHI paradigm as a tool to study prothesis embodiment in individuals with amputation. The RHI relies on well-documented multisensory integration mechanisms based on sensory precision, where parietal areas are involved in resolving the visuo-tactile conflict, and premotor areas in updating the conscious bodily representation. This mechanism may be transferable to prosthesis ownership in amputees. We discuss how these results might transfer to technological development of sensorised prostheses, which in turn might progress the acceptability by users.
Collapse
Affiliation(s)
- Fabio Castro
- Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Campus Bio-Medico University, via Alvaro del Portillo 5, 00128 Rome, Italy; Institute of Sport, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Bigna Lenggenhager
- Department of Psychology, Cognitive Psychology, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany; Department of Psychology, University of Zurich, Binzmuehlestrasse 14, 8050 Zurich, Switzerland
| | - Daniel Zeller
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | - Giovanni Pellegrino
- Epilepsy program, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Marco D'Alonzo
- Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Campus Bio-Medico University, via Alvaro del Portillo 5, 00128 Rome, Italy.
| | - Giovanni Di Pino
- Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Campus Bio-Medico University, via Alvaro del Portillo 5, 00128 Rome, Italy
| |
Collapse
|
14
|
Svensson P, Malešević N, Wijk U, Björkman A, Antfolk C. The rubber hand illusion evaluated using different stimulation modalities. Front Neurosci 2023; 17:1237053. [PMID: 37781250 PMCID: PMC10536259 DOI: 10.3389/fnins.2023.1237053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
Tactile feedback plays a vital role in inducing ownership and improving motor control of prosthetic hands. However, commercially available prosthetic hands typically do not provide tactile feedback and because of that the prosthetic user must rely on visual input to adjust the grip. The classical rubber hand illusion (RHI) where a brush is stroking the rubber hand, and the user's hidden hand synchronously can induce ownership of a rubber hand. In the classic RHI the stimulation is modality-matched, meaning that the stimulus on the real hand matches the stimulus on the rubber hand. The RHI has also been used in previous studies with a prosthetic hand as the "rubber hand," suggesting that a hand prosthesis can be incorporated within the amputee's body scheme. Interestingly, previous studies have shown that stimulation with a mismatched modality, where the rubber hand was brushed, and vibrations were felt on the hidden hand also induced the RHI. The aim of this study was to compare how well mechanotactile, vibrotactile, and electrotactile feedback induced the RHI in able-bodied participants and forearm amputees. 27 participants with intact hands and three transradial amputees took part in a modified RHI experiment. The rubber hand was stroked with a brush, and the participant's hidden hand/residual limb received stimulation with either brush stroking, electricity, pressure, or vibration. The three latter stimulations were modality mismatched with regard to the brushstroke. Participants were tested for ten different combinations (stimulation blocks) where the stimulations were applied on the volar (glabrous skin), and dorsal (hairy skin) sides of the hand. Outcome was assessed using two standard tests (questionnaire and proprioceptive drift). All types of stimulation induced RHI but electrical and vibration stimulation induced a stronger RHI than pressure. After completing more stimulation blocks, the proprioceptive drift test showed that the difference between pre- and post-test was reduced. This indicates that the illusion was drifting toward the rubber hand further into the session.
Collapse
Affiliation(s)
- Pamela Svensson
- Department of Biomedical Engineering, Faculty of Engineering, Lund University, Lund, Sweden
| | - Nebojša Malešević
- Department of Biomedical Engineering, Faculty of Engineering, Lund University, Lund, Sweden
| | - Ulrika Wijk
- Department of Translational Medicine – Hand Surgery, Lund University and Skåne University Hospital, Malmö, Sweden
| | - Anders Björkman
- Department of Hand Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Christian Antfolk
- Department of Biomedical Engineering, Faculty of Engineering, Lund University, Lund, Sweden
| |
Collapse
|
15
|
Kyberd P. Slip Detection Strategies for Automatic Grasping in Prosthetic Hands. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094433. [PMID: 37177637 PMCID: PMC10181642 DOI: 10.3390/s23094433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
The detection of an object slipping within the grasp of a prosthetic hand enables the hand to react to ensure the grasp is stable. The computer controller of a prosthetic hand needs to be able to unambiguously detect the slide from other signals. Slip can be detected from the surface vibrations made as the contact between object and terminal device shifts. A second method measures the changes in the normal and tangential forces between the object and the digits. After a review of the principles of how the signals are generated and the detection technologies are employed, this paper details the acoustic and force sensors used in versions of the Southampton Hand. Attention is given to the techniques used in the field. The performance of the Southampton tube sensor is explored. Different surfaces are slid past a sensor and the signals analysed. The resulting signals have low-frequency content. The signals are low pass filtered and the resulting processing results in a consistent response across a range of surfaces. These techniques are fast and not computationally intensive, which makes them practical for a device that is to be used daily in the field.
Collapse
Affiliation(s)
- Peter Kyberd
- Department of Ortho and MSK Science, University College London, London HA7 4LP, UK
| |
Collapse
|
16
|
Su S, Chai G, Xu W, Meng J, Sheng X, Mouraux A, Zhu X. Neural evidence for functional roles of tactile and visual feedback in the application of myoelectric prosthesis. J Neural Eng 2023; 20. [PMID: 36595235 DOI: 10.1088/1741-2552/acab32] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Objective. The primary purpose of this study was to investigate the electrophysiological mechanism underlying different modalities of sensory feedback and multi-sensory integration in typical prosthesis control tasks.Approach. We recruited 15 subjects and developed a closed-loop setup for three prosthesis control tasks which covered typical activities in the practical prosthesis application, i.e. prosthesis finger position control (PFPC), equivalent grasping force control (GFC) and box and block control (BABC). All the three tasks were conducted under tactile feedback (TF), visual feedback (VF) and tactile-visual feedback (TVF), respectively, with a simultaneous electroencephalography (EEG) recording to assess the electroencephalogram (EEG) response underlying different types of feedback. Behavioral and psychophysical assessments were also administered in each feedback condition.Results. EEG results showed that VF played a predominant role in GFC and BABC tasks. It was reflected by a significantly lower somatosensory alpha event-related desynchronization (ERD) in TVF than in TF and no significant difference in visual alpha ERD between TVF and VF. In PFPC task, there was no significant difference in somatosensory alpha ERD between TF and TVF, while a significantly lower visual alpha ERD was found in TVF than in VF, indicating that TF was essential in situations related to proprioceptive position perception. Tactile-visual integration was found when TF and VF were congruently implemented, showing an obvious activation over the premotor cortex in the three tasks. Behavioral and psychophysical results were consistent with EEG evaluations.Significance. Our findings could provide neural evidence for multi-sensory integration and functional roles of tactile and VF in a practical setting of prosthesis control, shedding a multi-dimensional insight into the functional mechanisms of sensory feedback.
Collapse
Affiliation(s)
- Shiyong Su
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Guohong Chai
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Wei Xu
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Jianjun Meng
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xinjun Sheng
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - André Mouraux
- Institute of Neuroscience (IoNS), Université catholique de Louvain, Brussels, Belgium
| | - Xiangyang Zhu
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
17
|
Human–Machine Interaction through Advanced Haptic Sensors: A Piezoelectric Sensory Glove with Edge Machine Learning for Gesture and Object Recognition. FUTURE INTERNET 2022. [DOI: 10.3390/fi15010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Human–machine interaction (HMI) refers to systems enabling communication between machines and humans. Systems for human–machine interfaces have advanced significantly in terms of materials, device design, and production methods. Energy supply units, logic circuits, sensors, and data storage units must be flexible, stretchable, undetectable, biocompatible, and self-healing to act as human–machine interfaces. This paper discusses the technologies for providing different haptic feedback of different natures. Notably, the physiological mechanisms behind touch perception are reported, along with a classification of the main haptic interfaces. Afterward, a comprehensive overview of wearable haptic interfaces is presented, comparing them in terms of cost, the number of integrated actuators and sensors, their main haptic feedback typology, and their future application. Additionally, a review of sensing systems that use haptic feedback technologies—specifically, smart gloves—is given by going through their fundamental technological specifications and key design requirements. Furthermore, useful insights related to the design of the next-generation HMI devices are reported. Lastly, a novel smart glove based on thin and conformable AlN (aluminum nitride) piezoelectric sensors is demonstrated. Specifically, the device acquires and processes the signal from the piezo sensors to classify performed gestures through an onboard machine learning (ML) algorithm. Then, the design and testing of the electronic conditioning section of AlN-based sensors integrated into the smart glove are shown. Finally, the architecture of a wearable visual-tactile recognition system is presented, combining visual data acquired by a micro-camera mounted on the user’s glass with the haptic ones provided by the piezoelectric sensors.
Collapse
|
18
|
Opinions on noninvasive sensory feedback of upper limb prosthetic users. Prosthet Orthot Int 2022; 46:591-600. [PMID: 36515904 DOI: 10.1097/pxr.0000000000000160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 03/14/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Restoring touch perception for individuals with upper extremity limb loss is an ambitious task. It is important to understand how persons with upper limb loss think this would be best achieved. METHODS An anonymous online survey was developed to obtain data from prosthetic users. Participants ranked the perceived acceptability and effectiveness of noninvasive sensory feedback to areas of intact sensation not typically involved in sensory feedback (i.e., the arm). The focus was on 4 main types of haptic information-object contact, proprioception, surface texture, and grasp force-as well as how best to convey those senses with various stimuli. The users were asked to grade themselves in certain tasks and then analyze which tasks would be improved with sensory feedback. Associations were explored between demographic characteristics and interest in sensory feedback. RESULTS Nationally, prostheses providers sent more than 2000 email invitations to the online survey and received 142 unique responses. Responses indicated interest in sensory feedback through prosthetic limbs by individuals with upper limb loss. The most popular pairing of haptic information with sensory substitution was grasp force paired with gentle vibration. Tasks that most persons taking the survey agreed would benefit from sensory feedback were zipping a jacket, tying shoes, buttoning a shirt, and using a cup. No difference was observed in interest between sex and employment status, but a significant decrease (P = .004) was seen in interest among participants with more years of prosthetic use. DISCUSSION The results from this national survey of upper extremity prosthetic users can be used to help guide the development of noninvasive sensory feedback options.
Collapse
|
19
|
Di Stefano N, Jarrassé N, Valera L. The Ethics of Supernumerary Robotic Limbs. An Enactivist Approach. SCIENCE AND ENGINEERING ETHICS 2022; 28:57. [PMID: 36376778 PMCID: PMC9663385 DOI: 10.1007/s11948-022-00405-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Supernumerary robotic limbs are innovative devices in the field of wearable robotics which can provide humans with unprecedented sensorimotor abilities. However, scholars have raised awareness of the ethical issues that would arise from the large adoption of technologies for human augmentation in society. Most negative attitudes towards such technologies seem to rely on an allegedly clear distinction between therapy and enhancement in the use of technological devices. Based on such distinction, people tend to accept technologies when used for therapeutic purposes (e.g., prostheses), but tend to raise issues when similar devices are used for upgrading a physical or cognitive ability (e.g., supernumerary robotics limbs). However, as many scholars have pointed out, the distinction between therapy and enhancement might be theoretically flawed. In this paper, we present an alternative approach to the ethics of supernumerary limbs which is based on two related claims. First, we propose to conceive supernumerary limbs as tools that necessarily modify our psychological and bodily identity. At the same time, we stress that such a modification is not ethically bad in itself; on the contrary, it drives human interaction with the environment. Second, by comparing our view with the extended mind thesis, we claim that the mediation through tools is crucial for the formation of novel meanings and skills that constitute human interaction with the world. We will relate the latter claim to enactivism as a helpful theoretical perspective to frame issues related to artificial limbs and, more in general, to technologies for augmentation. Based on this approach, we finally sketch some suggestions for future directions in the ethics of supernumerary limbs.
Collapse
Affiliation(s)
- Nicola Di Stefano
- Institute of Cognitive Sciences and Technologies (ISTC), National Research Council of Italy (CNR), Via S. Martino Della Battaglia 44, 00185, Rome, Italy.
| | - Nathanaël Jarrassé
- Centre National de la Recherche Scientifique (CNRS) UMR 7222, Institut des Systèmes Intelligentes et de Robotique (ISIR) /INSERM U1150 Agathe‑ISIR, Sorbonne Université, 75005, Paris, France
| | - Luca Valera
- Center for Bioethics, Pontifical Universidad Catolica de Chile, Av. Libertador Bernardo O'Higgins 340, Santiago, Chile
- Facultad de Filosofia y Letras, Universidad de Valladolid, Plaza Campus Universitario, s/n. 47011, Valladolid, Spain
| |
Collapse
|
20
|
Zbinden J, Lendaro E, Ortiz-Catalan M. A multi-dimensional framework for prosthetic embodiment: a perspective for translational research. J Neuroeng Rehabil 2022; 19:122. [PMID: 36369004 PMCID: PMC9652836 DOI: 10.1186/s12984-022-01102-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 10/25/2022] [Indexed: 11/13/2022] Open
Abstract
The concept of embodiment has gained widespread popularity within prosthetics research. Embodiment has been claimed to be an indicator of the efficacy of sensory feedback and control strategies. Moreover, it has even been claimed to be necessary for prosthesis acceptance, albeit unfoundedly. Despite the popularity of the term, an actual consensus on how prosthetic embodiment should be used in an experimental framework has yet to be reached. The lack of consensus is in part due to terminological ambiguity and the lack of an exact definition of prosthetic embodiment itself. In a review published parallel to this article, we summarized the definitions of embodiment used in prosthetics literature and concluded that treating prosthetic embodiment as a combination of ownership and agency allows for embodiment to be quantified, and thus useful in translational research. Here, we review the potential mechanisms that give rise to ownership and agency considering temporal, spatial, and anatomical constraints. We then use this to propose a multi-dimensional framework where prosthetic embodiment arises within a spectrum dependent on the integration of volition and multi-sensory information as demanded by the degree of interaction with the environment. This framework allows for the different experimental paradigms on sensory feedback and prosthetic control to be placed in a common perspective. By considering that embodiment lays along a spectrum tied to the interactions with the environment, one can conclude that the embodiment of prosthetic devices should be assessed while operating in environments as close to daily life as possible for it to become relevant.
Collapse
|
21
|
Valle G. Peripheral neurostimulation for encoding artificial somatosensations. Eur J Neurosci 2022; 56:5888-5901. [PMID: 36097134 PMCID: PMC9826263 DOI: 10.1111/ejn.15822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/08/2022] [Accepted: 09/08/2022] [Indexed: 01/11/2023]
Abstract
The direct neural stimulation of peripheral or central nervous systems has been shown as an effective tool to treat neurological conditions. The electrical activation of the nervous sensory pathway can be adopted to restore the artificial sense of touch and proprioception in people suffering from sensory-motor disorders. The modulation of the neural stimulation parameters has a direct effect on the electrically induced sensations, both when targeting the somatosensory cortex and the peripheral somatic nerves. The properties of the artificial sensations perceived, as their location, quality and intensity are strongly dependent on the direct modulation of pulse width, amplitude and frequency of the neural stimulation. Different sensory encoding schemes have been tested in patients showing distinct effects and outcomes according to their impact on the neural activation. Here, I reported the most adopted neural stimulation strategies to artificially encode somatosensation into the peripheral nervous system. The real-time implementation of these strategies in bionic devices is crucial to exploit the artificial sensory feedback in prosthetics. Thus, neural stimulation becomes a tool to directly communicate with the human nervous system. Given the importance of adding artificial sensory information to neuroprosthetic devices to improve their control and functionality, the choice of an optimal neural stimulation paradigm could increase the impact of prosthetic devices on the quality of life of people with sensorimotor disabilities.
Collapse
Affiliation(s)
- Giacomo Valle
- Laboratory for Neuroengineering, Department of Health Sciences and TechnologyInstitute for Robotics and Intelligent Systems, ETH ZürichZürichSwitzerland
| |
Collapse
|
22
|
Morand R, Brusa T, Schnüriger N, Catanzaro S, Berli M, Koch VM. FeetBack-Redirecting touch sensation from a prosthetic hand to the human foot. Front Neurosci 2022; 16:1019880. [PMID: 36389246 PMCID: PMC9645020 DOI: 10.3389/fnins.2022.1019880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/28/2022] [Indexed: 11/22/2022] Open
Abstract
Introduction Adding sensory feedback to myoelectric prosthetic hands was shown to enhance the user experience in terms of controllability and device embodiment. Often this is realized non-invasively by adding devices, such as actuators or electrodes, within the prosthetic shaft to deliver the desired feedback. However, adding a feedback system in the socket adds more weight, steals valuable space, and may interfere with myoelectric signals. To circumvent said drawbacks we tested for the first time if force feedback from a prosthetic hand could be redirected to another similarly sensitive part of the body: the foot. Methods We developed a vibrotactile insole that vibrates depending on the sensed force on the prosthetic fingers. This self-controlled clinical pilot trial included four experienced users of myoelectric prostheses. The participants solved two types of tasks with the artificial hands: 1) sorting objects depending on their plasticity with the feedback insole but without audio-visual feedback, and 2) manipulating fragile, heavy, and delicate objects with and without the feedback insole. The sorting task was evaluated with Goodman-Kruskal's gamma for ranked correlation. The manipulation tasks were assessed by the success rate. Results The results from the sorting task with vibrotactile feedback showed a substantial positive effect. The success rates for manipulation tasks with fragile and heavy objects were high under both conditions (feedback on or off, respectively). The manipulation task with delicate objects revealed inferior success with feedback in three of four participants. Conclusion We introduced a novel approach to touch sensation in myoelectric prostheses. The results for the sorting task and the manipulation tasks diverged. This is likely linked to the availability of various feedback sources. Our results for redirected feedback to the feet fall in line with previous similar studies that applied feedback to the residual arm. Clinical trial registration Name: Sensor Glove and Non-Invasive Vibrotactile Feedback Insole to Improve Hand Prostheses Functions and Embodiment (FeetBack). Date of registration: 23 April 2019. Date the first participant was enrolled: 3 September 2021. ClinicalTrials.gov Identifier: NCT03924310.
Collapse
Affiliation(s)
- Rafael Morand
- Biomedical Engineering Lab, Institute for Human Centered Engineering, Bern University of Applied Sciences, Bern, Switzerland
| | - Tobia Brusa
- Biomedical Engineering Lab, Institute for Human Centered Engineering, Bern University of Applied Sciences, Bern, Switzerland
| | - Nina Schnüriger
- Division of Prosthetics and Orthotics, Department of Orthopedics, Balgrist University Hospital, Zurich, Switzerland
| | - Sabrina Catanzaro
- Division of Prosthetics and Orthotics, Department of Orthopedics, Balgrist University Hospital, Zurich, Switzerland
| | - Martin Berli
- Division of Prosthetics and Orthotics, Department of Orthopedics, Balgrist University Hospital, Zurich, Switzerland
| | - Volker M. Koch
- Biomedical Engineering Lab, Institute for Human Centered Engineering, Bern University of Applied Sciences, Bern, Switzerland
| |
Collapse
|
23
|
Nanivadekar AC, Chandrasekaran S, Helm ER, Boninger ML, Collinger JL, Gaunt RA, Fisher LE. Closed-loop stimulation of lateral cervical spinal cord in upper-limb amputees to enable sensory discrimination: a case study. Sci Rep 2022; 12:17002. [PMID: 36220864 PMCID: PMC9553970 DOI: 10.1038/s41598-022-21264-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/26/2022] [Indexed: 12/29/2022] Open
Abstract
Modern myoelectric prosthetic hands have multiple independently controllable degrees of freedom, but require constant visual attention to use effectively. Somatosensory feedback provides information not available through vision alone and is essential for fine motor control of our limbs. Similarly, stimulation of the nervous system can potentially provide artificial somatosensory feedback to reduce the reliance on visual cues to efficiently operate prosthetic devices. We have shown previously that epidural stimulation of the lateral cervical spinal cord can evoke tactile sensations perceived as emanating from the missing arm and hand in people with upper-limb amputation. In this case study, two subjects with upper-limb amputation used this somatotopically-matched tactile feedback to discriminate object size and compliance while controlling a prosthetic hand. With less than 30 min of practice each day, both subjects were able to use artificial somatosensory feedback to perform a subset of the discrimination tasks at a success level well above chance. Subject 1 was consistently more adept at determining object size (74% accuracy; chance: 33%) while Subject 2 achieved a higher accuracy level in determining object compliance (60% accuracy; chance 33%). In each subject, discrimination of the other object property was only slightly above or at chance level suggesting that the task design and stimulation encoding scheme are important determinants of which object property could be reliably identified. Our observations suggest that changes in the intensity of artificial somatosensory feedback provided via spinal cord stimulation can be readily used to infer information about object properties with minimal training.
Collapse
Affiliation(s)
- Ameya C. Nanivadekar
- grid.21925.3d0000 0004 1936 9000Rehab Neural Engineering Labs, University of Pittsburgh, 3520 Fifth Avenue, Suite 300, Pittsburgh, PA 15213 USA ,grid.21925.3d0000 0004 1936 9000Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213 USA ,grid.509981.c0000 0004 7644 8442Center for Neural Basis of Cognition, Pittsburgh, PA 15213 USA
| | - Santosh Chandrasekaran
- grid.21925.3d0000 0004 1936 9000Rehab Neural Engineering Labs, University of Pittsburgh, 3520 Fifth Avenue, Suite 300, Pittsburgh, PA 15213 USA ,grid.509981.c0000 0004 7644 8442Center for Neural Basis of Cognition, Pittsburgh, PA 15213 USA ,grid.21925.3d0000 0004 1936 9000Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213 USA
| | - Eric R. Helm
- grid.21925.3d0000 0004 1936 9000Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213 USA
| | - Michael L. Boninger
- grid.21925.3d0000 0004 1936 9000Rehab Neural Engineering Labs, University of Pittsburgh, 3520 Fifth Avenue, Suite 300, Pittsburgh, PA 15213 USA ,grid.21925.3d0000 0004 1936 9000Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213 USA ,grid.21925.3d0000 0004 1936 9000Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213 USA ,grid.21925.3d0000 0004 1936 9000University of Pittsburgh Clinical Translational Science Institute, Pittsburgh, PA 15213 USA
| | - Jennifer L. Collinger
- grid.21925.3d0000 0004 1936 9000Rehab Neural Engineering Labs, University of Pittsburgh, 3520 Fifth Avenue, Suite 300, Pittsburgh, PA 15213 USA ,grid.21925.3d0000 0004 1936 9000Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213 USA ,grid.509981.c0000 0004 7644 8442Center for Neural Basis of Cognition, Pittsburgh, PA 15213 USA ,grid.21925.3d0000 0004 1936 9000Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213 USA ,Human Engineering Research Labs, Department of Veteran Affairs, VA Center of Excellence, Pittsburgh, PA 15206 USA ,grid.147455.60000 0001 2097 0344Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA USA
| | - Robert A. Gaunt
- grid.21925.3d0000 0004 1936 9000Rehab Neural Engineering Labs, University of Pittsburgh, 3520 Fifth Avenue, Suite 300, Pittsburgh, PA 15213 USA ,grid.21925.3d0000 0004 1936 9000Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213 USA ,grid.509981.c0000 0004 7644 8442Center for Neural Basis of Cognition, Pittsburgh, PA 15213 USA ,grid.21925.3d0000 0004 1936 9000Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213 USA ,grid.147455.60000 0001 2097 0344Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA USA
| | - Lee E. Fisher
- grid.21925.3d0000 0004 1936 9000Rehab Neural Engineering Labs, University of Pittsburgh, 3520 Fifth Avenue, Suite 300, Pittsburgh, PA 15213 USA ,grid.21925.3d0000 0004 1936 9000Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213 USA ,grid.509981.c0000 0004 7644 8442Center for Neural Basis of Cognition, Pittsburgh, PA 15213 USA ,grid.21925.3d0000 0004 1936 9000Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213 USA ,grid.147455.60000 0001 2097 0344Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA USA
| |
Collapse
|
24
|
Rackerby R, Lukosch S, Munro D. Understanding and Measuring the Cognitive Load of Amputees for Rehabilitation and Prosthesis Development. Arch Rehabil Res Clin Transl 2022; 4:100216. [PMID: 36123983 PMCID: PMC9482031 DOI: 10.1016/j.arrct.2022.100216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Objective To derive a definition of cognitive load that is applicable for amputation as well as analyze suitable research models for measuring cognitive load during prosthesis use. Defining cognitive load for amputation will improve rehabilitation methods and enable better prosthesis design. Data Sources Elsevier, Springer, PLoS, IEEE Xplore, and PubMed. Study Selection Studies on upper limb myoelectric prostheses and neuroprostheses were prioritized. For understanding measurement, lower limb amputations and studies with individuals without lower limb amputations were included. Data Extraction Queries including “cognitive load,” “neural fatigue,” “brain plasticity,” “neuroprosthetics,” “upper limb prosthetics,” and “amputation” were used with peer-reviewed journals or articles. Articles published within the last 6 years were prioritized. Articles on foundational principles were included regardless of date. A total of 69 articles were found: 12 on amputation, 15 on cognitive load, 8 on phantom limb, 22 on sensory feedback, and 12 on measurement methods. Data Synthesis The emotional, physiological, and neurologic aspects of amputation, prosthesis use, and rehabilitation aspects of cognitive load were analyzed in conjunction with measurement methods, including resolution, invasiveness, and sensitivity to user movement and environmental noise. Conclusions Use of “cognitive load” remains consistent with its original definition. For amputation, 2 additional elements are needed: “emotional fatigue,” defined as an amputee's emotional response, including mental concentration and emotions, and “neural fatigue,” defined as the physiological and neurologic effects of amputation on brain plasticity. Cognitive load is estimated via neuroimaging techniques, including electroencephalography, functional magnetic resonance imaging, and functional near-infrared spectroscopy (fNIRS). Because fNIRS measures cognitive load directly, has good temporal and spatial resolution, and is not as restricted by user movement, fNIRS is recommended for most cognitive load studies.
Collapse
|
25
|
Rodrigues KA, Moreira JVDS, Pinheiro DJLL, Dantas RLM, Santos TC, Nepomuceno JLV, Nogueira MARJ, Cavalheiro EA, Faber J. Embodiment of a virtual prosthesis through training using an EMG-based human-machine interface: Case series. Front Hum Neurosci 2022; 16:870103. [PMID: 35992955 PMCID: PMC9387771 DOI: 10.3389/fnhum.2022.870103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 07/06/2022] [Indexed: 12/03/2022] Open
Abstract
Therapeutic strategies capable of inducing and enhancing prosthesis embodiment are a key point for better adaptation to and acceptance of prosthetic limbs. In this study, we developed a training protocol using an EMG-based human-machine interface (HMI) that was applied in the preprosthetic rehabilitation phase of people with amputation. This is a case series with the objective of evaluating the induction and enhancement of the embodiment of a virtual prosthesis. Six men and a woman with unilateral transfemoral traumatic amputation without previous use of prostheses participated in the study. Participants performed a training protocol with the EMG-based HMI, composed of six sessions held twice a week, each lasting 30 mins. This system consisted of myoelectric control of the movements of a virtual prosthesis immersed in a 3D virtual environment. Additionally, vibrotactile stimuli were provided on the participant’s back corresponding to the movements performed. Embodiment was investigated from the following set of measurements: skin conductance response (affective measurement), crossmodal congruency effect (spatial perception measurement), ability to control the virtual prosthesis (motor measurement), and reports before and after the training. The increase in the skin conductance response in conditions where the virtual prosthesis was threatened, recalibration of the peripersonal space perception identified by the crossmodal congruency effect, ability to control the virtual prosthesis, and participant reports consistently showed the induction and enhancement of virtual prosthesis embodiment. Therefore, this protocol using EMG-based HMI was shown to be a viable option to achieve and enhance the embodiment of a virtual prosthetic limb.
Collapse
Affiliation(s)
- Karina Aparecida Rodrigues
- Neuroengineering and Neurocognition Laboratory, Paulista School of Medicine, Department of Neurology and Neurosurgery, Federal University of São Paulo, São Paulo, Brazil
- *Correspondence: Karina Aparecida Rodrigues,
| | - João Vitor da Silva Moreira
- Neuroengineering and Neurocognition Laboratory, Paulista School of Medicine, Department of Neurology and Neurosurgery, Federal University of São Paulo, São Paulo, Brazil
| | - Daniel José Lins Leal Pinheiro
- Neuroengineering and Neurocognition Laboratory, Paulista School of Medicine, Department of Neurology and Neurosurgery, Federal University of São Paulo, São Paulo, Brazil
| | - Rodrigo Lantyer Marques Dantas
- Neuroengineering and Neurocognition Laboratory, Paulista School of Medicine, Department of Neurology and Neurosurgery, Federal University of São Paulo, São Paulo, Brazil
| | - Thaís Cardoso Santos
- Neuroengineering Laboratory, Department of Biomedical Engineering, Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - João Luiz Vieira Nepomuceno
- Neuroengineering Laboratory, Department of Biomedical Engineering, Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | | | - Esper Abrão Cavalheiro
- Neuroengineering and Neurocognition Laboratory, Paulista School of Medicine, Department of Neurology and Neurosurgery, Federal University of São Paulo, São Paulo, Brazil
| | - Jean Faber
- Neuroengineering and Neurocognition Laboratory, Paulista School of Medicine, Department of Neurology and Neurosurgery, Federal University of São Paulo, São Paulo, Brazil
- Neuroengineering Laboratory, Department of Biomedical Engineering, Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| |
Collapse
|
26
|
Zhang J, Chou CH, Wu X, Pei W, Lan N. Non-Invasive Stable Sensory Feedback for Closed-Loop Control of Hand Prosthesis. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:2344-2347. [PMID: 36086109 DOI: 10.1109/embc48229.2022.9871682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The absence of somatotopic sensory feedback limits the function of conventional prosthetic hands. In this study, we integrated a non-invasive sensory feedback system into a commercial Bebionic hand with new customized surface stimulation electrodes. Multiple modalities of tactile and hand aperture sensory information were conveyed to the amputee via the technique of evoked tactile sensation (ETS) elicited at projected finger map (PFM) of residual limb and an additional electrotactile stimulation in the ipsilateral upper arm. A previously developed anti-stimulus artifact module was used to remove the stimulus artifact from surface electromyographic (sEMG) signals, and the filtered sEMG envelops controlled the speed of open/close of the Bebionic hand. The Ag/AgCl surface stimulation electrode in 10-mm diameter was specially designed to fit the restricted PFM areas for stable perception. We evaluated the alternating-current (AC) impedance magnitude of this electrode stimulated over 12 hours. The perceptual and upper thresholds in pulse-width over 200 days at PFM areas were recorded to assess the stability of the non-invasive sensory neural interface. The efficacy of multi-modality feedback for identification of physical properties of objects was also assessed. Results showed that the AC impedance of customized surface stimulation electrode was stable over 12 hours of stimulation. The perceptual and upper thresholds were stable over 200 days. This non-invasive sensory feedback enabled a forearm amputee to identify the compliance and length of grasped objects with an accuracy of 100 %. Results illustrated that the multi-modality sensory feedback system provided stable and sufficient sensory information for perceptual discrimination of physical features of grasped objects. Clinical Relevance- This study demonstrated a promising and novel way to restore stable sensory feedback non-invasively for commercial hand prostheses.
Collapse
|
27
|
van Heijningen VG, Underhill A. User experiences of digital prostheses in daily functioning in people with an amputation of thumb or finger. J Hand Ther 2022; 35:289-298. [PMID: 35227558 DOI: 10.1016/j.jht.2022.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 11/27/2021] [Accepted: 01/21/2022] [Indexed: 02/09/2023]
Abstract
UNLABELLED STUDY DESIGN": Qualitative research design using interpretative phenomenological analysis (IPA) to interpret users' experiences with digital prostheses. BACKGROUND Digital prostheses are rarely used, and little is known about the experiences of traumatic finger amputees with digital prostheses. When advising patients regarding digital prostheses, it is crucial for professionals to understand users experiences of wearing a digital prosthesis and the meaning attached to wearing a digital prosthesis. PURPOSE OF STUDY The aim of this study was to explore and understand users experiences of wearing a digital prostheses in daily functioning. METHODS Individual semi-structured interviews were conducted, recorded, and transcribed. The written interview texts were analysed following Interpretative phenomenological analysis guidelines. RESULTS Four participants were interviewed. They experienced the prostheses as valuable additions to their daily functioning. Three different themes relating to wearing and using digital prostheses emerged from in-depth analysis of the data: How the prosthesis supporting them regaining a 'grip' on life, reduced overload on unaffected side and restored body image. CONCLUSIONS This study provides a deeper understanding of the experiences of people with digital amputations who use prostheses. Most importantly, that a prosthesis is of crucial importance for participants to be able to act independently and autonomously as well as to participate in family, work and social environments. This insight will help practitioners when considering, with clients the most appropriate digital prosthesis to meet their goals.
Collapse
Affiliation(s)
- Vera G van Heijningen
- Department of Rehabilitation Medicine, Erasmus MC, Rijndam Rehabilitation, Rotterdam, The Netherlands.
| | | |
Collapse
|
28
|
Borkowska VR, McConnell A, Vijayakumar S, Stokes A, Roche AD. A Haptic Sleeve as a Method of Mechanotactile Feedback Restoration for Myoelectric Hand Prosthesis Users. FRONTIERS IN REHABILITATION SCIENCES 2022; 3:806479. [PMID: 36188923 PMCID: PMC9397846 DOI: 10.3389/fresc.2022.806479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/21/2022] [Indexed: 11/16/2022]
Abstract
Current myoelectric upper limb prostheses do not restore sensory feedback, impairing fine motor control. Mechanotactile feedback restoration with a haptic sleeve may rectify this problem. This randomised crossover within-participant controlled study aimed to assess a prototype haptic sleeve's effect on routine grasping tasks performed by eight able-bodied participants. Each participant completed 15 repetitions of the three tasks: Task 1—normal grasp, Task 2—strong grasp and Task 3—weak grasp, using visual, haptic, or combined feedback All data were collected in April 2021 in the Scottish Microelectronics Centre, Edinburgh, UK. Combined feedback correlated with significantly higher grasp success rates compared to the vision alone in Task 1 (p < 0.0001), Task 2 (p = 0.0057), and Task 3 (p = 0.0170). Similarly, haptic feedback was associated with significantly higher grasp success rates compared to vision in Task 1 (p < 0.0001) and Task 2 (p = 0.0015). Combined feedback correlated with significantly lower energy expenditure compared to visual feedback in Task 1 (p < 0.0001) and Task 3 (p = 0.0003). Likewise, haptic feedback was associated with significantly lower energy expenditure compared to the visual feedback in Task 1 (p < 0.0001), Task 2 (p < 0.0001), and Task 3 (p < 0.0001). These results suggest that mechanotactile feedback provided by the haptic sleeve effectively augments grasping and reduces its energy expenditure.
Collapse
Affiliation(s)
- Violet R. Borkowska
- Edinburgh Medical School, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| | - Alistair McConnell
- Scottish Microelectronics Centre, Institute for Integrated Micro and Nano Systems, School of Engineering, The University of Edinburgh, Edinburgh, United Kingdom
| | - Sethu Vijayakumar
- School of Informatics, Bayes Centre, The University of Edinburgh, Edinburgh, United Kingdom
| | - Adam Stokes
- Scottish Microelectronics Centre, Institute for Integrated Micro and Nano Systems, School of Engineering, The University of Edinburgh, Edinburgh, United Kingdom
| | - Aidan D. Roche
- College of Medicine and Veterinary Medicine, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
- Department of Plastic Surgery, National Healthcare System Lothian, Edinburgh, United Kingdom
- *Correspondence: Aidan D. Roche
| |
Collapse
|
29
|
Multisensory Integration in Bionics: Relevance and Perspectives. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2022. [DOI: 10.1007/s40141-022-00350-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Abstract
Purpose of review
The goal of the review is to highlight the growing importance of multisensory integration processes connected to bionic limbs and somatosensory feedback restoration.
Recent findings
Restoring quasi-realistic sensations by means of neurostimulation has been shown to provide functional and motor benefits in limb amputees. In the recent past, cognitive processes linked to the artificial sense of touch seemed to play a crucial role for a full prosthesis integration and acceptance.
Summary
Artificial sensory feedback implemented in bionic limbs enhances the cognitive integration of the prosthetic device in amputees. The multisensory experience can be measured and must be considered in the design of novel somatosensory neural prostheses where the goal is to provide a realistic sensory experience to the prosthetic user. The correct integration of these sensory signals will guarantee higher-level cognitive benefits as a better prosthesis embodiment and a reduction of perceived limb distortions.
Collapse
|
30
|
Iossa Fasano A, Mandolillo P, Loscalzo Y, Giannini M, Grippo G, Imbimbo I, Lauro Grotto R. Subjective Response Measurement to Prosthesis or Device Use: Validation of the Prosthetic-Bionic Paradigm Questionnaire (PBP-Q). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19084656. [PMID: 35457523 PMCID: PMC9029706 DOI: 10.3390/ijerph19084656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 01/27/2023]
Abstract
Many subjects with somatic pathologies or traumas in their recent anamnesis tend to experience symptoms and changes to their daily life parameters after technically successful treatment. Hence, this study aims to validate an investigation tool inspired by the prosthetic-bionic paradigm-namely, the PBP-Q-which allows for the evaluation of variation in questions relating to identity, psychosociality, and psychopathology in relation to the use of a prosthesis or device. We gathered 118 participants (68 females and 50 males) aged between 27 and 94 years (Mean = 58.42 ± 15.17). We performed both exploratory (EFA) and confirmatory (CFA) factor analyses on this sample. Moreover, we calculated the internal consistency for the PBP-Q scales and the total score for the questionnaire's final 26-item and 5-factor versions. The five scales are psychological well-being; interpersonal relationships; professional relationships; autonomy and safety; addictions, compulsions, and obsessions. The internal consistency is good for both the total score and the subscales. In conclusion, overall, the PBP-Q has satisfactory psychometric properties, especially considering the measure's complexity. It provides a quick and effective way to evaluate the changes that might arise after the use of a prosthesis or device and, subsequently, has implications for clinical practice.
Collapse
Affiliation(s)
- Augusto Iossa Fasano
- Cultural Scientific Association “Metandro”, 51100 Pistoia, Italy; (A.I.F.); (P.M.)
- School of Psychoanalytic and Group Analytic Psychotherapy SPPG, 89100 Reggio Calabria, Italy
| | - Paolo Mandolillo
- Cultural Scientific Association “Metandro”, 51100 Pistoia, Italy; (A.I.F.); (P.M.)
- School of Psychoanalytic and Group Analytic Psychotherapy SPPG, 89100 Reggio Calabria, Italy
| | - Yura Loscalzo
- Department of Health Sciences, School of Psychology, University of Florence, 50135 Florence, Italy; (M.G.); (R.L.G.)
- Correspondence:
| | - Marco Giannini
- Department of Health Sciences, School of Psychology, University of Florence, 50135 Florence, Italy; (M.G.); (R.L.G.)
| | - Gabriele Grippo
- Cardiology Department, Ospedale di Prato, 59100 Prato, Italy;
| | - Isabella Imbimbo
- Clinical Psychology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00100 Rome, Italy;
- Department of Aging, Neurological, Orthopedic, and Head-Neck Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00100 Rome, Italy
| | - Rosapia Lauro Grotto
- Department of Health Sciences, School of Psychology, University of Florence, 50135 Florence, Italy; (M.G.); (R.L.G.)
- Multidisciplinary Laboratory for the Analysis of Relationships in Health Care (M.A.R.H.C. Lab.), University of Pistoia Uniser, 51100 Pistoia, Italy
| |
Collapse
|
31
|
Jabban L, Dupan S, Zhang D, Ainsworth B, Nazarpour K, Metcalfe BW. Sensory Feedback for Upper-Limb Prostheses: Opportunities and Barriers. IEEE Trans Neural Syst Rehabil Eng 2022; 30:738-747. [PMID: 35290188 DOI: 10.1109/tnsre.2022.3159186] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The addition of sensory feedback to upper-limb prostheses has been shown to improve control, increase embodiment, and reduce phantom limb pain. However, most commercial prostheses do not incorporate sensory feedback due to several factors. This paper focuses on the major challenges of a lack of deep understanding of user needs, the unavailability of tailored, realistic outcome measures and the segregation between research on control and sensory feedback. The use of methods such as the Person-Based Approach and co-creation can improve the design and testing process. Stronger collaboration between researchers can integrate different prostheses research areas to accelerate the translation process.
Collapse
|
32
|
Weiner P, Starke J, Rader S, Hundhausen F, Asfour T. Designing Prosthetic Hands With Embodied Intelligence: The KIT Prosthetic Hands. Front Neurorobot 2022; 16:815716. [PMID: 35355833 PMCID: PMC8960052 DOI: 10.3389/fnbot.2022.815716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/01/2022] [Indexed: 11/13/2022] Open
Abstract
Hand prostheses should provide functional replacements of lost hands. Yet current prosthetic hands often are not intuitive to control and easy to use by amputees. Commercially available prostheses are usually controlled based on EMG signals triggered by the user to perform grasping tasks. Such EMG-based control requires long training and depends heavily on the robustness of the EMG signals. Our goal is to develop prosthetic hands with semi-autonomous grasping abilities that lead to more intuitive control by the user. In this paper, we present the development of prosthetic hands that enable such abilities as first results toward this goal. The developed prostheses provide intelligent mechatronics including adaptive actuation, multi-modal sensing and on-board computing resources to enable autonomous and intuitive control. The hands are scalable in size and based on an underactuated mechanism which allows the adaptation of grasps to the shape of arbitrary objects. They integrate a multi-modal sensor system including a camera and in the newest version a distance sensor and IMU. A resource-aware embedded system for in-hand processing of sensory data and control is included in the palm of each hand. We describe the design of the new version of the hands, the female hand prosthesis with a weight of 377 g, a grasping force of 40.5 N and closing time of 0.73 s. We evaluate the mechatronics of the hand, its grasping abilities based on the YCB Gripper Assessment Protocol as well as a task-oriented protocol for assessing the hand performance in activities of daily living. Further, we exemplarily show the suitability of the multi-modal sensor system for sensory-based, semi-autonomous grasping in daily life activities. The evaluation demonstrates the merit of the hand concept, its sensor and in-hand computing systems.
Collapse
Affiliation(s)
| | | | | | | | - Tamim Asfour
- High Performance Humanoid Technologies Lab, Department of Informatics, Institute for Anthropomatics and Robotics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
33
|
Rekant J, Fisher LE, Boninger M, Gaunt RA, Collinger JL. Amputee, clinician, and regulator perspectives on current and prospective upper extremity prosthetic technologies. Assist Technol 2022:1-13. [PMID: 34982647 DOI: 10.1080/10400435.2021.2020935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Existing prosthetic technologies for people with upper limb amputation are being adopted at moderate rates. Once fitted for these devices, many upper limb amputees report not using them regularly or at all. The primary aim of this study was to solicit feedback about prosthetic technology and important device design criteria from amputees, clinicians, and device regulators. We compare these perspectives to identify common or divergent priorities. Twenty-one adults with upper limb loss, 35 clinicians, and 3 regulators completed a survey on existing prosthetic technologies and a conceptual sensorimotor prosthesis driven by implanted myoelectric electrodes with sensory feedback via spinal root stimulation. The survey included questions from the Trinity Amputation and Prosthesis Experience Scale, the Disabilities of the Arm, Shoulder, and Hand, and novel questions about technology acceptance and neuroprosthetic design. User and clinician ratings of satisfaction with existing devices were similar. Amputees were most accepting of the proposed sensorimotor prosthesis (75.5% vs clinicians(68.8%), regulators(67.8%)). Stakeholders valued user-centered outcomes like individualized task goals, improved quality of life, device reliability, and user safety; regulators emphasized these last two. The results of this study provide insight into amputee, clinician, and regulator priorities to inform future upper-limb prosthetic design and clinical trial protocol development.
Collapse
Affiliation(s)
- Julie Rekant
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lee E Fisher
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA.,Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Michael Boninger
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA.,Human Engineering Research Labs, VA Center of Excellence, Department of Veteran Affairs, Pittsburgh, PA, USA
| | - Robert A Gaunt
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA.,Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Jennifer L Collinger
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA.,Center for Neural Basis of Cognition, Pittsburgh, PA, USA.,Human Engineering Research Labs, VA Center of Excellence, Department of Veteran Affairs, Pittsburgh, PA, USA
| |
Collapse
|
34
|
Liu Y, Jiang D, Liu Y, Yun J, Bai D, Li G, Zhou D. Towards Multi-Finger Dexterous Hand Mechanics Control and Tactile Feedback. INTERNATIONAL JOURNAL OF COGNITIVE INFORMATICS AND NATURAL INTELLIGENCE 2021. [DOI: 10.4018/ijcini.286770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Abstract:The ever-changing demands of industrial automation and space technology have promoted the rapid development of robotics. Traditional robotic end effectors are difficult to perform smart operations, so there is an urgent need for a robotic hand to perform complex operations instead of humans. In this article, we will focus our attention on mechanical control and haptic feedback. Mechanical control and haptic feedback are necessary conditions for the stable and accurate grasping of multi-finger dexterous hands. Tactile perception can provide stiffness and temperature to multi-finger dexterous hands. Important information makes the function of the dexterous hand more perfect. This article introduces the kinematics and dynamics of dexterous hand fingers, as well as the kinematics and dynamics solving equations, then reviews the current sensors and various control driving methods used in dexterous hands, discusses drive control, and compares each method Pros and cons. Finally, the future development of dexterous hands is predicted.
Collapse
Affiliation(s)
- Ying Liu
- Wuhan University of Science and Technology, China
| | - Du Jiang
- Wuhan University of Science and Technology, China
| | - Yibo Liu
- Wuhan University of Science and Technology, China
| | - Juntong Yun
- Wuhan University of Science and Technology, China
| | - Dongxu Bai
- Wuhan University of Science and Technology, China
| | - Gongfa Li
- Wuhan University of Science and Technology, China
| | | |
Collapse
|
35
|
Kristjansdottir F, Dahlin LB, Rosberg HE, Carlsson IK. Social participation in persons with upper limb amputation receiving an esthetic prosthesis. J Hand Ther 2021; 33:520-527. [PMID: 31080072 DOI: 10.1016/j.jht.2019.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 03/18/2019] [Accepted: 03/20/2019] [Indexed: 02/03/2023]
Abstract
STUDY DESIGN Qualitative study. INTRODUCTION An amputation injury to the hand may lead to not only impaired hand function but also psychosocial consequences. PURPOSE OF THE STUDY The purpose of the study was to explore personal experiences of social participation for persons provided with an esthetic prosthesis after acquired upper limb amputation. METHODS Thirteen persons with acquired upper limb amputation, who were in need of and had received an esthetic prosthesis, were interviewed. The transcribed text was subjected to content analysis. RESULTS The emotional reactions to a visibly different hand were linked to a changed appearance and a feeling of being exposed. Recollecting the accident could result in nightmares and sleeping disorders. A change of personality, due to sadness after the amputation was expressed, as well as social insecurity and impact on relations and life roles. Adapting to social challenges comprised hiding or exposing the hand, using personal internal resources and receiving support from others. The esthetic prosthesis contributed to an intact appearance and could serve as a facilitator for initial or long-term social participation. The time that had passed since the injury made it easier to deal with the consequences or in achieving acceptance. DISCUSSION Coping with emotions and social relations after an acquired amputation can be difficult and complex. CONCLUSIONS Individual needs must be considered and questions about appearance and how it may affect social participation must be asked. An esthetic prosthesis can normalize the appearance and offer the confidence needed to facilitate social participation in those struggling with appearance-related concerns.
Collapse
Affiliation(s)
| | - Lars B Dahlin
- Department of Hand Surgery, Skåne University Hospital, Malmö, Sweden; Department of Translational Medicine - Hand Surgery, Lund University, Malmö, Sweden
| | - Hans-Eric Rosberg
- Department of Hand Surgery, Skåne University Hospital, Malmö, Sweden; Department of Translational Medicine - Hand Surgery, Lund University, Malmö, Sweden
| | - Ingela K Carlsson
- Department of Hand Surgery, Skåne University Hospital, Malmö, Sweden; Department of Translational Medicine - Hand Surgery, Lund University, Malmö, Sweden
| |
Collapse
|
36
|
Gates DH, Engdahl SM, Davis A. Recommendations for the Successful Implementation of Upper Limb Prosthetic Technology. Hand Clin 2021; 37:457-466. [PMID: 34253318 DOI: 10.1016/j.hcl.2021.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Despite the numerous prosthetic hand designs that are commercially available, people with upper limb loss still frequently report dissatisfaction and abandonment. Over the past decade there have been numerous advances in prosthetic design, control, sensation, and device attachment. Each offers the potential to enhance function and satisfaction, but most come at high costs and involve surgical risks. Here, we discuss potential barriers and solutions to promote the widespread use of novel prosthetic technology. With appropriate reimbursement, multidisciplinary care teams, device-specific rehabilitation, and patient and clinician education, such technology has the potential to revolutionize the field and improve patient outcomes.
Collapse
Affiliation(s)
- Deanna H Gates
- School of Kinesiology, University of Michigan, 830 N. University Avenue, Ann Arbor, MI 48109, USA.
| | - Susannah M Engdahl
- Department of Bioengineering, George Mason University, 4400 University Drive, MS 1J7, Fairfax, VA 22030, USA
| | - Alicia Davis
- University of Michigan Orthotics and Prosthetics Center, 2850 South Industrial Highway, Suite 400, Ann Arbor, MI 48104, USA
| |
Collapse
|
37
|
A User-Driven Approach to Prosthetic Upper Limb Development in Korea. Healthcare (Basel) 2021; 9:healthcare9070839. [PMID: 34356217 PMCID: PMC8303819 DOI: 10.3390/healthcare9070839] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/21/2021] [Accepted: 06/29/2021] [Indexed: 11/17/2022] Open
Abstract
Despite recent significant advances in technology and medicine, the number of patients who undergo amputation of body parts for various reasons continues to increase. Assistive devices such as prosthetic arms can enable limited activities in upper limb amputees and improve their quality of life. This study aims to help in the development of user-centered prosthetics by identifying user requirements and key considerations during selection of prosthetics. This study conducted a questionnaire survey after obtaining prior consent for persons with disabilities with upper limb amputation who visited orthosis companies, rehabilitation centers for the disabled, veteran’s hospitals, and labor welfare corporations. A modified questionnaire was conducted to upper limb prosthetic users and results were analysed using descriptive statistics and t-test. Results of the study showed that the main reasons for discontinuing the use of prosthetics were discomfort (discomfort in wear, weight, and difficulty of detachment) and complaints regarding design and function. Regardless of the prosthesis type, the color and design of the prosthesis were key considerations in prosthesis choices. Respondents indicated that they needed various prostheses designed according to the purpose and situation, such as for sports like golf and cycling as well as everyday use. Most of the respondents answered that buttoning shirts, tying knots, and using chopsticks were challenging or impossible to do on their own. Based on the results of this study, the quality of life of upper limb amputees can be improved if a prosthetic arm with various functions that can satisfy both the user’s needs and wants is developed.
Collapse
|
38
|
Tchimino J, Markovic M, Dideriksen JL, Dosen S. The effect of calibration parameters on the control of a myoelectric hand prosthesis using EMG feedback. J Neural Eng 2021; 18. [PMID: 34082406 DOI: 10.1088/1741-2552/ac07be] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 06/03/2021] [Indexed: 11/11/2022]
Abstract
Objective.The implementation of somatosensory feedback in upper limb myoelectric prostheses is an important step towards the restoration of lost sensory-motor functions. EMG feedback is a recently proposed method for closing the control loop wherein the myoelectric signal that drives the prosthesis is also used to generate the feedback provided to the user. Therefore, the characteristics of the myoelectric signal (variability and sensitivity) are likely to significantly affect the ability of the subject to utilize this feedback for online control of the prosthesis.Approach.In the present study, we investigated how the cutoff frequency of the low-pass filter (0.5, 1 and 1.5 Hz) and normalization value (20%, 40% and 60% of the maximum voluntary contraction (MVC)), that are used for the generation of the myoelectric signal, affect the quality of closed-loop control with EMG feedback. Lower cutoff and normalization decrease the intrinsic variability of the EMG but also increase the time lag between the contraction and the feedback (cutoff) as well as the sensitivity of the myoelectric signal (normalization). Ten participants were asked to generate three grasp force levels with a myoelectric prosthetic hand, while receiving five-level vibrotactile EMG feedback, over nine experimental runs (all parameter combinations).Main results.The outcome measure was the success rate (SR) in achieving the appropriate level of myoelectric signal (primary outcome) and grasping force (secondary outcome). Overall, the experiments demonstrated that EMG feedback provided robust control across conditions. Nevertheless, the performance was significantly better for the lowest cutoff (0.5 Hz) and higher normalization (40% and 60%). The highest SR for the EMG was 71.9%, achieved in the condition (40% MVC and 0.5 Hz), and this was 24.1% higher than that in the condition (20% MVC and 1.5 Hz), which resulted in the lowest performance. The SR for the force followed a similar trend.Significance.This is the first study that systematically explored the parameter space for the calibration of EMG feedback, which is a critical step for the future clinical application of this approach.
Collapse
Affiliation(s)
- Jack Tchimino
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Marko Markovic
- Department of Trauma Surgery, Orthopedics and Plastic Surgery, University Medical Center Göttingen, Göttingen, Germany
| | | | - Strahinja Dosen
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
39
|
Ogenyi UE, Liu J, Yang C, Ju Z, Liu H. Physical Human-Robot Collaboration: Robotic Systems, Learning Methods, Collaborative Strategies, Sensors, and Actuators. IEEE TRANSACTIONS ON CYBERNETICS 2021; 51:1888-1901. [PMID: 31751257 DOI: 10.1109/tcyb.2019.2947532] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This article presents a state-of-the-art survey on the robotic systems, sensors, actuators, and collaborative strategies for physical human-robot collaboration (pHRC). This article starts with an overview of some robotic systems with cutting-edge technologies (sensors and actuators) suitable for pHRC operations and the intelligent assist devices employed in pHRC. Sensors being among the essential components to establish communication between a human and a robotic system are surveyed. The sensor supplies the signal needed to drive the robotic actuators. The survey reveals that the design of new generation collaborative robots and other intelligent robotic systems has paved the way for sophisticated learning techniques and control algorithms to be deployed in pHRC. Furthermore, it revealed the relevant components needed to be considered for effective pHRC to be accomplished. Finally, a discussion of the major advances is made, some research directions, and future challenges are presented.
Collapse
|
40
|
Tajadura-Jiménez A, Väljamäe A, Kuusk K. Altering One's Body-Perception Through E-Textiles and Haptic Metaphors. Front Robot AI 2021; 7:7. [PMID: 33501176 PMCID: PMC7805743 DOI: 10.3389/frobt.2020.00007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 01/20/2020] [Indexed: 11/13/2022] Open
Abstract
Technologies change rapidly our perception of reality, moving from augmented to virtual to magical. While e-textiles are a key component in exergame or space suits, the transformative potential of the internal side of garments to create embodied experiences still remains largely unexplored. This paper is the result from an art-science collaborative project that combines recent neuroscience findings, body-centered design principles and 2D vibrotactile array-based fabrics to alter one's body perception. We describe an iterative design process intertwined with two user studies on the effects on body-perceptions and emotional responses of various vibration patterns within textile that were designed as spatial haptic metaphors. Our results show potential in considering materials (e.g., rocks) as sensations to design for body perceptions (e.g., being heavy, strong) and emotional responses. We discuss these results in terms of sensory effects on body perception and synergetic impact to research on embodiment in virtual environments, human-computer interaction, and e-textile design. The work brings a new perspective to the sensorial design of embodied experiences which is based on “material perception” and haptic metaphors, and highlights potential opportunities opened by haptic clothing to change body-perception.
Collapse
Affiliation(s)
- Ana Tajadura-Jiménez
- DEI Interactive Systems Group, Department of Computer Science and Engineering, Universidad Carlos III de Madrid, Madrid, Spain.,Department of Psychology, Universidad Loyola Andalucía, Seville, Spain.,UCL Interaction Centre, University College London, London, United Kingdom
| | | | - Kristi Kuusk
- Design Department, Estonian Academy of Arts, Tallinn, Estonia
| |
Collapse
|
41
|
Differential experiences of embodiment between body-powered and myoelectric prosthesis users. Sci Rep 2020; 10:15471. [PMID: 32963290 PMCID: PMC7508812 DOI: 10.1038/s41598-020-72470-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 09/02/2020] [Indexed: 11/08/2022] Open
Abstract
Prosthesis embodiment, the perception of a prosthesis as part of one's body, may be an important component of functional recovery for individuals with upper limb absence. This work determined whether embodiment differs between body-powered and myoelectric prosthesis users. In a sample of nine individuals with transradial limb absence, embodiment was quantified using a survey regarding prosthesis ownership and agency. The extent to which the prosthesis affected the body schema, the representation of the body's dimensions, was assessed using limb length estimation. Because body-powered prostheses offer proprioceptive feedback that myoelectric prostheses do not, it was hypothesized that both measures would reveal stronger embodiment of body-powered prostheses. However, our results did not show differences across the two prosthesis designs. Instead, body schema was influenced by several patient-specific characteristics, including the cause of limb absence (acquired or congenital) and hours of daily prosthesis wear. These results indicate that regular prosthesis wear and embodiment are connected, regardless of the actual prosthesis design. Identifying whether embodiment is a direct consequence of regular prosthesis use would offer insight on how individuals with limb absence could modify their behavior to more fully embody their prosthesis.
Collapse
|
42
|
Bekrater-Bodmann R. Perceptual correlates of successful body-prosthesis interaction in lower limb amputees: psychometric characterisation and development of the Prosthesis Embodiment Scale. Sci Rep 2020; 10:14203. [PMID: 32848166 PMCID: PMC7450092 DOI: 10.1038/s41598-020-70828-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023] Open
Abstract
Prostheses are used to at least partly restore the body after limb amputation. Making the user accepting the prosthetic device as part of his or her body, i.e., inducing prosthesis embodiment, has been identified as major aim of prosthetic treatment. However, up to now, there is no consensus about the psychometric nature of prosthesis embodiment in limb amputees. In the present study, 118 unilateral lower limb amputees using a prosthesis were asked to complete an online questionnaire targeting prosthesis embodiment. Principal axis factoring revealed the factor structure of prosthesis embodiment, i.e., Ownership/Integrity, Agency, and Anatomical Plausibility, which resembles the embodiment structure previously identified for normally-limbed participants. The majority of amputees achieved prosthesis embodiment as assessed with the final version of the newly developed Prosthesis Embodiment Scale. Internal consistency was excellent, and test–retest reliability was satisfying, while the instrument was also sensitive for new prosthetic equipment. Validation on the basis of relationships to prosthesis satisfaction and adjustment to prosthesis use was performed. The Prosthesis Embodiment Scale could be a valuable tool for the assessment of perceptual correlates of successful body–prosthesis interaction in rehabilitative and research contexts, the latter which might further benefit from the comparability of psychometrically evaluated data.
Collapse
Affiliation(s)
- Robin Bekrater-Bodmann
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159, Mannheim, Germany.
| |
Collapse
|
43
|
Wijk U, Carlsson IK, Antfolk C, Björkman A, Rosén B. Sensory Feedback in Hand Prostheses: A Prospective Study of Everyday Use. Front Neurosci 2020; 14:663. [PMID: 32733187 PMCID: PMC7358396 DOI: 10.3389/fnins.2020.00663] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 05/29/2020] [Indexed: 01/19/2023] Open
Abstract
Introduction Sensory feedback in hand prostheses is lacking but wished for. Many amputees experience a phantom hand map on their residual forearm. When the phantom hand map is touched, it is experienced as touch on the amputated hand. A non-invasive sensory feedback system, applicable to existing hand prostheses, can transfer somatotopical sensory information via phantom hand map. The aim was to evaluate how forearm amputees experienced a non-invasive sensory feedback system used in daily life over a 4-week period. Methods This longitudinal cohort study included seven forearm amputees. A non-invasive sensory feedback system was used over 4 weeks. For analysis, a mixed method was used, including quantitative tests (ACMC, proprioceptive pointing task, questionnaire) and interviews. A directed content analysis with predefined categories sensory feedback from the prosthesis, agency, body ownership, performance in activity, and suggestions for improvements was applied. Results The results from interviews showed that sensory feedback was experienced as a feeling of touch which contributed to an experience of completeness. However, the results from the questionnaire showed that the sense of agency and performance remained unchanged or deteriorated. The ability to feel and manipulate small objects was difficult and a stronger feedback was wished for. Phantom pain was alleviated in four out of five patients. Conclusion This is the first time a non-invasive sensory feedback system for hand prostheses was implemented in the home environment. The qualitative and quantitative results diverged. The sensory feedback was experienced as a feeling of touch which contributed to a feeling of completeness, linked to body ownership. The qualitative result was not verified in the quantitative measurements. Clinical Trial Registration Name: Evaluation of a Non-invasive Sensory Feedback System in Hand Prostheses. Date of registration: March 15, 2019. Date the first participant was enrolled: April 1, 2015. ClinicalTrials.gov Identifier: NCT03876405 ORCID ID: https://orcid.org/0000-0002-4140-7478.
Collapse
Affiliation(s)
- Ulrika Wijk
- Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden.,Skåne University Hospital, Lund, Sweden
| | - Ingela K Carlsson
- Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden.,Skåne University Hospital, Lund, Sweden
| | - Christian Antfolk
- Department of Biomedical Engineering, Faculty of Engineering, Lund University, Lund, Sweden
| | - Anders Björkman
- Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden.,Skåne University Hospital, Lund, Sweden
| | - Birgitta Rosén
- Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden.,Skåne University Hospital, Lund, Sweden
| |
Collapse
|
44
|
Chandrasekaran S, Nanivadekar AC, McKernan G, Helm ER, Boninger ML, Collinger JL, Gaunt RA, Fisher LE. Sensory restoration by epidural stimulation of the lateral spinal cord in upper-limb amputees. eLife 2020; 9:54349. [PMID: 32691733 PMCID: PMC7373432 DOI: 10.7554/elife.54349] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/21/2020] [Indexed: 12/14/2022] Open
Abstract
Restoring somatosensory feedback to people with limb amputations is crucial to improve prosthetic control. Multiple studies have demonstrated that peripheral nerve stimulation and targeted reinnervation can provide somatotopically relevant sensory feedback. While effective, the surgical procedures required for these techniques remain a major barrier to translatability. Here, we demonstrate in four people with upper-limb amputation that epidural spinal cord stimulation (SCS), a common clinical technique to treat pain, evoked somatosensory percepts that were perceived as emanating from the missing arm and hand. Over up to 29 days, stimulation evoked sensory percepts in consistent locations in the missing hand regardless of time since amputation or level of amputation. Evoked sensations were occasionally described as naturalistic (e.g. touch or pressure), but were often paresthesias. Increasing stimulus amplitude increased the perceived intensity linearly, without increasing area of the sensations. These results demonstrate the potential of SCS as a tool to restore somatosensation after amputations. Even some of the most advanced prosthetic arms lack an important feature: the ability to relay information about touch or pressure to the wearer. In fact, many people prefer to use simpler prostheses whose cables and harnesses pass on information about tension. However, recent studies suggest that electrical stimulation might give prosthesis users more sensation and better control. After an amputation, the nerves that used to deliver sensory information from the hand still exist above the injury. Stimulating these nerves can help to recreate sensations in the missing limb and improve the control of the prosthesis. Still, this stimulation requires complicated surgical interventions to implant electrodes in or around the nerves. Spinal cord stimulation – a technique where a small electrical device is inserted near the spinal cord to stimulate nerves – may be an easier alternative. This approach only requires a simple outpatient procedure, and it is routinely used to treat chronic pain conditions. Now, Chandrasekaran, Nanivadekar et al. show that spinal cord stimulation can produce the feeling of sensations in a person’s missing hand or arm. In the experiments, four people who had an arm amputation underwent spinal cord stimulation over 29 days. During the stimulation, the participants reported feeling electrical buzzing, vibration, or pressure in their missing limb. Changing the strength of the electric signals delivered to the spinal cord altered the intensity of these sensations. The experiments are a step toward developing better prosthetics that restore some sensation. Further studies are now needed to determine whether spinal cord stimulation would allow people to perform sensory tasks with a prosthetic, for example handling an object that they cannot see.
Collapse
Affiliation(s)
- Santosh Chandrasekaran
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, United States.,Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, United States.,Center for Neural Basis of Cognition, Pittsburgh, United States
| | - Ameya C Nanivadekar
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, United States.,Center for Neural Basis of Cognition, Pittsburgh, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, United States
| | - Gina McKernan
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, United States.,Human Engineering Research Labs, VA Center of Excellence, Department of Veteran Affairs, Pittsburgh, United States
| | - Eric R Helm
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, United States
| | - Michael L Boninger
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, United States.,Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, United States.,Human Engineering Research Labs, VA Center of Excellence, Department of Veteran Affairs, Pittsburgh, United States.,University of Pittsburgh Clinical Translational Science Institute, Pittsburgh, United States
| | - Jennifer L Collinger
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, United States.,Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, United States.,Center for Neural Basis of Cognition, Pittsburgh, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, United States.,Human Engineering Research Labs, VA Center of Excellence, Department of Veteran Affairs, Pittsburgh, United States
| | - Robert A Gaunt
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, United States.,Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, United States.,Center for Neural Basis of Cognition, Pittsburgh, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, United States
| | - Lee E Fisher
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, United States.,Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, United States.,Center for Neural Basis of Cognition, Pittsburgh, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, United States
| |
Collapse
|
45
|
Yang L, Wang P. Somatic Nerve Reconstruction and Reinnervation. Somatosens Mot Res 2020. [DOI: 10.5772/intechopen.91755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
46
|
Kerver N, van Twillert S, Maas B, van der Sluis CK. User-relevant factors determining prosthesis choice in persons with major unilateral upper limb defects: A meta-synthesis of qualitative literature and focus group results. PLoS One 2020; 15:e0234342. [PMID: 32603326 PMCID: PMC7326229 DOI: 10.1371/journal.pone.0234342] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 05/23/2020] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Considering the high rejection rates of upper limb prostheses, it is important to determine which prosthesis fits best the needs of each user. The introduction of the multi-grip prostheses hands (MHP), which have functional advantages but are also more expensive, has made prosthesis selection even harder. Therefore, we aimed to identify user opinions on factors determining prosthesis choice of persons with major unilateral upper limb defects in order to facilitate a more optimal fit between user and prosthesis. METHODS A qualitative meta-synthesis using a 'best-fit framework' approach was performed by searching five databases (PROSPERO registration number: CRD42019126973). Studies were considered eligible if they contained qualitative content about adults with major unilateral upper limb defects experienced in using commercially available upper limb prostheses and focused on upper limb prosthesis users' opinions. Results of the meta-synthesis were validated with end-users (n = 11) in a focus group. RESULTS Out of 6247 articles, 19 studies were included. An overview of six main themes ('physical', 'activities and participation', 'mental', 'social', 'rehabilitation, cost and prosthetist services' and 'prosthesis related factors') containing 86 subthemes that could affect prosthesis choice was created. Of these subthemes, 19 were added by the focus group. Important subthemes were 'work/school', 'functionality' and 'reactions from public'. Opinions of MHP-users were scarce. MHPs were experienced as more dexterous and life-like but also as less robust and difficult to control. CONCLUSION The huge number of factors that could determine upper limb prosthesis choice explains that preferences vary greatly. The created overview can be of great value to identify preferences and facilitate user-involvement in the selection process. Ultimately, this may contribute to a more successful match between user and prosthesis, resulting in a decrease of abandonment and increase of cost-effectiveness.
Collapse
Affiliation(s)
- Nienke Kerver
- Department of Rehabilitation Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Sacha van Twillert
- Centre of Expertise on Quality and Safety, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Bart Maas
- Department of Rehabilitation Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Corry K. van der Sluis
- Department of Rehabilitation Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
47
|
Gathmann T, Atashzar SF, Alva PGS, Farina D. Wearable Dual-Frequency Vibrotactile System for Restoring Force and Stiffness Perception. IEEE TRANSACTIONS ON HAPTICS 2020; 13:191-196. [PMID: 31985443 DOI: 10.1109/toh.2020.2969162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recently, there has been substantial progress in the mechatronic design and myoelectric control of active prostheses. However, a significant unmet need is the lack of sensory feedback in commercial prostheses for upper-limb amputees. The lack of sensory perception impacts on the control performance and embodiment, determining relatively high rejection rates. Previous research has been conducted to evaluate various non-invasive substitutional sensory channels, mainly to regenerate haptic perception. However, providing sensory channels for stiffness perception has been much less explored. In this short paper, we propose a non-invasive wearable sensory armband, named vibrotactile frequency modulation (V-FM) system. Using the V-FM, we implement a closed-loop myocontrol system with force and stiffness perception. A user study was conducted based on a repetitive two-forced alternative choice discrimination test in six able-bodied participants. The study was designed according to the method of constant stimuli. Results showed that using the V-FM armband, the participants recovered sensation comparable (in terms of difference threshold) to the natural stiffness perception. This demonstrated the potential of the proposed V-FM armband in restoring haptic and stiffness perception non-invasively.
Collapse
|
48
|
An Embedded, Multi-Modal Sensor System for Scalable Robotic and Prosthetic Hand Fingers. SENSORS 2019; 20:s20010101. [PMID: 31878001 PMCID: PMC6983258 DOI: 10.3390/s20010101] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 11/17/2022]
Abstract
Grasping and manipulation with anthropomorphic robotic and prosthetic hands presents a scientific challenge regarding mechanical design, sensor system, and control. Apart from the mechanical design of such hands, embedding sensors needed for closed-loop control of grasping tasks remains a hard problem due to limited space and required high level of integration of different components. In this paper we present a scalable design model of artificial fingers, which combines mechanical design and embedded electronics with a sophisticated multi-modal sensor system consisting of sensors for sensing normal and shear force, distance, acceleration, temperature, and joint angles. The design is fully parametric, allowing automated scaling of the fingers to arbitrary dimensions in the human hand spectrum. To this end, the electronic parts are composed of interchangeable modules that facilitate the mechanical scaling of the fingers and are fully enclosed by the mechanical parts of the finger. The resulting design model allows deriving freely scalable and multimodally sensorised fingers for robotic and prosthetic hands. Four physical demonstrators are assembled and tested to evaluate the approach.
Collapse
|
49
|
Zheng JY, Kalpakjian C, Larrága-Martínez M, Chestek CA, Gates DH. Priorities for the design and control of upper limb prostheses: A focus group study. Disabil Health J 2019; 12:706-711. [PMID: 30952491 DOI: 10.1016/j.dhjo.2019.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/24/2019] [Accepted: 03/19/2019] [Indexed: 11/17/2022]
Abstract
BACKGROUND Common prosthetic options do not allow for enough independent control signals to control all the movements of the arm. Invasive approaches to obtain prosthetic control signals are being developed to provide people with upper limb loss improved prosthetic control and feedback. OBJECTIVE/HYPOTHESIS This study explored the prosthetic qualities that are important to users and examined the factors that play into the decision to consider invasive prosthetic interfaces that allow for enhanced prosthetic control. METHODS Individuals participated in semi-structured focus groups or in individual semi-structured interviews (N = 11). A semi-structured interview guide containing open-ended questions was used to learn about ideal prosthesis qualities and interest in prosthetic technology interfaces including targeted muscle reinnervation, peripheral nerve interface, and cortical interface. Qualitative content analysis with an inductive approach was used for transcript analysis. RESULTS Participants were most interested in improving the dexterity and durability of prosthetic options. Recovery time, anticipated risk, medical co-morbidities, and baseline functional status influenced willingness to consider invasive prosthetic interfaces. Participants were interested in learning more about all three invasive interfaces but had the most concerns about cortical interfaces. CONCLUSIONS Attitudes toward invasive control interfaces vary. Further education on invasive control interfaces and additional conversations between prosthetic developers and people with limb loss will help to develop effective prosthetic devices that potential consumers will use.
Collapse
Affiliation(s)
- Jasmine Y Zheng
- Department of Physical Medicine and Rehabilitation, University of Michigan, 325 East Eisenhower Parkway, Ann Arbor, MI, 48108, USA; Department of Physical Medicine and Rehabilitation, University of Pennsylvania, 1800 Lombard St, 1st Floor, Philadelphia, PA, 19146, USA.
| | - Claire Kalpakjian
- Department of Physical Medicine and Rehabilitation, University of Michigan, 325 East Eisenhower Parkway, Ann Arbor, MI, 48108, USA
| | - María Larrága-Martínez
- Department of Biomedical Engineering, University of Michigan, 2200 Bonnisteel Blvd, Ann Arbor, MI, 48109, USA
| | - Cynthia A Chestek
- Department of Biomedical Engineering, University of Michigan, 2200 Bonnisteel Blvd, Ann Arbor, MI, 48109, USA
| | - Deanna H Gates
- Department of Biomedical Engineering, University of Michigan, 2200 Bonnisteel Blvd, Ann Arbor, MI, 48109, USA; School of Kinesiology, University of Michigan, 1402 Washington Heights, Ann Arbor, MI, 48109, USA
| |
Collapse
|
50
|
Stephens-Fripp B, Jean Walker M, Goddard E, Alici G. A survey on what Australians with upper limb difference want in a prosthesis: justification for using soft robotics and additive manufacturing for customized prosthetic hands. Disabil Rehabil Assist Technol 2019; 15:342-349. [PMID: 30856031 DOI: 10.1080/17483107.2019.1580777] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Purpose: Upper limb prostheses are part of a rapidly changing market place. Despite development in device design, surveys report low levels of uptake and dissatisfaction with current prosthetic design. In this study, we present the results of a survey conducted with people with upper limb difference in Australia on their use of current prostheses and preferences in a prosthetic in order to inform future prosthetic hand design.Methods: An online survey was conducted on upper limb amputees, with 27 respondents that completed the survey. The survey was a mixture of open-ended questions, ranking design features and quantitative questions on problems experienced and desired attributes of future prosthesis designs.Results: Common key issues and concerns were isolated in the survey related to the weight, manipulation and dexterity, aesthetics, sensory feedback and financial cost; each of which could be addressed by additive manufacturing and soft robotics techniques.Conclusions: The adaptability of additive manufacturing and soft robotics to the highlighted concerns of participants shows that further research into these techniques is a feasible method to improve patient satisfaction and acceptance in prosthetic hands.Implications for rehabilitationEven with recent developments and advances in prosthetic design, the needs and desires of prosthetic users are not being met with current products.The desires and needs of those with upper limb difference are diverse.Using additive manufacturing to produce prosthetics allows for mass customization of prosthetics to meet these diverse needs while reducing costs.A soft robotic approach to prosthetics can help meet the desires of reducing weight and costs, while maintaining functionality.
Collapse
Affiliation(s)
- Benjamin Stephens-Fripp
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, Australia
| | - Mary Jean Walker
- School of Philosophical, Historical and International Studies, Monash University, Clayton, VIC, Australia
| | - Eliza Goddard
- School of Humanities and Languages, University of New South Wales, Sydney, NSW, Australia.,School of Humanities, University of Tasmania, Hobart, TAS, Australia
| | - Gursel Alici
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|