1
|
Wang L, Wang Y, Xu L. Overexpression of lncRNA TINCR inhibits cutaneous squamous cell carcinoma cells through promotes methylation of Myc and TERC genes. Arch Dermatol Res 2025; 317:559. [PMID: 40072633 PMCID: PMC11903621 DOI: 10.1007/s00403-025-03964-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/31/2024] [Accepted: 02/03/2025] [Indexed: 03/14/2025]
Abstract
Long non-coding RNA (lncRNA) TINCR has been shown to play a crucial regulatory role in various tumors. However, its specific mechanism of action in cutaneous squamous cell carcinoma (CSCC) remains unclear. This study aimed to explore the role of lncRNA TINCR in CSCC. We utilized overexpression techniques to study the effects of TINCR on CSCC cells. Methylation-specific PCR (MSP) and RNA immunoprecipitation (RIP) assays were used to assess the impact of TINCR on the methylation of the promoter regions of the Myc and TERC genes, and its interaction with DNA methyltransferase 1 (DNMT1). The results showed that overexpression of TINCR significantly promoted methylation in the promoter regions of Myc (N-MYC, L-MYC, and c-MYC) and TERC genes, inhibiting the proliferation, migration, and invasion of CSCC cells. MSP and RIP experiments further confirmed that TINCR binds to DNMT1, enhancing the methylation levels of the promoter regions of Myc and TERC genes. These findings suggest that lncRNA TINCR may serve as a potential therapeutic target for CSCC by regulating the methylation of key oncogenes. These findings provide new insights into the molecular mechanisms of CSCC and highlight the therapeutic potential of targeting TINCR.
Collapse
Affiliation(s)
- Liang Wang
- Department of Dermatology, The First Affiliated Hospital of Harbin Medical University, 23 Post Street, Nangang District, Harbin, Heilongjiang, 150001, China.
| | - Yu Wang
- Department of Dermatology, The First Affiliated Hospital of Harbin Medical University, 23 Post Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Lei Xu
- Department of Dermatology, The First Affiliated Hospital of Harbin Medical University, 23 Post Street, Nangang District, Harbin, Heilongjiang, 150001, China
| |
Collapse
|
2
|
Conley J, Genenger B, Ashford B, Ranson M. Micro RNA Dysregulation in Keratinocyte Carcinomas: Clinical Evidence, Functional Impact, and Future Directions. Int J Mol Sci 2024; 25:8493. [PMID: 39126067 PMCID: PMC11313315 DOI: 10.3390/ijms25158493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
The keratinocyte carcinomas, basal cell carcinoma (BCC), and cutaneous squamous cell carcinoma (cSCC), are the most common cancers in humans. Recently, an increasing body of literature has investigated the role of miRNAs in keratinocyte carcinoma pathogenesis, progression and their use as therapeutic agents and targets, or biomarkers. However, there is very little consistency in the literature regarding the identity of and/or role of individual miRNAs in cSCC (and to a lesser extent BCC) biology. miRNA analyses that combine clinical evidence with experimental elucidation of targets and functional impact provide far more compelling evidence than studies purely based on clinical findings or bioinformatic analyses. In this study, we review the clinical evidence associated with miRNA dysregulation in KCs, assessing the quality of validation evidence provided, identify gaps, and provide recommendations for future studies based on relevant studies that investigated miRNA levels in human cSCC and BCC. Furthermore, we demonstrate how miRNAs contribute to the regulation of a diverse network of cellular functions, and that large-scale changes in tumor cell biology can be attributed to miRNA dysregulation. We highlight the need for further studies investigating the role of miRNAs as communicators between different cell types in the tumor microenvironment. Finally, we explore the clinical benefits of miRNAs as biomarkers of keratinocyte carcinoma prognosis and treatment.
Collapse
Affiliation(s)
- Jessica Conley
- Molecular Horizons, School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2500, Australia; (J.C.); (B.G.)
| | - Benjamin Genenger
- Molecular Horizons, School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2500, Australia; (J.C.); (B.G.)
| | - Bruce Ashford
- Illawarra Shoalhaven Local Health District (ISLHD), NSW Health, Wollongong, NSW 2500, Australia;
- Graduate School of Medicine, University of Wollongong, Wollongong, NSW 2500, Australia
| | - Marie Ranson
- Molecular Horizons, School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2500, Australia; (J.C.); (B.G.)
| |
Collapse
|
3
|
Feng H, Hu X, Yan R, Jia X, Feng H, Zhang N, Chen X. MicroRNA-124 plays an inhibitory role in cutaneous squamous cell carcinoma cells via targeting SNAI2, an immunotherapy determinant. Heliyon 2024; 10:e24671. [PMID: 38317973 PMCID: PMC10839798 DOI: 10.1016/j.heliyon.2024.e24671] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/21/2023] [Accepted: 01/11/2024] [Indexed: 02/07/2024] Open
Abstract
MicroRNAs (miRs) play multiple roles during cutaneous squamous cell carcinoma (CSCC) progression. Previous studies suggest miR-124 could inhibit cancer development in CSCC. METHODS Obtained 63 pairs of CSCC and adjacent tissues for analysis. Cultured HaCaT and two CSCC cell lines (A431 and SCL-1) in DMEM (10 % FBS). Transfected cells using Lipofectamine 2000 with various miR-124 mimics, inhibitors, or Snail family transcriptional repressor 2 (SNAI2) expression plasmid. Performed a series of assays, including real-time quantitative PCR, Western blot, CCK8, wound healing, transwell, and luciferase reporter gene assay, to examine the effects of miR-124 on CSCC cells. RESULTS An evident downregulation of miR-124 in CSCC tissues, which was related to advanced disease stage and nodal metastasis. Overexpressing miR-124 could reduce the proliferation, migration, and invasion abilities of CSCC cells. It was verified that miR-124 targets the SNAI2 in CSCC cells. Moreover, ectopic expression of SNAI2 rescued the suppressive effects on CSCC cells induced by miR-124 overexpression. Furthermore, miR-124 increased cell sensitivity to cisplatin. Besides, SNAI2 is a critical factor in the immune-related aspects of CSCC and its modulation may influence the response to immunotherapy. CONCLUSION We demonstrate that miR-124 inhibits CSCC progression through downregulating SNAI2, and thus it may be a molecular candidate for treating CSCC in the clinic.
Collapse
Affiliation(s)
- Hao Feng
- Department of Dermatology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province, 410000, China
| | - Xing Hu
- Department of Dermatology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province, 410000, China
| | - Renli Yan
- Surgery Center of Women and Children's Hospital, Qingdao University, Qingdao, Shandong, China
| | - Xiaomin Jia
- Department of Pathology, Lhasa People's Hospital, Lhasa, 850, Tibet, 850000, China
| | - Hao Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Nan Zhang
- Department of Medical Cosmetology, The First People's Hospital of Changde City, Changde, Hunan Province, 415000, China
| | - Xiao Chen
- Department of Medical Cosmetology, The First People's Hospital of Changde City, Changde, Hunan Province, 415000, China
| |
Collapse
|
4
|
Sun C, Mahapatra KD, Elton J, Li C, Fernando W, Lohcharoenkal W, Lapins J, Homey B, Sonkoly E, Pivarcsi A. MicroRNA-23b Plays a Tumor-Suppressive Role in Cutaneous Squamous Cell Carcinoma and Targets Ras-Related Protein RRAS2. J Invest Dermatol 2023; 143:2386-2396. [PMID: 37423552 DOI: 10.1016/j.jid.2023.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 07/11/2023]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is one of the most common types of cancer with metastatic potential. MicroRNAs regulate gene expression at the post-transcriptional level. In this study, we report that miR-23b is downregulated in cSCCs and in actinic keratosis and that its expression is regulated by the MAPK signaling pathway. We show that miR-23b suppresses the expression of a gene network associated with key oncogenic pathways and that the miR-23b-gene signature is enriched in human cSCCs. miR-23b decreased the expression of FGF2 both at mRNA and protein levels and impaired the angiogenesis-inducing ability of cSCC cells. miR23b overexpression suppressed the capacity of cSCC cells to form colonies and spheroids, whereas the CRISPR/Cas9-mediated deletion of MIR23B resulted in increased colony and tumor sphere formation in vitro. In accordance with this, miR-23b-overexpressing cSCC cells formed significantly smaller tumors upon injection into immunocompromised mice with decreased cell proliferation and angiogenesis. Mechanistically, we verify RRAS2 as a direct target of miR-23b in cSCC. We show that RRAS2 is overexpressed in cSCC and that interference with its expression impairs angiogenesis and colony and tumorsphere formation. Taken together, our results suggest that miR-23b acts in a tumor-suppressive manner in cSCC, and its expression is decreased during squamous carcinogenesis.
Collapse
Affiliation(s)
- Chengxi Sun
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden; Department of Clinical Laboratory, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Kunal Das Mahapatra
- Unit of Dermatology and Venerology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jonathan Elton
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden; Unit of Dermatology and Venerology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Chen Li
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Winnie Fernando
- Unit of Dermatology and Venerology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Warangkana Lohcharoenkal
- Unit of Dermatology and Venerology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jan Lapins
- Unit of Dermatology, Karolinska University Hospital, Stockholm, Sweden
| | - Bernhard Homey
- Department of Dermatology, University Hospital Duesseldorf, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Enikö Sonkoly
- Unit of Dermatology and Venerology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden; Unit of Dermatology, Karolinska University Hospital, Stockholm, Sweden; Dermatology and Venereology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Andor Pivarcsi
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden; Unit of Dermatology and Venerology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden; Dermatology and Venereology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
5
|
Golebiewski C, Gastaldi C, Vieu DL, Mari B, Rezzonico R, Bernerd F, Marionnet C. Identification and functional validation of SRC and RAPGEF1 as new direct targets of miR-203, involved in regulation of epidermal homeostasis. Sci Rep 2023; 13:14006. [PMID: 37635193 PMCID: PMC10460794 DOI: 10.1038/s41598-023-40441-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 08/10/2023] [Indexed: 08/29/2023] Open
Abstract
The epidermis is mostly composed of keratinocytes and forms a protecting barrier against external aggressions and dehydration. Epidermal homeostasis is maintained by a fine-tuned balance between keratinocyte proliferation and differentiation. In the regulation of this process, the keratinocyte-specific miR-203 microRNA is of the outmost importance as it promotes differentiation, notably by directly targeting and down-regulating mRNA expression of genes involved in keratinocyte proliferation, such as ΔNp63, Skp2 and Msi2. We aimed at identifying new miR-203 targets involved in the regulation of keratinocyte proliferation/differentiation balance. To this end, a transcriptome analysis of human primary keratinocytes overexpressing miR-203 was performed and revealed that miR-203 overexpression inhibited functions like proliferation, mitosis and cell cycling, and activated differentiation, apoptosis and cell death. Among the down-regulated genes, 24 putative target mRNAs were identified and 8 of them were related to proliferation. We demonstrated that SRC and RAPGEF1 were direct targets of miR-203. Moreover, both were down-regulated during epidermal morphogenesis in a 3D reconstructed skin model, while miR-203 was up-regulated. Finally silencing experiments showed that SRC or RAPGEF1 contributed to keratinocyte proliferation and regulated their differentiation. Preliminary results suggest their involvement in skin carcinoma hyperproliferation. Altogether this data indicates that RAPGEF1 and SRC could be new mediators of miR-203 in epidermal homeostasis regulation.
Collapse
Affiliation(s)
| | - Cécile Gastaldi
- Medical Biology Department, Centre Scientifique de Monaco, Monaco, Principality of Monaco
- LIA BAHN, CSM-UVSQ, Monaco, Principality of Monaco
| | | | - Bernard Mari
- Université Côte d'Azur, CNRS UMR7275, IPMC, Valbonne, France
| | - Roger Rezzonico
- Université Côte d'Azur, CNRS UMR7275, IPMC, Valbonne, France
| | | | | |
Collapse
|
6
|
Chiantore MV, Iuliano M, Mongiovì RM, Luzi F, Mangino G, Grimaldi L, Accardi L, Fiorucci G, Romeo G, Di Bonito P. MicroRNAs Differentially Expressed in Actinic Keratosis and Healthy Skin Scrapings. Biomedicines 2023; 11:1719. [PMID: 37371814 DOI: 10.3390/biomedicines11061719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Actinic keratosis (AK) is a carcinoma in situ precursor of cutaneous squamous cell carcinoma (cSCC), the second most common cancer affecting the Caucasian population. AK is frequently present in the sun-exposed skin of the elderly population, UV radiation being the main cause of this cancer, and other risk factors contributing to AK incidence. The dysregulation of microRNAs (miRNAs) observed in different cancers leads to an improper expression of miRNA targets involved in several cellular pathways. The TaqMan Array Human MicroRNA Card assay for miRNA expression profiling was performed in pooled AK compared to healthy skin scraping samples from the same patients. Forty-three miRNAs were modulated in the AK samples. The expression of miR-19b (p < 0.05), -31, -34a (p < 0.001), -126, -146a (p < 0.01), -193b, and -222 (p < 0.05) was validated by RT-qPCR. The MirPath tool was used for MiRNA target prediction and enriched pathways. The top DIANA-mirPath pathways regulated by the targets of the 43 miRNAs are TGF-beta signaling, Proteoglycans in cancer, Pathways in cancer, and Adherens junction (7.30 × 10-10 < p < 1.84 × 10-8). Selected genes regulating the KEGG pathways, i.e., TP53, MDM2, CDKN1A, CDK6, and CCND1, were analyzed. MiRNAs modulated in AK regulate different pathways involved in tumorigenesis, indicating miRNA regulation as a critical step in keratinocyte cancer.
Collapse
Affiliation(s)
| | - Marco Iuliano
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome-Polo Pontino, 04100 Latina, Italy
| | - Roberta Maria Mongiovì
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome-Polo Pontino, 04100 Latina, Italy
| | - Fabiola Luzi
- Plastic and Reconstructive Surgery, San Gallicano Dermatologic Institute IRCCS, 00144 Rome, Italy
| | - Giorgio Mangino
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome-Polo Pontino, 04100 Latina, Italy
| | - Lorenzo Grimaldi
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome-Polo Pontino, 04100 Latina, Italy
| | - Luisa Accardi
- EVOR Unit, Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Gianna Fiorucci
- EVOR Unit, Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
- Institute of Molecular Biology and Pathology, CNR, 00185 Rome, Italy
| | - Giovanna Romeo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome-Polo Pontino, 04100 Latina, Italy
| | - Paola Di Bonito
- EVOR Unit, Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| |
Collapse
|
7
|
Cristóbal I, Santos A, Rojo F, García-Foncillas J. A complex microRNA regulatory network may control the HCP5/UTP3/c-Myc/VAMP3 signaling axis. Mol Ther 2023; 31:922-923. [PMID: 36933561 PMCID: PMC10124069 DOI: 10.1016/j.ymthe.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/19/2023] Open
Affiliation(s)
- Ion Cristóbal
- Cancer Unit for Research on Novel Therapeutic Targets, Oncohealth Institute, IIS-Fundación Jiménez Díaz-UAM, Madrid, Spain; Translational Oncology Division, Oncohealth Institute, IIS-Fundación Jiménez Díaz-UAM, Madrid, Spain.
| | - Andrea Santos
- Cancer Unit for Research on Novel Therapeutic Targets, Oncohealth Institute, IIS-Fundación Jiménez Díaz-UAM, Madrid, Spain; Translational Oncology Division, Oncohealth Institute, IIS-Fundación Jiménez Díaz-UAM, Madrid, Spain
| | - Federico Rojo
- Pathology Department, IIS-Fundación Jiménez Díaz-UAM, Madrid, Spain
| | - Jesús García-Foncillas
- Cancer Unit for Research on Novel Therapeutic Targets, Oncohealth Institute, IIS-Fundación Jiménez Díaz-UAM, Madrid, Spain; Translational Oncology Division, Oncohealth Institute, IIS-Fundación Jiménez Díaz-UAM, Madrid, Spain.
| |
Collapse
|
8
|
Cozma EC, Banciu LM, Soare C, Cretoiu SM. Update on the Molecular Pathology of Cutaneous Squamous Cell Carcinoma. Int J Mol Sci 2023; 24:ijms24076646. [PMID: 37047618 PMCID: PMC10095059 DOI: 10.3390/ijms24076646] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second most common skin cancer, originating from keratinocytes of the spinous layer. Numerous risk factors have been discovered for the initiation and growth of this type of cancer, such as exposure to UV and ionizing radiation, chemical carcinogens, the presence of immunosuppression states, chronic inflammation, infections with high-risk viral strains, and, last but not least, the presence of diseases associated with genetic alterations. The important socio-economic impact, as well as the difficulty associated with therapy for advanced forms, has made the molecular mechanisms underlying this neoplasia more and more intensively studied, with the intention of achieving a better understanding and advancing the treatment of this pathology. This review aims to provide a brief foray into the molecular, genetic, and epigenetic aspects of this cancer, as well as the treatment methods, ranging from the first used to the latest targeted therapies.
Collapse
Affiliation(s)
- Elena-Codruta Cozma
- Dermatology Department, Elias University Emergency Hospital, 011461 Bucharest, Romania
- Pathophysiology Department, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Laura Madalina Banciu
- Dermatology Department, Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Cristina Soare
- Dermatology Department, Elias University Emergency Hospital, 011461 Bucharest, Romania
- Surgery Department, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Sanda-Maria Cretoiu
- Department of Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
9
|
Matulić M, Gršković P, Petrović A, Begić V, Harabajsa S, Korać P. miRNA in Molecular Diagnostics. Bioengineering (Basel) 2022; 9:bioengineering9090459. [PMID: 36135005 PMCID: PMC9495386 DOI: 10.3390/bioengineering9090459] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/05/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
MicroRNAs are a class of small non-coding RNA molecules that regulate gene expression on post-transcriptional level. Their biogenesis consists of a complex series of sequential processes, and they regulate expression of many genes involved in all cellular processes. Their function is essential for maintaining the homeostasis of a single cell; therefore, their aberrant expression contributes to development and progression of many diseases, especially malignant tumors and viral infections. Moreover, they can be associated with certain states of a specific disease, obtained in the least invasive manner for patients and analyzed with basic molecular methods used in clinical laboratories. Because of this, they have a promising potential to become very useful biomarkers and potential tools in personalized medicine approaches. In this review, miRNAs biogenesis, significance in cancer and infectious diseases, and current available test and methods for their detection are summarized.
Collapse
Affiliation(s)
- Maja Matulić
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Paula Gršković
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Andreja Petrović
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Institute of Clinical Pathology and Cytology, Merkur University Hospital, 10000 Zagreb, Croatia
| | - Valerija Begić
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Primary School “Sesvetski Kraljevec”, 10361 Sesvetski Kraljevec, Croatia
| | - Suzana Harabajsa
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Department of Pathology and Cytology, Division of Pulmonary Cytology Jordanovac, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Petra Korać
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Correspondence: ; Tel.: +385-1-4606-278
| |
Collapse
|
10
|
Liu Z, Huang Y, Han Z, Shen Z, Yu S, Wang T, Dong Z, Kang M. Exosome-mediated miR-25/miR-203 as a potential biomarker for esophageal squamous cell carcinoma: improving early diagnosis and revealing malignancy. Transl Cancer Res 2022; 10:5174-5182. [PMID: 35116367 PMCID: PMC8799214 DOI: 10.21037/tcr-21-1123] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/24/2021] [Indexed: 01/23/2023]
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is the leading cause of cancer death in men and women worldwide. The poor prognosis and rapid increase in ESCC incidence highlight the need to promote early detection and prediction. Identifying key molecular targets involved in ESCC monitoring and progression is critical for ESCC patients. Methods This study examined miR-25/miR-203 as a biomarker for ESCC patients. Real-time quantitative polymerase chain reaction (PCR) was used to detect miR-25/miR-203 expression levels in tissues and serum exosomes, and MiR-25/miR-203 upregulation was confirmed in ESCC. Results We found that the miR-25/miR-203 ratio in cancer tissues from 36 ESCC patients was significantly enhanced compared with that in adjacent tissues. Moreover, the serum level of miR-25/miR-203 in 57 ESCC patients was higher than that in 31 healthy volunteers. Intriguingly, in 38 ESCC patients, the level of miR-25/miR-203 decreased significantly after surgery. Using ROC curve statistical analysis, we found that each group of miR-25/miR-203 had obvious sensitivity and high specificity. The miR-25/miR-203 relationship with the clinicopathological features of ESCC patients was also analyzed. MiR-25/miR-203 was significantly associated with the ESCC TNM-stage and lymph node metastasis, which predicts the prognosis of ESCC and reflects tumor progression. Conclusions This study highlights the feasibility of using exosome-mediated miR-25/miR-203 as a vital noninvasive biomarker for the detection and treatment monitoring of ESCC.
Collapse
Affiliation(s)
- Zhun Liu
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Ying Huang
- Department of Infusion, Fujian Medical University Union Hospital, Fuzhou, China
| | - Ziyang Han
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhimin Shen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Shaobin Yu
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Tao Wang
- Jiangsu Engineering Research Center for Tumor Molecular Diagnosis, Suzhou, China
| | - Zhaonan Dong
- Jiangsu Engineering Research Center for Tumor Molecular Diagnosis, Suzhou, China
| | - Mingqiang Kang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| |
Collapse
|
11
|
Li X, Yuan Y, Wang Y, Xie K, Lu S, Chen F, Zhou M, Zhen P. MicroRNA-486-3p promotes the proliferation and metastasis of cutaneous squamous cell carcinoma by suppressing flotillin-2. J Dermatol Sci 2022; 105:18-26. [PMID: 34930675 DOI: 10.1016/j.jdermsci.2021.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/26/2021] [Accepted: 11/11/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND Dysregulation of miR-486-3p was related to the growth and development of a variety of cancers, but the specific function of miR-486-3p in cutaneous squamous cell carcinoma (cSCC) is not to be confirmed yet. OBJECTIVE Our present study aimed to validate the potential molecular mechanisms of miR-486-3p in cSCC and the potential of miR-486-3p as a novel target for future treatment. METHODS Human cSCC samples and normal skin tissues were applied to determine the expression level of miR-486-3p and FLOT2 by fluorescence in situ hybridization (FISH) and quantitative reverse transcription PCR (qRT-PCR), respectively. As well as BALB/C nude mouse tumor model, three cSCC cells lines including HSC-1, HSC-5 and A431 were utilized to demonstrate the potential function of miR-486-3p and FLOT2 in tumorigenesis. RESULTS Our experimental results showed that miR-486-3p was highly expressed both in tumor samples and cell lines of cSCC. Upregulation of miR-486-3p enhanced the proliferation and migration ability of cSCC cell lines and promoted tumorigenicity in vivo. Furthermore, we confirmed that FLOT2 was a direct targeted gene of miR-486-3p. In contrary to the expression level of miR-486-3p, FLOT2 was low expressed in cSCC patient specimens and cell lines. Knockdown of FLOT2 promoted tumorigenesis of cSCC; whereas FLOT2 reversed the tumor-promoting effect of miR-486-3p. CONCLUSION Our data exhibited that miR-486-3p exerted its effects on carcinogenesis as an oncogene in cSCC via suppression of FLOT2. This discovery will develop new therapeutic targets of cSCC.
Collapse
Affiliation(s)
- Xiangzhi Li
- Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China; Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yawen Yuan
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yimeng Wang
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Kaisheng Xie
- Department of Pathology, The Second Affiliated Hospital of Guangxi University of Science and Technology, Guangxi University of Science and Technology, Liuzhou, China
| | - Sheng Lu
- The First School of Clinical Medicine, Southern Medical University, Guangdong, China
| | - Fuqiang Chen
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Meijuan Zhou
- Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China; Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China.
| | - Peilin Zhen
- Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China.
| |
Collapse
|
12
|
Droll S, Bao X. Oh, the Mutations You'll Acquire! A Systematic Overview of Cutaneous Squamous Cell Carcinoma. Cell Physiol Biochem 2021; 55:89-119. [PMID: 34553848 PMCID: PMC8579759 DOI: 10.33594/000000433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2021] [Indexed: 12/15/2022] Open
Abstract
Nearly two million cases of cutaneous squamous cell carcinoma (cSCC) are diagnosed every year in the United States alone. cSCC is notable for both its prevalence and its propensity for invasion and metastasis. For many patients, surgery is curative. However, patients experiencing immunosuppression or recurrent, advanced, and metastatic disease still face limited therapeutic options and significant mortality. cSCC forms after decades of sun exposure and possesses the highest known mutation rate of all cancers. This mutational burden complicates efforts to identify the primary factors driving cSCC initiation and progression, which in turn hinders the development of targeted therapeutics. In this review, we summarize the mutations and alterations that have been observed in patients’ cSCC tumors, affecting signaling pathways, transcriptional regulators, and the microenvironment. We also highlight novel therapeutic opportunities in development and clinical trials.
Collapse
Affiliation(s)
- Stephenie Droll
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Xiaomin Bao
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA, .,Department of Dermatology, Northwestern University, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| |
Collapse
|
13
|
Yuan S, Zhang P, Wen L, Jia S, Wu Y, Zhang Z, Guan L, Yu Z, Zhao L. miR-22 promotes stem cell traits via activating Wnt/β-catenin signaling in cutaneous squamous cell carcinoma. Oncogene 2021; 40:5799-5813. [PMID: 34345013 PMCID: PMC8484012 DOI: 10.1038/s41388-021-01973-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/01/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023]
Abstract
Emerging evidence suggests that the cancer stem cells (CSCs) are key culprits of cancer metastasis and drug resistance. Understanding mechanisms regulating the critical oncogenic pathways and CSCs function could reveal new diagnostic and therapeutic strategies. We now report that miR-22, a miRNA critical for hair follicle stem/progenitor cell differentiation, promotes tumor initiation, progression, and metastasis by maintaining Wnt/β-catenin signaling and CSCs function. Mechanistically, we find that miR-22 facilitates β-catenin stabilization through directly repressing citrullinase PAD2. Moreover, miR-22 also relieves DKK1-mediated repression of Wnt/β-catenin signaling by targeting a FosB-DDK1 transcriptional axis. miR-22 knockout mice showed attenuated Wnt/β-catenin activity and Lgr5+ CSCs penetrance, resulting in reduced occurrence, progression, and metastasis of chemically induced cutaneous squamous cell carcinoma (cSCC). Clinically, miR-22 is abundantly expressed in human cSCC. Its expression is even further elevated in the CSCs proportion, which negatively correlates with PAD2 and FosB expression. Inhibition of miR-22 markedly suppressed cSCC progression and increased chemotherapy sensitivity in vitro and in xenograft mice. Together, our results revealed a novel miR-22-WNT-CSCs regulatory mechanism in cSCC and highlight the important clinical application prospects of miR-22, a common target molecule for Wnt/β-catenin signaling and CSCs, for patient stratification and therapeutic intervention.
Collapse
Affiliation(s)
- Shukai Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, 22 Qixiangtai Road, Heping District, 300070, Tianjin, China
| | - Peitao Zhang
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, 300052, Tianjin, China
| | - Liqi Wen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, 22 Qixiangtai Road, Heping District, 300070, Tianjin, China
| | - Shikai Jia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, 22 Qixiangtai Road, Heping District, 300070, Tianjin, China
| | - Yufan Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, 22 Qixiangtai Road, Heping District, 300070, Tianjin, China
| | - Zhenlei Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, 22 Qixiangtai Road, Heping District, 300070, Tianjin, China
| | - Lizhao Guan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, 22 Qixiangtai Road, Heping District, 300070, Tianjin, China
| | - Zhengquan Yu
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, 100094, Beijing, China
| | - Li Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, 22 Qixiangtai Road, Heping District, 300070, Tianjin, China.
| |
Collapse
|
14
|
Wei R, Zhao Y, Wang J, Yang X, Li S, Wang Y, Yang X, Fei J, Hao X, Zhao Y, Gui L, Ding X. Tagitinin C induces ferroptosis through PERK-Nrf2-HO-1 signaling pathway in colorectal cancer cells. Int J Biol Sci 2021; 17:2703-2717. [PMID: 34345202 PMCID: PMC8326123 DOI: 10.7150/ijbs.59404] [Citation(s) in RCA: 246] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/08/2021] [Indexed: 01/03/2023] Open
Abstract
Rationale: Colorectal cancer (CRC) is a common malignant tumor of the digestive system. However, the efficacy of surgery and chemotherapy is limited. Ferroptosis is an iron- and reactive oxygen species (ROS)-dependent form of regulated cell death (RCD) and plays a vital role in tumor suppression. Ferroptosis inducing agents have been studied extensively as a novel promising way to fight against therapy resistant cancers. The aim of this study is to investigate the mechanism of action of tagitinin C (TC), a natural product, as a novel ferroptosis inducer in tumor suppression. Methods: The response of CRC cells to tagitinin C was assessed by cell viability assay, clonogenic assay, transwell migration assay, cell cycle assay and apoptosis assay. Molecular approaches including Western blot, RNA sequencing, quantitative real-time PCR and immunofluorescence were employed as well. Results: Tagitinin C, a sesquiterpene lactone isolated from Tithonia diversifolia, inhibits the growth of colorectal cancer cells including HCT116 cells, and induced an oxidative cellular microenvironment resulting in ferroptosis of HCT116 cells. Tagitinin C-induced ferroptosis was accompanied with the attenuation of glutathione (GSH) levels and increased in lipid peroxidation. Mechanistically, tagitinin C induced endoplasmic reticulum (ER) stress and oxidative stress, thus activating nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2). As a downstream gene (effector) of Nrf2, heme oxygenase-1 (HO-1) expression increased significantly with the treatment of tagitinin C. Upregulated HO-1 led to the increase in the labile iron pool, which promoted lipid peroxidation, meanwhile tagitinin C showed synergistic anti-tumor effect together with erastin. Conclusion: In summary, we provided the evidence that tagitinin C induces ferroptosis in colorectal cancer cells and has synergistic effect together with erastin. Mechanistically, tagitinin C induces ferroptosis through ER stress-mediated activation of PERK-Nrf2-HO-1 signaling pathway. Tagitinin C, identified as a novel ferroptosis inducer, may be effective chemosensitizer that can expand the efficacy and range of chemotherapeutic agents.
Collapse
Affiliation(s)
- Ruiran Wei
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, 550004, Guiyang, China
| | - Yueqin Zhao
- State Key Laboratory of Phytochemistry and Plant Resource in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, China
| | - Juan Wang
- State Key Laboratory of Phytochemistry and Plant Resource in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, China
| | - Xu Yang
- State Key Laboratory of Phytochemistry and Plant Resource in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, China
| | - Shunlin Li
- State Key Laboratory of Phytochemistry and Plant Resource in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, China
| | - Yinyuan Wang
- State Key Laboratory of Phytochemistry and Plant Resource in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, China
| | - Xingzhi Yang
- State Key Laboratory of Phytochemistry and Plant Resource in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, China
| | - Jimin Fei
- Yunnan Cancer Hospital & The Third Affiliated Hospital of Kunming Medical University, 650118, Kunming, China
| | - Xiaojiang Hao
- State Key Laboratory of Phytochemistry and Plant Resource in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, China
| | - Yuhan Zhao
- State Key Laboratory of Phytochemistry and Plant Resource in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, China
| | - Liming Gui
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, 550004, Guiyang, China
| | - Xiao Ding
- State Key Laboratory of Phytochemistry and Plant Resource in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, China
| |
Collapse
|
15
|
Co-Targeting PIM Kinase and PI3K/mTOR in NSCLC. Cancers (Basel) 2021; 13:cancers13092139. [PMID: 33946744 PMCID: PMC8125027 DOI: 10.3390/cancers13092139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/25/2021] [Accepted: 04/20/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary PIM kinases interact with major oncogenic players, including the PI3K/Akt pathway, and provide an escape mechanism leading to drug resistance. This study examined PIM kinase expression in NSCLC and the potential of PIM1 as a prognostic marker. The effect on cell signaling of novel preclinical PI3K/mTOR/PIM kinase inhibitor IBL-301 was compared to PI3K/mTOR inhibition in vitro and ex vivo. PI3K-mTOR inhibitor sensitive (H1975P) and resistant (H1975GR) cells were compared for altered IL6/STAT3 pathway expression and sensitivity to IBL-301. All three PIM kinases are expressed in NSCLC and PIM1 is a marker of poor prognosis. IBL-301 inhibited c-Myc, the PI3K-Akt and JAK/STAT pathways in vitro and in NSCLC tumor tissue explants. IBL-301 also inhibited secreted pro-inflammatory cytokine MCP-1. PIM kinases were activated in H1975GR cells which were more sensitive to IBL-301 than H1975P cells. A miRNA signature of PI3K-mTOR resistance was validated. Co-targeting PIM kinase and PI3K-mTOR warrants further clinical investigation. Abstract PIM kinases are constitutively active proto-oncogenic serine/threonine kinases that play a role in cell cycle progression, metabolism, inflammation and drug resistance. PIM kinases interact with and stabilize p53, c-Myc and parallel signaling pathway PI3K/Akt. This study evaluated PIM kinase expression in NSCLC and in response to PI3K/mTOR inhibition. It investigated a novel preclinical PI3K/mTOR/PIM inhibitor (IBL-301) in vitro and in patient-derived NSCLC tumor tissues. Western blot analysis confirmed PIM1, PIM2 and PIM3 are expressed in NSCLC cell lines and PIM1 is a marker of poor prognosis in patients with NSCLC. IBL-301 decreased PIM1, c-Myc, pBAD and p4EBP1 (Thr37/46) and peIF4B (S406) protein levels in-vitro and MAP kinase, PI3K-Akt and JAK/STAT pathways in tumor tissue explants. IBL-301 significantly decreased secreted pro-inflammatory cytokine MCP-1. Altered mRNA expression, including activated PIM kinase and c-Myc, was identified in Apitolisib resistant cells (H1975GR) by an IL-6/STAT3 pathway array and validated by Western blot. H1975GR cells were more sensitive to IBL-301 than parent cells. A miRNA array identified a dysregulated miRNA signature of PI3K/mTOR drug resistance consisting of regulators of PIM kinase and c-Myc (miR17-5p, miR19b-3p, miR20a-5p, miR15b-5p, miR203a, miR-206). Our data provides a rationale for co-targeting PIM kinase and PI3K-mTOR to improve therapeutic response in NSCLC.
Collapse
|
16
|
Lohcharoenkal W, Li C, Das Mahapatra K, Lapins J, Homey B, Sonkoly E, Pivarcsi A. MiR-130a Acts as a Tumor Suppressor MicroRNA in Cutaneous Squamous Cell Carcinoma and Regulates the Activity of the BMP/SMAD Pathway by Suppressing ACVR1. J Invest Dermatol 2021; 141:1922-1931. [PMID: 33766507 DOI: 10.1016/j.jid.2021.01.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/22/2020] [Accepted: 01/05/2021] [Indexed: 01/04/2023]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is a malignant neoplasm of the skin resulting from the accumulation of somatic mutations due to solar radiation. cSCC is one of the fastest increasing malignancies, and it represents a particular problem among immunosuppressed individuals. MicroRNAs are short noncoding RNAs that regulate the expression of protein-coding genes at the post-transcriptional level. In this study, we identify miR-130a to be downregulated in cSCC compared to healthy skin and precancerous lesions (actinic keratosis). Moreoever, we show that its expression is regulated at the transcriptional level by HRAS and MAPK signaling pathway. We demonstrate that overexpession of miR-130a suppresses long-term capacity of growth, cell motility and invasion ability of human cSCC cell lines. We report that miR-130a suppresses the growth of cSCC xenografts in mice. Mechanistically, miR-130a directly targets ACVR1 (ALK2), and changes in miR-130a levels result in the decreased activity of the BMP/SMAD pathway through ACVR1. These data reveal a link between activated MAPK signaling and decreased expression of miR-130a, which acts as a tumor-suppressor microRNA in cSCC and contribute to a better understanding of the molecular processes during malignant transformation of epidermal keratinocytes.
Collapse
Affiliation(s)
- Warangkana Lohcharoenkal
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Chen Li
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kunal Das Mahapatra
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jan Lapins
- Unit of Dermatology and Venereology, Karolinska University Hospital, Stockholm, Sweden
| | - Bernhard Homey
- Department of Dermatology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Enikő Sonkoly
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Unit of Dermatology and Venereology, Karolinska University Hospital, Stockholm, Sweden
| | - Andor Pivarcsi
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
17
|
Long Noncoding RNA OIP5-AS1 Promotes the Disease Progression in Nasopharyngeal Carcinoma by Targeting miR-203. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9850928. [PMID: 33628831 PMCID: PMC7884132 DOI: 10.1155/2021/9850928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/02/2021] [Accepted: 01/15/2021] [Indexed: 12/13/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a kind of malignancy generated from the nasopharyngeal epithelium. Recently, long noncoding RNA (lncRNA) has been shown to be involved in the regulation of many signaling pathways and is closely associated with carcinogenesis and tumor progression. However, the precise role of lncRNA Opa-interacting protein 5 antisense RNA 1 (OIP5-AS1) in NPC is not well understood. Here, we find that OIP5-AS1 is overexpressed in NPC patient specimens and NPC cell lines. Further investigations reveal that knockdown of OIP5-AS1 significantly inhibits the proliferation, migration, and invasion and accelerates the apoptosis of NPC cells in vitro. Consistent with these findings, NPC progression is significantly slowed in mice when OIP5-AS1 is knocked down. Interestingly, there is a functional link between OIP5-AS1 and microRNA-203 (miR-203), a tumor suppressor, in NPC cells. In conclusion, our data demonstrate that OIP5-AS1 plays an important role in the development and progression of NPC by targeting miR-203 and therefore provide a promising target for the treatment of NPC.
Collapse
|
18
|
Garofoli M, Volpicella M, Guida M, Porcelli L, Azzariti A. The Role of Non-Coding RNAs as Prognostic Factor, Predictor of Drug Response or Resistance and Pharmacological Targets, in the Cutaneous Squamous Cell Carcinoma. Cancers (Basel) 2020; 12:cancers12092552. [PMID: 32911687 PMCID: PMC7565940 DOI: 10.3390/cancers12092552] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022] Open
Abstract
Cutaneous squamous cell carcinoma (CSCC) is the most common keratinocyte-derived skin cancer in the Caucasian population. Exposure to UV radiations (UVRs) represents the main risk carcinogenesis, causing a considerable accumulation of DNA damage in epidermal keratinocytes with an uncontrolled hyperproliferation and tumor development. The limited and rarely durable response of CSCC to the current therapeutic options has led researchers to look for new therapeutic strategies. Recently, the multi-omics approaches have contributed to the identification and prediction of the key role of non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), circularRNAs (circRNAs) and long non-coding RNAs (lncRNAs) in the regulation of several cellular processes in different tumor types, including CSCC. ncRNAs can modulate transcriptional and post-transcriptional events by interacting either with each other or with DNA and proteins, such as transcription factors and RNA-binding proteins. In this review, the implication of ncRNAs in tumorigenesis and their potential role as diagnostic biomarkers and therapeutic targets in human CSCC are reported.
Collapse
Affiliation(s)
- Marianna Garofoli
- Experimental Pharmacology Laboratory, IRCCS IstitutoTumori Giovanni Paolo II, 70124 Bari, Italy; (M.G.); (L.P.)
| | - Mariateresa Volpicella
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy;
| | - Michele Guida
- Rare Tumors and Melanoma Unit, IRCCS IstitutoTumori Giovanni Paolo II, 70124 Bari, Italy;
| | - Letizia Porcelli
- Experimental Pharmacology Laboratory, IRCCS IstitutoTumori Giovanni Paolo II, 70124 Bari, Italy; (M.G.); (L.P.)
| | - Amalia Azzariti
- Experimental Pharmacology Laboratory, IRCCS IstitutoTumori Giovanni Paolo II, 70124 Bari, Italy; (M.G.); (L.P.)
- Correspondence: ; Tel.: +39-080-555-5986
| |
Collapse
|
19
|
Zheng W, Li ZY, Zhao DL, Li XL, Liu R. microRNA-26a Directly Targeting MMP14 and MMP16 Inhibits the Cancer Cell Proliferation, Migration and Invasion in Cutaneous Squamous Cell Carcinoma. Cancer Manag Res 2020; 12:7087-7095. [PMID: 32848463 PMCID: PMC7429404 DOI: 10.2147/cmar.s265775] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/16/2020] [Indexed: 12/22/2022] Open
Abstract
Purpose To investigate the specific effect and underlying mechanism of microRNA-26a-5p (miR-26a) in cutaneous squamous cell carcinoma (CSCC). Methods miR-26a and MMP14/16 mRNA expression were detected by qRT-PCR analysis. Functional experiments were used to detect the role of miR-26a on CSCC progression. Western blot was used for protein detection. Luciferase assay was used to detect miR-26a directly targeting MMP14 and MMP16. Xenograft nude mice model was used to determine the effect of miR-26a on tumorigenesis. Results miR-26a was decreased in CSCC tissues and cells. Forced miR-26a suppressed the progression of SCL-1 and A431 cells. Furthermore, miR-26a directly targeted MMP14 and MMP16 to inhibit their expression. Forced expression of MMP14 and MMP16 removed the miR-26a’s inhibitory effect on CSCC development. The in vivo tumor growth assay showed that miR-26a suppressed CSCC tumorigenesis by targeting MMP14 and MMP16. Conclusion Our study suggested miR-26a inhibits cancer cell proliferation, migration and invasion in CSCC by targeting MMP14 and MMP16.
Collapse
Affiliation(s)
- Wang Zheng
- Department of Burns, The Fifth Hospital of Harbin, Harbin 150040, People's Republic of China
| | - Zong-Yu Li
- Department of Burns, The Fifth Hospital of Harbin, Harbin 150040, People's Republic of China
| | - De-Lai Zhao
- Department of Burns, The Fifth Hospital of Harbin, Harbin 150040, People's Republic of China.,Department of Orthopedic Surgery, The Fifth Hospital of Harbin, Harbin 150040, People's Republic of China
| | - Xing-Long Li
- Department of Burns, The Fifth Hospital of Harbin, Harbin 150040, People's Republic of China.,Department of Orthopedic Surgery, The Fifth Hospital of Harbin, Harbin 150040, People's Republic of China
| | - Rui Liu
- Department of Burns, Heilongjiang Provincial Hospital, Harbin 150036, People's Republic of China
| |
Collapse
|
20
|
Deciphering the Molecular Landscape of Cutaneous Squamous Cell Carcinoma for Better Diagnosis and Treatment. J Clin Med 2020; 9:jcm9072228. [PMID: 32674318 PMCID: PMC7408826 DOI: 10.3390/jcm9072228] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is a common type of neoplasia, representing a terrible burden on patients' life and clinical management. Although it seldom metastasizes, and most cases can be effectively treated with surgical intervention, once metastatic cSCC displays considerable aggressiveness leading to the death of affected individuals. No consensus has been reached as to which features better characterize the aggressive behavior of cSCC, an achievement hindered by the high mutational burden caused by chronic ultraviolet light exposure. Even though some subtypes have been recognized as high risk variants, depending on certain tumor features, cSCC that are normally thought of as low risk could pose an increased danger to the patients. In light of this, specific genetic and epigenetic markers for cutaneous SCC, which could serve as reliable diagnostic markers and possible targets for novel treatment development, have been searched for. This review aims to give an overview of the mutational landscape of cSCC, pointing out established biomarkers, as well as novel candidates, and future possible molecular therapies for cSCC.
Collapse
|
21
|
Khan AQ, Ahmad F, Raza SS, Zarif L, Siveen KS, Sher G, Agha MV, Rashid K, Kulinski M, Buddenkotte J, Uddin S, Steinhoff M. Role of non-coding RNAs in the progression and resistance of cutaneous malignancies and autoimmune diseases. Semin Cancer Biol 2020; 83:208-226. [PMID: 32717336 DOI: 10.1016/j.semcancer.2020.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/28/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023]
|
22
|
Danbaran GR, Aslani S, Sharafkandi N, Hemmatzadeh M, Hosseinzadeh R, Azizi G, Jadidi-Niaragh F, Babaie F, Mohammadi H. How microRNAs affect the PD-L1 and its synthetic pathway in cancer. Int Immunopharmacol 2020; 84:106594. [PMID: 32416456 DOI: 10.1016/j.intimp.2020.106594] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/27/2020] [Accepted: 05/08/2020] [Indexed: 12/17/2022]
Abstract
Programmed cell death-ligand 1 (PD-L1) is a glycoprotein that is expressed on the cell surface of both hematopoietic and nonhematopoietic cells. PD-L1 play a role in the immune tolerance and protect self-tissues from immune system attack. Dysfunction of this molecule has been highlighted in the pathogenesis of tumors, autoimmunity, and infectious disorders. MicroRNAs (miRNAs) are endogenous molecules that are classified as small non-coding RNA with approximately 20-22 nucleotides (nt) length. The function of miRNAs is based on complementary interactions with target mRNA via matching completely or incompletely. The result of this function is decay of the target mRNA or preventing mRNA translation. In the past decades, several miRNAs have been discovered which play an important role in the regulation of PD-L1 in various malignancies. In this review, we discuss the effect of miRNAs on PD-L1 expression and consider the effect of miRNAs on the synthetic pathway of PD-L1, especially during cancers.
Collapse
Affiliation(s)
| | - Saeed Aslani
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nadia Sharafkandi
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Maryam Hemmatzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramin Hosseinzadeh
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Babaie
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran; Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
23
|
Cristóbal I, Luque M, Sanz-Alvarez M, Rojo F, García-Foncillas J. Clinical Impact and Regulation of the circCAMSAP1/ miR-328-5p/E2F1 Axis in Colorectal Cancer. Mol Ther 2020; 28:1387-1388. [PMID: 32413279 DOI: 10.1016/j.ymthe.2020.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Ion Cristóbal
- Cancer Unit for Research on Novel Therapeutic Targets, Oncohealth Institute, IIS-Fundación Jiménez Díaz-UAM, Madrid, Spain; Translational Oncology Division, Oncohealth Institute, IIS-Fundación Jiménez Díaz-UAM, Madrid, Spain.
| | - Melani Luque
- Pathology Department, IIS-Fundación Jiménez Díaz-UAM, Madrid, Spain
| | | | - Federico Rojo
- Pathology Department, IIS-Fundación Jiménez Díaz-UAM, Madrid, Spain
| | - Jesús García-Foncillas
- Cancer Unit for Research on Novel Therapeutic Targets, Oncohealth Institute, IIS-Fundación Jiménez Díaz-UAM, Madrid, Spain; Translational Oncology Division, Oncohealth Institute, IIS-Fundación Jiménez Díaz-UAM, Madrid, Spain.
| |
Collapse
|
24
|
Ting W, Feng C, Zhang M, Long F, Bai M. Overexpression of microRNA-203 Suppresses Proliferation, Invasion, and Migration while Accelerating Apoptosis of CSCC Cell Line SCL-1. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:428-440. [PMID: 32668390 PMCID: PMC7358222 DOI: 10.1016/j.omtn.2020.04.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/16/2020] [Accepted: 04/28/2020] [Indexed: 12/11/2022]
Abstract
Cutaneous squamous cell carcinoma (CSCC) is a malignant proliferation of cutaneous epithelium that has been observed to have an alarming rise in incidence. Numerous studies have demonstrated microRNAs (miRNAs or miRs) as important biomarkers in the diagnosis, prognosis, and treatment of CSCC. This study aims to investigate the effects of miR-203 on the behaviors of CSCC cells and possible mechanisms associated with protein regulator of cytokinesis-1 (PRC1) and Wnt/β-catenin signaling pathway. PRC1 was suggested as a target of miR-203 in squamous cell carcinoma cell line 1 (SCL-1) cells by dual-luciferase reporter gene assay. Based on the immunohistochemical staining and qRT-PCR, PRC1 was abundantly expressed while miR-203 was poorly expressed in CSCC tissues. miR-203 mimic or inhibitor was transfected into SCL-1 cells to upregulate or downregulate its expression. Upregulation of miR-203 downregulated PRC1 expression to block the Wnt/β-catenin signaling pathway. By conducting 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT), scratch test, and Transwell and flow cytometric analyses, miR-203 was witnessed to restrain SCL-1 cell proliferation, migration, and invasion while accelerating their apoptosis. The rescue experiments addressed that inhibition of the Wnt/β-catenin signaling pathway conferred the anti-tumor effect of miR-203. These results establish a tumor-suppressive role for miR-203 in CSCC cell line SCL-1. Hence, miR-203 has promising potential as a therapeutic target for CSCC.
Collapse
Affiliation(s)
- Wenyun Ting
- Department of Plastic and Aesthetic Surgery, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Cheng Feng
- Department of Plastic and Aesthetic Surgery, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Mingzi Zhang
- Department of Plastic and Aesthetic Surgery, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Fei Long
- Department of Plastic and Aesthetic Surgery, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Ming Bai
- Department of Plastic and Aesthetic Surgery, Peking Union Medical College Hospital, Beijing 100730, P.R. China.
| |
Collapse
|
25
|
Tian K, Liu W, Zhang J, Fan X, Liu J, Zhao N, Yao C, Miao G. MicroRNA-125b exerts antitumor functions in cutaneous squamous cell carcinoma by targeting the STAT3 pathway. Cell Mol Biol Lett 2020; 25:12. [PMID: 32161621 PMCID: PMC7059386 DOI: 10.1186/s11658-020-00207-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 02/19/2020] [Indexed: 12/12/2022] Open
Abstract
Background MicroRNA-125b (miR-125b) is downregulated in human cutaneous squamous cell carcinoma (CSCC). However, its function in CSCC has yet to be extensively explored. Here, we analyze the relationship between signal transducer and activator of transcription 3 (STAT3) and miR-125b in CSCC. Methods Western blotting and quantitative RT-PCR were used to determine the expression of the miR-125b–STAT3 axis in human CSCC tissues and cell lines. The direct regulatory effect of miR-125b on STAT3 expression was assessed using a luciferase reporter gene assay and RNA immunoprecipitation assay. The MTT assay and flow cytometry were used to determine the role of the miR-125b–STAT3 axis in CSCC cell proliferation and apoptosis. Results MiR-125b expression levels were significantly lower in CSCC cell lines and tissues than in normal cell lines and tissues. STAT3 was identified as the direct target of miR-125b. Upregulation of miR-125b and downregulation of STAT3 suppressed cell proliferation and promoted cell apoptosis. Cyclin D1 and Bcl2 were identified as the downstream targets of the miR-125–STAT3 axis. Conclusions Our findings indicate that miR-125b acts as a tumor suppressor in CSCC by targeting the STAT3 pathway. This observation increases our understanding of the molecular mechanisms of CSCC. Therapies aimed at activating miR-125b or inhibiting STAT3 signaling should be explored as potential treatments for CSCC.
Collapse
Affiliation(s)
- Ke Tian
- 1Department of Dermatology, Affiliated Hospital of Hebei University of Engineering, Handan, 056002 China
| | - Wanggen Liu
- 2Department of Histology and Embryology, Preclinical Medicine College, Xinxiang Medical University, Xinxiang, 453003 China
| | - Jing Zhang
- 3Department of Pathology, Medical School, Hebei University of Engineering, Handan, 056002 China
| | - Xiaoyi Fan
- 3Department of Pathology, Medical School, Hebei University of Engineering, Handan, 056002 China
| | - Jingyuan Liu
- 3Department of Pathology, Medical School, Hebei University of Engineering, Handan, 056002 China
| | - Nan Zhao
- 3Department of Pathology, Medical School, Hebei University of Engineering, Handan, 056002 China
| | - Chunxia Yao
- 3Department of Pathology, Medical School, Hebei University of Engineering, Handan, 056002 China
| | - Guoying Miao
- 1Department of Dermatology, Affiliated Hospital of Hebei University of Engineering, Handan, 056002 China
| |
Collapse
|
26
|
Zhang Y, Gao L, Ma S, Ma J, Wang Y, Li S, Hu X, Han S, Zhou M, Zhou L, Ding Z. MALAT1-KTN1-EGFR regulatory axis promotes the development of cutaneous squamous cell carcinoma. Cell Death Differ 2019; 26:2061-2073. [PMID: 30683916 PMCID: PMC6748142 DOI: 10.1038/s41418-019-0288-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 12/25/2018] [Accepted: 01/08/2019] [Indexed: 02/03/2023] Open
Abstract
Long noncoding RNAs (LncRNAs), including MALAT1, are critical regulators of tumor development. However, the roles and molecular mechanisms of LncRNAs in cutaneous squamous cell carcinoma (cSCC) remain underexplored. In this study, functional studies using in vitro cellular and in vivo xenograft models confirmed the pro-carcinogenic roles of MALAT1 in cSCC. Further, MALAT1 was identified to regulate epidermal growth factor receptor (EGFR) protein expression but did not affect EGFR mRNA expression. Transcriptomic sequencing identified kinectin 1 (KTN1) as the key mediator for MALAT1 regulation of EGFR. Mechanistic study revealed that MALAT1 interacts with c-MYC to form a complex and directly binds to the promoter region of KTN1 gene and enhances its transactivation to positively regulate EGFR protein expression. Our findings, therefore, establish a novel c-MYC-assisted MALAT1-KTN1-EGFR axis, which contributes to cSCC development and may serve as novel target for therapeutic intervention.
Collapse
Grants
- 81573076 National Natural Science Foundation of China (National Science Foundation of China)
- 81172634 National Natural Science Foundation of China (National Science Foundation of China)
- 81573076 National Natural Science Foundation of China (National Science Foundation of China)
- 81172634 National Natural Science Foundation of China (National Science Foundation of China)
- 81573076 National Natural Science Foundation of China (National Science Foundation of China)
- 81172634 National Natural Science Foundation of China (National Science Foundation of China)
- 81573076 National Natural Science Foundation of China (National Science Foundation of China)
- 81172634 National Natural Science Foundation of China (National Science Foundation of China)
- 81573076 National Natural Science Foundation of China (National Science Foundation of China)
- 81172634 National Natural Science Foundation of China (National Science Foundation of China)
- 81573076 National Natural Science Foundation of China (National Science Foundation of China)
- 81172634 National Natural Science Foundation of China (National Science Foundation of China)
- 81573076 National Natural Science Foundation of China (National Science Foundation of China)
- 81172634 National Natural Science Foundation of China (National Science Foundation of China)
- 81172634 National Natural Science Foundation of China (National Science Foundation of China)
- 81573076 National Natural Science Foundation of China (National Science Foundation of China)
- 81172634 National Natural Science Foundation of China (National Science Foundation of China)
- 81573076 National Natural Science Foundation of China (National Science Foundation of China)
- 81172634 National Natural Science Foundation of China (National Science Foundation of China)
- 2016A030313738 Guangdong Science and Technology Department (Science and Technology Department, Guangdong Province)
- 2016A030313738 Guangdong Science and Technology Department (Science and Technology Department, Guangdong Province)
- 2016A030313738 Guangdong Science and Technology Department (Science and Technology Department, Guangdong Province)
- 2016A030313738 Guangdong Science and Technology Department (Science and Technology Department, Guangdong Province)
- 2016A030313738 Guangdong Science and Technology Department (Science and Technology Department, Guangdong Province)
- 2016A030313738 Guangdong Science and Technology Department (Science and Technology Department, Guangdong Province)
- 2016A030313738 Guangdong Science and Technology Department (Science and Technology Department, Guangdong Province)
- 2016A030313738 Guangdong Science and Technology Department (Science and Technology Department, Guangdong Province)
- 2016A030313738 Guangdong Science and Technology Department (Science and Technology Department, Guangdong Province)
- 2016A030313738 Guangdong Science and Technology Department (Science and Technology Department, Guangdong Province)
- Grants from the School of Public Health of Southern Medical University, China (Grant No.GW201612)
Collapse
Affiliation(s)
- Ying Zhang
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Lin Gao
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Shudong Ma
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ji Ma
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Yinghui Wang
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Shanshan Li
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Xia Hu
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Shuo Han
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Meijuan Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Liang Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| | - Zhenhua Ding
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
27
|
Zhou H, Song H, Wu Y, Liu X, Li J, Zhao H, Tang M, Ji X, Zhang L, Su Y, He Y, Feng K, Jiao Y, Xu H. Oxygen-induced circRNA profiles and coregulatory networks in a retinopathy of prematurity mouse model. Exp Ther Med 2019; 18:2037-2050. [PMID: 31452702 PMCID: PMC6704537 DOI: 10.3892/etm.2019.7819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 06/27/2019] [Indexed: 02/06/2023] Open
Abstract
Retinopathy of prematurity (ROP) is a leading cause of childhood blindness. At present, the molecular mechanisms underlying ROP are still far from being clearly understood. Circular RNAs (circRNAs), a novel class of noncoding RNAs, have been reported to serve vital regulatory roles in several human diseases. However, it is still unclear how circRNAs are involved in ROP. In the present study, oxygen-induced retinopathy (OIR) murine retinal samples and paired normal tissues were chosen for high-throughput transcriptome RNA sequencing and bioinformatic analyses. As a result, a total of 236 differentially expressed circRNAs, 14 differentially expressed miRNAs, and 9,756 differentially expressed mRNAs were identified in the OIR samples. Gene ontology analysis showed that angiogenesis ranked in the top five upregulated biological processes associated with differential mRNA expression. Then, 66 co-expression pairs of circRNA-mRNA were predicted according to the mRNAs that were enriched in angiogenesis. Furthermore, coregulation prediction was separately performed to identify the differentially expressed miRNAs that targeted angiogenesis-associated circRNAs or mRNAs. Finally, nine differentially expressed circRNAs were predicted to be competing endogenous RNAs by constructing a circRNA-miRNA-mRNA network followed by reverse transcription-quantitative PCR validation. The results of the present study suggest that the identified set of circRNA transcripts and the potential regulatory mechanisms for the development of ROP are worthy of functional studies.
Collapse
Affiliation(s)
- Huiting Zhou
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, P.R. China
| | - Huihui Song
- Department of Medical Imaging, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu 215137, P.R. China
| | - Yi Wu
- Department of Pathology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, P.R. China
| | - Xiang Liu
- Department of Ophthalmology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, P.R. China
| | - Jing Li
- Department of Ophthalmology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, P.R. China
| | - He Zhao
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, P.R. China
| | - Miaomiao Tang
- Laboratory of Nanoscale Biochemical Analysis, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Xiaoyuan Ji
- Laboratory of Nanoscale Biochemical Analysis, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Lu Zhang
- Laboratory of Nanoscale Biochemical Analysis, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Yuanyuan Su
- Laboratory of Nanoscale Biochemical Analysis, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Yao He
- Laboratory of Nanoscale Biochemical Analysis, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Kehong Feng
- Department of Ophthalmology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, P.R. China
| | - Yang Jiao
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China.,State Key Laboratory of Radiological Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Hua Xu
- Department of Ophthalmology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, P.R. China
| |
Collapse
|
28
|
MicroRNA Dysregulation in Cutaneous Squamous Cell Carcinoma. Int J Mol Sci 2019; 20:ijms20092181. [PMID: 31052530 PMCID: PMC6540078 DOI: 10.3390/ijms20092181] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 04/15/2019] [Accepted: 04/29/2019] [Indexed: 02/07/2023] Open
Abstract
Cutaneous squamous cell carcinoma (CSCC) is the second most frequent cancer in humans and it can be locally invasive and metastatic to distant sites. MicroRNAs (miRNAs or miRs) are endogenous, small, non-coding RNAs of 19–25 nucleotides in length, that are involved in regulating gene expression at a post-transcriptional level. MicroRNAs have been implicated in diverse biological functions and diseases. In cancer, miRNAs can proceed either as oncogenic miRNAs (onco-miRs) or as tumor suppressor miRNAs (oncosuppressor-miRs), depending on the pathway in which they are involved. Dysregulation of miRNA expression has been shown in most of the tumors evaluated. MiRNA dysregulation is known to be involved in the development of cutaneous squamous cell carcinoma (CSCC). In this review, we focus on the recent evidence about the role of miRNAs in the development of CSCC and in the prognosis of this form of skin cancer.
Collapse
|
29
|
Hu G, Liang L, Liu Y, Liu J, Tan X, Xu M, Peng L, Zhai S, Li Q, Chu Z, Zeng W, Xia Y. TWEAK/Fn14 Interaction Confers Aggressive Properties to Cutaneous Squamous Cell Carcinoma. J Invest Dermatol 2019; 139:796-806. [DOI: 10.1016/j.jid.2018.09.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 09/08/2018] [Accepted: 09/27/2018] [Indexed: 12/13/2022]
|
30
|
Lin H, Shangguan Z, Zhu M, Bao L, Zhang Q, Pan S. lncRNA FLVCR1‐AS1 silencing inhibits lung cancer cell proliferation, migration, and invasion by inhibiting the activity of the Wnt/β‐catenin signaling pathway. J Cell Biochem 2019; 120:10625-10632. [PMID: 30697812 DOI: 10.1002/jcb.28352] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 11/29/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Heping Lin
- Department of Respiratory Diseases The Third Affiliated Hospital of Wenzhou Medical University Wenzhou China
| | - Zongxiao Shangguan
- Department of Respiratory Diseases The Third Affiliated Hospital of Wenzhou Medical University Wenzhou China
| | - Mengchu Zhu
- Department of Respiratory Diseases The Third Affiliated Hospital of Wenzhou Medical University Wenzhou China
| | - Lianmin Bao
- Department of Respiratory Diseases The Third Affiliated Hospital of Wenzhou Medical University Wenzhou China
| | - Qing Zhang
- Department of Clinical Laboratory The Third Affiliated Hospital of Wenzhou Medical University Wenzhou China
| | - Shenghua Pan
- Department of Pathology The Third Affiliated Hospital of Wenzhou Medical University Wenzhou China
| |
Collapse
|
31
|
Zhang C, Xia R, Zhang B, Wang H. The predictive powers of plasma trefoil factor 3 or its related micro RNAs for patients with hepatocellular carcinoma. BMC Cancer 2018; 18:1110. [PMID: 30424721 PMCID: PMC6234585 DOI: 10.1186/s12885-018-5017-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/30/2018] [Indexed: 01/30/2023] Open
Abstract
Background Earlier diagnosis is beneficial for the prognosis of hepatocellular carcinoma (HCC). Alpha fetoprotein (AFP) is the most widely used biomarker for HCC, but its sensitivity and specificity are only 60 and 90%, respectively. Therefore, it is of great clinical significance to identify early prognostic biomarkers for HCC, especially a blood-based biomarker as it offers several advantages over tissue-based biomarkers. Trefoil factor 3 (TFF3), a novel secretory protein, was over-expressed in HCC tissues, indicating it might be a blood-based biomarker for HCC. In addition, circulating microRNAs have been investigated as biomarkers for HCC, indicating that miR-7-5p and miR-203a-3p, which are reported or predicted to target TFF3, also hold promise as blood-based biomarkers for HCC. Methods We enrolled 43 patients who were firstly diagnosed HCC and matched 47 control subjects without HCC. The levels of TFF3, miR-7-5p and miR-203a-3p were tested in the plasma of HCC patients. Moreover, we assayed the correlation of TFF3 with its related micro RNAs, miR-7-5p and miR-203a-3p, and evaluated their predictive powers for HCC. Results Decrease of TFF3 was associated with increase of miR-203a-3p in the plasma of HCC patients and they displayed potent predictive powers for HCC diagnosis. However, there was no significant change of plasma miR-7-5p between HCC and control group. Conclusion Decrease of TFF3 correlated with increase of miR-203a-3p in the plasma of HCC patients and they could be additional biomarkers to improve sensitivity and specificity in the diagnosis of HCC.
Collapse
Affiliation(s)
- Chenghua Zhang
- Department of Endoscopy, Jilin Cancer Hospital, Changchun, 130012, China
| | - Ran Xia
- Department of Geriatrics 1, Affiliated Hospital of Changchuan University of Traditional Chinese Medicine, Changchun, 130012, China
| | - Bo Zhang
- Department of Geriatrics 1, Affiliated Hospital of Changchuan University of Traditional Chinese Medicine, Changchun, 130012, China
| | - Haibo Wang
- Department of Hepatopancreaticobiliary Surgery, Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116044, China.
| |
Collapse
|
32
|
Duan X, Jiang B, Yang J, Zhou L, Tian B, Mao X. FOXP3 inhibits MYC expression via regulating miR-198 and influences cell viability, proliferation and cell apoptosis in HepG2. Cancer Med 2018; 7:6182-6192. [PMID: 30378283 PMCID: PMC6308052 DOI: 10.1002/cam4.1780] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/24/2018] [Accepted: 08/22/2018] [Indexed: 12/12/2022] Open
Abstract
Objective Our study aimed to explore the effects of FOXP3 expression on liver neoplasms cells and to further investigate the relationship between FOXP3 and proto‐oncogene MYC. Methods QRT‐PCR was used for assessment of FOXP3 expression in liver neoplasms tissues and para‐carcinoma tissues. The effects of FOXP3 on cell viability were determined by CCK8 assay, clone formation experiment, and flow cytometry. For miRNA selection, chips were used to figure out the differentially expressed miRNAs in FOXP3‐overexpressing HepG2 cells. The result was followed by bioinformatics prediction to screen the possible MYC‐targeted miRNAs, and it was examined by dual luciferase assay and ChIP assay. The expression levels of MYC protein and apoptosis‐associated proteins (bcl2 and bax) were measured by Western blot assay. Results It showed an under‐regulated expression of FOXP3 in liver neoplasm tissues from qRT‐PCR results. Overexpression of FOXP3 contributed to cell apoptosis as well as suppressed tumor cells’ proliferation. MiR‐198 was detected to be highly expressed in FOXP3‐overexpressing HepG2 cells. FOXP3 regulated the transcription level of miR‐198 by binding to its promoter sequence and overexpressed miR‐198 could suppress tumor cells’ proliferation and promote cell apoptosis. There existed targeted relationship between miR‐198 and MYC gene. MiR‐198 inhibited cancer by suppressing the expression of MYC in liver neoplasm. Conclusion FOXP3 up‐regulated miR‐198 expression by binding to its promoter sequence specifically, while miR‐198 inhibited proto‐oncogene MYC via targeted relationship. High level of miR‐198 contributed to the apoptosis of tumor cells and suppressed cell viability meanwhile.
Collapse
Affiliation(s)
- Xiaohui Duan
- Department of Hepatobiliary Surgery/Research Laboratory of Hepatobiliary Tumor, Hunan Provincial People's Hospital, Changsha, China
| | - Bo Jiang
- Department of Hepatobiliary Surgery/Research Laboratory of Hepatobiliary Tumor, Hunan Provincial People's Hospital, Changsha, China
| | - Jianhui Yang
- Department of Hepatobiliary Surgery/Research Laboratory of Hepatobiliary Tumor, Hunan Provincial People's Hospital, Changsha, China
| | - Lixue Zhou
- Department of Hepatobiliary Surgery/Research Laboratory of Hepatobiliary Tumor, Hunan Provincial People's Hospital, Changsha, China
| | - Bingzhang Tian
- Department of Hepatobiliary Surgery/Research Laboratory of Hepatobiliary Tumor, Hunan Provincial People's Hospital, Changsha, China
| | - Xianhai Mao
- Department of Hepatobiliary Surgery/Research Laboratory of Hepatobiliary Tumor, Hunan Provincial People's Hospital, Changsha, China
| |
Collapse
|
33
|
Genome-Wide Screen for MicroRNAs Reveals a Role for miR-203 in Melanoma Metastasis. J Invest Dermatol 2018; 138:882-892. [DOI: 10.1016/j.jid.2017.09.049] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/30/2017] [Accepted: 09/11/2017] [Indexed: 11/18/2022]
|
34
|
Abstract
Patients suffering from Epidermodysplasia verruciformis (EV), a rare inherited skin disease, display a particular susceptibility to persistent infection with cutaneous genus beta-human papillomavirus (beta-HPV), such as HPV type 8. They have a high risk to develop non-melanoma skin cancer at sun-exposed sites. In various models evidence is emerging that cutaneous HPV E6 proteins disturb epidermal homeostasis and support carcinogenesis, however, the underlying mechanisms are not fully understood as yet. In this study we demonstrate that microRNA-203 (miR-203), a key regulator of epidermal proliferation and differentiation, is strongly down-regulated in HPV8-positive EV-lesions. We provide evidence that CCAAT/enhancer-binding protein α (C/EBPα), a differentiation-regulating transcription factor and suppressor of UV-induced skin carcinogenesis, directly binds the miR-203 gene within its hairpin region and thereby induces miR-203 transcription. Our data further demonstrate that the HPV8 E6 protein significantly suppresses this novel C/EBPα/mir-203-pathway. As a consequence, the miR-203 target ΔNp63α, a proliferation-inducing transcription factor, is up-regulated, while the differentiation factor involucrin is suppressed. HPV8 E6 specifically down-regulates C/EBPα but not C/EBPβ expression at the transcriptional level. As shown in knock-down experiments, C/EBPα is regulated by the acetyltransferase p300, a well-described target of cutaneous E6 proteins. Notably, p300 bound significantly less to the C/EBPα regulatory region in HPV8 E6 expressing keratinocytes than in control cells as demonstrated by chromatin immunoprecipitation. In situ analysis confirmed congruent suprabasal expression patterns of C/EBPα and miR-203 in non-lesional skin of EV-patients. In HPV8-positive EV-lesions both factors are potently down-regulated in vivo further supporting our in vitro data. In conclusion our study has unraveled a novel p300/C/EBPα/mir-203-dependent mechanism, by which the cutaneous HPV8 E6 protein may expand p63-positive cells in the epidermis of EV-patients and disturbs fundamental keratinocyte functions. This may drive HPV-mediated pathogenesis and may potentially also pave the way for skin carcinogenesis in EV-patients. Cutaneous genus beta-HPV types infect skin keratinocytes. Their potential role in skin carcinogenesis, particularly in immunosuppressed patients, has become a major field of interest. Patients suffering from the rare genetic disorder Epidermodysplasia verruciformis (EV) are highly susceptible to persistent genus beta-HPV infection and have an increased risk to develop non-melanoma skin cancer at sun-exposed sites. Thus, EV serves as a valuable model disease for studying genus beta-HPV biology. Here, we demonstrate that in human HPV8-infected EV skin lesions, the ‘stemness-repressing’ microRNA-203 is strongly down-regulated. In contrast, cells expressing the miR-203-regulated ‘stemness-maintaining’ factor p63, are highly amplified. Notably, we identified the transcription factor C/EBPα, a well-known suppressor of UV-induced skin carcinogenesis, as a p300-dependent target of the HPV8-encoded E6 oncoprotein and as a critical inducer of miR-203 gene expression. Our data provide evidence for a novel p300/C/EBPα/miR-203-dependent pathway, which links HPV8 infection to the expansion of p63-positive cells in the epidermis of EV-patients. This may contribute to the beta-HPV-induced disturbance of epidermal homeostasis and pave the way for skin carcinogenesis.
Collapse
|
35
|
Gutkoska J, LaRocco M, Ramirez-Medina E, de Los Santos T, Lawrence P. Host microRNA-203a Is antagonistic to the progression of foot-and-mouth disease virus infection. Virology 2017; 504:52-62. [PMID: 28152384 DOI: 10.1016/j.virol.2017.01.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/22/2017] [Accepted: 01/23/2017] [Indexed: 12/11/2022]
Abstract
Sam68 was previously shown to be a critical host factor for foot-and-mouth disease virus (FMDV) replication. MicroRNA (miR) miR-203a is reportedly a negative regulator of Sam68 expression both in vitro and in vivo. Here, transfection of miR-203a-3p and miR-203a-5p mimics separately and in combination in a porcine cell line followed by FMDV infection resulted in diminished viral protein synthesis and a 4 and 6log reduction in virus titers relative to negative controls, respectively. Unexpectedly, Sam68 expression was increased by miR-203a-5p transfection, but not miR-203a-3p. miR-203a-5p also down-regulated Survivin expression, which was predicted to play a role in FMDV infection. Moreover, miR-203a-5p but not miR-203a-3p affected a reduction in FMDV viral RNA. These effects were not replicated with a related Picornavirus, suggesting FMDV specificity. Importantly, miR-203a-3p and miR-203a-5p impaired FMDV infection across multiple FMDV serotypes. We concluded that miR-203a-3p and miR-203a-5p represent attractive potential naturally occurring bio-therapeutics against FMDV.
Collapse
Affiliation(s)
- Joseph Gutkoska
- Plum Island Animal Disease Center Foreign Animal Disease Research Unit (FADRU) Agricultural Research Service (ARS), United States Department of Agriculture (USDA), 40550 Route 25, Orient Point, NY 11957, United States
| | - Michael LaRocco
- Plum Island Animal Disease Center Foreign Animal Disease Research Unit (FADRU) Agricultural Research Service (ARS), United States Department of Agriculture (USDA), 40550 Route 25, Orient Point, NY 11957, United States
| | - Elizabeth Ramirez-Medina
- Plum Island Animal Disease Center Foreign Animal Disease Research Unit (FADRU) Agricultural Research Service (ARS), United States Department of Agriculture (USDA), 40550 Route 25, Orient Point, NY 11957, United States
| | - Teresa de Los Santos
- Plum Island Animal Disease Center Foreign Animal Disease Research Unit (FADRU) Agricultural Research Service (ARS), United States Department of Agriculture (USDA), 40550 Route 25, Orient Point, NY 11957, United States
| | - Paul Lawrence
- Plum Island Animal Disease Center Foreign Animal Disease Research Unit (FADRU) Agricultural Research Service (ARS), United States Department of Agriculture (USDA), 40550 Route 25, Orient Point, NY 11957, United States.
| |
Collapse
|
36
|
Hypoxia-Related Tumor Acidosis Affects MicroRNA Expression Pattern in Prostate and Breast Tumor Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 977:119-124. [DOI: 10.1007/978-3-319-55231-6_16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
Cells to Surgery Quiz: December 2016. J Invest Dermatol 2016; 136:e133. [PMID: 30487086 DOI: 10.1016/j.jid.2016.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
Wang Y, Guo H, Zhang D, Yu X, Leng X, Li S, Zhu W. Overexpression of SOX18 correlates with accelerated cell growth and poor prognosis in human pancreatic ductal adenocarcinoma. Biochem Biophys Res Commun 2016; 479:510-516. [DOI: 10.1016/j.bbrc.2016.09.099] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 09/20/2016] [Indexed: 12/23/2022]
|