1
|
Zhang W, Ma F, Su X, Zhu M, Wang X. Antimicrobial peptide WK-13-3D promotes apoptosis, autophagy, and ubiquitination in triple-negative breast cancer via binding immunoglobulin protein (BiP). Chem Biol Interact 2025; 415:111530. [PMID: 40294882 DOI: 10.1016/j.cbi.2025.111530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/08/2025] [Accepted: 04/25/2025] [Indexed: 04/30/2025]
Abstract
PURPOSE To elucidate the inhibitory mechanism of antimicrobial peptide WK-13-3D on triple-negative breast cancer (TNBC) by targeting the binding immunoglobulin protein (BiP), a key endoplasmic reticulum (ER) chaperone regulating unfolded protein response and tumor survival. METHODS TNBC cell lines (MDA-MB-231 and MDA-MB-468) were treated with WK-13-3D to assess proliferation, migration, invasion, and apoptosis. Pull-down assays identified interacting proteins, and Western blotting (WB) analyzed alterations in BiP, PERK, eIF2α, p-eIF2α, Caspase3, Cleaved-Caspase3, Bax, LC3, P62, AKT, p-AKT, mTOR, and p-mTOR. Transmission electron microscopy examined intracellular structures, while qPCR measured BiP mRNA levels. The effects of WK-13-3D on BiP ubiquitination were explored via co-immunoprecipitation (Co-IP). Animal tumor models were used to confirm the inhibitory effects, with BiP and Ki67 (a nuclear proliferation marker indicating actively dividing tumor cells) expression analyzed by immunohistochemistry (IHC). RESULTS WK-13-3D inhibited TNBC cell proliferation, migration, and invasion, while promoting apoptosis. Pull-down experiments identified 268 interacting proteins, with BiP being the most frequent. Databases (TIMER and TCGA) showed high BiP expression in breast cancer, associated with poor prognosis. WB assays revealed that WK-13-3D activated ER stress-induced apoptosis and autophagy via BiP. Co-IP demonstrated that WK-13-3D mediated BiP ubiquitination at sites 352 and 547 through K6 and K29 chains. IHC analysis further confirmed decreased Ki67 levels in WK-13-3D-treated tumors, reflecting suppressed proliferative activity. Animal experiments confirmed tumor growth inhibition. CONCLUSION WK-13-3D promotes apoptosis, autophagy and Ubiquitination in TNBC by modulating BiP.
Collapse
Affiliation(s)
- Wenjing Zhang
- College of Laboratory Medicine, Ningxia Medical University, Yinchuan, 750004, PR China
| | - Fei Ma
- College of Laboratory Medicine, Ningxia Medical University, Yinchuan, 750004, PR China
| | - Xuhong Su
- College of Laboratory Medicine, Ningxia Medical University, Yinchuan, 750004, PR China
| | - Mingxing Zhu
- College of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, PR China.
| | - Xiuqing Wang
- College of Laboratory Medicine, Ningxia Medical University, Yinchuan, 750004, PR China; Ningxia Key Laboratory of Clinical Pathogenic Microorganisms, Ningxia Medical University, Yinchuan, 750004, PR China.
| |
Collapse
|
2
|
Liu Y, Ma H, Zhang Q, Zhu Y, Chen L, Wang B, Cheng C, Lu F, Jiang T. Caffeic acid borate functionalized linear polyglycidol for targeted siRNA delivery in the treatment of primary biliary cholangitis. Int J Biol Macromol 2025; 311:143673. [PMID: 40334881 DOI: 10.1016/j.ijbiomac.2025.143673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 04/26/2025] [Accepted: 04/28/2025] [Indexed: 05/09/2025]
Abstract
Interfering with protein arginine methyltransferase 5 (PRMT5) gene expression with siRNA targeting is a promising strategy for precision primary biliary cholangitis (PBC) therapy, yet achieving effective and specific delivery of therapeutic agents to the liver remains challenging. In this study, we develop a caffeic acid borate derived linear polyglycidol polymer micelle CAPG, which can efficiently deliver siRNA to liver. The degradation of borate and hydrazone bonds in the high-ROS and acidic environment of inflammatory cells triggers micelle disintegration, facilitating siRNA release. Comprehensive in vivo experiments demonstrate that siRNA1@CAPG can significantly reduce the concentration of liver inflammation-related biomarkers and pro-inflammatory factors and notably increase superoxide dismutase (SOD) levels in mice, outperforming free siRNA1 in suppressing PRMT5 expression. Therefore, our study offers valuable reference for the treatment of primary biliary cholangitis.
Collapse
Affiliation(s)
- Ying Liu
- Affiliated Changshu Hospital of Nantong University, No. 18 Taishan Road, Changshu City, Jiangsu Province, China
| | - Haixia Ma
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Qiange Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuehong Zhu
- Affiliated Changshu Hospital of Nantong University, No. 18 Taishan Road, Changshu City, Jiangsu Province, China
| | - Liangyun Chen
- Affiliated Changshu Hospital of Nantong University, No. 18 Taishan Road, Changshu City, Jiangsu Province, China
| | - Bing Wang
- Affiliated Changshu Hospital of Nantong University, No. 18 Taishan Road, Changshu City, Jiangsu Province, China
| | - Cuie Cheng
- Affiliated Changshu Hospital of Nantong University, No. 18 Taishan Road, Changshu City, Jiangsu Province, China
| | - Fenying Lu
- Affiliated Changshu Hospital of Nantong University, No. 18 Taishan Road, Changshu City, Jiangsu Province, China
| | - Tingwang Jiang
- Affiliated Changshu Hospital of Nantong University, No. 18 Taishan Road, Changshu City, Jiangsu Province, China.
| |
Collapse
|
3
|
Meng X, Zhong Y, Kuang X, Zhang Y, Yang L, Cai Y, Wang F, He F, Xie H, Wang B, Li J. Targeting the STAT3/IL-36G signaling pathway can be a promising approach to treat rosacea. J Adv Res 2025; 71:429-440. [PMID: 38909883 DOI: 10.1016/j.jare.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/26/2024] [Accepted: 06/08/2024] [Indexed: 06/25/2024] Open
Abstract
BACKGROUND Rosacea is an inflammatory skin disorder characterized by the release of inflammatory mediators from keratinocytes, which are thought to play a crucial role in its pathogenesis. Despite an incidence of approximately 5.5%, rosacea is associated with a poor quality of life. However, as the pathogenesis of rosacea remains enigmatic, treatment options are limited. OBJECTIVES To investigate the pathogenesis of rosacea and explore new therapeutic strategies. METHODS Transcriptome data from rosacea patients combined with immunohistochemical staining were used to investigate the activation of STAT3 in rosacea. The role of STAT3 activation in rosacea was subsequently explored by inhibiting STAT3 activation both in vivo and in vitro. The key molecules downstream of STAT3 activation were identified through data analysis and experiments. Dual-luciferase assay and ChIP-qPCR analysis were used to validate the direct binding of STAT3 to the IL-36G promoter. DARTS, in combination with experimental screening, was employed to identify effective drugs targeting STAT3 for rosacea treatment. RESULTS STAT3 signaling was hyperactivated in rosacea and served as a promoter of the keratinocyte-driven inflammatory response. Mechanistically, activated STAT3 directly bind to the IL-36G promoter region to amplify downstream inflammatory signals by promoting IL-36G transcription, and treatment with a neutralizing antibody (α-IL36γ) could mitigate rosacea-like inflammation. Notably, a natural plant extract (pogostone), which can interact with STAT3 directly to inhibit its activation and affect the STAT3/IL36G signaling pathway, was screened as a promising topical medication for rosacea treatment. CONCLUSIONS Our study revealed a pivotal role for STAT3/IL36G signaling in the development of rosacea, suggesting that targeting this pathway might be a potential strategy for rosacea treatment.
Collapse
Affiliation(s)
- Xin Meng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Yun Zhong
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Xuyuan Kuang
- Department of Hyperbaric Oxygen, Xiangya Hospital, Central South University, Jiangxi, China; Department of Hyperbaric Oxygen, Xiangya Hospital, Central South University, Changsha, China
| | - Yiya Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Li Yang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yisheng Cai
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Fan Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Fanping He
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; Department of Plastic and Reconstructive Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Hongfu Xie
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Ben Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
4
|
Zhao H, Zhao H, Tang Y, Li M, Cai Y, Xiao X, He F, Huang H, Zhang Y, Li J. Skin-permeable gold nanoparticles with modifications azelamide monoethanolamine ameliorate inflammatory skin diseases. Biomark Res 2024; 12:118. [PMID: 39385245 PMCID: PMC11465885 DOI: 10.1186/s40364-024-00663-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Traditional topical drug delivery for treating inflammatory skin diseases suffers from poor skin penetration and long-term side effects. Metal nanoparticles show promising application in topical drug delivery for inflammatory skin diseases. METHODS Here, we synthesized a new type of nanoparticles, azelamide monoethanolamine-functionalized gold nanoparticles (Au-MEA NPs), based on citrate-capped gold nanoparticles (Au-CA NPs) via the ligand exchange method. The physical and chemical properties of Au-CA NPs and Au-MEA NPs were characterized. In vivo studies were performed using imiquimod-induced psoriasis and LL37-induced rosacea animal models, respectively. For in vitro studies, a model of cellular inflammation was established using HaCaT cells stimulated with TNF-α. In addition, proteomics, gelatin zymography, and other techniques were used to investigate the possible therapeutic mechanisms of the Au-MEA NPs. RESULTS We found that Au-MEA NPs exhibited better stability and permeation properties compared to conventional Au-CA NPs. Transcutaneously administered Au-MEA NPs exerted potent therapeutic efficacy against both rosacea-like and psoriasiform skin dermatitis in vivo without overt signs of toxicity. Mechanistically, Au-MEA NPs reduced the production of pro-inflammatory mediators in keratinocytes by promoting SOD activity and inhibiting the activity of MMP9. CONCLUSION Au-MEA NPs have the potential to be a topical nanomedicine for the effective and safe treatment of inflammatory skin diseases.
Collapse
Affiliation(s)
- He Zhao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Han Zhao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yan Tang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Mengfan Li
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Yisheng Cai
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xin Xiao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Fanping He
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hongwen Huang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China.
| | - Yiya Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
5
|
Yang F, Wang L, Song D, Zhang L, Wang X, Du D, Jiang X. Signaling pathways and targeted therapy for rosacea. Front Immunol 2024; 15:1367994. [PMID: 39351216 PMCID: PMC11439730 DOI: 10.3389/fimmu.2024.1367994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 08/22/2024] [Indexed: 10/04/2024] Open
Abstract
Rosacea is a chronic skin inflammatory disease with a global prevalence ranging from 1% to 20%. It is characterized by facial erythema, telangiectasia, papules, pustules, and ocular manifestations. Its pathogenesis involves a complex interplay of genetic, environmental, immune, microbial, and neurovascular factors. Recent studies have advanced our understanding of its molecular basis, focusing on toll-like receptor (TLR) 2 pathways, LL37 expression, mammalian target of rapamycin (mTOR) activation, interleukin (IL)-17 signaling, transient receptor potential vanilloid (TRPV) functions, and the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathways. LL37-associated signaling pathways, particularly involving TLR2 and mTORC1, are critical in the pathogenesis of rosacea. LL37 interacts with signaling molecules such as extracellular signal-regulated kinases 1 and 2 (ERK1/2), nuclear factor kappa B (NF-κB), inflammasomes, C-X-C motif chemokine ligand 8 (CXCL8), mas-related G-protein-coupled receptor X2 (MRGPRX2)-TRPV4, and vascular endothelial growth factor (VEGF). This interaction activates macrophages, neutrophils, mast cells, and vascular endothelial cells, leading to cytokine release including tumor necrosis factor-alpha (TNF-α), IL-6, IL-1β, C motif chemokine ligand (CCL) 5, CXCL9, and CXCL10. These processes contribute to immune response modulation, inflammation, and angiogenesis in rosacea pathophysiology. The IL-17 signaling pathway also plays a crucial role in rosacea, affecting angiogenesis and the production of inflammatory cytokines. In addition, recent insights into the JAK/STAT pathways have revealed their integral role in inflammatory and angiogenic mechanisms associated with rosacea. Rosacea treatment currently focuses on symptom management, with emerging insights into these molecular pathways providing more targeted and effective therapies. Biological agents targeting specific cytokines, IL-17 inhibitors, JAK inhibitors, and VEGF antagonists are promising for future rosacea therapy, aiming for enhanced efficacy and fewer side effects. This review provides a comprehensive overview of the current knowledge regarding signaling pathways in rosacea and potential targeted therapeutic strategies.
Collapse
Affiliation(s)
- Fengjuan Yang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Lian Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Deyu Song
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Zhang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyun Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Du
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Geng RSQ, Bourkas AN, Sibbald RG, Sibbald C. Biomarkers in rosacea: A systematic review. J Eur Acad Dermatol Venereol 2024; 38:1048-1057. [PMID: 38078369 DOI: 10.1111/jdv.19732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/14/2023] [Indexed: 05/26/2024]
Abstract
Rosacea is a chronic and psychologically ladened disease affecting 1%-3% of people worldwide. The identification and validation of biomarkers in rosacea patients has the potential to improve disease progression, support diagnosis, provide objective measures for clinical trials and aid in management. The objective of this review is to systematically identify all rosacea biomarkers, categorize them by type and identify trends to improve disease expression. Eligibility criteria for this review (PROSPERO CRD42023397510) include randomized controlled trials, case-control studies, cohort studies and other observational studies. No restrictions were placed on patient demographics (age, sex, ethnicity) or language of publication until February 2023. Quality of studies was assessed using the National Institute of Health quality assessment tool. The literature search was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines. A total of 805 unique articles were screened based on the applied inclusion and exclusion criteria. After the articles were screened based on title/abstract and full-text, a total of 38 studies were included, reporting on a total of 119 unique biomarkers. The results of this review and current rosacea pathogenic mechanisms provide the greatest support for the innate cathelicidin and inflammasome, Th1 and Th17 pathways. The most commonly reported biomarkers include IL-1β, TNF-α, IL-37, IFN-γ and MMP-9. Biomarkers identified in this study support current theories of rosacea pathogenesis and provide direction for research to further our knowledge. However, more research is needed to identify biomarkers panels that can provide diagnostic utility. This may be difficult due to the heterogeneity of the disease and potential differences between rosacea subtypes.
Collapse
Affiliation(s)
- R S Q Geng
- Temerty School of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - A N Bourkas
- School of Medicine, Queen's University, Kingston, Ontario, Canada
| | - R G Sibbald
- Dalla Lana School of Public Health & Division of Dermatology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - C Sibbald
- Division of Pediatric Dermatology, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Graff P, Woerz D, Wilzopolski J, Voss A, Sarrazin J, Blimkie TM, Weiner J, Kershaw O, Panwar P, Hackett T, Lau S, Brömme D, Beule D, Lee YA, Hancock REW, Gruber AD, Bäumer W, Hedtrich S. Extracellular Matrix Remodeling in Atopic Dermatitis Harnesses the Onset of an Asthmatic Phenotype and Is a Potential Contributor to the Atopic March. J Invest Dermatol 2024; 144:1010-1021.e23. [PMID: 37838332 DOI: 10.1016/j.jid.2023.09.278] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 10/16/2023]
Abstract
The development of atopic dermatitis in infancy, and subsequent allergies, such as asthma in later childhood, is known as the atopic march. The mechanism is largely unknown, however the course of disease indicates an inter-epithelial crosstalk, through the onset of inflammation in the skin and progression to other mucosal epithelia. In this study, we investigated if and how skin-lung epithelial crosstalk contributes to the development of the atopic march. First, we emulated inter-epithelial crosstalk through indirect coculture of bioengineered atopic-like skin disease models and three-dimensional bronchial epithelial models triggering an asthma-like phenotype in the latter. A subsequent secretome analysis identified thrombospondin-1, CD44, complement factor C3, fibronectin, and syndecan-4 as potentially relevant skin-derived mediators. Because these mediators are extracellular matrix-related proteins, we then studied the involvement of the extracellular matrix, unveiling distinct proteomic, transcriptomic, and ultrastructural differences in atopic samples. The latter indicated extracellular matrix remodeling triggering the release of the above-mentioned mediators. In vivo mouse data showed that exposure to these mediators dysregulated activated circadian clock genes which are increasingly discussed in the context of atopic diseases and asthma development. Our data point toward the existence of a skin-lung axis that could contribute to the atopic march driven by skin extracellular matrix remodeling.
Collapse
Affiliation(s)
- Patrick Graff
- Institute for Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Germany
| | - Dana Woerz
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany
| | - Jenny Wilzopolski
- Institute of Pharmacology and Toxicology, Department of Veterinary Medicine, Freie Universität Berlin, Germany
| | - Anne Voss
- Institute of Veterinary Pathology, Freie Universität Berlin, Germany
| | - Jana Sarrazin
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany
| | - Travis M Blimkie
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, British Columbia, Canada
| | - January Weiner
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany
| | - Olivia Kershaw
- Institute of Veterinary Pathology, Freie Universität Berlin, Germany
| | - Preety Panwar
- Department of Oral Biological & Medical Sciences, Faculty of Dentistry, University of British Columbia; Centre for Blood Research, University of British Columbia, British Columbia, Canada
| | - Tillie Hackett
- Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia; Centre for Heart Lung Innovation, St Paul's Hospital, British Columbia, Canada
| | - Susanne Lau
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin, Berlin, Germany
| | - Dieter Brömme
- Department of Oral Biological & Medical Sciences, Faculty of Dentistry, University of British Columbia; Centre for Blood Research, University of British Columbia, British Columbia, Canada
| | - Dieter Beule
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany
| | - Young-Ae Lee
- Max Delbrück Center for Molecular Medicine, Berlin, Germany, Clinic for Pediatric Allergy, Experimental and Clinical Research Center of Charité Universitätsmedizin Berlin and Max Delbrück Center, Berlin, Germany
| | - Robert E W Hancock
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, British Columbia, Canada
| | - Achim D Gruber
- Institute of Veterinary Pathology, Freie Universität Berlin, Germany
| | - Wolfgang Bäumer
- Institute of Pharmacology and Toxicology, Department of Veterinary Medicine, Freie Universität Berlin, Germany
| | - Sarah Hedtrich
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany; Max Delbrück Center for Molecular Medicine, Berlin, Germany, Clinic for Pediatric Allergy, Experimental and Clinical Research Center of Charité Universitätsmedizin Berlin and Max Delbrück Center, Berlin, Germany; Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada; Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
8
|
Zhao H, Zhao H, Li M, Tang Y, Xiao X, Cai Y, He F, Huang H, Zhang Y, Li J. Twin defect-rich Pt ultrathin nanowire nanozymes alleviate inflammatory skin diseases by scavenging reactive oxygen species. Redox Biol 2024; 70:103055. [PMID: 38290385 PMCID: PMC10844124 DOI: 10.1016/j.redox.2024.103055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/28/2023] [Accepted: 01/22/2024] [Indexed: 02/01/2024] Open
Abstract
Nanozymes with superior antioxidant properties offer new hope for treating oxidative stress-related inflammatory skin diseases. However, lacking sufficient catalytic activity or having complex material designs limit the application of current metallic nanozymes in inflammatory skin diseases. Here, we report a simple and effective twin-defect platinum nanowires (Pt NWs) enzyme with multiple mimetic enzymes and broad-spectrum ROS scavenging capability for the treatment of inflammatory skin diseases in mice (including psoriasis and rosacea). Pt NWs with simultaneous superoxide dismutase, glutathione peroxidase and catalase mimetic enzyme properties exhibit cytoprotective effects against ROS-mediated damage at extremely low doses and significantly improve treatment outcomes in psoriasis- and rosacea-like mice. Meanwhile, these ultrasmall sizes of Pt NWs allow the nanomaterials to effectively penetrate the skin and do not produce significant biotoxicity. Therefore, Pt NWs have potential applications in treating diseases related to oxidative stress or inflammation.
Collapse
Affiliation(s)
- He Zhao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Han Zhao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Mengfan Li
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Yan Tang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xin Xiao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yisheng Cai
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Fanping He
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hongwen Huang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Yiya Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
9
|
Feng C, Zhang H, Wang P, Zhang L, Liu X, Yan G, Yan Y, Yang J, Liu J, Tan F, Wang X, Zeng Q. Oroxylin A suppress LL-37 generated rosacea-like skin inflammation through the modulation of SIRT3-SOD2-NF-κB signaling pathway. Int Immunopharmacol 2024; 129:111636. [PMID: 38364746 DOI: 10.1016/j.intimp.2024.111636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/18/2024]
Abstract
Rosacea is a long-term inflammatory skin disease associated with the dysfunction of vascular and immunological systems. Treatment options for rosacea are difficult to implement. Oroxylin A(OA), a traditional Chinese medicine, has anti-inflammation effects in a variety of inflammatory diseases. However, it is not known that whether OA exerts protective effects against LL-37-induced rosacea. In this study, bioinformatics analyses showed that the mechanisms of rosacea and the pharmacological targets of OA were highly overlapped. Subsequently, it was shown that the administration of OA resulted in a notable amelioration of rosacea-like skin lesions, as evidenced by a reduction in immune cell infiltration, modulation of cytokine production, and inhibition of angiogenesis. Plus, it was shown that OA effectively suppressed the generation of ROS generated by LL-37, as well as the subsequent activation of NF-κB signaling pathway. To explore further, we found that OA inhibited LL-37-induced ROS production via SIRT3-SOD2 signaling pathway in keratinocytes. Based on the aforementioned evidence, it can be inferred that OA exhibits a mitigating effect on the inflammatory response in rosacea by modulating the SIRT3-SOD2-NF-κB signaling pathway.
Collapse
Affiliation(s)
- Chunmei Feng
- Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University, Shanghai Skin Disease Hospital, Shanghai 200443, China; Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Haiyan Zhang
- Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University, Shanghai Skin Disease Hospital, Shanghai 200443, China; Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Peiru Wang
- Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University, Shanghai Skin Disease Hospital, Shanghai 200443, China; Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Linglin Zhang
- Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University, Shanghai Skin Disease Hospital, Shanghai 200443, China; Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Xiaojing Liu
- Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University, Shanghai Skin Disease Hospital, Shanghai 200443, China; Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Guorong Yan
- Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University, Shanghai Skin Disease Hospital, Shanghai 200443, China; Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Yu Yan
- Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University, Shanghai Skin Disease Hospital, Shanghai 200443, China; Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Jin Yang
- Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University, Shanghai Skin Disease Hospital, Shanghai 200443, China; Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Jia Liu
- Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University, Shanghai Skin Disease Hospital, Shanghai 200443, China; Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Fei Tan
- Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University, Shanghai Skin Disease Hospital, Shanghai 200443, China; Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China.
| | - Xiuli Wang
- Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University, Shanghai Skin Disease Hospital, Shanghai 200443, China; Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China.
| | - Qingyu Zeng
- Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University, Shanghai Skin Disease Hospital, Shanghai 200443, China; Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China.
| |
Collapse
|
10
|
Nam H, Lim JH, Kim TW, Kim EN, Oum SJ, Bae SH, Park CW. Extracellular Superoxide Dismutase Attenuates Hepatic Oxidative Stress in Nonalcoholic Fatty Liver Disease through the Adenosine Monophosphate-Activated Protein Kinase Activation. Antioxidants (Basel) 2023; 12:2040. [PMID: 38136160 PMCID: PMC10740975 DOI: 10.3390/antiox12122040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Oxidative stress is key in type 2 diabetes-associated nonalcoholic fatty liver disease (NAFLD). We explored whether extracellular superoxide dismutase (EC-SOD) activates adenosine monophosphate-activated protein kinase (AMPK) to enhance antioxidant synthesis and lipid metabolism in NAFLD. Human recombinant EC-SOD (hEC-SOD) was administered to 8-week-old male C57BLKS/J db/db mice through intraperitoneal injection once a week for 8 weeks. Target molecules involved in oxidative stress and lipid metabolism were investigated. hEC-SOD improved insulin resistance and systemic and hepatic oxidative stress characterized by increases in urinary 8-hydroxy-deoxyguanosine and 8-isoprostane levels in db/db mice and a decrease in DHE expression in the liver, respectively. Hepatic SOD3 expression in db/db mice was reversed by hEC-SOD, which improved hepatic steatosis, inflammation with M2 polarization, apoptosis, autophagy, fibrosis and lipid metabolism in db/db mice, as reflected by the changes in serum and hepatic markers, monocyte chemoattractant protein-1, tumor necrosis factor-α, TUNEL-positive cells, Bcl-2/BAX ratio, beclin1 and LC3-II/LC3-1. At the molecular level, hEC-SOD increased phosphorylated-AMPK related to CaMKKß, activation of peroxisome proliferative-activated receptor-gamma coactivator (PGC)-1α and dephosphorylation of forkhead box O (FoxO)1 and their subsequent downstream signaling. In HepG2Cs cells using AMPKα1 and AMPKα2 siRNA, hEC-SOD demonstrated a protective effect via the direct activation of both AMPK-PGC-1α and AMPK-FoxO1. EC-SOD might be a potential therapeutic agent for NAFLD through the activation of AMPK-PGC-1α and AMPK-FoxO1 signaling in hepatocytes, which modulates lipid metabolism, leading to anti-inflammatory, antioxidative and antiapoptotic effects and improving autophagy in the liver.
Collapse
Affiliation(s)
- Heechul Nam
- Division of Hepatology, Department of Internal Medicine, Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Ji Hee Lim
- Division of Nephrology, Department of Internal Medicine, Catholic University of Korea, Seoul 06591, Republic of Korea; (J.H.L.); (T.W.K.); (E.N.K.); (S.-J.O.)
| | - Tae Woo Kim
- Division of Nephrology, Department of Internal Medicine, Catholic University of Korea, Seoul 06591, Republic of Korea; (J.H.L.); (T.W.K.); (E.N.K.); (S.-J.O.)
| | - Eun Nim Kim
- Division of Nephrology, Department of Internal Medicine, Catholic University of Korea, Seoul 06591, Republic of Korea; (J.H.L.); (T.W.K.); (E.N.K.); (S.-J.O.)
| | - Sae-Jong Oum
- Division of Nephrology, Department of Internal Medicine, Catholic University of Korea, Seoul 06591, Republic of Korea; (J.H.L.); (T.W.K.); (E.N.K.); (S.-J.O.)
- Department of Medicine, School of Medicine, St. George’s University, St. George 11739, Grenada
| | - Si Hyun Bae
- Division of Hepatology, Department of Internal Medicine, Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Cheol Whee Park
- Division of Nephrology, Department of Internal Medicine, Catholic University of Korea, Seoul 06591, Republic of Korea; (J.H.L.); (T.W.K.); (E.N.K.); (S.-J.O.)
- Institute for Aging and Metabolic Diseases, Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
11
|
Zhou L, Zhong Y, Wang Y, Deng Z, Huang Y, Wang Q, Xie H, Zhang Y, Li J. EGCG identified as an autophagy inducer for rosacea therapy. Front Pharmacol 2023; 14:1092473. [PMID: 36937834 PMCID: PMC10014537 DOI: 10.3389/fphar.2023.1092473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/13/2023] [Indexed: 03/04/2023] Open
Abstract
Background: Rosacea is a common facial skin inflammatory disease featured by hyperactivation of mTORC1 signaling in the epidermis. Due to unclear pathogenesis, the effective treatment options for rosacea remain limited. Methods: Weighted gene co-expression network analysis (WGCNA) analyzed the relationship between epidermis autophagy and mTOR pathways in rosacea, and further demonstrated it through immunofluorescence and qPCR analysis. A potential therapeutic agent for rosacea was predicted based on the key genes of the WGCNA module. In vivo and in vitro experiments were conducted to verify its therapeutic role. Drug-target prediction (TargetNet, Swiss, and Tcmsp) and molecular docking offered potential pharmacological targets. Results: WGCNA showed that epidermis autophagy was related to the activation of mTOR pathways in rosacea. Next, autophagy was downregulated in the epidermis of rosacea, which was regulated by mTOR. In addition, the in vivo experiment demonstrated that autophagy induction could be an effective treatment strategy for rosacea. Subsequently, based on the key genes of the WGCNA module, epigallocatechin-3-gallate (EGCG) was predicted as a potential therapeutic agent for rosacea. Furthermore, the therapeutic role of EGCG on rosacea was confirmed in vivo and in vitro. Finally, drug-target prediction and molecular docking revealed that AKT1/MAPK1/MMP9 could be the pharmacological targets of EGCG in rosacea. Conclusion: Collectively, our findings revealed the vital role of autophagy in rosacea and identified that EGCG, as a therapeutic agent for rosacea, attenuated rosacea-like inflammation via inducing autophagy in keratinocytes.
Collapse
Affiliation(s)
- Lei Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Yun Zhong
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Yaling Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhili Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yingxue Huang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Qian Wang
- Hunan Binsis Biotechnology Co, Ltd., Changsha, China
| | - Hongfu Xie
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yiya Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yiya Zhang, ; Ji Li,
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yiya Zhang, ; Ji Li,
| |
Collapse
|
12
|
Zhou XY, Chen K, Zhang JA. Mast cells as important regulators in the development of psoriasis. Front Immunol 2022; 13:1022986. [PMID: 36405690 PMCID: PMC9669610 DOI: 10.3389/fimmu.2022.1022986] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/24/2022] [Indexed: 08/22/2023] Open
Abstract
Psoriasis is a chronic inflammatory immune skin disease mediated by genetic and environmental factors. As a bridge between innate and adaptive immunity, mast cells are involved in the initiation, development, and maintenance of psoriasis by interactions and communication with a variety of cells. The current review describes interactions of mast cells with T cells, Tregs, keratinocytes, adipocytes, and sensory neurons in psoriasis to emphasize the important role of mast cell-centered cell networks in psoriasis.
Collapse
Affiliation(s)
| | | | - Jia-An Zhang
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| |
Collapse
|
13
|
Zhang Y, Li Y, Zhou L, Yuan X, Wang Y, Deng Q, Deng Z, Xu S, Wang Q, Xie H, Li J. Nav1.8 in keratinocytes contributes to ROS-mediated inflammation in inflammatory skin diseases. Redox Biol 2022; 55:102427. [PMID: 35952475 PMCID: PMC9372634 DOI: 10.1016/j.redox.2022.102427] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/21/2022] [Accepted: 07/30/2022] [Indexed: 11/22/2022] Open
Abstract
Reactive oxygen species (ROS)-activated proinflammatory signals in keratinocytes play a crucial role in the immunoregulation of inflammatory skin diseases, including rosacea and psoriasis. Nav1.8 is a voltage-gated sodium ion channel, and its abnormal expression in the epidermal layer contributes to pain hypersensitivity in the skin. However, whether and how epidermal Nav1.8 is involved in skin immunoregulation remains unclear. This study was performed to identify the therapeutic role of Nav1.8 in inflammatory skin disorders. We found that Nav1.8 expression was significantly upregulated in the epidermis of rosacea and psoriasis skin lesions. Nav1.8 knockdown ameliorated skin inflammation in LL37-and imiquimod-induced inflammation mouse models. Transcriptome sequencing results indicated that Nav1.8 regulated the expression of pro-inflammatory mediators (IL1β and IL6) in keratinocytes, thereby contributing to immune infiltration in inflammatory skin disorders. In vitro, tumor necrosis factor alpha (TNFα), a cytokine that drives the development of various inflammatory skin disorders, increased Nav1.8 expression in keratinocytes. Knockdown of Nav1.8 eliminated excess ROS production, thereby attenuating the TNFα-induced production of inflammatory mediators; however, a Nav1.8 blocker did not have the same effect. Mechanistically, Nav1.8 reduced superoxide dismutase 2 (SOD2) activity by directly binding to SOD2 to prevent its deacetylation and mitochondrial localization, subsequently inducing ROS accumulation. Collectively, our study describes a central role for Nav1.8 in regulating pro-inflammatory responses in the skin and indicates a novel therapeutic strategy for rosacea and psoriasis.
Collapse
Affiliation(s)
- Yiya Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yangfan Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Lei Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Yuan
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Yaling Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Qing Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhili Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - San Xu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Qian Wang
- Hunan Binsis Biotechnology Co., Ltd, Changsha, China
| | - Hongfu Xie
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
14
|
Matus CE, Ehrenfeld P, Figueroa CD. The family of kallikrein-related peptidases and kinin peptides as modulators of epidermal homeostasis. Am J Physiol Cell Physiol 2022; 323:C1070-C1087. [PMID: 35993513 DOI: 10.1152/ajpcell.00012.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The epidermis is the outermost skin layer and is part of one of the largest organs in the body; it is supported by the dermis, a network of fibrils, blood vessels, pilosebaceous units, sweat glands, nerves, and cells. The skin as a whole is a protective shield against numerous noxious agents, including microorganisms and chemical and physical factors. These functions rely on the activity of multiple growth factors, peptide hormones, proteases, and specific signaling pathways that are triggered by the activation of distinct types of receptors sited in the cell membranes of the various cell types present in the skin. The human kallikrein family comprises a large group of 15 serine proteases synthesized and secreted by different types of epithelial cells throughout the body, including the skin. At this site, they initiate a proteolytic cascade that generates the active forms of the proteases, some of which regulate skin desquamation, activation of cytokines, and antimicrobial peptides. Kinin peptides are formed by the action of plasma and tissue kallikreins on kininogens, two plasma proteins produced in the liver and other organs. Although kinins are well known for their proinflammatory abilities, in the skin they are also considered important modulators of keratinocyte differentiation. In this review, we summarize the contributions of the kallikreins and kallikrein-related peptidases family and those of kinins and their receptors in skin homeostasis, with special emphasis on their pathophysiological role.
Collapse
Affiliation(s)
- Carola E Matus
- Departament of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile.,Center of Molecular Biology and Pharmacogenetics, Universidad de La Frontera, Temuco, Chile.,Center of Biomedical and Morphofunctional Sciences, Universidad de La Frontera, Temuco, Chile
| | - Pamela Ehrenfeld
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile.,Center for Interdisciplinary Studies on Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Carlos D Figueroa
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile.,Center for Interdisciplinary Studies on Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
15
|
Mendonça JDS, Guimarães RDCA, Zorgetto-Pinheiro VA, Fernandes CDP, Marcelino G, Bogo D, Freitas KDC, Hiane PA, de Pádua Melo ES, Vilela MLB, do Nascimento VA. Natural Antioxidant Evaluation: A Review of Detection Methods. Molecules 2022; 27:3563. [PMID: 35684500 PMCID: PMC9182375 DOI: 10.3390/molecules27113563] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 02/04/2023] Open
Abstract
Antioxidants have drawn the attention of the scientific community due to being related to the prevention of various degenerative diseases. The antioxidant capacity has been extensively studied in vitro, and different methods have been used to assess its activity. However, the main issues related to studying natural antioxidants are evaluating whether these antioxidants demonstrate a key role in the biological system and assessing their bioavailability in the organism. The majority of outcomes in the literature are controversial due to a lack of method standardization and their proper application. Therefore, this study aims to compile the main issues concerning the natural antioxidant field of study, comparing the most common in vitro methods to evaluate the antioxidant activity of natural compounds, demonstrating the antioxidant activity in biological systems and the role of the main antioxidant enzymes of redox cellular signaling and explaining how the bioavailability of bioactive compounds is evaluated in animal models and human clinical trials.
Collapse
Affiliation(s)
- Jenifer da Silva Mendonça
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (J.d.S.M.); (R.d.C.A.G.); (V.A.Z.-P.); (G.M.); (D.B.); (K.d.C.F.); (P.A.H.); (E.S.d.P.M.)
| | - Rita de Cássia Avellaneda Guimarães
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (J.d.S.M.); (R.d.C.A.G.); (V.A.Z.-P.); (G.M.); (D.B.); (K.d.C.F.); (P.A.H.); (E.S.d.P.M.)
| | - Verônica Assalin Zorgetto-Pinheiro
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (J.d.S.M.); (R.d.C.A.G.); (V.A.Z.-P.); (G.M.); (D.B.); (K.d.C.F.); (P.A.H.); (E.S.d.P.M.)
| | - Carolina Di Pietro Fernandes
- Group of Spectroscopy and Bioinformatics Applied Biodiversity and Health (GEBABS), Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
| | - Gabriela Marcelino
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (J.d.S.M.); (R.d.C.A.G.); (V.A.Z.-P.); (G.M.); (D.B.); (K.d.C.F.); (P.A.H.); (E.S.d.P.M.)
| | - Danielle Bogo
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (J.d.S.M.); (R.d.C.A.G.); (V.A.Z.-P.); (G.M.); (D.B.); (K.d.C.F.); (P.A.H.); (E.S.d.P.M.)
| | - Karine de Cássia Freitas
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (J.d.S.M.); (R.d.C.A.G.); (V.A.Z.-P.); (G.M.); (D.B.); (K.d.C.F.); (P.A.H.); (E.S.d.P.M.)
| | - Priscila Aiko Hiane
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (J.d.S.M.); (R.d.C.A.G.); (V.A.Z.-P.); (G.M.); (D.B.); (K.d.C.F.); (P.A.H.); (E.S.d.P.M.)
| | - Elaine Silva de Pádua Melo
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (J.d.S.M.); (R.d.C.A.G.); (V.A.Z.-P.); (G.M.); (D.B.); (K.d.C.F.); (P.A.H.); (E.S.d.P.M.)
- Group of Spectroscopy and Bioinformatics Applied Biodiversity and Health (GEBABS), Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
- School of Medicine, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
| | | | - Valter Aragão do Nascimento
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (J.d.S.M.); (R.d.C.A.G.); (V.A.Z.-P.); (G.M.); (D.B.); (K.d.C.F.); (P.A.H.); (E.S.d.P.M.)
- Group of Spectroscopy and Bioinformatics Applied Biodiversity and Health (GEBABS), Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
- School of Medicine, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
| |
Collapse
|
16
|
Agrahari G, Sah SK, Lee MJ, Bang CH, Kim YH, Kim HY, Kim TY. Inhibitory effects of superoxide dismutase 3 on IgE production in B cells. Biochem Biophys Rep 2022; 29:101226. [PMID: 35155837 PMCID: PMC8822298 DOI: 10.1016/j.bbrep.2022.101226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 01/15/2022] [Accepted: 01/28/2022] [Indexed: 10/31/2022] Open
Abstract
Immunoglobulin E (IgE) functions as a first-line defense against parasitic infections. However, aberrant production of IgE is known to be associated with various life-threatening allergic diseases. Superoxide dismutase 3 (SOD3) has been found to suppress IgE in various allergic diseases such as allergic conjunctivitis, ovalbumin-induced allergic asthma, and dust mite-induced atopic dermatitis-like skin inflammation. However, the role of SOD3 in the regulation of IgE production in B cells remains elusive. In this study, we investigated the effect of SOD3 on LPS/IL-4 and anti-CD40/IL-4-mediated secretion of IgE in murine B cells. Our data showed that SOD3 can suppress both LPS/IL-4 and antiCD40/IL-7-induced IgE secretion in B cells isolated from both wild-type (SOD3+/+) and SOD3 knock-out (SOD3−/−) mice. Interestingly, B cells isolated from SOD3−/− mice showed higher secretion of IgE, whereas, the use of DETCA, a known inhibitor of SOD3 activity, reversed the inhibitory effect of SOD3 on IgE production. Similarly, SOD3 was found to reduce the proliferation, IgE isotype switch, ROS level, and CCL17 and CCL22 productions in B cells. Furthermore, SOD3 was found to suppress both LPS/IL-4 and anti-CD40/IL-4-mediated activation of downstream signaling such as JAK1/JAK3, STAT6, NF-κB, p38, and JNK in B cells. Taken together, our data showed that SOD3 can be used as an alternative therapy to restrict IgE-mediated allergic diseases. SOD3 suppresses LPS/IL-4 and anti-CD40/IL-4-induced secretion of IgE in B cells SOD3 reduces the expression of IgE isotype class switch recombination genes. SOD3 suppresses the LPS/IL-4 and anti-CD40/IL-4-induced superoxide production. SOD3 suppresses the LPS/IL-4 and anti-CD40/IL-4-induced chemokines secretions. SOD3 modulate JAK-STAT, p38, JNK, and NF-κB signaling pathways in B cells.
Collapse
|
17
|
Li Y, Yang L, Wang Y, Deng Z, Xu S, Xie H, Zhang Y, Li J. Exploring metformin as a candidate drug for rosacea through network pharmacology and experimental validation. Pharmacol Res 2021; 174:105971. [PMID: 34763093 DOI: 10.1016/j.phrs.2021.105971] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022]
Abstract
Rosacea is a common chronic inflammatory disease that affects the middle of the face. Due to the unclear pathogenesis, the effective treatment options for rosacea remain limited. In this study, weighted gene co-expression network analyses (WGCNA) identified three rosacea-related hub modules, which were involved in immune-, metabolic- and development- related signaling pathways. Next, the key genes from green and brown modules were submitted to CMap database for drug prediction and metformin was identified as a candidate drug for rosacea. Moreover, network pharmacology analysis identified pharmacological targets of metformin and demonstrated that metformin could help in treating rosacea partly by modulating inflammatory and angiogenesis signaling pathways. Finally, we verified the therapeutic role and mechanism of metformin on rosacea in vivo and vitro. We found that metformin treatment significantly improved rosacea-like skin lesions including immune cells infiltration, cytokines/chemokines expression and angiogenesis. Moreover, metformin suppressed LL37- and TNF-α-induced the ROS production and MAPK-NF-κB signal activation in keratinocytes cells. In conclusion, our findings identified and verified metformin as a novel therapeutic candidate for rosacea, and it alleviates the pathological symptoms, possibly by suppressing inflammatory responses, angiogenesis in rosacea.
Collapse
Affiliation(s)
- Yangfan Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan key laboratory of aging biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders,Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Li Yang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan key laboratory of aging biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders,Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Yaling Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan key laboratory of aging biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders,Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Zhili Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan key laboratory of aging biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders,Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - San Xu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan key laboratory of aging biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders,Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Hongfu Xie
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan key laboratory of aging biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders,Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Yiya Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan key laboratory of aging biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders,Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China.
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan key laboratory of aging biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders,Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China; Department of Dermatology, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, China.
| |
Collapse
|
18
|
Hladkykh FV, Chyzh MO, Manchenko AO, Belochkіna IV, Mikhailova IP. EFFECT OF CRYOPRESERVED PLACENTA EXTRACT ON SOME BIOCHEMICAL INDICES OF THERAPEUTIC EFFICIENCY AND TOXICITY OF DICLOFENAC SODIUM IN ADJUVANT-INDUCED EXPERIMENTAL ARTHRITIS. PHARMACY & PHARMACOLOGY 2021. [DOI: 10.19163/2307-9266-2021-9-4-278-293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- F. V. Hladkykh
- 1. Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine
23, Pereyaslavska Str., Kharkiv, Ukraine, 61015
2. State Organization “Grigoriev Institute for Medical Radiology and Oncology of the National Academy
of Medical Sciences of Ukraine”
82, Pushkinska Str., Kharkiv, Ukraine, 61024
| | - M. O. Chyzh
- Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine
23, Pereyaslavska Str., Kharkiv, Ukraine, 61015
| | - A. O. Manchenko
- Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine
23, Pereyaslavska Str., Kharkiv, Ukraine, 61015
| | - I. V. Belochkіna
- Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine
23, Pereyaslavska Str., Kharkiv, Ukraine, 61015
| | - I. P. Mikhailova
- Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine
23, Pereyaslavska Str., Kharkiv, Ukraine, 61015
| |
Collapse
|
19
|
Zhang H, Zhang M, Wang Y, Zheng Q, Tang K, Liu R, Li X, Fang R, Sun Q. Murine models of rosacea: a review. J Cosmet Dermatol 2021; 21:905-909. [PMID: 33872453 DOI: 10.1111/jocd.14164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023]
Abstract
Rosacea is a chronic inflammatory disease characterized by facial flushing, erythema, telangiectasia, papules, and pustules. Its pathogenesis has not been fully understood. In 2017, the global ROSacea COnsensus (ROSCO) panel updated the diagnosis, classification, and assessment of rosacea. Phenotype-based treatments and long-term managements have also been recommended. Murine models are a powerful tool in unveiling and dissecting the mechanisms of human diseases. Here, we summarized murine models of rosacea developed or used in previous research, including LL-37 intradermal injection model, KLK-5-induced inflammation model, croton oil inflammation model, 12-O-Tetradecanoylphorbol-13-acetate inflammation model, arachidonic acid inflammation model, RTX-induced vasodilation model, and UVB-induced model. LL-37 injection model has become the most intensively used model in rosacea research. Each model could show the pathophysiological and clinical features of rosacea to some extent. However, no model can show the full picture of the characteristics of rosacea. Improving existed murine models, developing new murine models, and applying them to pathogenesis and treatment research on rosacea are highly warranted in the future.
Collapse
Affiliation(s)
- Hanlin Zhang
- Department of Dermatology, Peking Union Medical College Hospital, Beijing, China
| | - Menglu Zhang
- Department of Dermatology, Peking Union Medical College Hospital, Beijing, China
| | - Yuanzhuo Wang
- Department of Dermatology, Peking Union Medical College Hospital, Beijing, China
| | - Qingyue Zheng
- Department of Dermatology, Peking Union Medical College Hospital, Beijing, China
| | - Keyun Tang
- Department of Dermatology, Peking Union Medical College Hospital, Beijing, China
| | - Runzhu Liu
- Department of Dermatology, Peking Union Medical College Hospital, Beijing, China
| | - Xianmei Li
- Department of Dermatology, Peking Union Medical College Hospital, Beijing, China
| | - Rouyu Fang
- Department of Dermatology, Peking Union Medical College Hospital, Beijing, China
| | - Qiuning Sun
- Department of Dermatology, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
20
|
Lee MJ, Agrahari G, Kim HY, An EJ, Chun KH, Kang H, Kim YS, Bang CW, Tak LJ, Kim TY. Extracellular Superoxide Dismutase Prevents Skin Aging by Promoting Collagen Production through the Activation of AMPK and Nrf2/HO-1 Cascades. J Invest Dermatol 2021; 141:2344-2353.e7. [PMID: 33836179 DOI: 10.1016/j.jid.2021.02.757] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 12/14/2022]
Abstract
With aging, the skin becomes thin and drastically loses collagen. Extracellular superoxide dismutase (EC-SOD), also known as superoxide dismutase (SOD) 3, is the major SOD in the extracellular matrix of the tissues and is well-known to maintain the reduction‒oxidation homeostasis and matrix components of such tissues. However, the role of EC-SOD in aging-associated reductions of skin thickness and collagen production is not well-studied. In this study, we compared the histological differences in the dorsal skin of EC-SOD‒overexpressing transgenic mice (Sod3+/+) of different age groups with that in wild-type mice and also determined the underlying signaling mechanism. Our data showed that the skin thickness in Sod3+/+ mice significantly increased with aging compared with that in wild-type male mice. Furthermore, Sod3+/+ mice had promoted collagen production through the activation of adenosine monophosphate-activated protein kinase and Nrf2/HO-1 pathways in aged mice. Interestingly, subcutaneous injection of adeno-associated virus‒overexpressing EC-SOD exhibited increased skin thickness and collagen expression. Furthermore, combined recombinant EC-SOD and dihydrotestosterone treatment synergistically elevated collagen production through the activation of TGFβ in human dermal fibroblasts. Altogether, these results showed that EC-SOD prevents skin aging by promoting collagen production in vivo and in vitro. Therefore, we propose that EC-SOD may be a potential therapeutic target for antiaging in the skin.
Collapse
Affiliation(s)
- Min Jung Lee
- Laboratory of Dermato-Immunology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Gaurav Agrahari
- Laboratory of Dermato-Immunology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hae-Young Kim
- Laboratory of Dermato-Immunology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eun-Joo An
- Laboratory of Dermato-Immunology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyung-Hee Chun
- Department of Biochemistry and Molecular Biology, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Hyeokgu Kang
- Department of Biochemistry and Molecular Biology, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Yeon-Soo Kim
- Department of New Drug Discovery and Development, Chungnam National University, Daejeon, Republic of Korea
| | - Chul Whan Bang
- Laboratory of Dermato-Immunology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Lee-Jung Tak
- Laboratory of Dermato-Immunology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Tae-Yoon Kim
- Laboratory of Dermato-Immunology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
21
|
Rosa AC, Corsi D, Cavi N, Bruni N, Dosio F. Superoxide Dismutase Administration: A Review of Proposed Human Uses. Molecules 2021; 26:1844. [PMID: 33805942 PMCID: PMC8037464 DOI: 10.3390/molecules26071844] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Superoxide dismutases (SODs) are metalloenzymes that play a major role in antioxidant defense against oxidative stress in the body. SOD supplementation may therefore trigger the endogenous antioxidant machinery for the neutralization of free-radical excess and be used in a variety of pathological settings. This paper aimed to provide an extensive review of the possible uses of SODs in a range of pathological settings, as well as describe the current pitfalls and the delivery strategies that are in development to solve bioavailability issues. We carried out a PubMed query, using the keywords "SOD", "SOD mimetics", "SOD supplementation", which included papers published in the English language, between 2012 and 2020, on the potential therapeutic applications of SODs, including detoxification strategies. As highlighted in this paper, it can be argued that the generic antioxidant effects of SODs are beneficial under all tested conditions, from ocular and cardiovascular diseases to neurodegenerative disorders and metabolic diseases, including diabetes and its complications and obesity. However, it must be underlined that clinical evidence for its efficacy is limited and consequently, this efficacy is currently far from being demonstrated.
Collapse
Affiliation(s)
- Arianna Carolina Rosa
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Via P. Giuria 9, 10125 Turin, Italy; (D.C.); (N.C.); (F.D.)
| | - Daniele Corsi
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Via P. Giuria 9, 10125 Turin, Italy; (D.C.); (N.C.); (F.D.)
| | - Niccolò Cavi
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Via P. Giuria 9, 10125 Turin, Italy; (D.C.); (N.C.); (F.D.)
| | - Natascia Bruni
- Istituto Farmaceutico Candioli, Strada Comunale di None, 1, 10092 Beinasco, Italy;
| | - Franco Dosio
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Via P. Giuria 9, 10125 Turin, Italy; (D.C.); (N.C.); (F.D.)
| |
Collapse
|
22
|
Agrahari G, Sah SK, Bang CH, Kim YH, Kim TY. Superoxide Dismutase 3 Controls the Activation and Differentiation of CD4 +T Cells. Front Immunol 2021; 12:628117. [PMID: 33717151 PMCID: PMC7947887 DOI: 10.3389/fimmu.2021.628117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/21/2021] [Indexed: 12/11/2022] Open
Abstract
Superoxide dismutase 3 (SOD3), a well-known antioxidant has been shown to possess immunomodulatory properties through inhibition of T cell differentiation. However, the underlying inhibitory mechanism of SOD3 on T cell differentiation is not well understood. In this study, we investigated the effect of SOD3 on anti-CD3/CD28- or phorbol myristate acetate (PMA) and ionomycin (ION)-mediated activation of mouse naive CD4+ T cells. Our data showed that SOD3 suppressed the expression of activation-induced surface receptor proteins such as CD25, and CD69, and cytokines production. Similarly, SOD3 was found to reduce CD4+T cells proliferation and suppress the activation of downstream pathways such as ERK, p38, and NF-κB. Moreover, naïve CD4+T cells isolated from global SOD3 knock-out mice showed higher expression of CD25, CD69, and CD71, IL-2 production, proliferation, and downstream signals compared to wild-type CD4+T cells. Whereas, the use of DETCA, a known inhibitor of SOD3 activity, found to nullify the inhibitory effect of SOD3 on CD4+T cell activation of both SOD3 KO and wild-type mice. Furthermore, the expression of surface receptor proteins, IL-2 production, and downstream signals were also reduced in Th2 and Th17 differentiated cells upon SOD3 treatment. Overall, our data showed that SOD3 can attenuate CD4+T cell activation through modulation of the downstream signalings and restrict CD4+T cell differentiation. Therefore, SOD3 can be a promising therapeutic for T cell-mediated disorders.
Collapse
Affiliation(s)
- Gaurav Agrahari
- Laboratory of Dermato-Immunology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Shyam Kishor Sah
- Department of Reconstructive Sciences, Center for Regenerative Medicine and Skeletal Development, UConn Health, Farmington, CT, United States
| | - Chul Hwan Bang
- Laboratory of Dermato-Immunology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Yeong Ho Kim
- Laboratory of Dermato-Immunology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Tae-Yoon Kim
- Laboratory of Dermato-Immunology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
23
|
Sah SK, Agrahari G, Kim TY. Insights into superoxide dismutase 3 in regulating biological and functional properties of mesenchymal stem cells. Cell Biosci 2020; 10:22. [PMID: 32128111 PMCID: PMC7045732 DOI: 10.1186/s13578-020-00386-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/14/2020] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been extensively studied and implicated for the cell-based therapy in several diseases due to theirs immunomodulatory properties. Embryonic stem cells and induced-pluripotent stem cells have either ethical issues or concerns regarding the formation of teratomas, introduction of mutations into genome during prolonged culture, respectively which limit their uses in clinical settings. On the other hand, MSCs also encounter certain limitation of circumscribed survival and reduced immunomodulatory potential during transplantation. Plethora of research is undergoing to improve the efficacy of MSCs during therapy. Several compounds and novel techniques have been employed to increase the therapeutic potency of MSCs. MSCs secreted superoxide dismutase 3 (SOD3) may be the mechanism for exhibiting direct antioxidant activities by MSCs. SOD3 is a well known antioxidant enzyme and recently known to possess immunomodulatory properties. Along with superoxide scavenging property, SOD3 also displays anti-angiogenic, anti-chemotactic and anti-inflammatory functions in both enzymatic and non-enzymatic manners. In this review, we summarize the emerging role of SOD3 secreted from MSCs and SOD3’s effects during cell-based therapy.
Collapse
Affiliation(s)
- Shyam Kishor Sah
- 1Department of Reconstructive Sciences, Center for Regenerative Medicine and Skeletal Development, University of Connecticut Health Center, Farmington, CT 06032 USA.,2Laboratory of Dermato-immunology, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 06591 Republic of Korea
| | - Gaurav Agrahari
- 2Laboratory of Dermato-immunology, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 06591 Republic of Korea
| | - Tae-Yoon Kim
- 2Laboratory of Dermato-immunology, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 06591 Republic of Korea
| |
Collapse
|
24
|
Gao D, Hu S, Zheng X, Lin W, Gao J, Chang K, Zhao D, Wang X, Zhou J, Lu S, Griffiths HR, Liu J. SOD3 Is Secreted by Adipocytes and Mitigates High-Fat Diet-Induced Obesity, Inflammation, and Insulin Resistance. Antioxid Redox Signal 2020; 32:193-212. [PMID: 31680537 DOI: 10.1089/ars.2018.7628] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Aims: To study the expression and regulatory role of SOD3 in adipocytes and adipose tissue. Results: SOD3 expression was determined in various tissues of adult C57BL/6J mice, human adipose tissue and epididymal adipose tissue, subcutaneous adipose tissue and brown adipose tissue of high-fat diet (HFD)-induced obese mice. SOD3 expression and release were evaluated in adipocytes differentiated from primary human preadipocytes and murine bone marrow-derived mesenchymal stem cells (BM-MSCs). The regulatory role for SOD3 was determined by SOD3 lentivirus knockdown in human adipocytes and global sod3 knockout (KO) mice. SOD3 was expressed at high levels in white adipose tissue, and adipocytes were the main cells expressing SOD3 in adipose tissue. SOD3 expression was significantly elevated in adipose tissue of HFD-fed mice. Moreover, SOD3 expression and release were markedly increased in differentiated human adipocytes and adipocytes differentiated from mouse BM-MSCs compared with undifferentiated cells. In addition, SOD3 silencing in human adipocytes increased expression of genes involved in lipid metabolic pathways such as PPARγ and SREBP1c and promoted the accumulation of triglycerides. Finally, global sod3 KO mice were more obese and insulin resistant with enlarged adipose tissue and increased triglyceride accumulation. Innovation: Our data showed that SOD3 is secreted from adipocytes and regulates lipid metabolism in adipose tissue. This important discovery may open up new avenues of research for the cytoprotective role of SOD3 in obesity and its associated metabolic disorders. Conclusion: SOD3 is a protective factor secreted by adipocytes in response to HFD-induced obesity and regulates adipose tissue lipid metabolism.
Collapse
Affiliation(s)
- Dan Gao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Sijun Hu
- Department of Gastroenterology, Xijing Hospital of Digestive Diseases, State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xi'an, China
| | - Xuewei Zheng
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Wenjuan Lin
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jing Gao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Kewei Chang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Daina Zhao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xueqiang Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jinsong Zhou
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Shemin Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Helen R Griffiths
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|