1
|
Ioannou P, Katsoulieris E, Afratis NA. Matrix Dynamics and Microbiome Crosstalk: Matrix Metalloproteinases as Key Players in Disease and Therapy. Int J Mol Sci 2025; 26:3621. [PMID: 40332093 PMCID: PMC12027064 DOI: 10.3390/ijms26083621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/02/2025] [Accepted: 04/09/2025] [Indexed: 05/08/2025] Open
Abstract
Matrix metalloproteinases (MMPs) are key enzymes involved in extracellular matrix (ECM) remodeling, regulating a wide range of cellular and immune processes in both homeostatic and pathological conditions. Host-microbiota interactions play a critical role in maintaining ECM balance; however, during dysbiosis, this regulation is disrupted, leading to compromised barrier integrity, pathogen translocation into circulation, and the development of systemic diseases and cancer. This review highlights the bidirectional relationship between MMP expression/activity and microbiota dysbiosis, emphasizing tissue-specific alterations in MMP activity that contribute to disease progression. In addition, it integrates interdisciplinary evidence to illustrate the MMP-dependent mechanisms underlying various pathologies associated with oral and gut microbiome dysbiosis, including long-range effects through the gut-skin and gut-brain axes. Thus, this review introduces the emerging field of MatrixBiome, which explores the complex interactions between the ECM, microbiota, and host tissues. Finally, it also outlines therapeutic strategies to modulate MMP levels, either indirectly through microbiome-targeted approaches (e.g., prebiotics, probiotics, and postbiotics) or directly using MMP inhibitors, offering promising avenues for future clinical interventions.
Collapse
Affiliation(s)
- Paraskevi Ioannou
- Laboratory of Biotechnology and Molecular Analysis, Department of Agricultural Development, Agri-Food & Management of Natural Resources, National and Kapodistrian University of Athens, Evripos Campus, 34400 Psachna, Evia, Greece (E.K.)
| | - Elias Katsoulieris
- Laboratory of Biotechnology and Molecular Analysis, Department of Agricultural Development, Agri-Food & Management of Natural Resources, National and Kapodistrian University of Athens, Evripos Campus, 34400 Psachna, Evia, Greece (E.K.)
| | - Nikolaos A. Afratis
- Laboratory of Biotechnology and Molecular Analysis, Department of Agricultural Development, Agri-Food & Management of Natural Resources, National and Kapodistrian University of Athens, Evripos Campus, 34400 Psachna, Evia, Greece (E.K.)
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel
| |
Collapse
|
2
|
Uberoi A, Murga-Garrido SM, Bhanap P, Campbell AE, Knight SAB, Wei M, Chan A, Senay T, Tegegne S, White EK, Sutter CH, Mesaros C, Sutter TR, Grice EA. Commensal-derived tryptophan metabolites fortify the skin barrier: Insights from a 50-species gnotobiotic model of human skin microbiome. Cell Chem Biol 2025; 32:111-125.e6. [PMID: 39824155 PMCID: PMC11753614 DOI: 10.1016/j.chembiol.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 11/01/2024] [Accepted: 12/12/2024] [Indexed: 01/20/2025]
Abstract
The epidermal barrier defends the body against dehydration and harmful substances. The commensal microbiota is essential for proper differentiation and repair of the epidermal barrier, an effect mediated by the aryl hydrocarbon receptor (AHR). However, the microbial mechanisms of AHR activation in skin are less understood. Tryptophan metabolites are AHR ligands that can be products of microbial metabolism. To identify microbially regulated tryptophan metabolites in vivo, we established a gnotobiotic model colonized with fifty human skin commensals and performed targeted mass spectrometry on murine skin. Indole-related metabolites were enriched in colonized skin compared to germ-free skin. In reconstructed human epidermis and in murine models of atopic-like barrier damage, these metabolites improved barrier repair and function individually and as a cocktail. These results provide a framework for the identification of microbial metabolites that mediate specific host functions, which can guide the development of microbe-based therapies for skin disorders.
Collapse
Affiliation(s)
- Aayushi Uberoi
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
| | - Sofía M Murga-Garrido
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Preeti Bhanap
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amy E Campbell
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Simon A B Knight
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Monica Wei
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anya Chan
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Taylor Senay
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Saba Tegegne
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ellen K White
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Clementina Mesaros
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas R Sutter
- Department of Biological Sciences, University of Memphis, Memphis, TN, USA
| | - Elizabeth A Grice
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Lekbua A, Thiruppathy D, Coker J, Weng Y, Askarian F, Kousha A, Marotz C, Hauw A, Nizet V, Zengler K. SkinCom, a synthetic skin microbial community, enables reproducible investigations of the human skin microbiome. CELL REPORTS METHODS 2024; 4:100832. [PMID: 39111313 PMCID: PMC11384088 DOI: 10.1016/j.crmeth.2024.100832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/30/2024] [Accepted: 07/12/2024] [Indexed: 08/22/2024]
Abstract
Existing models of the human skin have aided our understanding of skin health and disease. However, they currently lack a microbial component, despite microbes' demonstrated connections to various skin diseases. Here, we present a robust, standardized model of the skin microbial community (SkinCom) to support in vitro and in vivo investigations. Our methods lead to the formation of an accurate, reproducible, and diverse community of aerobic and anaerobic bacteria. Subsequent testing of SkinCom on the dorsal skin of mice allowed for DNA and RNA recovery from both the applied SkinCom and the dorsal skin, highlighting its practicality for in vivo studies and -omics analyses. Furthermore, 66% of the responses to common cosmetic chemicals in vitro were in agreement with a human trial. Therefore, SkinCom represents a valuable, standardized tool for investigating microbe-metabolite interactions and facilitates the experimental design of in vivo studies targeting host-microbe relationships.
Collapse
Affiliation(s)
- Asama Lekbua
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Deepan Thiruppathy
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joanna Coker
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yuhan Weng
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Fatemeh Askarian
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Armin Kousha
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Clarisse Marotz
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Amber Hauw
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Victor Nizet
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Karsten Zengler
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093, USA; Program in Materials Science and Engineering, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
4
|
Fluhr JW, Moore DJ, Lane ME, Lachmann N, Rawlings AV. Epidermal barrier function in dry, flaky and sensitive skin: A narrative review. J Eur Acad Dermatol Venereol 2024; 38:812-820. [PMID: 38140732 DOI: 10.1111/jdv.19745] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023]
Abstract
The stratum corneum (SC)-the outermost layer of the epidermis-is the principal permeability and protective barrier of the skin. Different components of the SC, including corneocytes, natural moisturizing factor, a variety of enzymes and their inhibitors, antimicrobial peptides and lipids, work interactively to maintain barrier function. The main barrier properties of the SC are the limitation of water loss and the prevention of infection and contact with potentially harmful exogenous factors. Although the SC functions consistently as a protective barrier throughout the body, variations in functions and morphology occur across body sites with age and skin type. Healthy SC function also depends on the interplay between the chemosensory barrier, the skin's microbiome and the innate immune system. Dysregulation of SC barrier function can lead to the development of skin disorders, such as dry, flaky or sensitive skin, but the complete underlying pathophysiology of these are not fully understood. This review provides insight into the current literature and emerging themes related to epidermal barrier changes that occur in the context of dry, flaky and sensitive skin. Additional studies are needed to further elucidate the underlying aetiology of dry, flaky and sensitive skin and to provide tailored treatment.
Collapse
Affiliation(s)
- Joachim W Fluhr
- Institute of Allergology IFA Charité Universitätsmedizin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | | | - Majella E Lane
- Department of Pharmaceutics, UCL School of Pharmacy, London, UK
| | | | - Anthony V Rawlings
- Department of Pharmaceutics, UCL School of Pharmacy, London, UK
- AVR Consulting Ltd., Northwich, UK
| |
Collapse
|
5
|
Nakatsuji T, Brinton SL, Cavagnero KJ, O'Neill AM, Chen Y, Dokoshi T, Butcher AM, Osuoji OC, Shafiq F, Espinoza JL, Dupont CL, Hata TR, Gallo RL. Competition between skin antimicrobial peptides and commensal bacteria in type 2 inflammation enables survival of S. aureus. Cell Rep 2023; 42:112494. [PMID: 37167061 DOI: 10.1016/j.celrep.2023.112494] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/17/2023] [Accepted: 04/25/2023] [Indexed: 05/13/2023] Open
Abstract
During inflammation, the skin deploys antimicrobial peptides (AMPs) yet during allergic inflammation it becomes more susceptible to Staphylococcus aureus. To understand this contradiction, single-cell sequencing of Il4ra-/- mice combined with skin microbiome analysis reveals that lower production of AMPs from interleukin-4 receptor α (IL-4Rα) activation selectively inhibits survival of antibiotic-producing strains of coagulase-negative Staphylococcus (CoNS). Diminished AMPs under conditions of T helper type 2 (Th2) inflammation enable expansion of CoNS strains without antibiotic activity and increase Staphylococcus aureus (S. aureus), recapitulating the microbiome on humans with atopic dermatitis. This response is rescued in Camp-/- mice or after topical steroids, since further inhibition of AMPs enables survival of antibiotic-producing CoNS strains. In conditions of Th17 inflammation, a higher expression of host AMPs is sufficient to directly inhibit S. aureus survival. These results show that antimicrobials produced by the host and commensal bacteria each act to control S. aureus on the skin.
Collapse
Affiliation(s)
- Teruaki Nakatsuji
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Samantha L Brinton
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Kellen J Cavagnero
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Alan M O'Neill
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Yang Chen
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Tatsuya Dokoshi
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Anna M Butcher
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Olive C Osuoji
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Faiza Shafiq
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Josh L Espinoza
- Genomic Medicine, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | | | - Tissa R Hata
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Richard L Gallo
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92037, USA.
| |
Collapse
|
6
|
Caldwell R, Zhou W, Oh J. Strains to go: interactions of the skin microbiome beyond its species. Curr Opin Microbiol 2022; 70:102222. [PMID: 36242896 PMCID: PMC9701184 DOI: 10.1016/j.mib.2022.102222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 01/25/2023]
Abstract
An extraordinary biodiversity of bacteria, fungi, viruses, and even small multicellular eukaryota inhabit the human skin. Genomic innovations have accelerated characterization of this biodiversity both at a species as well as the subspecies, or strain level, which further imparts a tremendous genetic diversity to an individual's skin microbiome. In turn, these advances portend significant species- and strain-specificity in the skin microbiome's functional impact on cutaneous immunity, barrier integrity, aging, and other skin physiologic processes. Future advances in defining strain diversity, spatial distribution, and metabolic diversity for major skin species will be foundational for understanding the microbiome's essentiality to the skin ecosystem and for designing topical therapeutics that leverage or target the skin microbiome.
Collapse
Affiliation(s)
- Ryan Caldwell
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | - Wei Zhou
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | - Julia Oh
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States.
| |
Collapse
|
7
|
Kong HH. Sharing is caring? Skin microbiome insights into staphylococci in patients with atopic dermatitis and caregivers. J Allergy Clin Immunol 2022; 150:793-795. [PMID: 35931225 PMCID: PMC9930850 DOI: 10.1016/j.jaci.2022.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Heidi H. Kong
- Cutaneous Microbiome and Inflammation Section, Dermatology Branch, NIAMS, NIH
| |
Collapse
|
8
|
Shao L, Jiang S, Li Y, Shi Y, Wang M, Liu T, Yang S, Ma L. Regular Late Bedtime Significantly Affects the Skin Physiological Characteristics and Skin Bacterial Microbiome. Clin Cosmet Investig Dermatol 2022; 15:1051-1063. [PMID: 35698548 PMCID: PMC9188400 DOI: 10.2147/ccid.s364542] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/01/2022] [Indexed: 11/23/2022]
Abstract
Background Late bedtime is a common form of unhealthy sleep pattern in adulthood, which influences circadian rhythm, and negatively affects health. However, little is known about the effect of regular late bedtime on skin characteristics, particularly on skin microbiome. Objective To investigate the changes and effects of the regular late bedtime on skin physiological parameters and facial bacterial microbiome of 219 cases of Chinese women aged 18-38 years living in Shanghai. Methods Based on the Self-Evaluation Questionnaire, bedtime was categorized as 11:00 PM; thus, the volunteers were divided into early bedtime group (S0) and late bedtime group (S1). The physiological parameters of facial skin were measured by non-invasive instrumental methods, and the skin microbiome was analyzed by 16S rRNA high-throughput sequencing. Results The skin physiological parameters of the late bedtime group exhibited significant decrease in skin hydration content, skin firmness (F4) and elasticity (R2), while TEWL, sebum and wrinkle significantly increased. The result indicated that late bedtime significantly impaired the integrity of skin barrier, damaged skin structure, and disrupted water-oil balance. Furthermore, the analysis of α-diversity, Sobs, Ace and Chao index were found to significantly decrease (P < 0.05) in the late bedtime group, suggesting that late bedtime reduced both the abundance and the diversity of facial bacterial microbiota. Moreover, the abundance of Pseudomonas increased significantly, while Streptococcus, Stenotrophomonas, Acinetobacter, Haemophilus, Actinomyces and Neisseria decreased significantly. In addition, Spearman correlation analysis revealed strong correlations between the microbiota and the physiological parameters. Notably, the abundance of Pseudomonas significantly positively correlated with skin firmness and elasticity, but significantly negatively correlated with skin hemoglobin content, melanin content and skin hydration. Conclusion Bedtime is an important factor in maintaining skin health. Regular late bedtime not only damages the skin barrier and skin structure but also reduces the diversity and composition of facial bacterial microbiome.
Collapse
Affiliation(s)
- Li Shao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, People's Republic of China
| | - Sujing Jiang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, People's Republic of China
| | - Yan Li
- R&D Innovation Center, Shandong Freda Biotech Co., Ltd, Jinan, Shandong, People's Republic of China
| | - Yanqin Shi
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, People's Republic of China.,The Oriental Beauty Valley Research Institute, Shanghai Institute of Technology, Shanghai, People's Republic of China
| | - Man Wang
- Department of Nutrition, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Shanghai, People's Republic of China
| | - Ting Liu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, People's Republic of China
| | - Suzhen Yang
- R&D Innovation Center, Shandong Freda Biotech Co., Ltd, Jinan, Shandong, People's Republic of China
| | - Laiji Ma
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, People's Republic of China.,The Oriental Beauty Valley Research Institute, Shanghai Institute of Technology, Shanghai, People's Republic of China
| |
Collapse
|
9
|
Skin immunity: dissecting the complex biology of our body's outer barrier. Mucosal Immunol 2022; 15:551-561. [PMID: 35361906 DOI: 10.1038/s41385-022-00505-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023]
Abstract
Our skin contributes critically to health via its role as a barrier tissue, carefully regulating passage of key substrates while also providing defense against exogenous threats. Immunological processes are integral to almost every skin function and paramount to our ability to live symbiotically with skin commensal microbes and other environmental stimuli. While many parallels can be drawn to immunobiology at other mucosal sites, skin immunity demonstrates unique features that relate to its distinct topography, chemical composition and microbial ecology. Here we provide an overview of skin as an immune organ, with reference to the broader context of mucosal immunology. We review paradigms of innate as well as adaptive immune function and highlight how skin-specific structures such as hair follicles and sebaceous glands interact and contribute to these processes. Finally, we highlight for the mucosal immunology community a few emerging areas of interest for the skin immunity field moving forward.
Collapse
|
10
|
Flowers L, Campbell A, Uberoi A. Cutibacterium acnes evolution: One pore at a time. Cell Host Microbe 2022; 30:144-146. [PMID: 35143764 DOI: 10.1016/j.chom.2022.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cutibacterium acnes is found in the human skin microbiome. In this issue of Cell Host & Microbe, Conwill et al. investigate the coexistence of C. acnes strains on the skin and find that the skin surface harbors multiple C. acnes lineages, but individual pores are dominated by an individual lineage.
Collapse
Affiliation(s)
- Laurice Flowers
- Indiana University School of Medicine, Department of Pathology and Laboratory Medicine, Indianapolis, IN, USA
| | - Amy Campbell
- University of Pennsylvania, Perelman School of Medicine, Department of Dermatology, Philadelphia, PA, USA
| | - Aayushi Uberoi
- University of Pennsylvania, Perelman School of Medicine, Department of Dermatology, Philadelphia, PA, USA.
| |
Collapse
|