1
|
Pourmadadi M, Abdouss H, Mohammadi Shabestari S, Hosseini SM, Ajalli N, Abdouss M, Esmaeely Neisiany R. Development of Poly(ether sulfone)/Poly(vinyl alcohol)/Magnesium-Doped Carbon Quantum Dot Scaffolds for Bone Tissue Engineering. ACS Biomater Sci Eng 2025; 11:2846-2856. [PMID: 40227581 DOI: 10.1021/acsbiomaterials.4c02124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Bone tissue engineering plays a critical role in overcoming the limitations of traditional bone grafts and implants by enhancing bone integration and regeneration. In this study, we developed a novel membrane scaffold comprising poly(ether sulfone) (PES), poly(vinyl alcohol) (PVA), and magnesium-doped carbon quantum dots (CQDs.Mg) for potential bone tissue engineering applications. Four distinct scaffold formulations (PE-CM0, PE-CM2, PE-CM3, and PE-CM4) were developed using a film applicator machine. The morphology and porosity of the scaffolds, characterized via scanning electron microscopy (SEM), revealed increased porosity with higher CQDs.Mg content. Fourier transform infrared spectroscopy (FTIR) confirmed the successful integration of functional groups from each component. Water contact angle (WCA) measurements indicated improved hydrophilicity with the addition of CQDs.Mg, which is beneficial for cell attachment and proliferation. Mechanical testing demonstrated that the scaffolds maintained adequate tensile strength and flexibility, with PE-CM3 and PE-CM4 exhibiting superior properties. Swelling assays indicated enhanced water absorption with increased CQDs.Mg content, while 14-day degradation studies showed excellent structural stability. Biocompatibility was also assessed using L929 and NIH3T3 cell lines, with cytotoxicity assays demonstrating nearly 100% cell viability across all samples. These findings suggest that the PES/PVA/CQDs.Mg scaffolds exhibit a promising combination of mechanical robustness, hydrophilicity, and biocompatibility, making them strong candidates for bone tissue engineering applications.
Collapse
Affiliation(s)
- Mehrab Pourmadadi
- Protein Research Center, Shahid Beheshti University, Tehran 1983963113, Iran
| | - Hamidreza Abdouss
- Department of Polymer, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 1417935840, Iran
| | - Salar Mohammadi Shabestari
- Department of Polymer, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 1417935840, Iran
| | | | - Narges Ajalli
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran 1417935840, Iran
| | - Majid Abdouss
- Department of Chemistry, Amirkabir University of Technology, Tehran 1591634311, Iran
| | - Rasoul Esmaeely Neisiany
- Department of Polymer Engineering, Hakim Sabzevari University, Sabzevar 9617976487, Iran
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, Gliwice 44-100, Poland
| |
Collapse
|
2
|
Roka N, Pitsikalis M. Synthesis, Characterization, and Self-Assembly Behavior of Block Copolymers of N-Vinyl Pyrrolidone with n-Alkyl Methacrylates. Polymers (Basel) 2025; 17:1122. [PMID: 40284387 PMCID: PMC12030617 DOI: 10.3390/polym17081122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025] Open
Abstract
Novel amphiphilic block copolymers of N-vinyl pyrrolidone (NVP) and either n-hexyl methacrylate (HMA, PNVP-b-PHMA) or stearyl methacrylate (SMA, PNVP-b-PSMA) were prepared by RAFT polymerization techniques and the sequential addition of monomers starting from the polymerization of NVP and using two different Chain Transfer Agents, CTAs. PNVP-b-PHMA are amorphous block copolymers containing constituent blocks with both high and low Tg values, whereas PNVP-b-PSMA are amorphous-semi-crystalline copolymers. Samples with different molecular weights and compositions were obtained. The copolymers were microphase-separated, but partial mixing was also observed. The presence of the amorphous PNVP block reduced the crystallinity of the PSMA blocks in the PNVP-b-PSMA copolymers. The thermal stability of the blocks was influenced by both constituents. The self-assembly behavior in THF, which is a selective solvent for polymethacrylate blocks, and in aqueous solutions, where PNVP was soluble, was examined. Unimolecular or low-aggregation-number micelles were obtained in THF for both types of samples. On the contrary, high-aggregation-number, spherical, and compact micelles were revealed in aqueous solutions. The increase in the steric hindrance of the side ester group of the polymethacrylate chain led to slightly lower degrees of association. The hydrophobic compound curcumin was efficiently encapsulated within the micellar core of the supramolecular structures in aqueous solutions. Micelles with higher aggregation numbers were more efficient in the encapsulation of curcumin. The results of this study were compared with those obtained from other block copolymers based on PNVP.
Collapse
Affiliation(s)
| | - Marinos Pitsikalis
- Industrial Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece;
| |
Collapse
|
3
|
Maliwan T, Hu J. Release of microplastics from polymeric ultrafiltration membrane system for drinking water treatment under different operating conditions. WATER RESEARCH 2025; 274:123047. [PMID: 39740326 DOI: 10.1016/j.watres.2024.123047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/04/2024] [Accepted: 12/24/2024] [Indexed: 01/02/2025]
Abstract
Drinking water has emerged as an important route for microplastics (MPs) to enter the human body, prompting concerns about their adverse health impacts. Membrane filtration technology is widely recognized as an effective treatment solution for combating MP pollution in water. However, recent research disputes that polymeric membrane systems may serve as additional sources of MPs in drinking water. The aim of this research is to investigate MP release from ultrafiltration membrane systems under different operating conditions by providing concrete evidence, identifying the operational factors contributing to the release, and elucidating the underlying possible mechanisms. Two key pieces of evidence were found to support the assertion that MPs were released from membrane systems, i.e., negative removal efficiency and an alteration in MP compositions observed between feed and permeate samples. Surprisingly, the MPs released from the membrane system originated not only from the membrane material and its additives but also from plastic-made equipment and even the other polymers used in the system. Overall results reveal that destructive activities such as shear stress, mechanical abrasion, and chemical oxidation processes, along with the carrying of MPs from external sources, are identified as potential mechanisms driving the concentration increase and polymer composition shift of MPs in permeate water. This study enhances an understanding of MP pollution in drinking water caused by membrane technology, potentially spurring the development of mitigation strategies for this issue.
Collapse
Affiliation(s)
- Thitiwut Maliwan
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore
| | - Jiangyong Hu
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore.
| |
Collapse
|
4
|
Kelkar P, Caggioni M, Erk KA, Lindberg S. Tracking Water Transport with Short-Wave Infrared: Kinetic Phase Diagrams, Dissolution, and Drying. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:4334-4344. [PMID: 39903905 DOI: 10.1021/acs.langmuir.4c05057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Short-wave infrared (SWIR) imaging has been extensively used in defense applications but remains underutilized in the study of soft materials and the broader consumer product industry. Water molecules absorb around ∼1450 nm, making moisture-rich objects appear black, whereas surfactants and other common molecules in consumer products do not absorb and provide a good contrast. This experimental study showcases the varied capabilities of SWIR imaging in tracking water transport in soft material systems by analyzing dissolution dynamics, tracking phase transitions (when combined with cross-polarized optical imaging), and monitoring drying kinetics in the surfactant and polymer solutions. The dynamic phase evolution to equilibria of a binary aqueous solution of a nonionic surfactant hexaethylene glycol monododecyl ether (C12E6) is presented. The influence of confined hydration in dynamic-diffusive interfacial transport capillaries was investigated by tracking the micellar to hexagonal phase transition concentration (C*). The effects of varying concentrations of an industrially relevant additive─monovalent common salt (NaCl) on the radial (2D) dissolution of lamellar-structured concentrated sodium lauryl ether sulfate (70 wt % SLE1S) pastes was studied. An equation was developed to estimate the radial dissolution coefficients based on total dissolution time and surfactant concentrations in the sample and solvent. Water loss was investigated by tracking the drying of aqueous poly(vinyl) alcohol films. In situ monitoring of drying kinetics is used to draw correlations between the solution viscosity and drying time. SWIR imaging has already revealed previously inaccessible insights into surfactant hydration and holds the potential to become a turnkey method in tracking water transport, enabling better quality control and product stability analysis.
Collapse
Affiliation(s)
- Parth Kelkar
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Marco Caggioni
- Corporate Engineering, The Procter & Gamble Company, West Chester, Ohio 45069, United States
| | - Kendra A Erk
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Seth Lindberg
- Corporate Engineering, The Procter & Gamble Company, West Chester, Ohio 45069, United States
| |
Collapse
|
5
|
Uboldi M, Gelain A, Buratti G, Chiappa A, Gazzaniga A, Melocchi A, Zema L. Polyvinyl alcohol-based capsule shells manufactured by injection molding as ready-to-use moisture barriers for the development of delivery systems. Int J Pharm 2024; 661:124373. [PMID: 38909921 DOI: 10.1016/j.ijpharm.2024.124373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
In this work, feasibility of injection molding was demonstrated for manufacturing capsule shells. 600 µm-thick prototypes were successfully molded with pharmaceutical-grade low-viscosity polyvinyl alcohols (PVAs), possibly added with a range of different fillers. They showed reproducible weight and thickness (CV < 2 and 5, respectively), compliant behavior upon piercing (holes diameter analogous to the reference), tunable release performance (immediate and pulsatile), and moisture protection capability. To assess the latter, an on-line method relying on near infrared spectroscopy measurements was set-up and validated. Based on the data collected and considering the versatility IM would provide for product shape/thickness/composition, PVA-based molded shells could help widening the portfolio of ready-to-use capsules, representing an interesting alternative to those commercially available. Indeed, these capsules could be filled with various formulations, even those with stability issues, and intended either for oral administration or for pulmonary delivery via single-dose dry powder inhalers.
Collapse
Affiliation(s)
- Marco Uboldi
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via G. Colombo 71, 20133 Milano, MI, Italy
| | - Andrea Gelain
- Freund-Vector Corporation European Lab, via E. Mattei 2, 20852, Villasanta, MB, Italy
| | - Giuseppe Buratti
- Freund-Vector Corporation European Lab, via E. Mattei 2, 20852, Villasanta, MB, Italy
| | - Arianna Chiappa
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via G. Colombo 71, 20133 Milano, MI, Italy; Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, MI, Italy(1)
| | - Andrea Gazzaniga
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via G. Colombo 71, 20133 Milano, MI, Italy
| | - Alice Melocchi
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via G. Colombo 71, 20133 Milano, MI, Italy.
| | - Lucia Zema
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via G. Colombo 71, 20133 Milano, MI, Italy
| |
Collapse
|
6
|
Wang K, Chen E, Lin X, Tian X, Wang L, Huang K, Skirtach AG, Tan M, Su W. Core-shell nanofibers based on microalgae proteins/alginate complexes for enhancing survivability of probiotics. Int J Biol Macromol 2024; 271:132461. [PMID: 38777024 DOI: 10.1016/j.ijbiomac.2024.132461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/05/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
In this study, a novel one-step coaxial electrospinning process is employed to fabricate shell-core structure fibers choosing Chlorella pyrenoidosa proteins (CP) as the core material. These nanofibers, serving as the wall material for probiotic encapsulation, aimed to enhance the stability and antioxidant activity of probiotics in food processing, storage, and gastrointestinal environments under sensitive conditions. Morphological analysis was used to explore the beads-on-a-string morphology and core-shell structure of the electrospun fibers. Probiotics were successfully encapsulated within the fibers (7.97 log CFU/g), exhibiting a well-oriented structure along the distributed fibers. Compared to free probiotics and uniaxial fibers loaded with probiotics, encapsulation within microalgae proteins/alginate core-shell structure nanofibers significantly enhanced the probiotic cells' tolerance to simulated gastrointestinal conditions (p < 0.05). Thermal analysis indicated that microalgae proteins/alginate core-shell structure nanofibers displayed superior thermal stability compared to uniaxial fibers. The introduction of CP resulted in a 50 % increase in the antioxidant capacity of probiotics-loaded microalgae proteins/alginate nanofibers compared to uniaxial alginate nanofibers, with minimal loss of viability (0.8 log CFU/g) after 28 days of storage at 4 °C. In summary, this dual-layer carrier holds immense potential in probiotic encapsulation and enhancing their resistance to harsh conditions.
Collapse
Affiliation(s)
- Kuiyou Wang
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Entao Chen
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Xiangsong Lin
- School of Medical Imageology, Wannan Medical College, Wuhu 241002, China.
| | - Xueying Tian
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Li Wang
- Institutes of Biomedical Sciences and the Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Kexin Huang
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Andre G Skirtach
- Nano-Biotechnology Group, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Mingqian Tan
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Wentao Su
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| |
Collapse
|
7
|
Cheng HN, Biswas A, Kuzniar G, Kim S, Liu Z, He Z. Blends of Carboxymethyl Cellulose and Cottonseed Protein as Biodegradable Films. Polymers (Basel) 2024; 16:1554. [PMID: 38891500 PMCID: PMC11174362 DOI: 10.3390/polym16111554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
With the increasing awareness of plastic pollution in the environment and the accumulation of microplastics in water, a significant amount of research and development is ongoing to replace the synthetic plastics in packaging and coatings. In this work, we explored the blends of carboxymethyl cellulose (CMC) and washed cottonseed meal (CSM, consisting mostly of cottonseed protein) as agro-based, biodegradable, and sustainable alternatives to plastics. Glycerol was found to be a suitable plasticizer for these blends. The blends of CMC/CSM were produced as single-layer films from 50 to 90 μm in thickness, consisting of different proportions of the components and plasticizer. The evaluated properties included opacity, water vapor permeability, mechanical properties, thermogravimetric analysis, moisture sorption analysis, and water swelling test. Higher percentages of CSM in the blend resulted in higher opacity and lower water vapor permeation rates. The mechanical strength waned with lower levels of CMC. Possible applications for these blends include their use as water-soluble food packaging and coatings and as dissolvable bags and pouches for detergents and agrochemicals.
Collapse
Affiliation(s)
- Huai N. Cheng
- USDA Agricultural Research Service, Southern Regional Research Center, New Orleans, LA 70124, USA
| | - Atanu Biswas
- USDA Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, IL 61604, USA
| | - Gary Kuzniar
- USDA Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, IL 61604, USA
| | - Sanghoon Kim
- USDA Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, IL 61604, USA
| | - Zengshe Liu
- USDA Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, IL 61604, USA
| | - Zhongqi He
- USDA Agricultural Research Service, Southern Regional Research Center, New Orleans, LA 70124, USA
| |
Collapse
|
8
|
Kandaswamy K, Subramanian R, Giri J, Guru A, Arockiaraj J. A Robust Strategy Against Multi-Resistant Pathogens in Oral Health: Harnessing the Potency of Antimicrobial Peptides in Nanofiber-Mediated Therapies. Int J Pept Res Ther 2024; 30:35. [DOI: 10.1007/s10989-024-10613-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2024] [Indexed: 01/12/2025]
|
9
|
Binelli A, Nigro L, Sbarberi R, Della Torre C, Magni S. To be or not to be plastics? Protein modulation and biochemical effects in zebrafish embryos exposed to three water-soluble polymers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167699. [PMID: 37832656 DOI: 10.1016/j.scitotenv.2023.167699] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/26/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023]
Abstract
Water-soluble polymers (WSPs) are a particular category of polymers that, due to their capability to be soluble in water, come out of the classic definition of plastic and therefore also from its regulation and control, representing a possible new environmental problem considering the number of consumer products in which they are contained. For this reason, the aim of this study was to evaluate the possible adverse effects of three of the most used WSPs (polyacrylic acid - PAA, polyethylene glycol - PEG, polyvinylpyrrolidone - PVP), administered at relevant environmental concentrations (0.001, 0.5 and 1 mg/L) to Danio rerio (zebrafish) embryos up to 120 h post fertilization. To assess the WSP toxicity at the molecular, cellular and organism level we used an integrated ecotoxicological approach of both biomarkers and high-throughput technology based on gel-free proteomics. The main results showed how all the three WSPs up-regulated many proteins (up to 74 in specimens exposed to 1 mg/L PVP) with a wide range of molecular functions and involved in numerous cellular pathways of exposed specimens. On the other hand, the measurement of biomarkers showed how PAA and PVP were able to activate the antioxidant machinery following an over-production of reactive oxygen species, while PEG produced no significant changes in the biomarkers measured. Based on the obtained results, the use and application of WSPs should be revised and regulated.
Collapse
Affiliation(s)
- Andrea Binelli
- University of Milan, Department of Biosciences, Via Celoria 26, 20133 Milan, Italy
| | - Lara Nigro
- University of Milan, Department of Biosciences, Via Celoria 26, 20133 Milan, Italy.
| | - Riccardo Sbarberi
- University of Milan, Department of Biosciences, Via Celoria 26, 20133 Milan, Italy
| | - Camilla Della Torre
- University of Milan, Department of Biosciences, Via Celoria 26, 20133 Milan, Italy
| | - Stefano Magni
- University of Milan, Department of Biosciences, Via Celoria 26, 20133 Milan, Italy
| |
Collapse
|
10
|
Saleem S, Sharma K, Sharma V, Kumar V, Sehgal R, Kumar V. Polysaccharide-based super moisture-absorbent hydrogels for sustainable agriculture applications. POLYSACCHARIDES-BASED HYDROGELS 2024:515-559. [DOI: 10.1016/b978-0-323-99341-8.00017-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
11
|
Hasegawa S, Sawada T, Serizawa T. Identification of Water-Soluble Polymers through Machine Learning of Fluorescence Signals from Multiple Peptide Sensors. ACS APPLIED BIO MATERIALS 2023; 6:4598-4602. [PMID: 37889623 PMCID: PMC10664068 DOI: 10.1021/acsabm.3c00736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023]
Abstract
Recently, there has been growing concern about the discharge of water-soluble polymers (especially synthetic polymers) into the environment. Therefore, the identification of water-soluble polymers in water samples is becoming increasingly crucial. In this study, a chemical tongue system to simply and precisely identify water-soluble polymers using multiple fluorescently responsive peptide sensors was demonstrated. Fluorescence spectra obtained from the mixture of each peptide sensor and water-soluble polymer were changed depending on the combination of the polymer species and peptide sensors. Water-soluble polymers were successfully identified through the supervised or unsupervised machine learning of multidimensional fluorescence signals from the peptide sensors.
Collapse
Affiliation(s)
- Shion Hasegawa
- Department of Chemical Science and
Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H121 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Toshiki Sawada
- Department of Chemical Science and
Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H121 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Takeshi Serizawa
- Department of Chemical Science and
Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H121 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
12
|
Wang D, Zheng Y, Deng Q, Liu X. Water-Soluble Synthetic Polymers: Their Environmental Emission Relevant Usage, Transport and Transformation, Persistence, and Toxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6387-6402. [PMID: 37052478 DOI: 10.1021/acs.est.2c09178] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Water-soluble synthetic polymers (WSPs) are distinct from insoluble plastic particles, which are both critical components of synthetic polymers. In the history of human-made macromolecules, WSPs have consistently portrayed a crucial role and served as the ingredients of a variety of products (e.g., flocculants, thickeners, solubilizers, surfactants, etc.) commonly used in human society. However, the environmental exposures and risks of WSPs with different functions remain poorly understood. This paper provides a critical review of the usage, environmental fate, environmental persistence, and biological consequences of multiple types of WSPs in commercial and industrial production. Investigations have identified a wide market of applications and potential environmental threats of various types of WSPs, but we still lack the suitable assessment tools. The effects of physicochemical properties and environmental factors on the environmental distribution as well as the transport and transformation of WSPs are further summarized. Evidence regarding the degradation of WSPs, including mechanical, thermal, hydrolytic, photoinduced, and biological degradation is summarized, and their environmental persistence is discussed. The toxicity data show that some WSPs can cause adverse effects on aquatic species and microbial communities through intrinsic toxicity and physical hazards. This review may serve as a guide for environmental risk assessment to help develop a sustainable path for WSP management.
Collapse
Affiliation(s)
- Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P. R. China
| | - Yuyang Zheng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P. R. China
| | - Qian Deng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P. R. China
| | - Xuran Liu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR, P. R. China
| |
Collapse
|
13
|
Ermis S, Kaya K, Topuz F, Yagci Y. In-Situ and Green Photosynthesis of PVP-Stabilized Palladium Nanoparticles as Efficient Catalysts for the Reduction of 4-Nitrophenol. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
14
|
Jiao X, Xie J, Hao M, Li Y, Wang C, Zhu Z, Wen Y. Chitosan Biguanidine/PVP Antibacterial Coatings for Perishable Fruits. Polymers (Basel) 2022; 14:2704. [PMID: 35808748 PMCID: PMC9269116 DOI: 10.3390/polym14132704] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 11/27/2022] Open
Abstract
World hunger is on the rise, yet one-third of food is wasted. It is necessary to develop an effective food preservation method to reduce food waste. This article reports a composite film based on chitosan biguanidine hydrochloride(CBg) and poly (N-vinyl-2-pyrrolidone)(PVP) that can be used as a conformal coating for fresh produce. Due to the strong positive charge of CBg, the film has excellent antibacterial properties. Owing to the hydrogen bonds between CBg and PVP, the film has good flexibility and mechanical properties. In addition, the coating is washable, transparent, and can reduce the evaporation of water. The above characteristics mean the film has broad application prospects in the field of food preservation.
Collapse
Affiliation(s)
- Xiangyu Jiao
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (J.X.); (M.H.); (Y.L.); (Z.Z.); (Y.W.)
| | - Jiaxuan Xie
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (J.X.); (M.H.); (Y.L.); (Z.Z.); (Y.W.)
| | - Mingda Hao
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (J.X.); (M.H.); (Y.L.); (Z.Z.); (Y.W.)
| | - Yiping Li
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (J.X.); (M.H.); (Y.L.); (Z.Z.); (Y.W.)
| | - Changtao Wang
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing 100048, China;
| | - Zhu Zhu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (J.X.); (M.H.); (Y.L.); (Z.Z.); (Y.W.)
| | - Yongqiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (J.X.); (M.H.); (Y.L.); (Z.Z.); (Y.W.)
| |
Collapse
|
15
|
Echizen K, Taniguchi T, Nishimura T, Maeda K. Well‐Controlled Living Polymerization of Phenylacetylenes in Water: Synthesis of Water‐Soluble Stereoregular Telechelic Poly(phenylacetylene)s. Angew Chem Int Ed Engl 2022; 61:e202202676. [DOI: 10.1002/anie.202202676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Indexed: 12/12/2022]
Affiliation(s)
- Kensuke Echizen
- Graduate School of Frontier Science Initiative Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| | - Tsuyoshi Taniguchi
- Graduate School of Natural Science and Technology Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| | - Tatsuya Nishimura
- Graduate School of Natural Science and Technology Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| | - Katsuhiro Maeda
- Graduate School of Natural Science and Technology Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
- Nano Life Science Institute (WPI-NanoLSI) Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| |
Collapse
|
16
|
Echizen K, Taniguchi T, Nishimura T, Maeda K. Well‐Controlled Living Polymerization of Phenylacetylenes in Water: Synthesis of Water‐Soluble Stereoregular Telechelic Poly(phenylacetylene)s. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kensuke Echizen
- Graduate School of Frontier Science Initiative Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| | - Tsuyoshi Taniguchi
- Graduate School of Natural Science and Technology Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| | - Tatsuya Nishimura
- Graduate School of Natural Science and Technology Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| | - Katsuhiro Maeda
- Graduate School of Natural Science and Technology Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
- Nano Life Science Institute (WPI-NanoLSI) Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| |
Collapse
|
17
|
Taher MA, Lo’ay AA, Gouda M, Limam SA, Abdelkader MFM, Osman SO, Fikry M, Ali EF, Mohamed SY, Khalil HA, El-Ansary DO, El-Gioushy SF, Ghazzawy HS, Ibrahim AM, Maklad MF, Abdein MA, Hikal DM. Impacts of Gum Arabic and Polyvinylpyrrolidone (PVP) with Salicylic Acid on Peach Fruit ( Prunus persica) Shelf Life. Molecules 2022; 27:2595. [PMID: 35458795 PMCID: PMC9025755 DOI: 10.3390/molecules27082595] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 02/01/2023] Open
Abstract
Peaches are grown in many Egyptian orchards for local and global fresh market sales. The interior fruit tissue breakdown (IFTB), often resulting in decayed peaches, is a severe problem during marketing. Therefore, to minimize FTB of peaches, in this study, gum arabic (GA) and polyvinylpyrrolidone (PVP) were mixed with different concentrations of salicylic acid (SA) (0, 1, and 2 mM) and were applied as edible coating to extend the shelf life of peach fruits. Mature peaches were selected and harvested when peaches reached total soluble solid content (SSC: 8.5%) and fruit firmness of about 47 N. Fruits were coated and stored at room temperature (26 ± 1 °C and air humidity 51 ± 1%) for 10 days during two seasons: 2020 and 2021. Fruit coated with GA/PVP-SA 2 mM showed a significant (p < 0.05) inhibition in degrading enzyme activities (CWDEs), such as lipoxygenase (LOX), cellulase (CEL), and pectinase (PT), compared to uncoated and coated fruits during the shelf-life period. Hence, cell wall compartments were maintained. Consequently, there was a reduction in browning symptoms in fruits by inhibiting polyphenol oxidase (PPO) and phenylalanine ammonia-lyase (PAL) activities. Thus, the fruit skin browning index showed almost no symptoms. The lipid peroxidation process and ionic permeability declined as well. The result suggests that, by applying GA/PVP-SA 2 mM as an edible coating, fruit tissue breakdown can be minimized, and the shelf life of peach can be extended up to 10 days without symptoms of tissue breakdown.
Collapse
Affiliation(s)
- Mohamed A. Taher
- Agricultural Chemistry Department, Faculty of Agriculture, Mansoura University, El-Mansoura 35336, Egypt;
| | - A. A. Lo’ay
- Pomology Department, Faculty of Agriculture, Mansoura University, El-Mansoura 35336, Egypt
| | - Mostafa Gouda
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Department of Nutrition and Food Science, National Research Centre, Dokki, Giza 12422, Egypt
| | - Safaa A. Limam
- Food Science and Technology Department, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt;
| | - Mohamed F. M. Abdelkader
- Department of Plant Production, College of Food and Agriculture, King Saud University, Riyadh 12372, Saudi Arabia;
| | - Samah O. Osman
- Horticulture Research Institute, Agricultural Research Center, Giza 12619, Egypt; (S.O.O.); (S.Y.M.); (A.M.I.)
| | - Mohammad Fikry
- Department of Agricultural and Biosystems Engineering, Faculty of Agriculture, Benha University, Moshtohor, Toukh 13736, Egypt;
| | - Esmat F. Ali
- Department of Biology, College of Science, Taif University, Taif 21944, Saudi Arabia;
| | - Sayed. Y. Mohamed
- Horticulture Research Institute, Agricultural Research Center, Giza 12619, Egypt; (S.O.O.); (S.Y.M.); (A.M.I.)
| | - Hoda A. Khalil
- Department of Pomology, Faculty of Agriculture (EL-Shatby), Alexandria University, Alexandria 21545, Egypt;
| | - Diaa O. El-Ansary
- Precision Agriculture Laboratory, Pomology Department, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt;
| | - Sherif F. El-Gioushy
- Horticulture Department, Faculty of Agriculture (Moshtohor), Benha University, Moshtohor, Toukh 13736, Egypt; or
| | - Hesham S. Ghazzawy
- Date Palm Research Center of Excellence, King Faisal University, Hofuf 31982, Saudi Arabia
- Central Laboratory for Date Palm Research and Development, Agriculture Research Center, Giza 12511, Egypt
| | - Aly M. Ibrahim
- Horticulture Research Institute, Agricultural Research Center, Giza 12619, Egypt; (S.O.O.); (S.Y.M.); (A.M.I.)
| | - Mahmoud F. Maklad
- Department of Horticulture, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt;
| | - Mohamed A. Abdein
- Biology Department, Faculty of Arts and Science, Northern Border University, Rafha 91911, Saudi Arabia
| | - Dalia M. Hikal
- Nutrition and Food Science, Home Economics Department, Faculty of Specific Education, Mansura University, Mansoura 35516, Egypt;
| |
Collapse
|
18
|
Roka N, Kokkorogianni O, Kontoes-Georgoudakis P, Choinopoulos I, Pitsikalis M. Recent Advances in the Synthesis of Complex Macromolecular Architectures Based on Poly(N-vinyl pyrrolidone) and the RAFT Polymerization Technique. Polymers (Basel) 2022; 14:701. [PMID: 35215614 PMCID: PMC8880212 DOI: 10.3390/polym14040701] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/31/2022] [Accepted: 02/09/2022] [Indexed: 11/16/2022] Open
Abstract
Recent advances in the controlled RAFT polymerization of complex macromolecular architectures based on poly(N-vinyl pyrrolidone), PNVP, are summarized in this review article. Special interest is given to the synthesis of statistical copolymers, block copolymers, and star polymers and copolymers, along with graft copolymers and more complex architectures. In all cases, PNVP is produced via RAFT techniques, whereas other polymerization methods can be employed in combination with RAFT to provide the desired final products. The advantages and limitations of the synthetic methodologies are discussed in detail.
Collapse
Affiliation(s)
| | | | | | | | - Marinos Pitsikalis
- Industrial Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (N.R.); (O.K.); (P.K.-G.); (I.C.)
| |
Collapse
|
19
|
Suzuki S, Sawada T, Serizawa T. Identification of Water-Soluble Polymers through Discrimination of Multiple Optical Signals from a Single Peptide Sensor. ACS APPLIED MATERIALS & INTERFACES 2021; 13:55978-55987. [PMID: 34735134 DOI: 10.1021/acsami.1c11794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The pollution of water environments is a worldwide concern. Not only marine pollution by plastic litter, including microplastics, but also the spillage of water-soluble synthetic polymers in wastewater have recently gained increasing attention due to their potential risks to soil and water environments. However, conventional methods to identify polymers dissolved in water are laborious and time-consuming. Here, we propose a simple approach to identify synthetic polymers dissolved in water using a peptide-based molecular sensor with a fluorophore unit. Supervised machine learning of multiple fluorescence signals from the sensor, which specifically or nonspecifically interacted with the polymers, was applied for polymer classification as a proof of principle demonstration. Aqueous solutions containing different polymers or multiple polymer species with different mixture ratios were identified successfully. We found that fluorophore-introduced biomolecular sensors have great potential to provide discriminative information regarding water-soluble polymers. Our approach based on the discrimination of multiple optical signals of water-soluble polymers from peptide-based molecular sensors through machine learning will be applicable to next-generation sensing systems for polymers in wastewater or natural environments.
Collapse
Affiliation(s)
- Seigo Suzuki
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H121 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Toshiki Sawada
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H121 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| | - Takeshi Serizawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H121 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
20
|
Teepakakorn AP, Ogawa M. Composition-Dependent Thermal Stability and Water-Induced Self-Healing Behavior of Smectite/Waterborne Polymer Hybrid Film. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12887-12896. [PMID: 34694821 DOI: 10.1021/acs.langmuir.1c01908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
By casting an aqueous suspension containing a water-soluble polymer, polyvinylpyrrolidone, and a layered silicate, synthetic hectorite, on the solid substrate, films with varied interlayer expansion were obtained depending on the composition. The thermal stability, water resistance, water-induced self-healing behavior, and adhesion were examined to find their composition dependence, which is thought to be originated from the nanostructure variation. Polyvinylpyrrolidone was thermally stable up to 300 °C for the hybrid with the polymer/clay weight ratio of 0.36 and 260 °C for the weight ratios of 1.08 and 1.80 as shown by the changes in the appearance and structure after heat treatment. The hybrid film with the polymer/clay ratio of 0.36 maintained the film shape when it was soaked in water for 24 h. The hybrids with the polymer/clay ratios of 1.08 and 1.80 were re-dispersed/dissolved into water after the immersion, while the water resistance of the films was enhanced by the thermal treatment at 200 °C for 2 h and showed very fast water-induced self-healing.
Collapse
Affiliation(s)
- Aranee Pleng Teepakakorn
- School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand
| | - Makoto Ogawa
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand
| |
Collapse
|
21
|
Rasheed T, Rizwan K, Bilal M, Sher F, Iqbal HMN. Tailored functional materials as robust candidates to mitigate pesticides in aqueous matrices-a review. CHEMOSPHERE 2021; 282:131056. [PMID: 34111632 DOI: 10.1016/j.chemosphere.2021.131056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 05/09/2021] [Accepted: 05/28/2021] [Indexed: 02/08/2023]
Abstract
Pesticides are among the top-priority contaminants, which significantly contribute to environmental deterioration. Conventional techniques are not efficient enough to remove pollutants from environmental matrices. The development of functional materials has emerged as promising candidates to remove and degrade pesticides and related hazardous compounds. Furthermore, the nanohybrid materials with unique structural and functional characteristics, such as better material anchorage, mass transfer, electron-hole separation, and charged interaction make them a versatile option to treat and reduce pollutants from aqueous matrices. Herein, we present the current progress in the development of functional materials for the abatement of toxic pesticides. The physicochemical characteristics and pesticide-removal functionalities of various metallic functional materials (e.g., zirconium, zinc, titanium, tungsten, and iron), polymer, and carbon-based materials are critically discussed with suitable examples. Finally, the industrial-scale applications of the functional materials, concluding remarks, and future directions in this important arena are given.
Collapse
Affiliation(s)
- Tahir Rasheed
- School of Chemistry, and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Komal Rizwan
- Department of Chemistry University of Sahiwal, Sahiwal, 57000, Pakistan.
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Science, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., CP 64849, Mexico
| |
Collapse
|
22
|
De Silva EH, Salamat N, Zhang L, Zheng J, Novak BM. Water-soluble polycarbodiimides and their cytotoxic and antifungal properties. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:2369-2386. [PMID: 34428379 DOI: 10.1080/09205063.2021.1971821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
We have successfully synthesized water-soluble neutral and polyelectrolyte helical polycarbodiimides and studied their biological properties. These polymers were prepared by decorating carbodiimide backbones with nonionic, hydrophilic functional groups such as dimethylamine, piperazine, and morpholine. Additionally, the 3° amines present in these functional groups were quaternized using methyl iodide as the alkylating agent to produce their ionic analogs. Polycarbodiimides were chosen as the base polymer used because of their facile chemical modification, pH tolerance in terms of both their helical conformations and degradation behaviors, and tunable helical inversion barriers. Hydrophilic side groups, such as morpholine, dimethylamine, and piperazine, can be used to balance the amphiphilic architecture of the polycarbodiimides along with lipophilic groups, such as alkyl side chains. A chiral R or S BINOL Ti(IV) isopropoxide catalyst was used to control the handedness of the polycarbodiimide helices in these studies. These ionic and neutral polycarbodiimides were subsequently studied for potential antimicrobial and cytotoxic properties. Poly[N-methyl-N'-2-morpholinoethylcarbodiimide], as an example, exhibited significant antifungal properties against Candida albicans. Also, Poly[N-methyl-N'-2-morpholinoethylcarbodiimide] showed significant inhibition of biofilm formation. This suggests that the polymer is a promising candidate for antifungal biomedical applications. Measuring cytotoxicity against urinary bladder cancer cells, poly[N-[3-(dimethylamino)propyl)]-N'-[3-(morpholino)propyl]carbodiimide] (S-cat) and poly[N-[3-(dimethylamino)propyl)]-N'-[3-(morpholino)propyl]carbodiimide]-MeI (S-cat) showed significantly low IC50 values. The IC50 values of poly[N-[3-(dimethylamino)propyl)]-N'-[3-(morpholino)propyl]carbodiimide] (S-cat) and Poly[N-[3-(dimethylamino)propyl)]-N'-[3-(morpholino)propyl]carbodiimide]-MeI (S-cat) are 3.50 μM and 1.27 μM, respectively. The significantly low cancer cell growth inhibition concentration implies the highest cytotoxicity of the polymers, suggesting potential applications as cancer therapeutics. These results also showed that the functionalization and chirality of polycarbodiimides modulate their anticancer and antifungal activity.
Collapse
Affiliation(s)
- Enosha Harshani De Silva
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Narges Salamat
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Li Zhang
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Jie Zheng
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Bruce M Novak
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
23
|
Reeves SM, Jackson J, Lawal A. Characterization and surface impact of paracetamol granules formed by binder dropping. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Celebioglu A, Uyar T. Electrospun formulation of acyclovir/cyclodextrin nanofibers for fast-dissolving antiviral drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 118:111514. [DOI: 10.1016/j.msec.2020.111514] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/24/2020] [Accepted: 09/04/2020] [Indexed: 01/14/2023]
|
25
|
Zhu Y, Ramadani E, Egap E. Thiol ligand capped quantum dot as an efficient and oxygen tolerance photoinitiator for aqueous phase radical polymerization and 3D printing under visible light. Polym Chem 2021. [DOI: 10.1039/d1py00705j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We report here a rapid visible-light-induced radical polymerization in aqueous media photoinitiated by only ppm level thiol ligand capped cadmium selenide quantum dots. The photoinitiation system could be readily employed for photo 3D printing.
Collapse
Affiliation(s)
- Yifan Zhu
- Department of Materials Science and Nanoengineering, USA
| | - Emira Ramadani
- Department of Materials Science and Nanoengineering, USA
| | - Eilaf Egap
- Department of Materials Science and Nanoengineering, USA
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas, 77005, USA
| |
Collapse
|
26
|
Tyagi R, Jacob J. Design and synthesis of water-soluble chelating polymeric materials for heavy metal ion sequestration from aqueous waste. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104687] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Imamura R, Masuko K, Mori H. RAFT
polymerization of tertiary sulfonium zwitterionic monomer in aqueous media for synthesis of protein stabilizing double hydrophilic block copolymers. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ryutaro Imamura
- Graduate School of Organic Materials Science, Yamagata University Yamagata Japan
- NOF CORPORATION Ibaraki Japan
| | - Kazunori Masuko
- Graduate School of Organic Materials Science, Yamagata University Yamagata Japan
| | - Hideharu Mori
- Graduate School of Organic Materials Science, Yamagata University Yamagata Japan
| |
Collapse
|
28
|
Mahmoud AM, Morrow JP, Pizzi D, Nanayakkara S, Davis TP, Saito K, Kempe K. Nonionic Water-Soluble and Cytocompatible Poly(amide acrylate)s. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ayaat M. Mahmoud
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Joshua P. Morrow
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - David Pizzi
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Sepa Nanayakkara
- School of Chemistry, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Kei Saito
- School of Chemistry, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Kristian Kempe
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
- Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
29
|
Fujiyoshi T, Carrez O, Imizcoz M, Zornoza A, Isasi JR. Interpenetrated polymer networks of poly(β-cyclodextrin) and polyvinylpyrrolidone with synergistic and selective sorption capacities. Carbohydr Polym 2019; 219:105-112. [PMID: 31151506 DOI: 10.1016/j.carbpol.2019.05.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/30/2019] [Accepted: 05/07/2019] [Indexed: 11/16/2022]
Abstract
Interpenetrating polymer network (IPN) hydrogels were synthesised using β-cyclodextrin (β-CD) and N-vynil-2-pyrrolidone (NVP) crosslinked with epichlorohydrin and divinylbenzene, respectively, and prepared by four different procedures: simultaneous, sequential, hybrid and a novel one named hybrid-sequential. The IPNs prepared have been characterised by infrared spectroscopy and thermal analysis. The equilibrium swelling in water and the sorption of model substances into the IPNs have also been studied. The model sorbates (1-naphthol, 2-acetylnaphthalene and tannic acid) were selected according to the affinities towards each one of the two constituent polymers. Our studies reveal that these IPNs can be applied for the sorption of substances that can interact with the network by two mechanisms, i.e. inclusion within cyclodextrin cavities and/or via specific interactions with the functional groups present. Besides, due to the complementary character of their constituent polymers, these networks could also serve to retain two substances of different nature such as cetirizine and pseudoephedrine.
Collapse
Affiliation(s)
- Takeo Fujiyoshi
- Department of Chemistry. University of Navarra. 31080 Pamplona, Spain
| | - Olivier Carrez
- Department of Chemistry. University of Navarra. 31080 Pamplona, Spain
| | - Mikel Imizcoz
- Department of Chemistry. University of Navarra. 31080 Pamplona, Spain
| | - Arantza Zornoza
- Department of Chemistry. University of Navarra. 31080 Pamplona, Spain
| | - José Ramón Isasi
- Department of Chemistry. University of Navarra. 31080 Pamplona, Spain.
| |
Collapse
|
30
|
Yang Q, Yuan F, Xu L, Yan Q, Yang Y, Wu D, Guo F, Yang G. An Update of Moisture Barrier Coating for Drug Delivery. Pharmaceutics 2019; 11:pharmaceutics11090436. [PMID: 31480542 PMCID: PMC6781284 DOI: 10.3390/pharmaceutics11090436] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/13/2019] [Accepted: 08/16/2019] [Indexed: 02/03/2023] Open
Abstract
Drug hydrolytic degradation, caused by atmospheric and inherent humidity, significantly reduces the therapeutic effect of pharmaceutical solid dosages. Moisture barrier film coating is one of the most appropriate and effective approaches to protect the active pharmaceutical ingredients (API) from hydrolytic degradation during the manufacturing process and storage. Coating formulation design and process control are the two most commonly used strategies to reduce water vapor permeability to achieve the moisture barrier function. The principles of formulation development include designing a coating formulation with non-hygroscopic/low water activity excipients, and formulating the film-forming polymers with the least amount of inherent moisture. The coating process involves spraying organic or aqueous coating solutions made of natural or synthetic polymers onto the surface of the dosage cores in a drum or a fluid bed coater. However, the aqueous coating process needs to be carefully controlled to prevent hydrolytic degradation of the drug due to the presence of water during the coating process. Recently, different strategies have been designed and developed to effectively decrease water vapor permeability and improve the moisture barrier function of the film. Those strategies include newly designed coating formulations containing polymers with optimized functionality of moisture barrier, and newly developed dry coating processes that eliminate the usage of organic solvent and water, and could potentially replace the current solvent and aqueous coatings. This review aims to summarize the recent advances and updates in moisture barrier coatings.
Collapse
Affiliation(s)
- Qingliang Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
- Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Feng Yuan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lei Xu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qinying Yan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
- Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yan Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
- Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Danjun Wu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
- Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Fangyuan Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
- Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Gensheng Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.
- Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
31
|
Sonker E, Tiwari R, Adhikary P, Kumar K, Krishnamoorthi S. Preparation of ultra‐high‐molecular‐weight polyacrylamide by vertical solution polymerization technique. POLYM ENG SCI 2019. [DOI: 10.1002/pen.25097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ekta Sonker
- Department of Chemistry, Centre of Advanced StudiesInstitute of Science, Banaras Hindu University Varanasi, 221005 Uttar Pradesh India
| | - Rudramani Tiwari
- Department of Chemistry, Centre of Advanced StudiesInstitute of Science, Banaras Hindu University Varanasi, 221005 Uttar Pradesh India
| | - Pubali Adhikary
- Department of Chemistry, Centre of Advanced StudiesInstitute of Science, Banaras Hindu University Varanasi, 221005 Uttar Pradesh India
| | - Krishna Kumar
- Applied Science DepartmentMadan Mohan Malaviya University of Technology Gorakhpur, 273010 Uttar Pradesh India
| | - S. Krishnamoorthi
- Department of Chemistry, Centre of Advanced StudiesInstitute of Science, Banaras Hindu University Varanasi, 221005 Uttar Pradesh India
| |
Collapse
|
32
|
Debnath D, Gupta AK, Ghosal PS. Recent advances in the development of tailored functional materials for the treatment of pesticides in aqueous media: A review. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.10.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
33
|
Voronova M, Rubleva N, Kochkina N, Afineevskii A, Zakharov A, Surov O. Preparation and Characterization of Polyvinylpyrrolidone/Cellulose Nanocrystals Composites. NANOMATERIALS 2018; 8:nano8121011. [PMID: 30563129 PMCID: PMC6315985 DOI: 10.3390/nano8121011] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 11/21/2018] [Accepted: 12/04/2018] [Indexed: 11/16/2022]
Abstract
Composite films and aerogels of polyvinylpyrrolidone/cellulose nanocrystals (PVP/CNC) were prepared by solution casting and freeze-drying, respectively. Investigations into the PVP/CNC composite films and aerogels over a wide composition range were conducted. Thermal stability, morphology, and the resulting reinforcing effect on the PVP matrix were explored. FTIR, TGA, DSC, X-ray diffraction, SEM, and tensile testing were used to examine the properties of the composites. It was revealed PVP-assisted CNC self-assembly that produces uniform CNC aggregates with a high aspect ratio (length/width). A possible model of the PVP-assisted CNC self-assembly has been considered. Dispersibility of the composite aerogels in water and some organic solvents was studied. It was shown that dispersing the composite aerogels in water resulted in stable colloidal suspensions. CNC particles size in the redispersed aqueous suspensions was near similar to the CNC particles size in never-dried CNC aqueous suspensions.
Collapse
Affiliation(s)
- Marina Voronova
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya St., Ivanovo 153045, Russia.
| | - Natalia Rubleva
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya St., Ivanovo 153045, Russia.
| | - Nataliya Kochkina
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya St., Ivanovo 153045, Russia.
| | - Andrei Afineevskii
- Department of Physical and Colloid Chemistry, Ivanovo State University of Chemistry and Technology, 7 Sheremetevsky Prospect, Ivanovo 153000, Russia.
| | - Anatoly Zakharov
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya St., Ivanovo 153045, Russia.
| | - Oleg Surov
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya St., Ivanovo 153045, Russia.
| |
Collapse
|
34
|
Rukmani SJ, Kupgan G, Anstine DM, Colina CM. A molecular dynamics study of water-soluble polymers: analysis of force fields from atomistic simulations. MOLECULAR SIMULATION 2018. [DOI: 10.1080/08927022.2018.1531401] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Shalini J. Rukmani
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, USA
- George and Josephine Butler Polymer Research Laboratory, Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Grit Kupgan
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, USA
- George and Josephine Butler Polymer Research Laboratory, Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Dylan M. Anstine
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, USA
- George and Josephine Butler Polymer Research Laboratory, Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Coray M. Colina
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, USA
- George and Josephine Butler Polymer Research Laboratory, Department of Chemistry, University of Florida, Gainesville, FL, USA
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
35
|
Kwon Y, Chaudhari S, Kim C, Son D, Park J, Moon M, Shon M, Park Y, Nam S. Ag-exchanged NaY zeolite introduced polyvinyl alcohol/polyacrylic acid mixed matrix membrane for pervaporation separation of water/isopropanol mixture. RSC Adv 2018; 8:20669-20678. [PMID: 35542332 PMCID: PMC9080825 DOI: 10.1039/c8ra03474e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 05/31/2018] [Indexed: 11/21/2022] Open
Abstract
Ag-exchanged NaY zeolite (Ag-NaZ) particles were prepared by ion exchange and introduced to a polyvinyl alcohol (PVA) membrane cross-linked with polyacrylic acid (PAA) for the pervaporation dehydration of an isopropanol (IPA) aqueous mixture. The Ag-exchanged NaY zeolite particles were characterized by FE-SEM, EDS, BET, and XRD studies. The prepared Ag-NaZ-loaded PVA/PAA composite membrane was characterized by FE-SEM, XRD, a swelling study, and contact angle measurements. Pervaporation characteristics were investigated in terms of Ag-NaZ concentrations within PVA/PAA membranes using diverse feed solution conditions. The preferential sorption of IPA/water mixtures for Ag-NaZ-introduced membranes were also determined by calculating the apparent activation energies of IPA and water permeation, respectively. As a result, flux and selectivity increased with the Ag-NaZ concentration to 5 wt% in the membrane. Optimum pervaporation performance was observed in a 5 wt% Ag-NaZ-incorporated membrane with a flux equal to 0.084 kg m-2 h-1 and a separation factor of 2717.9 at 40 °C from an 80 wt% IPA aqueous feed solution.
Collapse
Affiliation(s)
- YongSung Kwon
- Department of Industrial Chemistry, Pukyong National University San 100, Yongdang-Dong, Nam-Gu Busan 608-739 Korea +82 51 629 4629 +82 51 629 6440
| | - Shivshankar Chaudhari
- Department of Industrial Chemistry, Pukyong National University San 100, Yongdang-Dong, Nam-Gu Busan 608-739 Korea +82 51 629 4629 +82 51 629 6440
| | - ChaEun Kim
- Department of Industrial Chemistry, Pukyong National University San 100, Yongdang-Dong, Nam-Gu Busan 608-739 Korea +82 51 629 4629 +82 51 629 6440
| | - DaHae Son
- Department of Industrial Chemistry, Pukyong National University San 100, Yongdang-Dong, Nam-Gu Busan 608-739 Korea +82 51 629 4629 +82 51 629 6440
| | - JiHwan Park
- Department of Industrial Chemistry, Pukyong National University San 100, Yongdang-Dong, Nam-Gu Busan 608-739 Korea +82 51 629 4629 +82 51 629 6440
| | - MyungJun Moon
- Department of Industrial Chemistry, Pukyong National University San 100, Yongdang-Dong, Nam-Gu Busan 608-739 Korea +82 51 629 4629 +82 51 629 6440
| | - MinYoung Shon
- Department of Industrial Chemistry, Pukyong National University San 100, Yongdang-Dong, Nam-Gu Busan 608-739 Korea +82 51 629 4629 +82 51 629 6440
| | - YouIn Park
- Center for Membranes, Korea Research Institute of Chemical Technology 141 Gajeong-ro, Yuseong-gu Daejeon 305-600 Korea
| | - SeungEun Nam
- Center for Membranes, Korea Research Institute of Chemical Technology 141 Gajeong-ro, Yuseong-gu Daejeon 305-600 Korea
| |
Collapse
|
36
|
Fouda AS, Elmorsi MA, Fayed T, Shaban SM, Azazy O. Corrosion Inhibition of Novel Prepared Cationic Surfactants for API N80 Carbon Steel Pipelines in Oil Industries. SURFACE ENGINEERING AND APPLIED ELECTROCHEMISTRY 2018. [DOI: 10.3103/s1068375518020060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Ikeda T. Glycidyl Triazolyl Polymers: Poly(ethylene glycol) Derivatives Functionalized by Azide-Alkyne Cycloaddition Reaction. Macromol Rapid Commun 2018. [PMID: 29528171 DOI: 10.1002/marc.201700825] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Glycidyl triazolyl polymer (GTP), which is the product of the Huisgen dipolar cycloaddition reaction between glycidyl azide polymer and alkyne derivatives, is featured here. GTP is the multifunctionalized poly(ethylene glycol) (PEG). The drawback of PEG is that linear PEG has the functional group only at both ends. The low loading capability of the functional groups limits the possibilities of PEG applications. GTP facilitates the synthesis of multifunctionalized PEG derivatives. In this article, 74 examples of GTP homopolymers and copolymers are introduced. The synthetic protocols and work-up processes of GTP are summarized. In addition, application studies are reviewed: for example, stimuli-responsive and self-healing materials, materials for electrical memory devices, ion-conductive materials, and biomedical materials. Finally, some issues on GTP synthesis and future directions for GTP-based polymer materials are proposed.
Collapse
Affiliation(s)
- Taichi Ikeda
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| |
Collapse
|
38
|
Du J, Li C, Zhao Y, Wang H. Hemicellulose isolated from waste liquor of viscose fiber mill for preparation of polyacrylamide-hemicellulose hybrid films. Int J Biol Macromol 2018; 108:1255-1260. [DOI: 10.1016/j.ijbiomac.2017.11.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/27/2017] [Accepted: 11/07/2017] [Indexed: 11/15/2022]
|
39
|
Halake K, Cho S, Kim J, Lee T, Cho Y, Chi S, Park M, Kim K, Lee D, Ju H, Choi Y, Jang M, Choe G, Lee J. Applications Using the Metal Affinity of Polyphenols with Mussel-Inspired Chemistry. Macromol Res 2018. [DOI: 10.1007/s13233-018-6051-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
40
|
Poly(vinyl alcohol) and poly(vinyl amine) blend membranes for isopropanol dehydration. J Appl Polym Sci 2017. [DOI: 10.1002/app.45572] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
41
|
Kinetics of the Aqueous-Phase Copolymerization of MAA and PEGMA Macromonomer: Influence of Monomer Concentration and Side Chain Length of PEGMA. Processes (Basel) 2017. [DOI: 10.3390/pr5020019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
42
|
Kim J, Kim SC, Byun H, Jung YS, Huh P. Anti-fouling ultrafiltration membrane made from surface saponification of poly(vinyl acetate- co -vinyl pivalate) with enhanced syndiotacticity. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2017.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Nishihara Y, Matsui K, Kuwabara K, Murata N, Yamaguchi T, Miyake Y, Ikegami T, Kanaori K, Tajima K. Molecular Structure of Poly(vinyl alcohol)-Derived Carbon-Centered Radicals Studied by Rapid-Flow and Spin-Trapping ESR Measurements: A Short-Lived Intermediate Radical in the Initial Stage of the Graft Polymerization Reaction. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2017. [DOI: 10.1246/bcsj.20160332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
44
|
Fabrication of highly porous biodegradable biomimetic nanocomposite as advanced bone tissue scaffold. ARAB J CHEM 2017. [DOI: 10.1016/j.arabjc.2016.09.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
45
|
Kurşun F, Işıklan N. Development of thermo-responsive poly(vinyl alcohol)-g-poly(N-isopropylacrylamide) copolymeric membranes for separation of isopropyl alcohol/water mixtures via pervaporation. J IND ENG CHEM 2016. [DOI: 10.1016/j.jiec.2016.07.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
46
|
Król K, Pielichowska K. Modification of acrylic bone cements by poly(ethylene glycol) with different molecular weight. POLYM ADVAN TECHNOL 2016. [DOI: 10.1002/pat.3792] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Klaudia Król
- AGH University of Science and Technology; Faculty of Materials Science and Ceramics; Department of Biomaterials; Al. A. Mickiewicza 30 Kraków 30-059 Poland
| | - Kinga Pielichowska
- AGH University of Science and Technology; Faculty of Materials Science and Ceramics; Department of Biomaterials; Al. A. Mickiewicza 30 Kraków 30-059 Poland
| |
Collapse
|
47
|
González Rivera J, Hernández Barajas J, Gutiérrez Carrillo A, Aguilera Alvarado AF. Preparation of highly concentrated inverse emulsions of acrylamide-based anionic copolymers as efficient water rheological modifiers. J Appl Polym Sci 2016. [DOI: 10.1002/app.43502] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- José González Rivera
- Chemical Engineering Department; University of Guanajuato; Noria Alta S/N Guanajuato Gto 36050 México
| | - José Hernández Barajas
- Materials Engineering Department; ITESI; Carretera Irapuato-Silao Km. 12.5 Irapuato Gto 36821 México
| | | | | |
Collapse
|
48
|
Tsvetkov NV, Mikusheva NG, Lezov AA, Gubarev AS, Mikhailova ME, Podseval’nikova AN, Akhmadeeva LI, Lebedeva EV, Zorin IM, Shcherbinina TM, Bilibin AY. Molecular, conformational, and optical characteristics of poly(cetylammonium-2-acrylamido-2-methylpropanesulfonate) obtained by micellar polymerization. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2015.12.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Mechanical degradation of water-soluble acrylamide copolymer under a turbulent flow: Effect of molecular weight and temperature. J IND ENG CHEM 2016. [DOI: 10.1016/j.jiec.2015.09.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
50
|
Luo Z, Zheng T, Li H, Zhou Q, Wang A, Zhang L, Hu Y. A Submicron Spherical Polypropylene Prepared by Heterogeneous Ziegler–Natta Catalyst. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b02986] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhi Luo
- College
of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Zheng
- College
of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huayi Li
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Qian Zhou
- College
of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ailian Wang
- College
of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liaoyun Zhang
- College
of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Youliang Hu
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|