1
|
Zheng G, Yuan Z, Zhang Q, Sun Y, Wu H, Liu Z, Song M. Research on Interfacial Construction and Energy Storage Performance of Polymetallic Heterostructure Based on Zn-Ni 3d Orbital Modulation and DFT Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:4930-4940. [PMID: 39957143 DOI: 10.1021/acs.langmuir.4c05351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
In this study, ZnCo2O4 nanosheets and NiCo2O4 nanowires were successfully grown on nickel foam as anode materials for lithium-ion batteries by a low-temperature hydrothermal and immersion method. The nanosheets offered an enlarged electrically active surface area, and the nanowires provided support for the nanosheets, thereby forming a heterojunction interface. The ZnCo2O4/NiCo2O4 heterojunction demonstrated favorable electrochemical performance in electrochemical tests. In terms of its rated performance, the capacity of the composite electrode recovered to 1050 mAh g-1 when the current density ranged from 0.1 to 1 A g-1; its capacity was maintained even when the current density returned to 0.1 A g-1 after 60 cycles. The diffusion coefficient of lithium ions (DLi+) increased due to the reduction of the interfacial contact resistance under the interfacial electric field of the heterostructure, and they were continuously activated during repeated cycles. This further significantly enhanced the electrochemical activity of the electrode. The analysis results based on the density functional theory revealed the hybridization of the 3d orbitals of Ni and Zn and the augmented electronic state occupancy of the orbitals near the Fermi energy level. This process was accompanied by the migration of electrons, leading to a decrease in the band gap. Meanwhile, the Li+ diffusion barrier decreased, and the conductivity of the electrode materials was enhanced.
Collapse
Affiliation(s)
- Guoxu Zheng
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, China
| | - Zhuo Yuan
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, China
| | - Qian Zhang
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, China
| | - Yongquan Sun
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, China
| | - Hongwei Wu
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, China
| | - Zhiwei Liu
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, China
| | - Mingxin Song
- College of Applied Science and Technology, Hainan University, Haikou 570228, P. R. China
| |
Collapse
|
2
|
Shi C, Long Z, Wu C, Dai H, Li Z, Qiao H, Liu K, Fan QH, Wang K. Multi-Pleated Alkalized Ti 3 C 2 T x MXene-Based Sandwich-Like Structure Composite Nanofibers for High-Performance Sodium/Lithium Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303802. [PMID: 37519121 DOI: 10.1002/smll.202303802] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/17/2023] [Indexed: 08/01/2023]
Abstract
The volume expansion of CoFe2 O4 anode poses a significant challenge in the commercial application of lithium/sodium-ion batteries (LIBs/SIBs). However, metal-organic-frameworks (MOF) offer superior construction of heterostructures with refined interfacial interactions and lower ion diffusion barriers in Li/Na storage. In this study, the CoFe2 O4 @carbon nanofibers derived from MOF are produced through electrospinning, in situ growth followed by calcination, which are then confined within an MXene-confined MOF-derived porous CoFe2 O4 @carbon composite architecture under alkali treatment. The CoFe2 O4 nanofibers anchor on the alkalized MXene that is decorated with the NaOH solution to form a multi-pleated structure. The sandwich-like structure of the composite effectively alleviates the volume expansion and shortens the Li/Na-ion diffusion path, which displays high capacity and outstanding rate performance as anode materials for LIBs/SIBs. As a consequence, the obtained CoFe2 O4 @carbon@alkalized MXene composite anode shows satisfied rate performance at current density of 10 A g-1 for LIBs (318 mAh·g-1 ) and 5 A g-1 for SIBs (149 mAh g-1 ). The excellent cycling performance is further demonstrated at a high current density, where it maintains a discharge capacity of 807 mAh g-1 at 2 A g-1 after 400 cycles for LIBs and 130 mAh g-1 at 1 A g-1 even after 1000 cycles for SIBs.
Collapse
Affiliation(s)
- Chu Shi
- Key Laboratory of Eco-textiles, Ministry of Education, School of Textile Science and Engineering, Jiangnan University, Wuxi, 214122, China
| | - Zhiwen Long
- Key Laboratory of Eco-textiles, Ministry of Education, School of Textile Science and Engineering, Jiangnan University, Wuxi, 214122, China
| | - Caiqin Wu
- Key Laboratory of Eco-textiles, Ministry of Education, School of Textile Science and Engineering, Jiangnan University, Wuxi, 214122, China
| | - Han Dai
- Key Laboratory of Eco-textiles, Ministry of Education, School of Textile Science and Engineering, Jiangnan University, Wuxi, 214122, China
| | - Zhengchun Li
- Key Laboratory of Eco-textiles, Ministry of Education, School of Textile Science and Engineering, Jiangnan University, Wuxi, 214122, China
| | - Hui Qiao
- Key Laboratory of Eco-textiles, Ministry of Education, School of Textile Science and Engineering, Jiangnan University, Wuxi, 214122, China
| | - Ke Liu
- Hubei Key Laboratory of Low Dimensional Optoelectronic Material and Devices, Hubei University of Arts and Science, Xiangyang, Hubei, 441053, China
| | - Qi Hua Fan
- Department of Electrical Engineering and Computer Engineering & Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Keliang Wang
- Fraunhofer USA, Inc., Center for Midwest, Division for Coatings and Diamond Technologies, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
3
|
Exploration of Two Dimensional MoO3-Fe2O3 Nanocomposite for the Fabrication of High Energy Density Supercapacitor Applications. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
4
|
Thermal nanoarchitectonics with NiMn2O4 binary nanocomposite as a superior electrode material for the fabrication of high performance supercapacitors. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
5
|
Bai W, Tang H, Zhai J, Cui C, Wang W, Cheng C, Ren E, Xiao H, Zhou M, Guo R, Lin S. 2D/0D/1D Construction of Ti 3C 2@ZnCo 2O 4@Carbon Nanofibers for High-Capacity Lithium Storage. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wenhao Bai
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
- Yibin Industrial Technology Research Institute of Sichuan University, Yibin 644000, China
| | - Hong Tang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
- Yibin Industrial Technology Research Institute of Sichuan University, Yibin 644000, China
| | - Jianyu Zhai
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
- Yibin Industrial Technology Research Institute of Sichuan University, Yibin 644000, China
| | - Ce Cui
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
- Yibin Industrial Technology Research Institute of Sichuan University, Yibin 644000, China
| | - Weijie Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
- Yibin Industrial Technology Research Institute of Sichuan University, Yibin 644000, China
| | - Cheng Cheng
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, U.K
| | - Erhui Ren
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
- Yibin Industrial Technology Research Institute of Sichuan University, Yibin 644000, China
| | - Hongyan Xiao
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
- Yibin Industrial Technology Research Institute of Sichuan University, Yibin 644000, China
| | - Mi Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
- Yibin Industrial Technology Research Institute of Sichuan University, Yibin 644000, China
| | - Ronghui Guo
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
- Yibin Industrial Technology Research Institute of Sichuan University, Yibin 644000, China
| | - Shaojian Lin
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
- Yibin Industrial Technology Research Institute of Sichuan University, Yibin 644000, China
| |
Collapse
|
6
|
Denis DK, Zaman FU, Hou L, Chen G, Yuan C. Spray-drying construction of nickel/cobalt/molybdenum based nano carbides embedded in porous carbon microspheres for lithium-ion batteries as anodes. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Strategies for Controlling or Releasing the Influence Due to the Volume Expansion of Silicon inside Si-C Composite Anode for High-Performance Lithium-Ion Batteries. MATERIALS 2022; 15:ma15124264. [PMID: 35744323 PMCID: PMC9228666 DOI: 10.3390/ma15124264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 02/01/2023]
Abstract
Currently, silicon is considered among the foremost promising anode materials, due to its high capacity, abundant reserves, environmental friendliness, and low working potential. However, the huge volume changes in silicon anode materials can pulverize the material particles and result in the shedding of active materials and the continual rupturing of the solid electrolyte interface film, leading to a short cycle life and rapid capacity decay. Therefore, the practical application of silicon anode materials is hindered. However, carbon recombination may remedy this defect. In silicon/carbon composite anode materials, silicon provides ultra-high capacity, and carbon is used as a buffer, to relieve the volume expansion of silicon; thus, increasing the use of silicon-based anode materials. To ensure the future utilization of silicon as an anode material in lithium-ion batteries, this review considers the dampening effect on the volume expansion of silicon particles by the formation of carbon layers, cavities, and chemical bonds. Silicon-carbon composites are classified herein as coated core-shell structure, hollow core-shell structure, porous structure, and embedded structure. The above structures can adequately accommodate the Si volume expansion, buffer the mechanical stress, and ameliorate the interface/surface stability, with the potential for performance enhancement. Finally, a perspective on future studies on Si-C anodes is suggested. In the future, the rational design of high-capacity Si-C anodes for better lithium-ion batteries will narrow the gap between theoretical research and practical applications.
Collapse
|
8
|
Shi C, Long Z, Wu C, Dai H, Bai L, Qiao H, Fan QH, Wang K. Metal–organic framework-derived porous CoFe 2O 4/carbon composite nanofibers for high-rate lithium storage. CrystEngComm 2022. [DOI: 10.1039/d2ce01111e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Upon assembled into full cells, metal–organic frameworks derived porous CoFe2O4/carbon composite nanofibers achieved long-cycling and high-rate performance, and a series of LED bulbs can be lit to demonstrate its potential in real applications.
Collapse
Affiliation(s)
- Chu Shi
- Key Laboratory of Eco-textiles, Ministry of Education, School of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhiwen Long
- Key Laboratory of Eco-textiles, Ministry of Education, School of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Caiqin Wu
- Key Laboratory of Eco-textiles, Ministry of Education, School of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Han Dai
- Key Laboratory of Eco-textiles, Ministry of Education, School of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Lin Bai
- Key Laboratory of Eco-textiles, Ministry of Education, School of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Hui Qiao
- Key Laboratory of Eco-textiles, Ministry of Education, School of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Qi Hua Fan
- Department of Electrical and Computer Engineering, & Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA
| | - Keliang Wang
- Fraunhofer USA, Inc., Center for Midwest, Division for Coatings and Diamond Technologies, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
9
|
Dual interface engineering of NiO/NiCo2O4/CoO heterojunction within graphene networks for high-performance lithium storage. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138536] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Pradeepa SS, Rajkumar P, Diwakar K, Sutharthani K, Subadevi R, Sivakumar M. A Facile One‐Pot Hydrothermal Synthesis of Zn, Mn Co‐Doped NiCo
2
O
4
as an Efficient Electrode for Supercapacitor Applications. ChemistrySelect 2021. [DOI: 10.1002/slct.202101708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- S. S. Pradeepa
- 120 Energy Materials Lab Department of Physics Science Block Alagappa University Karaikudi 630003 Tamil Nadu India
| | - P. Rajkumar
- 120 Energy Materials Lab Department of Physics Science Block Alagappa University Karaikudi 630003 Tamil Nadu India
| | - K. Diwakar
- 120 Energy Materials Lab Department of Physics Science Block Alagappa University Karaikudi 630003 Tamil Nadu India
| | - K. Sutharthani
- 120 Energy Materials Lab Department of Physics Science Block Alagappa University Karaikudi 630003 Tamil Nadu India
| | - R. Subadevi
- 120 Energy Materials Lab Department of Physics Science Block Alagappa University Karaikudi 630003 Tamil Nadu India
| | - M. Sivakumar
- 120 Energy Materials Lab Department of Physics Science Block Alagappa University Karaikudi 630003 Tamil Nadu India
| |
Collapse
|
11
|
Abstract
The synthesis of nanomaterials, with characteristic dimensions of 1 to 100 nm, is a key component of nanotechnology. Vapor-phase synthesis of nanomaterials has numerous advantages such as high product purity, high-throughput continuous operation, and scalability that have made it the dominant approach for the commercial synthesis of nanomaterials. At the same time, this class of methods has great potential for expanded use in research and development. Here, we present a broad review of progress in vapor-phase nanomaterial synthesis. We describe physically-based vapor-phase synthesis methods including inert gas condensation, spark discharge generation, and pulsed laser ablation; plasma processing methods including thermal- and non-thermal plasma processing; and chemically-based vapor-phase synthesis methods including chemical vapor condensation, flame-based aerosol synthesis, spray pyrolysis, and laser pyrolysis. In addition, we summarize the nanomaterials produced by each method, along with representative applications, and describe the synthesis of the most important materials produced by each method in greater detail.
Collapse
Affiliation(s)
- Mohammad Malekzadeh
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA.
| | - Mark T Swihart
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA. and RENEW Institute, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|
12
|
Kamble GP, Kashale AA, Rasal AS, Mane SA, Chavan RA, Chang JY, Ling YC, Kolekar SS, Ghule AV. Marigold micro-flower like NiCo 2O 4 grown on flexible stainless-steel mesh as an electrode for supercapacitors. RSC Adv 2021; 11:3666-3672. [PMID: 35424283 PMCID: PMC8694226 DOI: 10.1039/d0ra09524a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/03/2021] [Indexed: 12/02/2022] Open
Abstract
Nanostructured NiCo2O4 is a promising material for energy storage systems. Herein, we report the binder-free deposition of porous marigold micro-flower like NiCo2O4 (PNCO) on the flexible stainless-steel mesh (FSSM) as (PNCO@FSSM) electrode by simple chemical bath deposition. The SEM and EDS analysis revealed the marigold micro-flowers like morphology of NiCo2O4 and its elemental composition. The porous nature of the electrode is supported by the BET surface area (100.47 m2 g−1) and BJH pore size diameter (∼1.8 nm) analysis. This PNCO@FSSM electrode demonstrated a specific capacitance of 530 F g−1 at a high current density of 6 mA cm−2 and revealed 90.5% retention of specific capacitance after 3000 cycles. The asymmetric supercapacitor device NiCo2O4//rGO within a voltage window of 1.4 V delivered a maximum energy density of 41.66 W h kg−1 at a power density of 3000 W kg−1. The cyclic stability study of this device revealed 73.33% capacitance retention after 2000 cycles. These results indicate that the porous NiCo2O4 micro-flowers electrode is a promising functional material for the energy storage device. Binder-free marigold micro-flower like NiCo2O4 deposited on FSSM as electrode in ASC device (NiCo2O4//rGO) is a promising functional material for energy storage device.![]()
Collapse
Affiliation(s)
- Gokul P Kamble
- Green Nanotechnology Laboratory, Department of Chemistry, Shivaji University Kolhapur 416004 Maharashtra India
| | - Anil A Kashale
- Green Nanotechnology Laboratory, Department of Chemistry, Shivaji University Kolhapur 416004 Maharashtra India
| | - Akash S Rasal
- Green Nanotechnology Laboratory, Department of Chemistry, Shivaji University Kolhapur 416004 Maharashtra India .,Department of Chemical Engineering, National Taiwan University of Science and Technology Taipei Taiwan
| | - Seema A Mane
- Green Nanotechnology Laboratory, Department of Chemistry, Shivaji University Kolhapur 416004 Maharashtra India
| | - Rutuja A Chavan
- Green Nanotechnology Laboratory, Department of Chemistry, Shivaji University Kolhapur 416004 Maharashtra India
| | - Jia-Yaw Chang
- Department of Chemical Engineering, National Taiwan University of Science and Technology Taipei Taiwan
| | - Yong-Chien Ling
- Department of Chemistry, National Tsing Hua University Hsinchu 30013 Taiwan
| | - Sanjay S Kolekar
- Analytical Chemistry and Material Science Research Laboratory, Department of Chemistry, Shivaji University Kolhapur 416004 Maharashtra India
| | - Anil V Ghule
- Green Nanotechnology Laboratory, Department of Chemistry, Shivaji University Kolhapur 416004 Maharashtra India
| |
Collapse
|
13
|
Zhang Y, Zhang P, Song X, Shen H, Kong X, Xu H. Low-cost 3D porous sea-hedgehog-like NiCo 2O 4/C as anode for Li-ion battery. NANOTECHNOLOGY 2020; 31:415704. [PMID: 32485698 DOI: 10.1088/1361-6528/ab98b9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Carbon is effective additive to improve cyclic performances of transition metal oxides for lithium ion battery, while common graphene or carbon nanotube is expensive. In this study, waste of rice husk is used to prepare low cost carbon. A composite of NiCo2O4/carbon is synthesized via hydrothermal method plus calcination. At hydrothermal time of 6 h, the material displays 3-D sea hedgehog-like structure with radial corn cob-shaped nanorod. The NiCo2O4/carbon presents better rate performances, coulombic efficiency and cyclic stability than pristine NiCo2O4, showing stable capacity of 1018 mAhg-1 (52.6% higher than NiCo2O4) after 100 cycles at 0.1 Ag-1. For long-term cycling during 500 cycles at 0.5 Ag-1, the composite anode exhibits a reversible capacity of ∼880 mAhg-1, with high retention of 92.2%. The capacity is still retained ∼715 mAhg-1 even after 1000 cycles at 1 Ag-1.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory for Mineral Materials & Application of Hunan Province, School of Mineral Processing and Bioengineering, Central South University, Changsha 410083, People's Republic of China
| | | | | | | | | | | |
Collapse
|
14
|
Liu T, Gong Q, Cao P, Sun X, Ren J, Gu S, Zhou G. Preparations of NiFe 2O 4 Yolk-Shell@C Nanospheres and Their Performances as Anode Materials for Lithium-Ion Batteries. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1994. [PMID: 33050348 PMCID: PMC7600623 DOI: 10.3390/nano10101994] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 10/07/2020] [Indexed: 01/29/2023]
Abstract
At present, lithium-ion batteries (LIBs) have received widespread attention as substantial energy storage devices; thus, their electrochemical performances must be continuously researched and improved. In this paper, we demonstrate a simple self-template solvothermal method combined with annealing for the synthesis of NiFe2O4 yolk-shell (NFO-YS) and NiFe2O4 solid (NFO-S) nanospheres by controlling the heating rate and coating them with a carbon layer on the surface via high-temperature carbonization of resorcinol and formaldehyde resin. Among them, NFO-YS@C has an obvious yolk-shell structure, with a core-shell spacing of about 60 nm, and the thicknesses of the NiFe2O4 shell and carbon shell are approximately 15 and 30 nm, respectively. The yolk-shell structure can alleviate volume changes and shorten the ion/electron diffusion path, while the carbon shell can improve conductivity. Therefore, NFO-YS@C nanospheres as the anode materials of LIBs show a high initial capacity of 1087.1 mA h g-1 at 100 mA g-1, and the capacity of NFO-YS@C nanospheres impressively remains at 1023.5 mA h g-1 after 200 cycles at 200 mA g-1. The electrochemical performance of NFO-YS@C is significantly beyond NFO-S@C, which proves that the carbon coating and yolk-shell structure have good stability and excellent electron transport ability.
Collapse
Affiliation(s)
| | | | | | | | | | - Shaonan Gu
- Key Laboratory of Fine Chemicals in Universities of Shandong, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (T.L.); (Q.G.); (P.C.); (X.S.); (J.R.)
| | - Guowei Zhou
- Key Laboratory of Fine Chemicals in Universities of Shandong, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (T.L.); (Q.G.); (P.C.); (X.S.); (J.R.)
| |
Collapse
|
15
|
|
16
|
Kumar R. NiCo 2O 4 Nano-/Microstructures as High-Performance Biosensors: A Review. NANO-MICRO LETTERS 2020; 12:122. [PMID: 34138118 PMCID: PMC7770908 DOI: 10.1007/s40820-020-00462-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/28/2020] [Indexed: 05/13/2023]
Abstract
Non-enzymatic biosensors based on mixed transition metal oxides are deemed as the most promising devices due to their high sensitivity, selectivity, wide concentration range, low detection limits, and excellent recyclability. Spinel NiCo2O4 mixed oxides have drawn considerable attention recently due to their outstanding advantages including large specific surface area, high permeability, short electron, and ion diffusion pathways. Because of the rapid development of non-enzyme biosensors, the current state of methods for synthesis of pure and composite/hybrid NiCo2O4 materials and their subsequent electrochemical biosensing applications are systematically and comprehensively reviewed herein. Comparative analysis reveals better electrochemical sensing of bioanalytes by one-dimensional and two-dimensional NiCo2O4 nano-/microstructures than other morphologies. Better biosensing efficiency of NiCo2O4 as compared to corresponding individual metal oxides, viz. NiO and Co3O4, is attributed to the close intrinsic-state redox couples of Ni3+/Ni2+ (0.58 V/0.49 V) and Co3+/Co2+ (0.53 V/0.51 V). Biosensing performance of NiCo2O4 is also significantly improved by making the composites of NiCo2O4 with conducting carbonaceous materials like graphene, reduced graphene oxide, carbon nanotubes (single and multi-walled), carbon nanofibers; conducting polymers like polypyrrole (PPy), polyaniline (PANI); metal oxides NiO, Co3O4, SnO2, MnO2; and metals like Au, Pd, etc. Various factors affecting the morphologies and biosensing parameters of the nano-/micro-structured NiCo2O4 are also highlighted. Finally, some drawbacks and future perspectives related to this promising field are outlined.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department of Chemistry, Jagdish Chandra DAV College, Dasuya, Distt. Hoshiarpur, 144205, Punjab, India.
| |
Collapse
|
17
|
Sudha V, Senthil Kumar SM, Thangamuthu R. NiCo2O4 nanorod: Synthesis and electrochemical sensing of carcinogenic hydrazine. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.107927] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
High-performance symmetric supercapacitor; nanoflower-like NiCo2O4//NiCo2O4 thin films synthesized by simple and highly stable chemical method. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112119] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Park JS, Kim JK, Hong JH, Cho JS, Park SK, Kang YC. Advances in the synthesis and design of nanostructured materials by aerosol spray processes for efficient energy storage. NANOSCALE 2019; 11:19012-19057. [PMID: 31410433 DOI: 10.1039/c9nr05575d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The increasing demand for energy storage has motivated the search for highly efficient electrode materials for use in rechargeable batteries with enhanced energy density and longer cycle life. One of the most promising strategies for achieving improved battery performance is altering the architecture of nanostructured materials employed as electrode materials in the energy storage field. Among numerous synthetic methods suggested for the fabrication of nanostructured materials, aerosol spray techniques such as spray pyrolysis, spray drying, and flame spray pyrolysis are reliable, as they are facile, cost-effective, and continuous processes that enable the synthesis of nanostructured electrode materials with desired morphologies and compositions with controlled stoichiometry. The post-treatment of spray-processed powders enables the fabrication of oxide, sulfide, and selenide nanostructures hybridized with carbonaceous materials including amorphous carbon, reduced graphene oxide, carbon nanotubes, etc. In this article, recent progress in the synthesis of nanostructured electrode materials by spray processes and their general formation mechanisms are discussed in detail. A brief introduction to the working principles of each spray process is given first, and synthetic strategies for the design of electrode materials for lithium-ion, sodium-ion, lithium-sulfur, lithium-selenium, and lithium-oxygen batteries are discussed along with some examples. This analysis sheds light on the synthesis of nanostructured materials by spray processes and paves the way toward the design of other novel and advanced nanostructured materials for high performance electrodes in rechargeable batteries of the future.
Collapse
Affiliation(s)
- Jin-Sung Park
- Department of Materials Science and Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-713, Republic of Korea.
| | - Jin Koo Kim
- Department of Materials Science and Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-713, Republic of Korea.
| | - Jeong Hoo Hong
- Department of Materials Science and Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-713, Republic of Korea.
| | - Jung Sang Cho
- Department of Engineering Chemistry, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Seung-Keun Park
- Department of Chemical Engineering, Kongju National University, Budae-dong 275, Cheonan, Chungnam 314-701, Republic of Korea
| | - Yun Chan Kang
- Department of Materials Science and Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-713, Republic of Korea.
| |
Collapse
|
20
|
Li M, Wei Z, Wang D, Zhang Z, Wang C, Chen G, Du F. Graphene oxide wrapped Cu 3V 2O 7(OH) 2 · 2H 2O nanocomposite with enhanced electrochemical performance for lithium-ion storage. NANOTECHNOLOGY 2019; 30:184003. [PMID: 30645982 DOI: 10.1088/1361-6528/aafec3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Transition metal oxides (TMOs) are widely accepted as one of the alternatives for the graphite anode in lithium-ion batteries (LIBs) owing to the high specific capacity and facile synthesis of nanoscale materials facilitating fast ionic transfer. However, the lower electronic conductivity always impedes the application of TMOs. Herein, we report a graphene oxide wrapped layer-structured Cu3V2O7(OH)2 · 2H2O nanocomposite (CVO/GO) synthesized via an in situ co-precipitation method. It is corroborated that the introduction of GO not only provides more active sites for lithium-ion storage, but also improves the charge transfer rate of the electrode, issuing an enhanced electrochemical performance. As expected, the CVO/GO nanocomposite exhibits an ultrahigh specific capacity of 870 mA h g-1 at 0.1 A g-1 compared with CVO nanoparticles. Even at a high current density of 5 A g-1, a specific capacity of 158 mA h g-1 could be achieved for the CVO/GO nanocomposite.
Collapse
Affiliation(s)
- Malin Li
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, People's Republic of China. State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
21
|
Leng J, Wang Z, Wang J, Wu HH, Yan G, Li X, Guo H, Liu Y, Zhang Q, Guo Z. Advances in nanostructures fabricated via spray pyrolysis and their applications in energy storage and conversion. Chem Soc Rev 2019; 48:3015-3072. [DOI: 10.1039/c8cs00904j] [Citation(s) in RCA: 195] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review provides insight into various nanostructures designed by spray pyrolysis and their applications in energy storage and conversion.
Collapse
Affiliation(s)
- Jin Leng
- School of Metallurgy and Environment
- Central South University
- Changsha 410083
- P. R. China
| | - Zhixing Wang
- School of Metallurgy and Environment
- Central South University
- Changsha 410083
- P. R. China
| | - Jiexi Wang
- School of Metallurgy and Environment
- Central South University
- Changsha 410083
- P. R. China
- State Key Laboratory for Powder Metallurgy
| | - Hong-Hui Wu
- Department of Chemistry
- University of Nebraska-Lincoln
- Lincoln
- USA
| | - Guochun Yan
- School of Metallurgy and Environment
- Central South University
- Changsha 410083
- P. R. China
| | - Xinhai Li
- School of Metallurgy and Environment
- Central South University
- Changsha 410083
- P. R. China
| | - Huajun Guo
- School of Metallurgy and Environment
- Central South University
- Changsha 410083
- P. R. China
| | - Yong Liu
- State Key Laboratory for Powder Metallurgy
- Central South University
- Changsha 410083
- P. R. China
| | - Qiaobao Zhang
- Department of Materials Science and Engineering
- College of Materials
- Xiamen University
- Xiamen
- P. R. China
| | - Zaiping Guo
- Institute for Superconducting and Electronic Materials
- Australian Institute for Innovative Materials
- University of Wollongong
- North Wollongong 2522
- Australia
| |
Collapse
|
22
|
Kundu M, Singh G, Svensson AM. Co(OH)2@MnO2 nanosheet arrays as hybrid binder-free electrodes for high-performance lithium-ion batteries and supercapacitors. NEW J CHEM 2019. [DOI: 10.1039/c8nj04816a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Co(OH)2@MnO2 nanosheet arrays were directly grown on nickel foam via two-step electrodeposition method with subsequent heat treatment at 170 °C.
Collapse
Affiliation(s)
- Manab Kundu
- Department of Material Science and Engineering
- Norwegian University of Science and Technology (NTNU)
- NO-7491 Trondheim
- Norway
| | - Gurvinder Singh
- Department of Material Science and Engineering
- Norwegian University of Science and Technology (NTNU)
- NO-7491 Trondheim
- Norway
| | - Ann Mari Svensson
- Department of Material Science and Engineering
- Norwegian University of Science and Technology (NTNU)
- NO-7491 Trondheim
- Norway
| |
Collapse
|
23
|
Pawar S, Pawar B, Hou B, Ahmed A, Chavan H, Jo Y, Cho S, Kim J, Seo J, Cha S, Inamdar A, Kim H, Im H. Facile electrodeposition of high-density CuCo2O4 nanosheets as a high-performance Li-ion battery anode material. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.09.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Fabrication of Si Nanoparticles@Carbon Fibers Composites from Natural Nanoclay as an Advanced Lithium-Ion Battery Flexible Anode. MINERALS 2018. [DOI: 10.3390/min8050180] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Nanosized CoO Loaded on Copper Foam for High-Performance, Binder-Free Lithium-Ion Batteries. NANOMATERIALS 2018; 8:nano8040183. [PMID: 29565272 PMCID: PMC5923513 DOI: 10.3390/nano8040183] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/05/2018] [Accepted: 03/18/2018] [Indexed: 11/17/2022]
Abstract
The synthesis of nanosized CoO anodes with unique morphologies via a hydrothermal method is investigated. By adjusting the pH values of reaction solutions, nanoflakes (CoO-NFs) and nanoflowers (CoO-FLs) are successfully located on copper foam. Compared with CoO-FLs, CoO-NFs as anodes for lithium ion batteries present ameliorated lithium storage properties, such as good rate capability, excellent cycling stability, and large reversible capacity. The initial discharge capacity is 1470 mA h g−1, while the reversible capacity is maintained at 1776 m Ah g−1 after 80 cycles at a current density of 100 mA h g−1. The excellent electrochemical performance is ascribed to enough free space and enhanced conductivity, which play crucial roles in facilitating electron transport during repetitive Li+ intercalation and extraction reaction as well as buffering the volume expansion.
Collapse
|