1
|
Sadangi M, Chakravarty C, Bhattacharjee J, Behera JN. Ru Prussian blue analogue-derived Ru nanoparticles composited with a trace amount of Pt as an efficacious electrocatalyst for the hydrogen evolution reaction. Dalton Trans 2024; 53:16384-16396. [PMID: 39319666 DOI: 10.1039/d4dt02220c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
In this work, we designed a straightforward and highly reproducible synthetic methodology to prepare Ru0-Pt0 composites. We report a significant improvement in the electrocatalytic performance upon compositing Ru with a very trace amount of Pt. In particular, Ru nanoparticles were derived from a Ru-Prussian blue analogue (Ru PBA) and composited with (0.1, 0.5, and 1 mmol) metallic platinum following an optimized chemical reduction method. Interestingly, the composite with 0.5 mmol of Pt (Ru@C/Pt0.5) required low overpotentials of 32 and 140 mV to achieve current densities of 10 and 100 mA cm-2, respectively. Furthermore, Ru@C/Pt0.5 exhibited a smaller Tafel slope (26 mV dec-1), robust durability with 50 hours of long-term stability and a higher turnover frequency (TOF: 5.6 s-1@η10 mA cm-2) than commercial Pt/C (TOF: 4.1 s-1@η10 mA cm-2). First-principles calculations using density functional theory (DFT) revealed that the existence of Pt islands on the Ru nanoparticles weakened the strength of the adsorption of hydrogen at the Ru interstitials due to electrostatic repulsion caused by charge retention at Ru atoms near the corner of the islands, leading to rapid dissociation of hydrogen. This created a significant impact on the improvement of the electrocatalytic HER activity of the Ru@C/Pt0.5 electrocatalyst. It appears that restricting the concentration of Pt to trace amounts is a necessary condition for the observed catalytic efficiency, as the catalytic efficiency decreases with an increasing island size due to stronger binding of atomic hydrogen on peripheral Pt atoms and stabilization of adsorbed atomic hydrogen caused by softening of phonon modes with increasing island size. This study opens up a novel avenue for the exploration of highly efficient electrocatalysts for hydrogen evolution reactions.
Collapse
Affiliation(s)
- Manisha Sadangi
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), an OCC of Homi Bhabha National Institute (HBNI), Khurda, Odisha, 752050, India.
- Centre for Interdisciplinary Sciences (CIS), NISER, Khurda, Odisha, 752050, India
| | - Chandrima Chakravarty
- School of Physical Sciences, National Institute of Science Education and Research (NISER), an OCC of Homi Bhabha National Institute (HBNI), Khurda, Odisha, 752050, India
| | - Joydeep Bhattacharjee
- School of Physical Sciences, National Institute of Science Education and Research (NISER), an OCC of Homi Bhabha National Institute (HBNI), Khurda, Odisha, 752050, India
| | - J N Behera
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), an OCC of Homi Bhabha National Institute (HBNI), Khurda, Odisha, 752050, India.
- Centre for Interdisciplinary Sciences (CIS), NISER, Khurda, Odisha, 752050, India
| |
Collapse
|
2
|
Kumar SA, Sahoo S, Laxminarayana GK, Rout CS. Electrochemical Deposition for Cultivating Nano- and Microstructured Electroactive Materials for Supercapacitors: Recent Developments and Future Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402087. [PMID: 38845531 DOI: 10.1002/smll.202402087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/10/2024] [Indexed: 10/04/2024]
Abstract
The globe is currently dealing with serious issues related to the world economy and population expansion, which has led to a significant increase in the need for energy. One of the most promising energy devices for the next generation of energy technology is the supercapacitor (SC). Among the numerous nanostructured materials examined for SC electrodes, inorganic nanosheets are considered to be the most favorable electrode materials because of their excellent electrochemical performance due to their large surface area, very low layer thickness, and tunable diverse composition. Various inorganic nanosheets (NS) such as metal oxides, metal chalcogenides, metal hydroxides, and MXenes show substantial electrochemical activity. Herein, a comprehensive survey of inorganic NS arrays synthesized through the electrodeposition method is reported with the discussion on detailed growth mechanism and their application in the fabrication of SC electrodes/devices for powering flexible and wearable electronics appliances. To begin with, the first section will feature the various types of electrodeposition working mechanism, SC types and their working mechanisms, importance of nanosheet structure for SCs. This review gives a profound interpretation of supercapacitor electrode materials and their performances in different domains. Finally, a perspective on NS array through electrodeposition method applications in diverse fields is extensively examined.
Collapse
Affiliation(s)
- S Ashok Kumar
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura Road, Bangalore, Karnataka, 562112, India
| | - Surjit Sahoo
- Department of Industrial and Manufacturing Systems Engineering, Kansas State University, Manhattan, Kansas, 66506, USA
| | - Gurunatha Kargal Laxminarayana
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura Road, Bangalore, Karnataka, 562112, India
| | - Chandra Sekhar Rout
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura Road, Bangalore, Karnataka, 562112, India
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| |
Collapse
|
3
|
Won JS, Prasad C, Jeong SG, Rosaiah P, Reddy AS, Ahmad Z, Sangaraju S, Choi HY. Recent advances in the development of MXenes/cellulose based composites: A review. Int J Biol Macromol 2023; 240:124477. [PMID: 37076072 DOI: 10.1016/j.ijbiomac.2023.124477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/09/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Over the past few years, transition metal carbides, nitrides, and carbonitrides, commonly referred to as MXenes have been discovered and utilized quickly in a range of technical fields due to their distinctive and controlled characteristics. MXenes are a new class of two-dimensional (2D) materials that have found extensive use in a variety of fields, including energy storage, catalysis, sensing, biology, and other scientific disciplines. This is because of their exceptional mechanical and structural characteristics, metal electrical conductivity, and other outstanding physical and chemical properties. In this contribution, we review recent cellulose research advances and show that MXene hybrids are effective composites that benefit from cellulose superior water dispersibility and the electrostatic attraction between cellulose and MXene to prevent MXene accumulation and improve the composite's mechanical properties. Electrical, materials, chemical, mechanical, environmental, and biomedical engineering are all fields in which cellulose/MXene composites are used. These properties and applications-based reviews on MXene/cellulose composite, critically analyze the results and accomplishments in these fields and provide context for potential future research initiatives. It examines newly reported applications for cellulose nanocomposites assisted by MXene. To support their development and future applications, perspectives and difficulties are suggested in the conclusion.
Collapse
Affiliation(s)
- Jong Sung Won
- Defense Materials & Energy Technology Center, Agency for Defense Development, Daejeon 34060, Republic of Korea
| | - Cheera Prasad
- Department of Fashion Design, Dong-A University, Busan 49315, Republic of Korea
| | - Seong-Geun Jeong
- Bio-MAX Institute, Seoul National University, Seoul, Republic of Korea
| | - P Rosaiah
- Department of Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602 105, India
| | - A Subba Reddy
- Analytical Development Laboratory, Apicore LLC, NJ 08873, USA
| | - Zubair Ahmad
- Applied College, Mahala Campus, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Sambasivam Sangaraju
- National Water and Energy Center, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Hyeong Yeol Choi
- Department of Fashion Design, Dong-A University, Busan 49315, Republic of Korea.
| |
Collapse
|
4
|
Chinnakutti KK, Kirubaharan AMK, Patra L, Pandey R, Theerthagiri J, Vengatesh P, Salammal ST, Paramasivam N, Sambandam A, Kasemchainan J, Choi MY. Modulating the Combinatorial Target Power of MgSnN 2 via RF Magnetron Sputtering for Enhanced Optoelectronic Performance: Mechanistic Insights from DFT Studies. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36897218 DOI: 10.1021/acsami.2c22514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The unique structural features of many ternary nitride materials with strong chemical bonding and band gaps above 2.0 eV are limited and are experimentally unexplored. It is important to identify candidate materials for optoelectronic devices, particularly for light-emitting diodes (LEDs) and absorbers in tandem photovoltaics. Here, we fabricated MgSnN2 thin films, as promising II-IV-N2 semiconductors, on stainless-steel, glass, and silicon substrates via combinatorial radio-frequency magnetron sputtering. The structural defects of the MgSnN2 films were studied as a function of the Sn power density, while the Mg and Sn atomic ratios remained constant. Polycrystalline orthorhombic MgSnN2 was grown on the (120) orientation within a wide optical band gap range of ∼2.20-2.17 eV. The carrier densities of 2.18× 1020 to 1.02 × 1021 cm-3, mobilities between 3.75 and 2.24 cm2/Vs, and a decrease in resistivity from 7.64 to 2.73 × 10-3 Ω cm were confirmed by Hall-effect measurements. These high carrier concentrations suggested that the optical band gap measurements were affected by a Burstein-Moss shift. Furthermore, the electrochemical capacitance properties of the optimal MgSnN2 film exhibited an areal capacitance of 152.5 mF/cm2 at 10 mV/s with high retention stability. The experimental and theoretical results showed that MgSnN2 films were effective semiconductor nitrides toward the progression of solar absorbers and LEDs.
Collapse
Affiliation(s)
- Karthik Kumar Chinnakutti
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - A M Kamalan Kirubaharan
- Coating Department, Centre for Functional and Surface Functionalised Glass, Alexander Dubcek University of Trencin, Trencin 91150, Slovakia
| | - Lokanath Patra
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, United States
- Department of Physics, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Ravindra Pandey
- Department of Physics, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Jayaraman Theerthagiri
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Panneerselvam Vengatesh
- Centre of Excellence for Energy Research, Sathyabama Institute of Science and Technology, Chennai 600119, India
| | - Shyju Thankaraj Salammal
- Centre of Excellence for Energy Research, Sathyabama Institute of Science and Technology, Chennai 600119, India
- Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai 600119, India
| | - Naveena Paramasivam
- Condensed Matter Theory Lab, Department of Physics, National Institute of Technology, Tiruchirappalli 620015, India
| | - Anandan Sambandam
- Nanomaterials and Solar Conversion Laboratory, Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India
| | - Jitti Kasemchainan
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Myong Yong Choi
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
5
|
El Ouardi M, El Aouni A, Ait Ahsaine H, Zbair M, BaQais A, Saadi M. ZIF-8 metal organic framework composites as hydrogen evolution reaction photocatalyst: A review of the current state. CHEMOSPHERE 2022; 308:136483. [PMID: 36152836 DOI: 10.1016/j.chemosphere.2022.136483] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/01/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
In the past decade, extensive research has been devoted to synthesis of ZIF-8 materials for catalytic applications. As physico-chemical properties are synthesis-dependent, this review explores different synthesis strategies based the solvent and solvent-free synthesis of zeolitic imidazole framework. Accordingly, the effect of several parameters on the ZIF-8 synthesis were discussed including solvent, deprotonating agents, precursors ratio is delivered. Additionally, the advantages and disadvantages of each synthesis have been discussed and assessed. ZIF-8 textural and structural properties justify its wide use as a stable high surface area MOF in aqueous catalytic reactions. This review includes the applicatios of ZIF-8 materials in photocatalytic hydrogen evolution reaction (HER). The efficiency of the reviewed materials was fairly assessed. Finally, Limitations, drawbacks and future challenges were fully debated to ensure the industrial viability of the ZIFs.
Collapse
Affiliation(s)
- M El Ouardi
- Laboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, Mohammed V University in Rabat, Morocco; Université de Toulon, CNRS, IM2NP, CS 60584, Toulon Cedex 9, F- 83041, France
| | - Aicha El Aouni
- Laboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - H Ait Ahsaine
- Laboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, Mohammed V University in Rabat, Morocco.
| | - M Zbair
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, f-68100 Mulhouse, France; Université de Strasbourg, 67081, Strasbourg, France
| | - A BaQais
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - M Saadi
- Laboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| |
Collapse
|
6
|
Patil SS, Patil PS. Status review of nickel phosphides for hybrid supercapacitors. NANOSCALE 2022; 14:16731-16748. [PMID: 36345777 DOI: 10.1039/d2nr05139g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Transition metal phosphides are a new class of materials that have attracted enormous attention as a potential electrode for supercapacitors (SCs) compared to metal oxides/hydroxides and metal sulfides due to their strong redox-active behaviour, good electrical conductivity, layered structure, low cost, and high chemical and thermal stability. Recently, several efforts have been made to develop nickel phosphides (NixPy) (NPs) for high-performance SCs. The electrochemical properties of NPs can be easily tuned by several innovative approaches, such as heteroatom doping, defect engineering, and developing a hollow architecture. The prospects of NPs as a positive electrode in hybrid SCs are summarized to understand the material's practical relevance. Finally, the challenges and perspectives are provided for the development of high-performance NPs for SCs. The thorough elucidation of the structure-property-performance relationship offers a guide for developing NP-based next-generation energy-storage devices.
Collapse
Affiliation(s)
- Satyajeet S Patil
- Thin Film Materials Laboratory, Department of Physics, Shivaji University, Kolhapur 416 004, M.S., India.
| | - Pramod S Patil
- Thin Film Materials Laboratory, Department of Physics, Shivaji University, Kolhapur 416 004, M.S., India.
| |
Collapse
|
7
|
Karuppasamy K, Nichelson A, Vikraman D, Choi JH, Hussain S, Ambika C, Bose R, Alfantazi A, Kim HS. Recent Advancements in Two-Dimensional Layered Molybdenum and Tungsten Carbide-Based Materials for Efficient Hydrogen Evolution Reactions. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3884. [PMID: 36364659 PMCID: PMC9656633 DOI: 10.3390/nano12213884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Green and renewable energy is the key to overcoming energy-related challenges such as fossil-fuel depletion and the worsening of environmental habituation. Among the different clean energy sources, hydrogen is considered the most impactful energy carrier and is touted as an alternate fuel for clean energy needs. Even though noble metal catalysts such as Pt, Pd, and Au exhibit excellent hydrogen evolution reaction (HER) activity in acid media, their earth abundance and capital costs are highly debatable. Hence, developing cost-effective, earth-abundant, and conductive electrocatalysts is crucial. In particular, various two-dimensional (2D) transition metal carbides and their compounds are gradually emerging as potential alternatives to noble metal-based catalysts. Owing to their improved hydrophilicity, good conductivity, and large surface areas, these 2D materials show superior stability and excellent catalytic performances during the HER process. This review article is a compilation of the different synthetic protocols, their impact, effects of doping on molybdenum and tungsten carbides and their derivatives, and their application in the HER process. The paper is more focused on the detailed strategies for improving the HER activity, highlights the limits of molybdenum and tungsten carbide-based electrocatalysts in electro-catalytic process, and elaborates on the future advancements expected in this field.
Collapse
Affiliation(s)
- K. Karuppasamy
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Korea
| | - A. Nichelson
- Department of Physics, National Engineering College, K.R. Nagar, Kovilpatti, Tuticorin 628503, Tamil Nadu, India
| | - Dhanasekaran Vikraman
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Korea
| | - Jun-Hyeok Choi
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Korea
| | - Sajjad Hussain
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Korea
| | - C. Ambika
- Department of Physics, Ayya Nadar Janaki Ammal College, Sivakasi 626123, Tamil Nadu, India
| | - Ranjith Bose
- Department of Chemical Engineering, Khalifa University, Abu Dhabi 127788, United Arab Emirates
- Emirates Nuclear Technology Center (ENTC), Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Akram Alfantazi
- Department of Chemical Engineering, Khalifa University, Abu Dhabi 127788, United Arab Emirates
- Emirates Nuclear Technology Center (ENTC), Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Hyun-Seok Kim
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Korea
| |
Collapse
|
8
|
Ragupathi J, Annal Therese H. Synthesis of One‐Dimensional Mo
2
C‐Embedded Carbon Nanofibers with Enhanced Lithium Storage Capacity for Lithium‐Ion Batteries. ChemistrySelect 2022. [DOI: 10.1002/slct.202201924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jeevani Ragupathi
- Nanotechnology Research Centre SRM Institute of Science and Technology, Kattankulathur Chengalpattu 603203, Tamil Nadu India
| | - Helen Annal Therese
- Department of Chemistry SRM Institute of Science and Technology, Kattankulathur Chengalpattu 603203 Tamil Nadu India
| |
Collapse
|
9
|
Hussain I, Sahoo S, Sayed MS, Ahmad M, Sufyan Javed M, Lamiel C, Li Y, Shim JJ, Ma X, Zhang K. Hollow nano- and microstructures: Mechanism, composition, applications, and factors affecting morphology and performance. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214429] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Elucidating the pseudocapacitive mechanism of ternary Co-Ni-B electrodes–Towards miniaturization and superior electrochemical performance for building outmatched supercapacitors. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Sahu N, Das JK, Behera JN. NiSe 2 Nanoparticles Encapsulated in N-Doped Carbon Matrix Derived from a One-Dimensional Ni-MOF: An Efficient and Sustained Electrocatalyst for Hydrogen Evolution Reaction. Inorg Chem 2022; 61:2835-2845. [PMID: 35113554 DOI: 10.1021/acs.inorgchem.1c03323] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The spherical-type NiSe2 nanoparticles encapsulated in a N-doped carbon (NC) matrix (NiSe2-T@NC, temperature (T) = 400-800 °C) are derived from a 1D Ni-MOF precursor of the formula [Ni(BPY)(DDE)] [(BPY = 2,2'-bipyridyl), (DDE = 4,4'-dicarboxy diphenyl ether)] via a facile solvothermal technique followed by annealing at different temperatures and selenylation strategies. The combined effect of a NC matrix and the Ni nanoparticles has been optimized during varied annealing processes with subsequent selenylation, leading to the formation of the series NiSe2-400@NC, NiSe2-500@NC, NiSe2-600@NC, NiSe2-700@NC, and NiSe2-800@NC, respectively. The variation of annealing temperature plays a vital role in optimizing the catalytic behavior of the NiSe2-T@NCs. Among different high-temperature annealed products, NiSe2-600@NC shows superior electrocatalytic performance because of the unique spherical-type morphology and higher specific surface area (57.95 m2 g-1) that provides a large number of electrochemical active sites. The synthesized material exhibits a lower overpotential of 196 mV to deliver 10 mA cm-2 current density, a small Tafel slope of 45 mV dec-1 for better surface kinetics, and outstanding durability in an acidic solution, respectively. Consequently, the post stability study of the used electrocatalyst gives insight into surface phase analysis. Therefore, we presume that the synthesized 1D MOF precursor derived NiSe2 nanoparticles encapsulated in a NC matrix has excellent potential to replace the noble-metal-based electrocatalyst for enhanced hydrogen evolution through simple water electrolysis.
Collapse
Affiliation(s)
- Nachiketa Sahu
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Khordha 752050, Odisha, India.,Homi Bhabha National Institute (HBNI), Mumbai 400094, India.,Centre for Interdisciplinary Sciences (CIS), NISER, 752050 Jatni, Odisha, India
| | - Jiban K Das
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Khordha 752050, Odisha, India.,Homi Bhabha National Institute (HBNI), Mumbai 400094, India.,Centre for Interdisciplinary Sciences (CIS), NISER, 752050 Jatni, Odisha, India
| | - J N Behera
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Khordha 752050, Odisha, India.,Homi Bhabha National Institute (HBNI), Mumbai 400094, India.,Centre for Interdisciplinary Sciences (CIS), NISER, 752050 Jatni, Odisha, India
| |
Collapse
|
12
|
Facile Hydrothermal Synthesis and Supercapacitor Performance of Mesoporous Necklace-Type ZnCo2O4 Nanowires. Catalysts 2021. [DOI: 10.3390/catal11121516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this work, mesoporous ZnCo2O4 electrode material with necklace-type nanowires was synthesized by a simple hydrothermal method using water/ethylene glycol mixed solvent and subsequent calcination treatment. The ZnCo2O4 nanowires were assembled by several tiny building blocks of nanoparticles which led to the growth of necklace-type nanowires. The as-synthesized ZnCo2O4 nanowires had porous structures with a high surface area of 25.33 m2 g−1 and with an average mesopore of 23.13 nm. Due to the higher surface area and mesopores, the as-prepared necklace-type ZnCo2O4 nanowires delivered a high specific capacity of 439.6 C g−1 (1099 F g−1) at a current density of 1 A g−1, decent rate performance (47.31% retention at 20 A g−1), and good cyclic stability (84.82 % capacity retention after 5000 cycles). Moreover, a hybrid supercapacitor was fabricated with ZnCo2O4 nanowires as a positive electrode and activated carbon (AC) as a negative electrode (ZnCo2O4 nanowires//AC), which delivered an energy density of 41.87 Wh kg−1 at a power density of 800 W kg−1. The high electrochemical performance and excellent stability of the necklace-type ZnCo2O4 nanowires relate to their unique architecture, high surface area, mesoporous nature, and the synergistic effect between Zn and Co metals.
Collapse
|
13
|
Ates M, Kuzgun O, Candan I. Supercapacitor performances of titanium–polymeric nanocomposites: a review study. IRANIAN POLYMER JOURNAL 2021. [DOI: 10.1007/s13726-021-00982-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
Ni Foam-Supported Tin Oxide Nanowall Array: An Integrated Supercapacitor Anode. Molecules 2021; 26:molecules26154517. [PMID: 34361672 PMCID: PMC8347398 DOI: 10.3390/molecules26154517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 11/17/2022] Open
Abstract
A novel product consisting of a homogeneous tin oxide nanowall array with abundant oxygen deficiencies and partial Ni-Sn alloying onto a Ni foam substrate was successfully prepared using a facile solvothermal synthesis process with subsequent thermal treatment in a reductive atmosphere. Such a product could be directly used as integrated anodes for supercapacitors, which showed outstanding electrochemical properties with a maximum specific capacitance of 31.50 mAh·g-1 at 0.1 A·g-1, as well as good cycling performance, with a 1.35-fold increase in capacitance after 10,000 cycles. An asymmetric supercapacitor composed of the obtained product as the anode and activated carbon as the cathode was shown to achieve a high potential window of 1.4 V. The excellent electrochemical performance of the obtained product is mainly ascribed to the hierarchical structure provided by the integrated, vertically grown nanowall array on 3D Ni foam, the existence of oxygen deficiency and the formation of Ni-Sn alloys in the nanostructures. This work provides a general strategy for preparing other high-performance metal oxide electrodes for electrochemical applications.
Collapse
|
15
|
Boorboor Ajdari F, Dashti Najafi M, Izadpanah Ostad M, Naderi HR, Niknam Shahrak M, Kowsari E, Ramakrishna S. A symmetric ZnO-ZIF8//Mo-ZIF8 supercapacitor and comparing with electrochemical of Pt, Au, and Cu decorated ZIF-8 electrodes. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Theerthagiri J, Lee SJ, Karuppasamy K, Arulmani S, Veeralakshmi S, Ashokkumar M, Choi MY. Application of advanced materials in sonophotocatalytic processes for the remediation of environmental pollutants. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125245. [PMID: 33545645 DOI: 10.1016/j.jhazmat.2021.125245] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/20/2021] [Accepted: 01/24/2021] [Indexed: 05/20/2023]
Abstract
Significant advances in various industrial processes have resulted in the discharge of toxic pollutants into the environment. Consequently, it is essential to develop efficient wastewater treatment processes to reduce water contamination and increase recycling/reuse. Photocatalytic degradation is considered as an efficient method for the degradation of toxic pollutants in industrial wastewater. However, the use of photocatalytic approaches is associated with numerous limitations, such as lengthy procedures and the necessity for large amounts of catalysts. Hence, it has been proposed that photocatalysis could be combined with other techniques, including sonolysis, electrochemical, photothermal, microwave, ultrafiltration, and biological reactor. The integration of photocatalysis with sonolysis could be remarkably beneficial for environmental remediation. The combination of these processes has the advantages of using uniformly dispersed catalysts, regeneration of the catalyst surface, improved mass transfer, enhanced surface area due to smaller catalyst particles, and production of more active radicals for the degradation of organic pollutants. In this review, an overview on employing sonophotocatalysis for the removal of toxic organic contaminants from aqueous environments is provided. Additionally, the limitations of photocatalysis alone and the fundamental sonophotocatalytic mechanistic pathways are discussed. The importance of utilizing advanced two-dimensional (2D) semiconductor materials in sonophotocatalysis and the common synthetic approaches for the preparation of 2D materials are also highlighted. Lastly, the review provides comprehensive insights into different materials based on metal oxides, chalcogenides, graphene, and metal organic frameworks (MOFs), which are involved in sonophotocatalytic processes employed for the remediation of environmental pollutants.
Collapse
Affiliation(s)
- Jayaraman Theerthagiri
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry, Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Seung Jun Lee
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry, Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - K Karuppasamy
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Subramanian Arulmani
- Department of Chemistry, Bannari Amman Institute of Technology, Sathyamangalam 638401, Tamil Nadu, India
| | - S Veeralakshmi
- Department of Applied Science and Technology, A.C. Tech. Campus, Anna University, Chennai 600025, Tamil Nadu, India
| | - Muthupandian Ashokkumar
- School of Chemistry, University of Melbourne, Parkville Campus, Melbourne, VIC 3010, Australia
| | - Myong Yong Choi
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry, Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea.
| |
Collapse
|
17
|
A Tröger's Base-Derived Covalent Organic Polymer Containing Carbazole Units as a High-Performance Supercapacitor. Polymers (Basel) 2021; 13:polym13091385. [PMID: 33923188 PMCID: PMC8123202 DOI: 10.3390/polym13091385] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 02/04/2023] Open
Abstract
Porous organic polymers have been received considerable attention due to their heteroatom-containing structures and high surface areas, which can offer high electrochemical performance in energy applications. The majority of reported Tröger's base-functionalized porous organic polymers have been applied as effective candidates for sensing and gas separation/adsorption, while their use as electrode materials in supercapacitors is rare. Here, a novel covalent microporous organic polymer containing carbazole and Tröger's base CzT-CMOP has been successfully synthesized through the one-pot polycondensation of 9-(4-aminophenyl)-carbazole-3,6-diamine (Cz-3NH2) with dimethoxymethane. The polycondensation reaction's regioselectivity was studied using spectroscopic analyses and electronic structure calculations that confirmed the polycondensation occurred through the second and seventh positions of the carbazole unit rather than the fourth and fifth positions confirmed by first-principles calculations. Our CzT-CMOP exhibited high thermal stability of approximately 463.5 °C and a relatively high Brunauer-Emmett-Teller surface area of 615 m2 g-1 with a nonlocal density functional theory's pore size and volume of 0.48 cm3 g-1 and 1.66 nm, respectively. In addition, the synthesized CzT-CMOP displayed redox activity due to the existence of a redox-active carbazole in the polymer skeleton. CzT-CMOP revealed high electrochemical performance when used as active-electrode material in a three-electrode supercapacitor with an aqueous electrolyte of 6 M KOH, and it showed specific capacitance of 240 F g-1 at a current density of 0.5 A g-1 with excellent stability after 2000 cycles of 97% capacitance retention. Accordingly, such porous organic polymer appears to have a variety of uses in energy-related applications.
Collapse
|
18
|
Karuppasamy K, Rabani I, Vikraman D, Bathula C, Theerthagiri J, Bose R, Yim CJ, Kathalingam A, Seo YS, Kim HS. ZIF-8 templated assembly of La 3+-anchored ZnO distorted nano-hexagons as an efficient active photocatalyst for the detoxification of rhodamine B in water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:116018. [PMID: 33257147 DOI: 10.1016/j.envpol.2020.116018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/28/2020] [Accepted: 10/04/2020] [Indexed: 06/12/2023]
Abstract
The use of lanthanum-anchored zinc oxide distorted hexagon (La@ZnO DH) nanoclusters as an active material for the photodegradation of rhodamine B (Rh-B) dye via hydrogen bonding, electrostatic, and π-π interactions is examined herein. The active photocatalyst is derived from porous zeolite imidazole frameworks (ZIF-8) via a combined ultrasonication and calcination process. The distorted hexagon nanocluster morphology with controlled surface area is shown to provide excellent catalytic activity, chemical stability and demarcated pore volume. In addition, the low bandgap (3.57 eV) of La@ZnO DH is shown to expand the degradation of Rh-B under irradiation of UV light as compared to the pristine ZIF-8-derived ZnO photocatalyst due to inhibited recombination of electrons and holes. The outstanding physicochemical stability and enhanced performance of La@ZnO DH could be ascribed to the synergistic interaction among La3+ particles and the ZnO nanoclusters and provide a route for their utilization as a promising catalyst for the detoxification of Rh-B.
Collapse
Affiliation(s)
- K Karuppasamy
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Iqra Rabani
- Interface Lab, Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul, 05006, Republic of Korea
| | - Dhanasekaran Vikraman
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Chinna Bathula
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - J Theerthagiri
- Centre of Excellence for Energy Research, Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology (Deemed to Be University), Chennai, 600119, India
| | - Ranjith Bose
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
| | - Chang-Joo Yim
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - A Kathalingam
- Millimeter-Wave Innovation Technology Research Center (MINT), Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Young-Soo Seo
- Interface Lab, Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul, 05006, Republic of Korea
| | - Hyun-Seok Kim
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea.
| |
Collapse
|
19
|
Bharath G, Hai A, Rambabu K, Pazhanivel T, Hasan SW, Banat F. Designed assembly of Ni/MAX (Ti 3AlC 2) and porous graphene-based asymmetric electrodes for capacitive deionization of multivalent ions. CHEMOSPHERE 2021; 266:129048. [PMID: 33248725 DOI: 10.1016/j.chemosphere.2020.129048] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/08/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
The contamination of aquatic ecosystems by fluoride and heavy metal ions constitute an environmental hazard and has been proven to be harmful to human health. This study explores the feasibility of using asymmetric capacitive deionization (CDI) electrodes to remove such toxic ions from wastewater. An asymmetric CDI cell was fabricated using 2D Ni/MAX as an anode and 3D porous reduced graphene oxide (pRGO) as a cathode for the electrosorption of F-, Pb2+, and As(III) ions. A simple microwave process was used for the synthesis of Ni/MAX composite using fish sperm DNA (f-DNA) as a cross-linker between MAX nanosheets (NSs) and the metallic Ni nanoparticles (NPs). Further, pRGO anode was prepared through effective reduction of RGO using lemon juice as green reducing agent with the assist of f-DNA as a structure-directing agent for the formation of 3D network. With this tailored nanoarchitecture, pRGO and Ni/MAX electrodes exhibited a high specific capacitance of 760 and 385 F g-1, respectively. The fabricated Ni/MAX and pRGO based CDI system demonstrated a high electrosorption capacity of 68, 76, and 51 mg g-1 for the monovalent F-, divalent Pb2+, and trivalent As(III) ions at 1.4 V in neutral pH. Furthermore, Ni/MAX//pRGO system was successfully applied for the removal of total F(T), Pb(T), and As(T) ions from real industrial wastewater and contaminated groundwater. The present findings indicate that the fabricated Ni/MAX//pRGO electrode has excellent electrochemical properties that can be exploited for the removal of anionic and cationic metal ions from aqueous solutions in a CDI based system.
Collapse
Affiliation(s)
- G Bharath
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Abdul Hai
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - K Rambabu
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - T Pazhanivel
- Department of Physics, Periyar University, Salem, 636011, Tamil Nadu, India
| | - Shadi W Hasan
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
20
|
Lee DG, Lee BC, Jung KH. Preparation of Porous Carbon Nanofiber Electrodes Derived from 6FDA-Durene/PVDF Blends and Their Electrochemical Properties. Polymers (Basel) 2021; 13:720. [PMID: 33653005 PMCID: PMC7956683 DOI: 10.3390/polym13050720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 11/16/2022] Open
Abstract
Highly porous carbon electrodes for supercapacitors with high energy storage performance were prepared by using a new precursor blend of aromatic polyimide (PI) and polyvinylidene fluoride (PVDF). Supercapacitor electrodes were prepared through the electrospinning and thermal treatment of the precursor blends of aromatic PI and PVDF. Microstructures of the carbonized PI/PVDF nanofibers were studied using Raman spectroscopy. Nitrogen adsorption/desorption measurements confirmed their high surface area and porosity, which is critical for supercapacitor performance. Energy storage performance was investigated and carbonized PI/PVDF showed a high specific capacitance of 283 F/g at 10 mV/s (37% higher than that of PI) and an energy density of 11.3 Wh/kg at 0.5 A/g (27% higher than that of PI) with high cycling stability.
Collapse
Affiliation(s)
| | | | - Kyung-Hye Jung
- School of Advanced Materials and Chemical Engineering, Daegu Catholic University, Gyeongsan, Gyeongbuk 38430, Korea; (D.G.L.); (B.C.L.)
| |
Collapse
|
21
|
Effect of various aqueous electrolytes on the electrochemical performance of α-MnO2 nanorods as electrode materials for supercapacitor application. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137412] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Thiagarajan K, Balaji D, Madhavan J, Theerthagiri J, Lee SJ, Kwon KY, Choi MY. Cost-Effective Synthesis of Efficient CoWO 4/Ni Nanocomposite Electrode Material for Supercapacitor Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2195. [PMID: 33158013 PMCID: PMC7692640 DOI: 10.3390/nano10112195] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 11/23/2022]
Abstract
In the present study, the synthesis of CoWO4 (CWO)-Ni nanocomposites was conducted using a wet chemical method. The crystalline phases and morphologies of the Ni nanoparticles, CWO, and CWO-Ni composites were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDAX). The electrochemical properties of CWO and CWO-Ni composite electrode materials were assessed by cyclic voltammetry (CV), and galvanostatic charge-discharge (GCD) tests using KOH as a supporting electrolyte. Among the CWO-Ni composites containing different amounts of Ni1, Ni2, and Ni3, CWO-Ni3 exhibited the highest specific capacitance of 271 F g-1 at 1 A g-1, which was greater than that of bare CWO (128 F g-1). Moreover, the CWO-Ni3 composite electrode material displayed excellent reversible cyclic stability and maintained 86.4% of its initial capacitance after 1500 discharge cycles. The results obtained herein demonstrate that the prepared CWO-Ni3 nanocomposite is a promising electrode candidate for supercapacitor applications.
Collapse
Affiliation(s)
- Kannadasan Thiagarajan
- Solar Energy Lab, Department of Chemistry, Thiruvalluvar University, Vellore 632 115, India; (K.T.); (D.B.)
| | - Dhandapani Balaji
- Solar Energy Lab, Department of Chemistry, Thiruvalluvar University, Vellore 632 115, India; (K.T.); (D.B.)
| | - Jagannathan Madhavan
- Solar Energy Lab, Department of Chemistry, Thiruvalluvar University, Vellore 632 115, India; (K.T.); (D.B.)
| | - Jayaraman Theerthagiri
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (J.T.); (S.J.L.)
| | - Seung Jun Lee
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (J.T.); (S.J.L.)
| | - Ki-Young Kwon
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (J.T.); (S.J.L.)
| | - Myong Yong Choi
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (J.T.); (S.J.L.)
| |
Collapse
|
23
|
Karuppasamy K, Prasanna K, Jothi VR, Vikraman D, Hussain S, Hwang JH, Kim HS. Recent Advances in Nanostructured Transition Metal Carbide- and Nitride-Based Cathode Electrocatalysts for Li-O 2 Batteries (LOBs): A Brief Review. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2106. [PMID: 33114076 PMCID: PMC7690842 DOI: 10.3390/nano10112106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/17/2020] [Accepted: 10/21/2020] [Indexed: 11/16/2022]
Abstract
A large volume of research on lithium-oxygen (Li-O2) batteries (LOBs) has been conducted in the recent decades, inspired by their high energy density and power density. However, these future generation energy-storage devices are still subject to technical limitations, including a squat round-trip efficiency and a deprived rate-capability, due to the slow-moving electrochemical kinetics of both the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) over the surface of the cathode catalyst. Because the electrochemistry of LOBs is rather complex, only a limited range of cathode catalysts has been employed in the past. To understand the catalytic mechanisms involved and improve overall cell performance, the development of new cathode electrocatalysts with enhanced round-trip efficiency is extremely important. In this context, transition metal carbides and nitrides (TMCs and TMNs, respectively) have been explored as potential catalysts to overcome the slow kinetics of electrochemical reactions. To provide an accessible and up-to-date summary for the research community, the present paper reviews the recent advancements of TMCs and TMNs and its applications as active electrocatalysts for LOBs. In particular, significant studies on the rational design of catalysts and the properties of TMC/TMN in LOBs are discussed, and the prospects and challenges facing the continued development of TMC/TMN electrocatalysts and strategies for attaining higher OER/ORR activity in LOBs are presented.
Collapse
Affiliation(s)
- K. Karuppasamy
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Korea; (K.K.); (D.V.); (J.-H.H.)
| | - K. Prasanna
- Avesta Battery & Energy Engineering, Ransbeekstraat, 310, 1120 Brussels, Belgium;
| | | | - Dhanasekaran Vikraman
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Korea; (K.K.); (D.V.); (J.-H.H.)
| | - Sajjad Hussain
- Graphene Research Institute, Sejong University, Seoul 05006, Korea;
- Institute of Nano and Advanced Materials Engineering, Sejong University, Seoul 05006, Korea
| | - Jung-Hoon Hwang
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Korea; (K.K.); (D.V.); (J.-H.H.)
| | - Hyun-Seok Kim
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Korea; (K.K.); (D.V.); (J.-H.H.)
| |
Collapse
|
24
|
Su H, Xiong T, Tan Q, Yang F, Appadurai PBS, Afuwape AA, Balogun MS(JT, Huang Y, Guo K. Asymmetric Pseudocapacitors Based on Interfacial Engineering of Vanadium Nitride Hybrids. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1141. [PMID: 32531987 PMCID: PMC7353334 DOI: 10.3390/nano10061141] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/22/2020] [Accepted: 06/06/2020] [Indexed: 01/11/2023]
Abstract
Vanadium nitride (VN) shows promising electrochemical properties as an energy storage devices electrode, specifically in supercapacitors. However, the pseudocapacitive charge storage in aqueous electrolytes shows mediocre performance. Herein, we judiciously demonstrate an impressive pseudocapacitor performance by hybridizing VN nanowires with pseudocapacitive 2D-layered MoS2 nanosheets. Arising from the interfacial engineering and pseudocapacitive synergistic effect between the VN and MoS2, the areal capacitance of VN/MoS2 hybrid reaches 3187.30 mF cm-2, which is sevenfold higher than the pristine VN (447.28 mF cm-2) at a current density of 2.0 mA cm-2. In addition, an asymmetric pseudocapacitor assembled based on VN/MoS2 anode and TiN coated with MnO2 (TiN/MnO2) cathode achieves a remarkable volumetric capacitance of 4.52 F cm-3 and energy density of 2.24 mWh cm-3 at a current density of 6.0 mA cm-2. This work opens a new opportunity for the development of high-performance electrodes in unfavorable electrolytes towards designing high areal-capacitance electrode materials for supercapacitors and beyond.
Collapse
Affiliation(s)
- Hailan Su
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China; (H.S.); (T.X.); (Q.T.); (F.Y.); (P.B.S.A.)
| | - Tuzhi Xiong
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China; (H.S.); (T.X.); (Q.T.); (F.Y.); (P.B.S.A.)
| | - Qirong Tan
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China; (H.S.); (T.X.); (Q.T.); (F.Y.); (P.B.S.A.)
| | - Fang Yang
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China; (H.S.); (T.X.); (Q.T.); (F.Y.); (P.B.S.A.)
| | - Paul B. S. Appadurai
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China; (H.S.); (T.X.); (Q.T.); (F.Y.); (P.B.S.A.)
| | - Afeez A. Afuwape
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China;
| | - M.-Sadeeq (Jie Tang) Balogun
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China; (H.S.); (T.X.); (Q.T.); (F.Y.); (P.B.S.A.)
| | - Yongchao Huang
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China;
| | - Kunkun Guo
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China; (H.S.); (T.X.); (Q.T.); (F.Y.); (P.B.S.A.)
| |
Collapse
|
25
|
Ultrasound supported synthesis of tantalum carbide integrated functionalized carbon composite for the voltammetric determination of the antibacterial drug nitrofurantoin in pharmaceutical samples. Mikrochim Acta 2020; 187:342. [DOI: 10.1007/s00604-020-04314-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/08/2020] [Indexed: 01/07/2023]
|
26
|
Khan NA, Bhadra BN, Park SW, Han YS, Jhung SH. Tungsten Nitride, Well-Dispersed on Porous Carbon: Remarkable Catalyst, Produced without Addition of Ammonia, for the Oxidative Desulfurization of Liquid Fuel. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1901564. [PMID: 31166653 DOI: 10.1002/smll.201901564] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/13/2019] [Indexed: 06/09/2023]
Abstract
Polyanilines (pANIs), loaded with phosphotungstic acid (PTA), are pyrolyzed to get WO3 or W2 N (≈6 and ≈7 nm, respectively), which is well-dispersed on pANI-derived porous carbons (pDCs). Depending on the pyrolysis temperature, WO3 /pDC, W2 N/pDC, or W2 N-W/pDCs could be obtained selectively. pANI acts as both the precursor of pDC and the nitrogen source for the nitridation of WO3 into W2 N during the pyrolysis. Importantly, W2 N could be obtained from the pyrolysis without ammonia feeding. The obtained W2 N/pDC is applied as a heterogeneous catalyst for the oxidative desulfurization (ODS) of liquid fuel for the first time, and the results are compared with WO3 /pDC and WO3 /ZrO2 . The W2 N/pDC is very efficient in ODS with remarkable performance compared with WO3 /pDC or WO3 /ZrO2 , which is applied as a representative ODS catalyst. For example, W2 N/pDC shows around 3.4 and 2.7 times of kinetic constant and turnover frequency (based on 5 min of reaction), respectively, compared to that of WO3 /ZrO2 . Moreover, the catalysts could be regenerated in a facile way. Therefore, W2 N/pDC could be produced facilely from pyrolysis (without ammonia feeding) of PTA/pANI, and W2 N, well-dispersed on pDC, can be suggested as a very efficient oxidation catalyst for the desulfurization of liquid fuel.
Collapse
Affiliation(s)
- Nazmul Abedin Khan
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Biswa Nath Bhadra
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Suk Woo Park
- Center for Scientific Instruments, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Yong-Su Han
- Center for Scientific Instruments, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sung Hwa Jhung
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| |
Collapse
|
27
|
Yang M, Feng F, Wang K, Li S, Huang X, Gong L, Ma L, Li R. Synthesis of Metal Phosphide Nanoparticles Supported on Porous N-Doped Carbon Derived from Spirulina for Universal-pH Hydrogen Evolution. CHEMSUSCHEM 2020; 13:351-359. [PMID: 31721453 DOI: 10.1002/cssc.201902920] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Indexed: 05/27/2023]
Abstract
Transition metal phosphides (TMPs) are regarded as highly active electrocatalysts for the hydrogen evolution reaction (HER). However, traditional synthetic routes usually use expensive and dangerous precursors as P donors. The development of a low-cost and ecofriendly method for the synthesis of TMPs is significant for sustainable energy development. Herein, cobalt phosphides anchored on or embedded in a spirulina-derived porous N-doped carbon matrix (Co2 P/NC) was fabricated by two-step hydrothermal treatment and carbonization method, which utilized the intrinsic C, N, and P of biomass cleverly as the sources of C, N, and P, respectively. As a result of the high surface area and porosity that enhance the mass-transfer dynamics, Co2 P/NC shows good electrocatalytic activity at all pH values in the HER. This work not only provides a facile and effective method for the fabrication of TMP nanoparticles loaded onto carbon materials but also opens a new strategy for the utilization of the intrinsic ingredients of biomass for the preparation of other functional electrocatalysts.
Collapse
Affiliation(s)
- Ming Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Fan Feng
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Kaizhi Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Shuwen Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Xiaokang Huang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Li Gong
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Lei Ma
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Rong Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| |
Collapse
|
28
|
Liu Y, Chang J, Liu L, Kang L, Ran F. Study on the voltage drop of vanadium nitride/carbon composites derived from the pectin/VCl 3 membrane as a supercapacitor anode material. NEW J CHEM 2020. [DOI: 10.1039/d0nj00997k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The adsorption of metal ions and the further utilization of adsorbent materials help solve serious environmental pollution; therefore, transforming them into supercapacitor electrode materials could be a promising possibility.
Collapse
Affiliation(s)
- Ying Liu
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals
- School of Material Science and Engineering
- Lanzhou University of Technology
- Lanzhou 730050
- P. R. China
| | - Jianguo Chang
- Yantai Andre Pectin CO., LTD
- Yantai 264100
- P. R. China
| | - Lingyang Liu
- Laboratory of Clean Energy Chemistry and Materials
- State Key Laboratory of Solid Lubrication
- Lanzhou Institute of Chemical Physics
- Chinese of Academy of Sciences
- Lanzhou 730000
| | - Long Kang
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals
- School of Material Science and Engineering
- Lanzhou University of Technology
- Lanzhou 730050
- P. R. China
| | - Fen Ran
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals
- School of Material Science and Engineering
- Lanzhou University of Technology
- Lanzhou 730050
- P. R. China
| |
Collapse
|
29
|
Karuppasamy K, Prasanna K, Ilango PR, Vikraman D, Bose R, Alfantazi A, Kim HS. Biopolymer phytagel-derived porous nanocarbon as efficient electrode material for high-performance symmetric solid-state supercapacitors. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Chen Z, Guo T, Wu Z, Wang D. Boron triggers the phase transformation of Mo x C (α-MoC 1-x /β-Mo 2C) for enhanced hydrogen production. NANOTECHNOLOGY 2019; 31:105707. [PMID: 31751973 DOI: 10.1088/1361-6528/ab5a25] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
As highly efficient non-precious metal-based catalysts for the hydrogen evolution reaction (HER), molybdenum carbides have attracted much attention over the phase and structure modification for the improvement of HER performances. In this work, a novel strategy is proposed to modulate phases of molybdenum carbides by boron doping, so that the HER performances can be well controlled. After B-doping, the HER activity of the as-prepared B30 catalyst is significantly enhanced with a much smaller Tafel slope of 78 mV dec-1 than that of the blank one (134 mV dec-1), which originates from the increased amount of active sites, enhanced turnover frequency of each active site and reduced electron transfer resistance. Moreover, this work could broaden our view of phase regulation and provide more possible perspectives for the application in other fields.
Collapse
Affiliation(s)
- Zijian Chen
- School of Materials Science and Engineering, Central South University, Changsha 410083, People's Republic of China
| | | | | | | |
Collapse
|
31
|
Manjunatha R, Karajić A, Teller H, Nicoara K, Schechter A. Electrochemical and Chemical Instability of Vanadium Nitride in the Synthesis of Ammonia Directly from Nitrogen. ChemCatChem 2019. [DOI: 10.1002/cctc.201901558] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | - Aleksandar Karajić
- Department of Chemical SciencesAriel University Ariel Research Park Ariel 40700 Israel
| | - Hanan Teller
- Department of Chemical SciencesAriel University Ariel Research Park Ariel 40700 Israel
| | - Katherina Nicoara
- Department of Chemical SciencesAriel University Ariel Research Park Ariel 40700 Israel
| | - Alex Schechter
- Department of Chemical SciencesAriel University Ariel Research Park Ariel 40700 Israel
| |
Collapse
|
32
|
Abstract
Deterministic nano-fractal structures have recently emerged, displaying huge potential for the fabrication of complex materials with predefined physical properties and functionalities. Exploiting the structural properties of fractals, such as symmetry and self-similarity, could greatly extend the applicability of such materials. Analyses of small-angle scattering (SAS) curves from deterministic fractal models with a single scaling factor have allowed the obtaining of valuable fractal properties but they are insufficient to describe non-uniform structures with rich scaling properties such as fractals with multiple scaling factors. To extract additional information about this class of fractal structures we performed an analysis of multifractal spectra and SAS intensity of a representative fractal model with two scaling factors—termed Vicsek-like fractal. We observed that the box-counting fractal dimension in multifractal spectra coincide with the scattering exponent of SAS curves in mass-fractal regions. Our analyses further revealed transitions from heterogeneous to homogeneous structures accompanied by changes from short to long-range mass-fractal regions. These transitions are explained in terms of the relative values of the scaling factors.
Collapse
|
33
|
Dual functional nickel cobalt/MWCNT composite electrode-based electrochemical capacitor and enzymeless glucose biosensor applications: Influence of Ni/Co molar ratio. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.01.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
Ghosh S, Polaki S, Sahoo G, Jin EM, Kamruddin M, Cho JS, Jeong SM. Designing metal oxide-vertical graphene nanosheets structures for 2.6 V aqueous asymmetric electrochemical capacitor. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.12.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Synthesis of highly electrically conductive and electrochemically stable porous boron-doped carbon microspheres. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0217-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|